subr_pool.c revision 1.30 1 /* $NetBSD: subr_pool.c,v 1.30 1999/08/29 00:26:01 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include "opt_pool.h"
41 #include "opt_poollog.h"
42 #include "opt_lockdebug.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/proc.h>
47 #include <sys/errno.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/lock.h>
51 #include <sys/pool.h>
52 #include <sys/syslog.h>
53
54 #include <vm/vm.h>
55 #include <vm/vm_kern.h>
56
57 #include <uvm/uvm.h>
58
59 /*
60 * Pool resource management utility.
61 *
62 * Memory is allocated in pages which are split into pieces according
63 * to the pool item size. Each page is kept on a list headed by `pr_pagelist'
64 * in the pool structure and the individual pool items are on a linked list
65 * headed by `ph_itemlist' in each page header. The memory for building
66 * the page list is either taken from the allocated pages themselves (for
67 * small pool items) or taken from an internal pool of page headers (`phpool').
68 */
69
70 /* List of all pools */
71 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
72
73 /* Private pool for page header structures */
74 static struct pool phpool;
75
76 /* # of seconds to retain page after last use */
77 int pool_inactive_time = 10;
78
79 /* Next candidate for drainage (see pool_drain()) */
80 static struct pool *drainpp;
81
82 /* This spin lock protects both pool_head and drainpp. */
83 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
84
85 struct pool_item_header {
86 /* Page headers */
87 TAILQ_ENTRY(pool_item_header)
88 ph_pagelist; /* pool page list */
89 TAILQ_HEAD(,pool_item) ph_itemlist; /* chunk list for this page */
90 LIST_ENTRY(pool_item_header)
91 ph_hashlist; /* Off-page page headers */
92 int ph_nmissing; /* # of chunks in use */
93 caddr_t ph_page; /* this page's address */
94 struct timeval ph_time; /* last referenced */
95 };
96
97 struct pool_item {
98 #ifdef DIAGNOSTIC
99 int pi_magic;
100 #define PI_MAGIC 0xdeadbeef
101 #endif
102 /* Other entries use only this list entry */
103 TAILQ_ENTRY(pool_item) pi_list;
104 };
105
106
107 #define PR_HASH_INDEX(pp,addr) \
108 (((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1))
109
110
111
112 static struct pool_item_header
113 *pr_find_pagehead __P((struct pool *, caddr_t));
114 static void pr_rmpage __P((struct pool *, struct pool_item_header *));
115 static int pool_catchup __P((struct pool *));
116 static void pool_prime_page __P((struct pool *, caddr_t));
117 static void *pool_page_alloc __P((unsigned long, int, int));
118 static void pool_page_free __P((void *, unsigned long, int));
119
120 static void pool_print1 __P((struct pool *, const char *,
121 void (*)(const char *, ...)));
122
123 /*
124 * Pool log entry. An array of these is allocated in pool_create().
125 */
126 struct pool_log {
127 const char *pl_file;
128 long pl_line;
129 int pl_action;
130 #define PRLOG_GET 1
131 #define PRLOG_PUT 2
132 void *pl_addr;
133 };
134
135 /* Number of entries in pool log buffers */
136 #ifndef POOL_LOGSIZE
137 #define POOL_LOGSIZE 10
138 #endif
139
140 int pool_logsize = POOL_LOGSIZE;
141
142 #ifdef DIAGNOSTIC
143 static void pr_log __P((struct pool *, void *, int, const char *, long));
144 static void pr_printlog __P((struct pool *, struct pool_item *,
145 void (*)(const char *, ...)));
146 static void pr_enter __P((struct pool *, const char *, long));
147 static void pr_leave __P((struct pool *));
148 static void pr_enter_check __P((struct pool *,
149 void (*)(const char *, ...)));
150
151 static __inline__ void
152 pr_log(pp, v, action, file, line)
153 struct pool *pp;
154 void *v;
155 int action;
156 const char *file;
157 long line;
158 {
159 int n = pp->pr_curlogentry;
160 struct pool_log *pl;
161
162 if ((pp->pr_roflags & PR_LOGGING) == 0)
163 return;
164
165 /*
166 * Fill in the current entry. Wrap around and overwrite
167 * the oldest entry if necessary.
168 */
169 pl = &pp->pr_log[n];
170 pl->pl_file = file;
171 pl->pl_line = line;
172 pl->pl_action = action;
173 pl->pl_addr = v;
174 if (++n >= pp->pr_logsize)
175 n = 0;
176 pp->pr_curlogentry = n;
177 }
178
179 static void
180 pr_printlog(pp, pi, pr)
181 struct pool *pp;
182 struct pool_item *pi;
183 void (*pr) __P((const char *, ...));
184 {
185 int i = pp->pr_logsize;
186 int n = pp->pr_curlogentry;
187
188 if ((pp->pr_roflags & PR_LOGGING) == 0)
189 return;
190
191 /*
192 * Print all entries in this pool's log.
193 */
194 while (i-- > 0) {
195 struct pool_log *pl = &pp->pr_log[n];
196 if (pl->pl_action != 0) {
197 if (pi == NULL || pi == pl->pl_addr) {
198 (*pr)("\tlog entry %d:\n", i);
199 (*pr)("\t\taction = %s, addr = %p\n",
200 pl->pl_action == PRLOG_GET ? "get" : "put",
201 pl->pl_addr);
202 (*pr)("\t\tfile: %s at line %lu\n",
203 pl->pl_file, pl->pl_line);
204 }
205 }
206 if (++n >= pp->pr_logsize)
207 n = 0;
208 }
209 }
210
211 static __inline__ void
212 pr_enter(pp, file, line)
213 struct pool *pp;
214 const char *file;
215 long line;
216 {
217
218 if (pp->pr_entered_file != NULL) {
219 printf("pool %s: reentrancy at file %s line %ld\n",
220 pp->pr_wchan, file, line);
221 printf(" previous entry at file %s line %ld\n",
222 pp->pr_entered_file, pp->pr_entered_line);
223 panic("pr_enter");
224 }
225
226 pp->pr_entered_file = file;
227 pp->pr_entered_line = line;
228 }
229
230 static __inline__ void
231 pr_leave(pp)
232 struct pool *pp;
233 {
234
235 if (pp->pr_entered_file == NULL) {
236 printf("pool %s not entered?\n", pp->pr_wchan);
237 panic("pr_leave");
238 }
239
240 pp->pr_entered_file = NULL;
241 pp->pr_entered_line = 0;
242 }
243
244 static __inline__ void
245 pr_enter_check(pp, pr)
246 struct pool *pp;
247 void (*pr) __P((const char *, ...));
248 {
249
250 if (pp->pr_entered_file != NULL)
251 (*pr)("\n\tcurrently entered from file %s line %ld\n",
252 pp->pr_entered_file, pp->pr_entered_line);
253 }
254 #else
255 #define pr_log(pp, v, action, file, line)
256 #define pr_printlog(pp, pi, pr)
257 #define pr_enter(pp, file, line)
258 #define pr_leave(pp)
259 #define pr_enter_check(pp, pr)
260 #endif /* DIAGNOSTIC */
261
262 /*
263 * Return the pool page header based on page address.
264 */
265 static __inline__ struct pool_item_header *
266 pr_find_pagehead(pp, page)
267 struct pool *pp;
268 caddr_t page;
269 {
270 struct pool_item_header *ph;
271
272 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
273 return ((struct pool_item_header *)(page + pp->pr_phoffset));
274
275 for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]);
276 ph != NULL;
277 ph = LIST_NEXT(ph, ph_hashlist)) {
278 if (ph->ph_page == page)
279 return (ph);
280 }
281 return (NULL);
282 }
283
284 /*
285 * Remove a page from the pool.
286 */
287 static __inline__ void
288 pr_rmpage(pp, ph)
289 struct pool *pp;
290 struct pool_item_header *ph;
291 {
292
293 /*
294 * If the page was idle, decrement the idle page count.
295 */
296 if (ph->ph_nmissing == 0) {
297 #ifdef DIAGNOSTIC
298 if (pp->pr_nidle == 0)
299 panic("pr_rmpage: nidle inconsistent");
300 if (pp->pr_nitems < pp->pr_itemsperpage)
301 panic("pr_rmpage: nitems inconsistent");
302 #endif
303 pp->pr_nidle--;
304 }
305
306 pp->pr_nitems -= pp->pr_itemsperpage;
307
308 /*
309 * Unlink a page from the pool and release it.
310 */
311 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
312 (*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype);
313 pp->pr_npages--;
314 pp->pr_npagefree++;
315
316 if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
317 int s;
318 LIST_REMOVE(ph, ph_hashlist);
319 s = splhigh();
320 pool_put(&phpool, ph);
321 splx(s);
322 }
323
324 if (pp->pr_curpage == ph) {
325 /*
326 * Find a new non-empty page header, if any.
327 * Start search from the page head, to increase the
328 * chance for "high water" pages to be freed.
329 */
330 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
331 ph = TAILQ_NEXT(ph, ph_pagelist))
332 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
333 break;
334
335 pp->pr_curpage = ph;
336 }
337 }
338
339 /*
340 * Allocate and initialize a pool.
341 */
342 struct pool *
343 pool_create(size, align, ioff, nitems, wchan, pagesz, alloc, release, mtype)
344 size_t size;
345 u_int align;
346 u_int ioff;
347 int nitems;
348 const char *wchan;
349 size_t pagesz;
350 void *(*alloc) __P((unsigned long, int, int));
351 void (*release) __P((void *, unsigned long, int));
352 int mtype;
353 {
354 struct pool *pp;
355 int flags;
356
357 pp = (struct pool *)malloc(sizeof(*pp), M_POOL, M_NOWAIT);
358 if (pp == NULL)
359 return (NULL);
360
361 flags = PR_FREEHEADER;
362 pool_init(pp, size, align, ioff, flags, wchan, pagesz,
363 alloc, release, mtype);
364
365 if (nitems != 0) {
366 if (pool_prime(pp, nitems, NULL) != 0) {
367 pool_destroy(pp);
368 return (NULL);
369 }
370 }
371
372 return (pp);
373 }
374
375 /*
376 * Initialize the given pool resource structure.
377 *
378 * We export this routine to allow other kernel parts to declare
379 * static pools that must be initialized before malloc() is available.
380 */
381 void
382 pool_init(pp, size, align, ioff, flags, wchan, pagesz, alloc, release, mtype)
383 struct pool *pp;
384 size_t size;
385 u_int align;
386 u_int ioff;
387 int flags;
388 const char *wchan;
389 size_t pagesz;
390 void *(*alloc) __P((unsigned long, int, int));
391 void (*release) __P((void *, unsigned long, int));
392 int mtype;
393 {
394 int off, slack, i;
395
396 #ifdef POOL_DIAGNOSTIC
397 /*
398 * Always log if POOL_DIAGNOSTIC is defined.
399 */
400 if (pool_logsize != 0)
401 flags |= PR_LOGGING;
402 #endif
403
404 /*
405 * Check arguments and construct default values.
406 */
407 if (!powerof2(pagesz) || pagesz > PAGE_SIZE)
408 panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz);
409
410 if (alloc == NULL && release == NULL) {
411 alloc = pool_page_alloc;
412 release = pool_page_free;
413 pagesz = PAGE_SIZE; /* Rounds to PAGE_SIZE anyhow. */
414 } else if ((alloc != NULL && release != NULL) == 0) {
415 /* If you specifiy one, must specify both. */
416 panic("pool_init: must specify alloc and release together");
417 }
418
419 if (pagesz == 0)
420 pagesz = PAGE_SIZE;
421
422 if (align == 0)
423 align = ALIGN(1);
424
425 if (size < sizeof(struct pool_item))
426 size = sizeof(struct pool_item);
427
428 /*
429 * Initialize the pool structure.
430 */
431 TAILQ_INIT(&pp->pr_pagelist);
432 pp->pr_curpage = NULL;
433 pp->pr_npages = 0;
434 pp->pr_minitems = 0;
435 pp->pr_minpages = 0;
436 pp->pr_maxpages = UINT_MAX;
437 pp->pr_roflags = flags;
438 pp->pr_flags = 0;
439 pp->pr_size = ALIGN(size);
440 pp->pr_align = align;
441 pp->pr_wchan = wchan;
442 pp->pr_mtype = mtype;
443 pp->pr_alloc = alloc;
444 pp->pr_free = release;
445 pp->pr_pagesz = pagesz;
446 pp->pr_pagemask = ~(pagesz - 1);
447 pp->pr_pageshift = ffs(pagesz) - 1;
448 pp->pr_nitems = 0;
449 pp->pr_nout = 0;
450 pp->pr_hardlimit = UINT_MAX;
451 pp->pr_hardlimit_warning = NULL;
452 pp->pr_hardlimit_ratecap = 0;
453 memset(&pp->pr_hardlimit_warning_last, 0,
454 sizeof(pp->pr_hardlimit_warning_last));
455
456 /*
457 * Decide whether to put the page header off page to avoid
458 * wasting too large a part of the page. Off-page page headers
459 * go on a hash table, so we can match a returned item
460 * with its header based on the page address.
461 * We use 1/16 of the page size as the threshold (XXX: tune)
462 */
463 if (pp->pr_size < pagesz/16) {
464 /* Use the end of the page for the page header */
465 pp->pr_roflags |= PR_PHINPAGE;
466 pp->pr_phoffset = off =
467 pagesz - ALIGN(sizeof(struct pool_item_header));
468 } else {
469 /* The page header will be taken from our page header pool */
470 pp->pr_phoffset = 0;
471 off = pagesz;
472 for (i = 0; i < PR_HASHTABSIZE; i++) {
473 LIST_INIT(&pp->pr_hashtab[i]);
474 }
475 }
476
477 /*
478 * Alignment is to take place at `ioff' within the item. This means
479 * we must reserve up to `align - 1' bytes on the page to allow
480 * appropriate positioning of each item.
481 *
482 * Silently enforce `0 <= ioff < align'.
483 */
484 pp->pr_itemoffset = ioff = ioff % align;
485 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
486
487 /*
488 * Use the slack between the chunks and the page header
489 * for "cache coloring".
490 */
491 slack = off - pp->pr_itemsperpage * pp->pr_size;
492 pp->pr_maxcolor = (slack / align) * align;
493 pp->pr_curcolor = 0;
494
495 pp->pr_nget = 0;
496 pp->pr_nfail = 0;
497 pp->pr_nput = 0;
498 pp->pr_npagealloc = 0;
499 pp->pr_npagefree = 0;
500 pp->pr_hiwat = 0;
501 pp->pr_nidle = 0;
502
503 if (flags & PR_LOGGING) {
504 if (kmem_map == NULL ||
505 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
506 M_TEMP, M_NOWAIT)) == NULL)
507 pp->pr_roflags &= ~PR_LOGGING;
508 pp->pr_curlogentry = 0;
509 pp->pr_logsize = pool_logsize;
510 }
511
512 pp->pr_entered_file = NULL;
513 pp->pr_entered_line = 0;
514
515 simple_lock_init(&pp->pr_slock);
516
517 /*
518 * Initialize private page header pool if we haven't done so yet.
519 * XXX LOCKING.
520 */
521 if (phpool.pr_size == 0) {
522 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
523 0, "phpool", 0, 0, 0, 0);
524 }
525
526 /* Insert into the list of all pools. */
527 simple_lock(&pool_head_slock);
528 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
529 simple_unlock(&pool_head_slock);
530 }
531
532 /*
533 * De-commision a pool resource.
534 */
535 void
536 pool_destroy(pp)
537 struct pool *pp;
538 {
539 struct pool_item_header *ph;
540
541 #ifdef DIAGNOSTIC
542 if (pp->pr_nout != 0) {
543 pr_printlog(pp, NULL, printf);
544 panic("pool_destroy: pool busy: still out: %u\n",
545 pp->pr_nout);
546 }
547 #endif
548
549 /* Remove all pages */
550 if ((pp->pr_roflags & PR_STATIC) == 0)
551 while ((ph = pp->pr_pagelist.tqh_first) != NULL)
552 pr_rmpage(pp, ph);
553
554 /* Remove from global pool list */
555 simple_lock(&pool_head_slock);
556 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
557 /* XXX Only clear this if we were drainpp? */
558 drainpp = NULL;
559 simple_unlock(&pool_head_slock);
560
561 if ((pp->pr_roflags & PR_LOGGING) != 0)
562 free(pp->pr_log, M_TEMP);
563
564 if (pp->pr_roflags & PR_FREEHEADER)
565 free(pp, M_POOL);
566 }
567
568
569 /*
570 * Grab an item from the pool; must be called at appropriate spl level
571 */
572 void *
573 _pool_get(pp, flags, file, line)
574 struct pool *pp;
575 int flags;
576 const char *file;
577 long line;
578 {
579 void *v;
580 struct pool_item *pi;
581 struct pool_item_header *ph;
582
583 #ifdef DIAGNOSTIC
584 if ((pp->pr_roflags & PR_STATIC) && (flags & PR_MALLOCOK)) {
585 pr_printlog(pp, NULL, printf);
586 panic("pool_get: static");
587 }
588 #endif
589
590 if (curproc == NULL && (flags & PR_WAITOK) != 0)
591 panic("pool_get: must have NOWAIT");
592
593 simple_lock(&pp->pr_slock);
594 pr_enter(pp, file, line);
595
596 startover:
597 /*
598 * Check to see if we've reached the hard limit. If we have,
599 * and we can wait, then wait until an item has been returned to
600 * the pool.
601 */
602 #ifdef DIAGNOSTIC
603 if (pp->pr_nout > pp->pr_hardlimit) {
604 pr_leave(pp);
605 simple_unlock(&pp->pr_slock);
606 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
607 }
608 #endif
609 if (pp->pr_nout == pp->pr_hardlimit) {
610 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
611 /*
612 * XXX: A warning isn't logged in this case. Should
613 * it be?
614 */
615 pp->pr_flags |= PR_WANTED;
616 pr_leave(pp);
617 simple_unlock(&pp->pr_slock);
618 tsleep((caddr_t)pp, PSWP, pp->pr_wchan, 0);
619 simple_lock(&pp->pr_slock);
620 pr_enter(pp, file, line);
621 goto startover;
622 }
623 if (pp->pr_hardlimit_warning != NULL) {
624 /*
625 * Log a message that the hard limit has been hit.
626 */
627 struct timeval curtime, logdiff;
628 int s = splclock();
629 curtime = mono_time;
630 splx(s);
631 timersub(&curtime, &pp->pr_hardlimit_warning_last,
632 &logdiff);
633 if (logdiff.tv_sec >= pp->pr_hardlimit_ratecap) {
634 pp->pr_hardlimit_warning_last = curtime;
635 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
636 }
637 }
638
639 if (flags & PR_URGENT)
640 panic("pool_get: urgent");
641
642 pp->pr_nfail++;
643
644 pr_leave(pp);
645 simple_unlock(&pp->pr_slock);
646 return (NULL);
647 }
648
649 /*
650 * The convention we use is that if `curpage' is not NULL, then
651 * it points at a non-empty bucket. In particular, `curpage'
652 * never points at a page header which has PR_PHINPAGE set and
653 * has no items in its bucket.
654 */
655 if ((ph = pp->pr_curpage) == NULL) {
656 void *v;
657
658 #ifdef DIAGNOSTIC
659 if (pp->pr_nitems != 0) {
660 simple_unlock(&pp->pr_slock);
661 printf("pool_get: %s: curpage NULL, nitems %u\n",
662 pp->pr_wchan, pp->pr_nitems);
663 panic("pool_get: nitems inconsistent\n");
664 }
665 #endif
666
667 /*
668 * Call the back-end page allocator for more memory.
669 * Release the pool lock, as the back-end page allocator
670 * may block.
671 */
672 pr_leave(pp);
673 simple_unlock(&pp->pr_slock);
674 v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype);
675 simple_lock(&pp->pr_slock);
676 pr_enter(pp, file, line);
677
678 if (v == NULL) {
679 /*
680 * We were unable to allocate a page, but
681 * we released the lock during allocation,
682 * so perhaps items were freed back to the
683 * pool. Check for this case.
684 */
685 if (pp->pr_curpage != NULL)
686 goto startover;
687
688 if (flags & PR_URGENT)
689 panic("pool_get: urgent");
690
691 if ((flags & PR_WAITOK) == 0) {
692 pp->pr_nfail++;
693 pr_leave(pp);
694 simple_unlock(&pp->pr_slock);
695 return (NULL);
696 }
697
698 /*
699 * Wait for items to be returned to this pool.
700 *
701 * XXX: we actually want to wait just until
702 * the page allocator has memory again. Depending
703 * on this pool's usage, we might get stuck here
704 * for a long time.
705 *
706 * XXX: maybe we should wake up once a second and
707 * try again?
708 */
709 pp->pr_flags |= PR_WANTED;
710 pr_leave(pp);
711 simple_unlock(&pp->pr_slock);
712 tsleep((caddr_t)pp, PSWP, pp->pr_wchan, 0);
713 simple_lock(&pp->pr_slock);
714 pr_enter(pp, file, line);
715 goto startover;
716 }
717
718 /* We have more memory; add it to the pool */
719 pp->pr_npagealloc++;
720 pool_prime_page(pp, v);
721
722 /* Start the allocation process over. */
723 goto startover;
724 }
725
726 if ((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL) {
727 pr_leave(pp);
728 simple_unlock(&pp->pr_slock);
729 panic("pool_get: %s: page empty", pp->pr_wchan);
730 }
731 #ifdef DIAGNOSTIC
732 if (pp->pr_nitems == 0) {
733 pr_leave(pp);
734 simple_unlock(&pp->pr_slock);
735 printf("pool_get: %s: items on itemlist, nitems %u\n",
736 pp->pr_wchan, pp->pr_nitems);
737 panic("pool_get: nitems inconsistent\n");
738 }
739 #endif
740 pr_log(pp, v, PRLOG_GET, file, line);
741
742 #ifdef DIAGNOSTIC
743 if (pi->pi_magic != PI_MAGIC) {
744 pr_printlog(pp, pi, printf);
745 panic("pool_get(%s): free list modified: magic=%x; page %p;"
746 " item addr %p\n",
747 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
748 }
749 #endif
750
751 /*
752 * Remove from item list.
753 */
754 TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
755 pp->pr_nitems--;
756 pp->pr_nout++;
757 if (ph->ph_nmissing == 0) {
758 #ifdef DIAGNOSTIC
759 if (pp->pr_nidle == 0)
760 panic("pool_get: nidle inconsistent");
761 #endif
762 pp->pr_nidle--;
763 }
764 ph->ph_nmissing++;
765 if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) {
766 #ifdef DIAGNOSTIC
767 if (ph->ph_nmissing != pp->pr_itemsperpage) {
768 pr_leave(pp);
769 simple_unlock(&pp->pr_slock);
770 panic("pool_get: %s: nmissing inconsistent",
771 pp->pr_wchan);
772 }
773 #endif
774 /*
775 * Find a new non-empty page header, if any.
776 * Start search from the page head, to increase
777 * the chance for "high water" pages to be freed.
778 *
779 * Migrate empty pages to the end of the list. This
780 * will speed the update of curpage as pages become
781 * idle. Empty pages intermingled with idle pages
782 * is no big deal. As soon as a page becomes un-empty,
783 * it will move back to the head of the list.
784 */
785 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
786 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
787 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
788 ph = TAILQ_NEXT(ph, ph_pagelist))
789 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
790 break;
791
792 pp->pr_curpage = ph;
793 }
794
795 pp->pr_nget++;
796
797 /*
798 * If we have a low water mark and we are now below that low
799 * water mark, add more items to the pool.
800 */
801 if (pp->pr_nitems < pp->pr_minitems && pool_catchup(pp) != 0) {
802 /*
803 * XXX: Should we log a warning? Should we set up a timeout
804 * to try again in a second or so? The latter could break
805 * a caller's assumptions about interrupt protection, etc.
806 */
807 }
808
809 pr_leave(pp);
810 simple_unlock(&pp->pr_slock);
811 return (v);
812 }
813
814 /*
815 * Return resource to the pool; must be called at appropriate spl level
816 */
817 void
818 _pool_put(pp, v, file, line)
819 struct pool *pp;
820 void *v;
821 const char *file;
822 long line;
823 {
824 struct pool_item *pi = v;
825 struct pool_item_header *ph;
826 caddr_t page;
827 int s;
828
829 page = (caddr_t)((u_long)v & pp->pr_pagemask);
830
831 simple_lock(&pp->pr_slock);
832 pr_enter(pp, file, line);
833
834 #ifdef DIAGNOSTIC
835 if (pp->pr_nout == 0) {
836 printf("pool %s: putting with none out\n",
837 pp->pr_wchan);
838 panic("pool_put");
839 }
840 #endif
841
842 pr_log(pp, v, PRLOG_PUT, file, line);
843
844 if ((ph = pr_find_pagehead(pp, page)) == NULL) {
845 pr_printlog(pp, NULL, printf);
846 panic("pool_put: %s: page header missing", pp->pr_wchan);
847 }
848
849 #ifdef LOCKDEBUG
850 /*
851 * Check if we're freeing a locked simple lock.
852 */
853 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
854 #endif
855
856 /*
857 * Return to item list.
858 */
859 #ifdef DIAGNOSTIC
860 /* XXX Should fill the item. */
861 pi->pi_magic = PI_MAGIC;
862 #endif
863 TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
864 ph->ph_nmissing--;
865 pp->pr_nput++;
866 pp->pr_nitems++;
867 pp->pr_nout--;
868
869 /* Cancel "pool empty" condition if it exists */
870 if (pp->pr_curpage == NULL)
871 pp->pr_curpage = ph;
872
873 if (pp->pr_flags & PR_WANTED) {
874 pp->pr_flags &= ~PR_WANTED;
875 if (ph->ph_nmissing == 0)
876 pp->pr_nidle++;
877 pr_leave(pp);
878 simple_unlock(&pp->pr_slock);
879 wakeup((caddr_t)pp);
880 return;
881 }
882
883 /*
884 * If this page is now complete, do one of two things:
885 *
886 * (1) If we have more pages than the page high water
887 * mark, free the page back to the system.
888 *
889 * (2) Move it to the end of the page list, so that
890 * we minimize our chances of fragmenting the
891 * pool. Idle pages migrate to the end (along with
892 * completely empty pages, so that we find un-empty
893 * pages more quickly when we update curpage) of the
894 * list so they can be more easily swept up by
895 * the pagedaemon when pages are scarce.
896 */
897 if (ph->ph_nmissing == 0) {
898 pp->pr_nidle++;
899 if (pp->pr_npages > pp->pr_maxpages) {
900 pr_rmpage(pp, ph);
901 } else {
902 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
903 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
904
905 /*
906 * Update the timestamp on the page. A page must
907 * be idle for some period of time before it can
908 * be reclaimed by the pagedaemon. This minimizes
909 * ping-pong'ing for memory.
910 */
911 s = splclock();
912 ph->ph_time = mono_time;
913 splx(s);
914
915 /*
916 * Update the current page pointer. Just look for
917 * the first page with any free items.
918 *
919 * XXX: Maybe we want an option to look for the
920 * page with the fewest available items, to minimize
921 * fragmentation?
922 */
923 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
924 ph = TAILQ_NEXT(ph, ph_pagelist))
925 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
926 break;
927
928 pp->pr_curpage = ph;
929 }
930 }
931 /*
932 * If the page has just become un-empty, move it to the head of
933 * the list, and make it the current page. The next allocation
934 * will get the item from this page, instead of further fragmenting
935 * the pool.
936 */
937 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
938 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
939 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
940 pp->pr_curpage = ph;
941 }
942
943 pr_leave(pp);
944 simple_unlock(&pp->pr_slock);
945
946 }
947
948 /*
949 * Add N items to the pool.
950 */
951 int
952 pool_prime(pp, n, storage)
953 struct pool *pp;
954 int n;
955 caddr_t storage;
956 {
957 caddr_t cp;
958 int newnitems, newpages;
959
960 #ifdef DIAGNOSTIC
961 if (storage && !(pp->pr_roflags & PR_STATIC))
962 panic("pool_prime: static");
963 /* !storage && static caught below */
964 #endif
965
966 simple_lock(&pp->pr_slock);
967
968 newnitems = pp->pr_minitems + n;
969 newpages =
970 roundup(newnitems, pp->pr_itemsperpage) / pp->pr_itemsperpage
971 - pp->pr_minpages;
972
973 while (newpages-- > 0) {
974 if (pp->pr_roflags & PR_STATIC) {
975 cp = storage;
976 storage += pp->pr_pagesz;
977 } else {
978 simple_unlock(&pp->pr_slock);
979 cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
980 simple_lock(&pp->pr_slock);
981 }
982
983 if (cp == NULL) {
984 simple_unlock(&pp->pr_slock);
985 return (ENOMEM);
986 }
987
988 pp->pr_npagealloc++;
989 pool_prime_page(pp, cp);
990 pp->pr_minpages++;
991 }
992
993 pp->pr_minitems = newnitems;
994
995 if (pp->pr_minpages >= pp->pr_maxpages)
996 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
997
998 simple_unlock(&pp->pr_slock);
999 return (0);
1000 }
1001
1002 /*
1003 * Add a page worth of items to the pool.
1004 *
1005 * Note, we must be called with the pool descriptor LOCKED.
1006 */
1007 static void
1008 pool_prime_page(pp, storage)
1009 struct pool *pp;
1010 caddr_t storage;
1011 {
1012 struct pool_item *pi;
1013 struct pool_item_header *ph;
1014 caddr_t cp = storage;
1015 unsigned int align = pp->pr_align;
1016 unsigned int ioff = pp->pr_itemoffset;
1017 int s, n;
1018
1019 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
1020 ph = (struct pool_item_header *)(cp + pp->pr_phoffset);
1021 } else {
1022 s = splhigh();
1023 ph = pool_get(&phpool, PR_URGENT);
1024 splx(s);
1025 LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)],
1026 ph, ph_hashlist);
1027 }
1028
1029 /*
1030 * Insert page header.
1031 */
1032 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
1033 TAILQ_INIT(&ph->ph_itemlist);
1034 ph->ph_page = storage;
1035 ph->ph_nmissing = 0;
1036 memset(&ph->ph_time, 0, sizeof(ph->ph_time));
1037
1038 pp->pr_nidle++;
1039
1040 /*
1041 * Color this page.
1042 */
1043 cp = (caddr_t)(cp + pp->pr_curcolor);
1044 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1045 pp->pr_curcolor = 0;
1046
1047 /*
1048 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1049 */
1050 if (ioff != 0)
1051 cp = (caddr_t)(cp + (align - ioff));
1052
1053 /*
1054 * Insert remaining chunks on the bucket list.
1055 */
1056 n = pp->pr_itemsperpage;
1057 pp->pr_nitems += n;
1058
1059 while (n--) {
1060 pi = (struct pool_item *)cp;
1061
1062 /* Insert on page list */
1063 TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
1064 #ifdef DIAGNOSTIC
1065 pi->pi_magic = PI_MAGIC;
1066 #endif
1067 cp = (caddr_t)(cp + pp->pr_size);
1068 }
1069
1070 /*
1071 * If the pool was depleted, point at the new page.
1072 */
1073 if (pp->pr_curpage == NULL)
1074 pp->pr_curpage = ph;
1075
1076 if (++pp->pr_npages > pp->pr_hiwat)
1077 pp->pr_hiwat = pp->pr_npages;
1078 }
1079
1080 /*
1081 * Like pool_prime(), except this is used by pool_get() when nitems
1082 * drops below the low water mark. This is used to catch up nitmes
1083 * with the low water mark.
1084 *
1085 * Note 1, we never wait for memory here, we let the caller decide what to do.
1086 *
1087 * Note 2, this doesn't work with static pools.
1088 *
1089 * Note 3, we must be called with the pool already locked, and we return
1090 * with it locked.
1091 */
1092 static int
1093 pool_catchup(pp)
1094 struct pool *pp;
1095 {
1096 caddr_t cp;
1097 int error = 0;
1098
1099 if (pp->pr_roflags & PR_STATIC) {
1100 /*
1101 * We dropped below the low water mark, and this is not a
1102 * good thing. Log a warning.
1103 *
1104 * XXX: rate-limit this?
1105 */
1106 printf("WARNING: static pool `%s' dropped below low water "
1107 "mark\n", pp->pr_wchan);
1108 return (0);
1109 }
1110
1111 while (pp->pr_nitems < pp->pr_minitems) {
1112 /*
1113 * Call the page back-end allocator for more memory.
1114 *
1115 * XXX: We never wait, so should we bother unlocking
1116 * the pool descriptor?
1117 */
1118 simple_unlock(&pp->pr_slock);
1119 cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
1120 simple_lock(&pp->pr_slock);
1121 if (cp == NULL) {
1122 error = ENOMEM;
1123 break;
1124 }
1125 pp->pr_npagealloc++;
1126 pool_prime_page(pp, cp);
1127 }
1128
1129 return (error);
1130 }
1131
1132 void
1133 pool_setlowat(pp, n)
1134 pool_handle_t pp;
1135 int n;
1136 {
1137 int error;
1138
1139 simple_lock(&pp->pr_slock);
1140
1141 pp->pr_minitems = n;
1142 pp->pr_minpages = (n == 0)
1143 ? 0
1144 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1145
1146 /* Make sure we're caught up with the newly-set low water mark. */
1147 if ((error = pool_catchup(pp)) != 0) {
1148 /*
1149 * XXX: Should we log a warning? Should we set up a timeout
1150 * to try again in a second or so? The latter could break
1151 * a caller's assumptions about interrupt protection, etc.
1152 */
1153 }
1154
1155 simple_unlock(&pp->pr_slock);
1156 }
1157
1158 void
1159 pool_sethiwat(pp, n)
1160 pool_handle_t pp;
1161 int n;
1162 {
1163
1164 simple_lock(&pp->pr_slock);
1165
1166 pp->pr_maxpages = (n == 0)
1167 ? 0
1168 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1169
1170 simple_unlock(&pp->pr_slock);
1171 }
1172
1173 void
1174 pool_sethardlimit(pp, n, warnmess, ratecap)
1175 pool_handle_t pp;
1176 int n;
1177 const char *warnmess;
1178 int ratecap;
1179 {
1180
1181 simple_lock(&pp->pr_slock);
1182
1183 pp->pr_hardlimit = n;
1184 pp->pr_hardlimit_warning = warnmess;
1185 pp->pr_hardlimit_ratecap = ratecap;
1186 memset(&pp->pr_hardlimit_warning_last, 0,
1187 sizeof(pp->pr_hardlimit_warning_last));
1188
1189 /*
1190 * In-line version of pool_sethiwat(), because we don't want to
1191 * release the lock.
1192 */
1193 pp->pr_maxpages = (n == 0)
1194 ? 0
1195 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1196
1197 simple_unlock(&pp->pr_slock);
1198 }
1199
1200 /*
1201 * Default page allocator.
1202 */
1203 static void *
1204 pool_page_alloc(sz, flags, mtype)
1205 unsigned long sz;
1206 int flags;
1207 int mtype;
1208 {
1209 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1210
1211 return ((void *)uvm_km_alloc_poolpage(waitok));
1212 }
1213
1214 static void
1215 pool_page_free(v, sz, mtype)
1216 void *v;
1217 unsigned long sz;
1218 int mtype;
1219 {
1220
1221 uvm_km_free_poolpage((vaddr_t)v);
1222 }
1223
1224 /*
1225 * Alternate pool page allocator for pools that know they will
1226 * never be accessed in interrupt context.
1227 */
1228 void *
1229 pool_page_alloc_nointr(sz, flags, mtype)
1230 unsigned long sz;
1231 int flags;
1232 int mtype;
1233 {
1234 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1235
1236 return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object,
1237 waitok));
1238 }
1239
1240 void
1241 pool_page_free_nointr(v, sz, mtype)
1242 void *v;
1243 unsigned long sz;
1244 int mtype;
1245 {
1246
1247 uvm_km_free_poolpage1(kernel_map, (vaddr_t)v);
1248 }
1249
1250
1251 /*
1252 * Release all complete pages that have not been used recently.
1253 */
1254 void
1255 _pool_reclaim(pp, file, line)
1256 pool_handle_t pp;
1257 const char *file;
1258 long line;
1259 {
1260 struct pool_item_header *ph, *phnext;
1261 struct timeval curtime;
1262 int s;
1263
1264 if (pp->pr_roflags & PR_STATIC)
1265 return;
1266
1267 if (simple_lock_try(&pp->pr_slock) == 0)
1268 return;
1269 pr_enter(pp, file, line);
1270
1271 s = splclock();
1272 curtime = mono_time;
1273 splx(s);
1274
1275 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) {
1276 phnext = TAILQ_NEXT(ph, ph_pagelist);
1277
1278 /* Check our minimum page claim */
1279 if (pp->pr_npages <= pp->pr_minpages)
1280 break;
1281
1282 if (ph->ph_nmissing == 0) {
1283 struct timeval diff;
1284 timersub(&curtime, &ph->ph_time, &diff);
1285 if (diff.tv_sec < pool_inactive_time)
1286 continue;
1287
1288 /*
1289 * If freeing this page would put us below
1290 * the low water mark, stop now.
1291 */
1292 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1293 pp->pr_minitems)
1294 break;
1295
1296 pr_rmpage(pp, ph);
1297 }
1298 }
1299
1300 pr_leave(pp);
1301 simple_unlock(&pp->pr_slock);
1302 }
1303
1304
1305 /*
1306 * Drain pools, one at a time.
1307 *
1308 * Note, we must never be called from an interrupt context.
1309 */
1310 void
1311 pool_drain(arg)
1312 void *arg;
1313 {
1314 struct pool *pp;
1315 int s;
1316
1317 s = splimp();
1318 simple_lock(&pool_head_slock);
1319
1320 if (drainpp == NULL && (drainpp = TAILQ_FIRST(&pool_head)) == NULL)
1321 goto out;
1322
1323 pp = drainpp;
1324 drainpp = TAILQ_NEXT(pp, pr_poollist);
1325
1326 pool_reclaim(pp);
1327
1328 out:
1329 simple_unlock(&pool_head_slock);
1330 splx(s);
1331 }
1332
1333
1334 /*
1335 * Diagnostic helpers.
1336 */
1337 void
1338 pool_print(pp, modif)
1339 struct pool *pp;
1340 const char *modif;
1341 {
1342 int s;
1343
1344 s = splimp();
1345 if (simple_lock_try(&pp->pr_slock) == 0) {
1346 printf("pool %s is locked; try again later\n",
1347 pp->pr_wchan);
1348 splx(s);
1349 return;
1350 }
1351 pool_print1(pp, modif, printf);
1352 simple_unlock(&pp->pr_slock);
1353 splx(s);
1354 }
1355
1356 void
1357 pool_printit(pp, modif, pr)
1358 struct pool *pp;
1359 const char *modif;
1360 void (*pr) __P((const char *, ...));
1361 {
1362 int didlock = 0;
1363
1364 if (pp == NULL) {
1365 (*pr)("Must specify a pool to print.\n");
1366 return;
1367 }
1368
1369 /*
1370 * Called from DDB; interrupts should be blocked, and all
1371 * other processors should be paused. We can skip locking
1372 * the pool in this case.
1373 *
1374 * We do a simple_lock_try() just to print the lock
1375 * status, however.
1376 */
1377
1378 if (simple_lock_try(&pp->pr_slock) == 0)
1379 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1380 else
1381 didlock = 1;
1382
1383 pool_print1(pp, modif, pr);
1384
1385 if (didlock)
1386 simple_unlock(&pp->pr_slock);
1387 }
1388
1389 static void
1390 pool_print1(pp, modif, pr)
1391 struct pool *pp;
1392 const char *modif;
1393 void (*pr) __P((const char *, ...));
1394 {
1395 struct pool_item_header *ph;
1396 #ifdef DIAGNOSTIC
1397 struct pool_item *pi;
1398 #endif
1399 int print_log = 0, print_pagelist = 0;
1400 char c;
1401
1402 while ((c = *modif++) != '\0') {
1403 if (c == 'l')
1404 print_log = 1;
1405 if (c == 'p')
1406 print_pagelist = 1;
1407 modif++;
1408 }
1409
1410 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1411 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1412 pp->pr_roflags);
1413 (*pr)("\tpagesz %u, mtype %d\n", pp->pr_pagesz, pp->pr_mtype);
1414 (*pr)("\talloc %p, release %p\n", pp->pr_alloc, pp->pr_free);
1415 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1416 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1417 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1418 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1419
1420 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1421 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1422 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1423 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1424
1425 if (print_pagelist == 0)
1426 goto skip_pagelist;
1427
1428 if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
1429 (*pr)("\n\tpage list:\n");
1430 for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) {
1431 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1432 ph->ph_page, ph->ph_nmissing,
1433 (u_long)ph->ph_time.tv_sec,
1434 (u_long)ph->ph_time.tv_usec);
1435 #ifdef DIAGNOSTIC
1436 for (pi = TAILQ_FIRST(&ph->ph_itemlist); pi != NULL;
1437 pi = TAILQ_NEXT(pi, pi_list)) {
1438 if (pi->pi_magic != PI_MAGIC) {
1439 (*pr)("\t\t\titem %p, magic 0x%x\n",
1440 pi, pi->pi_magic);
1441 }
1442 }
1443 #endif
1444 }
1445 if (pp->pr_curpage == NULL)
1446 (*pr)("\tno current page\n");
1447 else
1448 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1449
1450 skip_pagelist:
1451
1452 if (print_log == 0)
1453 goto skip_log;
1454
1455 (*pr)("\n");
1456 if ((pp->pr_roflags & PR_LOGGING) == 0)
1457 (*pr)("\tno log\n");
1458 else
1459 pr_printlog(pp, NULL, pr);
1460
1461 skip_log:
1462
1463 pr_enter_check(pp, pr);
1464 }
1465
1466 int
1467 pool_chk(pp, label)
1468 struct pool *pp;
1469 char *label;
1470 {
1471 struct pool_item_header *ph;
1472 int r = 0;
1473
1474 simple_lock(&pp->pr_slock);
1475
1476 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
1477 ph = TAILQ_NEXT(ph, ph_pagelist)) {
1478
1479 struct pool_item *pi;
1480 int n;
1481 caddr_t page;
1482
1483 page = (caddr_t)((u_long)ph & pp->pr_pagemask);
1484 if (page != ph->ph_page &&
1485 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1486 if (label != NULL)
1487 printf("%s: ", label);
1488 printf("pool(%p:%s): page inconsistency: page %p;"
1489 " at page head addr %p (p %p)\n", pp,
1490 pp->pr_wchan, ph->ph_page,
1491 ph, page);
1492 r++;
1493 goto out;
1494 }
1495
1496 for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
1497 pi != NULL;
1498 pi = TAILQ_NEXT(pi,pi_list), n++) {
1499
1500 #ifdef DIAGNOSTIC
1501 if (pi->pi_magic != PI_MAGIC) {
1502 if (label != NULL)
1503 printf("%s: ", label);
1504 printf("pool(%s): free list modified: magic=%x;"
1505 " page %p; item ordinal %d;"
1506 " addr %p (p %p)\n",
1507 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1508 n, pi, page);
1509 panic("pool");
1510 }
1511 #endif
1512 page = (caddr_t)((u_long)pi & pp->pr_pagemask);
1513 if (page == ph->ph_page)
1514 continue;
1515
1516 if (label != NULL)
1517 printf("%s: ", label);
1518 printf("pool(%p:%s): page inconsistency: page %p;"
1519 " item ordinal %d; addr %p (p %p)\n", pp,
1520 pp->pr_wchan, ph->ph_page,
1521 n, pi, page);
1522 r++;
1523 goto out;
1524 }
1525 }
1526 out:
1527 simple_unlock(&pp->pr_slock);
1528 return (r);
1529 }
1530