subr_pool.c revision 1.34 1 /* $NetBSD: subr_pool.c,v 1.34 2000/05/08 20:09:44 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include "opt_pool.h"
41 #include "opt_poollog.h"
42 #include "opt_lockdebug.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/proc.h>
47 #include <sys/errno.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/lock.h>
51 #include <sys/pool.h>
52 #include <sys/syslog.h>
53
54 #include <vm/vm.h>
55 #include <vm/vm_kern.h>
56
57 #include <uvm/uvm.h>
58
59 /*
60 * Pool resource management utility.
61 *
62 * Memory is allocated in pages which are split into pieces according
63 * to the pool item size. Each page is kept on a list headed by `pr_pagelist'
64 * in the pool structure and the individual pool items are on a linked list
65 * headed by `ph_itemlist' in each page header. The memory for building
66 * the page list is either taken from the allocated pages themselves (for
67 * small pool items) or taken from an internal pool of page headers (`phpool').
68 */
69
70 /* List of all pools */
71 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
72
73 /* Private pool for page header structures */
74 static struct pool phpool;
75
76 /* # of seconds to retain page after last use */
77 int pool_inactive_time = 10;
78
79 /* Next candidate for drainage (see pool_drain()) */
80 static struct pool *drainpp;
81
82 /* This spin lock protects both pool_head and drainpp. */
83 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
84
85 struct pool_item_header {
86 /* Page headers */
87 TAILQ_ENTRY(pool_item_header)
88 ph_pagelist; /* pool page list */
89 TAILQ_HEAD(,pool_item) ph_itemlist; /* chunk list for this page */
90 LIST_ENTRY(pool_item_header)
91 ph_hashlist; /* Off-page page headers */
92 int ph_nmissing; /* # of chunks in use */
93 caddr_t ph_page; /* this page's address */
94 struct timeval ph_time; /* last referenced */
95 };
96
97 struct pool_item {
98 #ifdef DIAGNOSTIC
99 int pi_magic;
100 #endif
101 #define PI_MAGIC 0xdeadbeef
102 /* Other entries use only this list entry */
103 TAILQ_ENTRY(pool_item) pi_list;
104 };
105
106
107 #define PR_HASH_INDEX(pp,addr) \
108 (((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1))
109
110
111
112 static struct pool_item_header
113 *pr_find_pagehead __P((struct pool *, caddr_t));
114 static void pr_rmpage __P((struct pool *, struct pool_item_header *));
115 static int pool_catchup __P((struct pool *));
116 static void pool_prime_page __P((struct pool *, caddr_t));
117 static void *pool_page_alloc __P((unsigned long, int, int));
118 static void pool_page_free __P((void *, unsigned long, int));
119
120 static void pool_print1 __P((struct pool *, const char *,
121 void (*)(const char *, ...)));
122
123 /*
124 * Pool log entry. An array of these is allocated in pool_create().
125 */
126 struct pool_log {
127 const char *pl_file;
128 long pl_line;
129 int pl_action;
130 #define PRLOG_GET 1
131 #define PRLOG_PUT 2
132 void *pl_addr;
133 };
134
135 /* Number of entries in pool log buffers */
136 #ifndef POOL_LOGSIZE
137 #define POOL_LOGSIZE 10
138 #endif
139
140 int pool_logsize = POOL_LOGSIZE;
141
142 #ifdef DIAGNOSTIC
143 static void pr_log __P((struct pool *, void *, int, const char *, long));
144 static void pr_printlog __P((struct pool *, struct pool_item *,
145 void (*)(const char *, ...)));
146 static void pr_enter __P((struct pool *, const char *, long));
147 static void pr_leave __P((struct pool *));
148 static void pr_enter_check __P((struct pool *,
149 void (*)(const char *, ...)));
150
151 static __inline__ void
152 pr_log(pp, v, action, file, line)
153 struct pool *pp;
154 void *v;
155 int action;
156 const char *file;
157 long line;
158 {
159 int n = pp->pr_curlogentry;
160 struct pool_log *pl;
161
162 if ((pp->pr_roflags & PR_LOGGING) == 0)
163 return;
164
165 /*
166 * Fill in the current entry. Wrap around and overwrite
167 * the oldest entry if necessary.
168 */
169 pl = &pp->pr_log[n];
170 pl->pl_file = file;
171 pl->pl_line = line;
172 pl->pl_action = action;
173 pl->pl_addr = v;
174 if (++n >= pp->pr_logsize)
175 n = 0;
176 pp->pr_curlogentry = n;
177 }
178
179 static void
180 pr_printlog(pp, pi, pr)
181 struct pool *pp;
182 struct pool_item *pi;
183 void (*pr) __P((const char *, ...));
184 {
185 int i = pp->pr_logsize;
186 int n = pp->pr_curlogentry;
187
188 if ((pp->pr_roflags & PR_LOGGING) == 0)
189 return;
190
191 /*
192 * Print all entries in this pool's log.
193 */
194 while (i-- > 0) {
195 struct pool_log *pl = &pp->pr_log[n];
196 if (pl->pl_action != 0) {
197 if (pi == NULL || pi == pl->pl_addr) {
198 (*pr)("\tlog entry %d:\n", i);
199 (*pr)("\t\taction = %s, addr = %p\n",
200 pl->pl_action == PRLOG_GET ? "get" : "put",
201 pl->pl_addr);
202 (*pr)("\t\tfile: %s at line %lu\n",
203 pl->pl_file, pl->pl_line);
204 }
205 }
206 if (++n >= pp->pr_logsize)
207 n = 0;
208 }
209 }
210
211 static __inline__ void
212 pr_enter(pp, file, line)
213 struct pool *pp;
214 const char *file;
215 long line;
216 {
217
218 if (__predict_false(pp->pr_entered_file != NULL)) {
219 printf("pool %s: reentrancy at file %s line %ld\n",
220 pp->pr_wchan, file, line);
221 printf(" previous entry at file %s line %ld\n",
222 pp->pr_entered_file, pp->pr_entered_line);
223 panic("pr_enter");
224 }
225
226 pp->pr_entered_file = file;
227 pp->pr_entered_line = line;
228 }
229
230 static __inline__ void
231 pr_leave(pp)
232 struct pool *pp;
233 {
234
235 if (__predict_false(pp->pr_entered_file == NULL)) {
236 printf("pool %s not entered?\n", pp->pr_wchan);
237 panic("pr_leave");
238 }
239
240 pp->pr_entered_file = NULL;
241 pp->pr_entered_line = 0;
242 }
243
244 static __inline__ void
245 pr_enter_check(pp, pr)
246 struct pool *pp;
247 void (*pr) __P((const char *, ...));
248 {
249
250 if (pp->pr_entered_file != NULL)
251 (*pr)("\n\tcurrently entered from file %s line %ld\n",
252 pp->pr_entered_file, pp->pr_entered_line);
253 }
254 #else
255 #define pr_log(pp, v, action, file, line)
256 #define pr_printlog(pp, pi, pr)
257 #define pr_enter(pp, file, line)
258 #define pr_leave(pp)
259 #define pr_enter_check(pp, pr)
260 #endif /* DIAGNOSTIC */
261
262 /*
263 * Return the pool page header based on page address.
264 */
265 static __inline__ struct pool_item_header *
266 pr_find_pagehead(pp, page)
267 struct pool *pp;
268 caddr_t page;
269 {
270 struct pool_item_header *ph;
271
272 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
273 return ((struct pool_item_header *)(page + pp->pr_phoffset));
274
275 for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]);
276 ph != NULL;
277 ph = LIST_NEXT(ph, ph_hashlist)) {
278 if (ph->ph_page == page)
279 return (ph);
280 }
281 return (NULL);
282 }
283
284 /*
285 * Remove a page from the pool.
286 */
287 static __inline__ void
288 pr_rmpage(pp, ph)
289 struct pool *pp;
290 struct pool_item_header *ph;
291 {
292
293 /*
294 * If the page was idle, decrement the idle page count.
295 */
296 if (ph->ph_nmissing == 0) {
297 #ifdef DIAGNOSTIC
298 if (pp->pr_nidle == 0)
299 panic("pr_rmpage: nidle inconsistent");
300 if (pp->pr_nitems < pp->pr_itemsperpage)
301 panic("pr_rmpage: nitems inconsistent");
302 #endif
303 pp->pr_nidle--;
304 }
305
306 pp->pr_nitems -= pp->pr_itemsperpage;
307
308 /*
309 * Unlink a page from the pool and release it.
310 */
311 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
312 (*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype);
313 pp->pr_npages--;
314 pp->pr_npagefree++;
315
316 if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
317 int s;
318 LIST_REMOVE(ph, ph_hashlist);
319 s = splhigh();
320 pool_put(&phpool, ph);
321 splx(s);
322 }
323
324 if (pp->pr_curpage == ph) {
325 /*
326 * Find a new non-empty page header, if any.
327 * Start search from the page head, to increase the
328 * chance for "high water" pages to be freed.
329 */
330 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
331 ph = TAILQ_NEXT(ph, ph_pagelist))
332 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
333 break;
334
335 pp->pr_curpage = ph;
336 }
337 }
338
339 /*
340 * Allocate and initialize a pool.
341 */
342 struct pool *
343 pool_create(size, align, ioff, nitems, wchan, pagesz, alloc, release, mtype)
344 size_t size;
345 u_int align;
346 u_int ioff;
347 int nitems;
348 const char *wchan;
349 size_t pagesz;
350 void *(*alloc) __P((unsigned long, int, int));
351 void (*release) __P((void *, unsigned long, int));
352 int mtype;
353 {
354 struct pool *pp;
355 int flags;
356
357 pp = (struct pool *)malloc(sizeof(*pp), M_POOL, M_NOWAIT);
358 if (pp == NULL)
359 return (NULL);
360
361 flags = PR_FREEHEADER;
362 pool_init(pp, size, align, ioff, flags, wchan, pagesz,
363 alloc, release, mtype);
364
365 if (nitems != 0) {
366 if (pool_prime(pp, nitems, NULL) != 0) {
367 pool_destroy(pp);
368 return (NULL);
369 }
370 }
371
372 return (pp);
373 }
374
375 /*
376 * Initialize the given pool resource structure.
377 *
378 * We export this routine to allow other kernel parts to declare
379 * static pools that must be initialized before malloc() is available.
380 */
381 void
382 pool_init(pp, size, align, ioff, flags, wchan, pagesz, alloc, release, mtype)
383 struct pool *pp;
384 size_t size;
385 u_int align;
386 u_int ioff;
387 int flags;
388 const char *wchan;
389 size_t pagesz;
390 void *(*alloc) __P((unsigned long, int, int));
391 void (*release) __P((void *, unsigned long, int));
392 int mtype;
393 {
394 int off, slack, i;
395
396 #ifdef POOL_DIAGNOSTIC
397 /*
398 * Always log if POOL_DIAGNOSTIC is defined.
399 */
400 if (pool_logsize != 0)
401 flags |= PR_LOGGING;
402 #endif
403
404 /*
405 * Check arguments and construct default values.
406 */
407 if (!powerof2(pagesz) || pagesz > PAGE_SIZE)
408 panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz);
409
410 if (alloc == NULL && release == NULL) {
411 alloc = pool_page_alloc;
412 release = pool_page_free;
413 pagesz = PAGE_SIZE; /* Rounds to PAGE_SIZE anyhow. */
414 } else if ((alloc != NULL && release != NULL) == 0) {
415 /* If you specifiy one, must specify both. */
416 panic("pool_init: must specify alloc and release together");
417 }
418
419 if (pagesz == 0)
420 pagesz = PAGE_SIZE;
421
422 if (align == 0)
423 align = ALIGN(1);
424
425 if (size < sizeof(struct pool_item))
426 size = sizeof(struct pool_item);
427
428 /*
429 * Initialize the pool structure.
430 */
431 TAILQ_INIT(&pp->pr_pagelist);
432 pp->pr_curpage = NULL;
433 pp->pr_npages = 0;
434 pp->pr_minitems = 0;
435 pp->pr_minpages = 0;
436 pp->pr_maxpages = UINT_MAX;
437 pp->pr_roflags = flags;
438 pp->pr_flags = 0;
439 pp->pr_size = ALIGN(size);
440 pp->pr_align = align;
441 pp->pr_wchan = wchan;
442 pp->pr_mtype = mtype;
443 pp->pr_alloc = alloc;
444 pp->pr_free = release;
445 pp->pr_pagesz = pagesz;
446 pp->pr_pagemask = ~(pagesz - 1);
447 pp->pr_pageshift = ffs(pagesz) - 1;
448 pp->pr_nitems = 0;
449 pp->pr_nout = 0;
450 pp->pr_hardlimit = UINT_MAX;
451 pp->pr_hardlimit_warning = NULL;
452 pp->pr_hardlimit_ratecap.tv_sec = 0;
453 pp->pr_hardlimit_ratecap.tv_usec = 0;
454 pp->pr_hardlimit_warning_last.tv_sec = 0;
455 pp->pr_hardlimit_warning_last.tv_usec = 0;
456
457 /*
458 * Decide whether to put the page header off page to avoid
459 * wasting too large a part of the page. Off-page page headers
460 * go on a hash table, so we can match a returned item
461 * with its header based on the page address.
462 * We use 1/16 of the page size as the threshold (XXX: tune)
463 */
464 if (pp->pr_size < pagesz/16) {
465 /* Use the end of the page for the page header */
466 pp->pr_roflags |= PR_PHINPAGE;
467 pp->pr_phoffset = off =
468 pagesz - ALIGN(sizeof(struct pool_item_header));
469 } else {
470 /* The page header will be taken from our page header pool */
471 pp->pr_phoffset = 0;
472 off = pagesz;
473 for (i = 0; i < PR_HASHTABSIZE; i++) {
474 LIST_INIT(&pp->pr_hashtab[i]);
475 }
476 }
477
478 /*
479 * Alignment is to take place at `ioff' within the item. This means
480 * we must reserve up to `align - 1' bytes on the page to allow
481 * appropriate positioning of each item.
482 *
483 * Silently enforce `0 <= ioff < align'.
484 */
485 pp->pr_itemoffset = ioff = ioff % align;
486 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
487
488 /*
489 * Use the slack between the chunks and the page header
490 * for "cache coloring".
491 */
492 slack = off - pp->pr_itemsperpage * pp->pr_size;
493 pp->pr_maxcolor = (slack / align) * align;
494 pp->pr_curcolor = 0;
495
496 pp->pr_nget = 0;
497 pp->pr_nfail = 0;
498 pp->pr_nput = 0;
499 pp->pr_npagealloc = 0;
500 pp->pr_npagefree = 0;
501 pp->pr_hiwat = 0;
502 pp->pr_nidle = 0;
503
504 if (flags & PR_LOGGING) {
505 if (kmem_map == NULL ||
506 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
507 M_TEMP, M_NOWAIT)) == NULL)
508 pp->pr_roflags &= ~PR_LOGGING;
509 pp->pr_curlogentry = 0;
510 pp->pr_logsize = pool_logsize;
511 }
512
513 pp->pr_entered_file = NULL;
514 pp->pr_entered_line = 0;
515
516 simple_lock_init(&pp->pr_slock);
517
518 /*
519 * Initialize private page header pool if we haven't done so yet.
520 * XXX LOCKING.
521 */
522 if (phpool.pr_size == 0) {
523 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
524 0, "phpool", 0, 0, 0, 0);
525 }
526
527 /* Insert into the list of all pools. */
528 simple_lock(&pool_head_slock);
529 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
530 simple_unlock(&pool_head_slock);
531 }
532
533 /*
534 * De-commision a pool resource.
535 */
536 void
537 pool_destroy(pp)
538 struct pool *pp;
539 {
540 struct pool_item_header *ph;
541
542 #ifdef DIAGNOSTIC
543 if (pp->pr_nout != 0) {
544 pr_printlog(pp, NULL, printf);
545 panic("pool_destroy: pool busy: still out: %u\n",
546 pp->pr_nout);
547 }
548 #endif
549
550 /* Remove all pages */
551 if ((pp->pr_roflags & PR_STATIC) == 0)
552 while ((ph = pp->pr_pagelist.tqh_first) != NULL)
553 pr_rmpage(pp, ph);
554
555 /* Remove from global pool list */
556 simple_lock(&pool_head_slock);
557 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
558 /* XXX Only clear this if we were drainpp? */
559 drainpp = NULL;
560 simple_unlock(&pool_head_slock);
561
562 if ((pp->pr_roflags & PR_LOGGING) != 0)
563 free(pp->pr_log, M_TEMP);
564
565 if (pp->pr_roflags & PR_FREEHEADER)
566 free(pp, M_POOL);
567 }
568
569
570 /*
571 * Grab an item from the pool; must be called at appropriate spl level
572 */
573 void *
574 _pool_get(pp, flags, file, line)
575 struct pool *pp;
576 int flags;
577 const char *file;
578 long line;
579 {
580 void *v;
581 struct pool_item *pi;
582 struct pool_item_header *ph;
583
584 #ifdef DIAGNOSTIC
585 if (__predict_false((pp->pr_roflags & PR_STATIC) &&
586 (flags & PR_MALLOCOK))) {
587 pr_printlog(pp, NULL, printf);
588 panic("pool_get: static");
589 }
590 #endif
591
592 if (__predict_false(curproc == NULL && (flags & PR_WAITOK) != 0))
593 panic("pool_get: must have NOWAIT");
594
595 simple_lock(&pp->pr_slock);
596 pr_enter(pp, file, line);
597
598 startover:
599 /*
600 * Check to see if we've reached the hard limit. If we have,
601 * and we can wait, then wait until an item has been returned to
602 * the pool.
603 */
604 #ifdef DIAGNOSTIC
605 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
606 pr_leave(pp);
607 simple_unlock(&pp->pr_slock);
608 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
609 }
610 #endif
611 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
612 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
613 /*
614 * XXX: A warning isn't logged in this case. Should
615 * it be?
616 */
617 pp->pr_flags |= PR_WANTED;
618 pr_leave(pp);
619 simple_unlock(&pp->pr_slock);
620 tsleep((caddr_t)pp, PSWP, pp->pr_wchan, 0);
621 simple_lock(&pp->pr_slock);
622 pr_enter(pp, file, line);
623 goto startover;
624 }
625
626 /*
627 * Log a message that the hard limit has been hit.
628 */
629 if (pp->pr_hardlimit_warning != NULL &&
630 ratecheck(&pp->pr_hardlimit_warning_last,
631 &pp->pr_hardlimit_ratecap))
632 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
633
634 if (flags & PR_URGENT)
635 panic("pool_get: urgent");
636
637 pp->pr_nfail++;
638
639 pr_leave(pp);
640 simple_unlock(&pp->pr_slock);
641 return (NULL);
642 }
643
644 /*
645 * The convention we use is that if `curpage' is not NULL, then
646 * it points at a non-empty bucket. In particular, `curpage'
647 * never points at a page header which has PR_PHINPAGE set and
648 * has no items in its bucket.
649 */
650 if ((ph = pp->pr_curpage) == NULL) {
651 void *v;
652
653 #ifdef DIAGNOSTIC
654 if (pp->pr_nitems != 0) {
655 simple_unlock(&pp->pr_slock);
656 printf("pool_get: %s: curpage NULL, nitems %u\n",
657 pp->pr_wchan, pp->pr_nitems);
658 panic("pool_get: nitems inconsistent\n");
659 }
660 #endif
661
662 /*
663 * Call the back-end page allocator for more memory.
664 * Release the pool lock, as the back-end page allocator
665 * may block.
666 */
667 pr_leave(pp);
668 simple_unlock(&pp->pr_slock);
669 v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype);
670 simple_lock(&pp->pr_slock);
671 pr_enter(pp, file, line);
672
673 if (v == NULL) {
674 /*
675 * We were unable to allocate a page, but
676 * we released the lock during allocation,
677 * so perhaps items were freed back to the
678 * pool. Check for this case.
679 */
680 if (pp->pr_curpage != NULL)
681 goto startover;
682
683 if (flags & PR_URGENT)
684 panic("pool_get: urgent");
685
686 if ((flags & PR_WAITOK) == 0) {
687 pp->pr_nfail++;
688 pr_leave(pp);
689 simple_unlock(&pp->pr_slock);
690 return (NULL);
691 }
692
693 /*
694 * Wait for items to be returned to this pool.
695 *
696 * XXX: we actually want to wait just until
697 * the page allocator has memory again. Depending
698 * on this pool's usage, we might get stuck here
699 * for a long time.
700 *
701 * XXX: maybe we should wake up once a second and
702 * try again?
703 */
704 pp->pr_flags |= PR_WANTED;
705 pr_leave(pp);
706 simple_unlock(&pp->pr_slock);
707 tsleep((caddr_t)pp, PSWP, pp->pr_wchan, 0);
708 simple_lock(&pp->pr_slock);
709 pr_enter(pp, file, line);
710 goto startover;
711 }
712
713 /* We have more memory; add it to the pool */
714 pp->pr_npagealloc++;
715 pool_prime_page(pp, v);
716
717 /* Start the allocation process over. */
718 goto startover;
719 }
720
721 if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
722 pr_leave(pp);
723 simple_unlock(&pp->pr_slock);
724 panic("pool_get: %s: page empty", pp->pr_wchan);
725 }
726 #ifdef DIAGNOSTIC
727 if (__predict_false(pp->pr_nitems == 0)) {
728 pr_leave(pp);
729 simple_unlock(&pp->pr_slock);
730 printf("pool_get: %s: items on itemlist, nitems %u\n",
731 pp->pr_wchan, pp->pr_nitems);
732 panic("pool_get: nitems inconsistent\n");
733 }
734 #endif
735 pr_log(pp, v, PRLOG_GET, file, line);
736
737 #ifdef DIAGNOSTIC
738 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
739 pr_printlog(pp, pi, printf);
740 panic("pool_get(%s): free list modified: magic=%x; page %p;"
741 " item addr %p\n",
742 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
743 }
744 #endif
745
746 /*
747 * Remove from item list.
748 */
749 TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
750 pp->pr_nitems--;
751 pp->pr_nout++;
752 if (ph->ph_nmissing == 0) {
753 #ifdef DIAGNOSTIC
754 if (__predict_false(pp->pr_nidle == 0))
755 panic("pool_get: nidle inconsistent");
756 #endif
757 pp->pr_nidle--;
758 }
759 ph->ph_nmissing++;
760 if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) {
761 #ifdef DIAGNOSTIC
762 if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
763 pr_leave(pp);
764 simple_unlock(&pp->pr_slock);
765 panic("pool_get: %s: nmissing inconsistent",
766 pp->pr_wchan);
767 }
768 #endif
769 /*
770 * Find a new non-empty page header, if any.
771 * Start search from the page head, to increase
772 * the chance for "high water" pages to be freed.
773 *
774 * Migrate empty pages to the end of the list. This
775 * will speed the update of curpage as pages become
776 * idle. Empty pages intermingled with idle pages
777 * is no big deal. As soon as a page becomes un-empty,
778 * it will move back to the head of the list.
779 */
780 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
781 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
782 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
783 ph = TAILQ_NEXT(ph, ph_pagelist))
784 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
785 break;
786
787 pp->pr_curpage = ph;
788 }
789
790 pp->pr_nget++;
791
792 /*
793 * If we have a low water mark and we are now below that low
794 * water mark, add more items to the pool.
795 */
796 if (pp->pr_nitems < pp->pr_minitems && pool_catchup(pp) != 0) {
797 /*
798 * XXX: Should we log a warning? Should we set up a timeout
799 * to try again in a second or so? The latter could break
800 * a caller's assumptions about interrupt protection, etc.
801 */
802 }
803
804 pr_leave(pp);
805 simple_unlock(&pp->pr_slock);
806 return (v);
807 }
808
809 /*
810 * Return resource to the pool; must be called at appropriate spl level
811 */
812 void
813 _pool_put(pp, v, file, line)
814 struct pool *pp;
815 void *v;
816 const char *file;
817 long line;
818 {
819 struct pool_item *pi = v;
820 struct pool_item_header *ph;
821 caddr_t page;
822 int s;
823
824 page = (caddr_t)((u_long)v & pp->pr_pagemask);
825
826 simple_lock(&pp->pr_slock);
827 pr_enter(pp, file, line);
828
829 #ifdef DIAGNOSTIC
830 if (__predict_false(pp->pr_nout == 0)) {
831 printf("pool %s: putting with none out\n",
832 pp->pr_wchan);
833 panic("pool_put");
834 }
835 #endif
836
837 pr_log(pp, v, PRLOG_PUT, file, line);
838
839 if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
840 pr_printlog(pp, NULL, printf);
841 panic("pool_put: %s: page header missing", pp->pr_wchan);
842 }
843
844 #ifdef LOCKDEBUG
845 /*
846 * Check if we're freeing a locked simple lock.
847 */
848 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
849 #endif
850
851 /*
852 * Return to item list.
853 */
854 #ifdef DIAGNOSTIC
855 pi->pi_magic = PI_MAGIC;
856 #endif
857 #ifdef DEBUG
858 {
859 int i, *ip = v;
860
861 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
862 *ip++ = PI_MAGIC;
863 }
864 }
865 #endif
866
867 TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
868 ph->ph_nmissing--;
869 pp->pr_nput++;
870 pp->pr_nitems++;
871 pp->pr_nout--;
872
873 /* Cancel "pool empty" condition if it exists */
874 if (pp->pr_curpage == NULL)
875 pp->pr_curpage = ph;
876
877 if (pp->pr_flags & PR_WANTED) {
878 pp->pr_flags &= ~PR_WANTED;
879 if (ph->ph_nmissing == 0)
880 pp->pr_nidle++;
881 pr_leave(pp);
882 simple_unlock(&pp->pr_slock);
883 wakeup((caddr_t)pp);
884 return;
885 }
886
887 /*
888 * If this page is now complete, do one of two things:
889 *
890 * (1) If we have more pages than the page high water
891 * mark, free the page back to the system.
892 *
893 * (2) Move it to the end of the page list, so that
894 * we minimize our chances of fragmenting the
895 * pool. Idle pages migrate to the end (along with
896 * completely empty pages, so that we find un-empty
897 * pages more quickly when we update curpage) of the
898 * list so they can be more easily swept up by
899 * the pagedaemon when pages are scarce.
900 */
901 if (ph->ph_nmissing == 0) {
902 pp->pr_nidle++;
903 if (pp->pr_npages > pp->pr_maxpages) {
904 pr_rmpage(pp, ph);
905 } else {
906 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
907 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
908
909 /*
910 * Update the timestamp on the page. A page must
911 * be idle for some period of time before it can
912 * be reclaimed by the pagedaemon. This minimizes
913 * ping-pong'ing for memory.
914 */
915 s = splclock();
916 ph->ph_time = mono_time;
917 splx(s);
918
919 /*
920 * Update the current page pointer. Just look for
921 * the first page with any free items.
922 *
923 * XXX: Maybe we want an option to look for the
924 * page with the fewest available items, to minimize
925 * fragmentation?
926 */
927 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
928 ph = TAILQ_NEXT(ph, ph_pagelist))
929 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
930 break;
931
932 pp->pr_curpage = ph;
933 }
934 }
935 /*
936 * If the page has just become un-empty, move it to the head of
937 * the list, and make it the current page. The next allocation
938 * will get the item from this page, instead of further fragmenting
939 * the pool.
940 */
941 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
942 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
943 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
944 pp->pr_curpage = ph;
945 }
946
947 pr_leave(pp);
948 simple_unlock(&pp->pr_slock);
949
950 }
951
952 /*
953 * Add N items to the pool.
954 */
955 int
956 pool_prime(pp, n, storage)
957 struct pool *pp;
958 int n;
959 caddr_t storage;
960 {
961 caddr_t cp;
962 int newnitems, newpages;
963
964 #ifdef DIAGNOSTIC
965 if (__predict_false(storage && !(pp->pr_roflags & PR_STATIC)))
966 panic("pool_prime: static");
967 /* !storage && static caught below */
968 #endif
969
970 simple_lock(&pp->pr_slock);
971
972 newnitems = pp->pr_minitems + n;
973 newpages =
974 roundup(newnitems, pp->pr_itemsperpage) / pp->pr_itemsperpage
975 - pp->pr_minpages;
976
977 while (newpages-- > 0) {
978 if (pp->pr_roflags & PR_STATIC) {
979 cp = storage;
980 storage += pp->pr_pagesz;
981 } else {
982 simple_unlock(&pp->pr_slock);
983 cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
984 simple_lock(&pp->pr_slock);
985 }
986
987 if (cp == NULL) {
988 simple_unlock(&pp->pr_slock);
989 return (ENOMEM);
990 }
991
992 pp->pr_npagealloc++;
993 pool_prime_page(pp, cp);
994 pp->pr_minpages++;
995 }
996
997 pp->pr_minitems = newnitems;
998
999 if (pp->pr_minpages >= pp->pr_maxpages)
1000 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1001
1002 simple_unlock(&pp->pr_slock);
1003 return (0);
1004 }
1005
1006 /*
1007 * Add a page worth of items to the pool.
1008 *
1009 * Note, we must be called with the pool descriptor LOCKED.
1010 */
1011 static void
1012 pool_prime_page(pp, storage)
1013 struct pool *pp;
1014 caddr_t storage;
1015 {
1016 struct pool_item *pi;
1017 struct pool_item_header *ph;
1018 caddr_t cp = storage;
1019 unsigned int align = pp->pr_align;
1020 unsigned int ioff = pp->pr_itemoffset;
1021 int s, n;
1022
1023 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
1024 ph = (struct pool_item_header *)(cp + pp->pr_phoffset);
1025 } else {
1026 s = splhigh();
1027 ph = pool_get(&phpool, PR_URGENT);
1028 splx(s);
1029 LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)],
1030 ph, ph_hashlist);
1031 }
1032
1033 /*
1034 * Insert page header.
1035 */
1036 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
1037 TAILQ_INIT(&ph->ph_itemlist);
1038 ph->ph_page = storage;
1039 ph->ph_nmissing = 0;
1040 memset(&ph->ph_time, 0, sizeof(ph->ph_time));
1041
1042 pp->pr_nidle++;
1043
1044 /*
1045 * Color this page.
1046 */
1047 cp = (caddr_t)(cp + pp->pr_curcolor);
1048 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1049 pp->pr_curcolor = 0;
1050
1051 /*
1052 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1053 */
1054 if (ioff != 0)
1055 cp = (caddr_t)(cp + (align - ioff));
1056
1057 /*
1058 * Insert remaining chunks on the bucket list.
1059 */
1060 n = pp->pr_itemsperpage;
1061 pp->pr_nitems += n;
1062
1063 while (n--) {
1064 pi = (struct pool_item *)cp;
1065
1066 /* Insert on page list */
1067 TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
1068 #ifdef DIAGNOSTIC
1069 pi->pi_magic = PI_MAGIC;
1070 #endif
1071 cp = (caddr_t)(cp + pp->pr_size);
1072 }
1073
1074 /*
1075 * If the pool was depleted, point at the new page.
1076 */
1077 if (pp->pr_curpage == NULL)
1078 pp->pr_curpage = ph;
1079
1080 if (++pp->pr_npages > pp->pr_hiwat)
1081 pp->pr_hiwat = pp->pr_npages;
1082 }
1083
1084 /*
1085 * Like pool_prime(), except this is used by pool_get() when nitems
1086 * drops below the low water mark. This is used to catch up nitmes
1087 * with the low water mark.
1088 *
1089 * Note 1, we never wait for memory here, we let the caller decide what to do.
1090 *
1091 * Note 2, this doesn't work with static pools.
1092 *
1093 * Note 3, we must be called with the pool already locked, and we return
1094 * with it locked.
1095 */
1096 static int
1097 pool_catchup(pp)
1098 struct pool *pp;
1099 {
1100 caddr_t cp;
1101 int error = 0;
1102
1103 if (pp->pr_roflags & PR_STATIC) {
1104 /*
1105 * We dropped below the low water mark, and this is not a
1106 * good thing. Log a warning.
1107 *
1108 * XXX: rate-limit this?
1109 */
1110 printf("WARNING: static pool `%s' dropped below low water "
1111 "mark\n", pp->pr_wchan);
1112 return (0);
1113 }
1114
1115 while (pp->pr_nitems < pp->pr_minitems) {
1116 /*
1117 * Call the page back-end allocator for more memory.
1118 *
1119 * XXX: We never wait, so should we bother unlocking
1120 * the pool descriptor?
1121 */
1122 simple_unlock(&pp->pr_slock);
1123 cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
1124 simple_lock(&pp->pr_slock);
1125 if (__predict_false(cp == NULL)) {
1126 error = ENOMEM;
1127 break;
1128 }
1129 pp->pr_npagealloc++;
1130 pool_prime_page(pp, cp);
1131 }
1132
1133 return (error);
1134 }
1135
1136 void
1137 pool_setlowat(pp, n)
1138 pool_handle_t pp;
1139 int n;
1140 {
1141 int error;
1142
1143 simple_lock(&pp->pr_slock);
1144
1145 pp->pr_minitems = n;
1146 pp->pr_minpages = (n == 0)
1147 ? 0
1148 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1149
1150 /* Make sure we're caught up with the newly-set low water mark. */
1151 if ((error = pool_catchup(pp)) != 0) {
1152 /*
1153 * XXX: Should we log a warning? Should we set up a timeout
1154 * to try again in a second or so? The latter could break
1155 * a caller's assumptions about interrupt protection, etc.
1156 */
1157 }
1158
1159 simple_unlock(&pp->pr_slock);
1160 }
1161
1162 void
1163 pool_sethiwat(pp, n)
1164 pool_handle_t pp;
1165 int n;
1166 {
1167
1168 simple_lock(&pp->pr_slock);
1169
1170 pp->pr_maxpages = (n == 0)
1171 ? 0
1172 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1173
1174 simple_unlock(&pp->pr_slock);
1175 }
1176
1177 void
1178 pool_sethardlimit(pp, n, warnmess, ratecap)
1179 pool_handle_t pp;
1180 int n;
1181 const char *warnmess;
1182 int ratecap;
1183 {
1184
1185 simple_lock(&pp->pr_slock);
1186
1187 pp->pr_hardlimit = n;
1188 pp->pr_hardlimit_warning = warnmess;
1189 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1190 pp->pr_hardlimit_warning_last.tv_sec = 0;
1191 pp->pr_hardlimit_warning_last.tv_usec = 0;
1192
1193 /*
1194 * In-line version of pool_sethiwat(), because we don't want to
1195 * release the lock.
1196 */
1197 pp->pr_maxpages = (n == 0)
1198 ? 0
1199 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1200
1201 simple_unlock(&pp->pr_slock);
1202 }
1203
1204 /*
1205 * Default page allocator.
1206 */
1207 static void *
1208 pool_page_alloc(sz, flags, mtype)
1209 unsigned long sz;
1210 int flags;
1211 int mtype;
1212 {
1213 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1214
1215 return ((void *)uvm_km_alloc_poolpage(waitok));
1216 }
1217
1218 static void
1219 pool_page_free(v, sz, mtype)
1220 void *v;
1221 unsigned long sz;
1222 int mtype;
1223 {
1224
1225 uvm_km_free_poolpage((vaddr_t)v);
1226 }
1227
1228 /*
1229 * Alternate pool page allocator for pools that know they will
1230 * never be accessed in interrupt context.
1231 */
1232 void *
1233 pool_page_alloc_nointr(sz, flags, mtype)
1234 unsigned long sz;
1235 int flags;
1236 int mtype;
1237 {
1238 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1239
1240 return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object,
1241 waitok));
1242 }
1243
1244 void
1245 pool_page_free_nointr(v, sz, mtype)
1246 void *v;
1247 unsigned long sz;
1248 int mtype;
1249 {
1250
1251 uvm_km_free_poolpage1(kernel_map, (vaddr_t)v);
1252 }
1253
1254
1255 /*
1256 * Release all complete pages that have not been used recently.
1257 */
1258 void
1259 _pool_reclaim(pp, file, line)
1260 pool_handle_t pp;
1261 const char *file;
1262 long line;
1263 {
1264 struct pool_item_header *ph, *phnext;
1265 struct timeval curtime;
1266 int s;
1267
1268 if (pp->pr_roflags & PR_STATIC)
1269 return;
1270
1271 if (simple_lock_try(&pp->pr_slock) == 0)
1272 return;
1273 pr_enter(pp, file, line);
1274
1275 s = splclock();
1276 curtime = mono_time;
1277 splx(s);
1278
1279 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) {
1280 phnext = TAILQ_NEXT(ph, ph_pagelist);
1281
1282 /* Check our minimum page claim */
1283 if (pp->pr_npages <= pp->pr_minpages)
1284 break;
1285
1286 if (ph->ph_nmissing == 0) {
1287 struct timeval diff;
1288 timersub(&curtime, &ph->ph_time, &diff);
1289 if (diff.tv_sec < pool_inactive_time)
1290 continue;
1291
1292 /*
1293 * If freeing this page would put us below
1294 * the low water mark, stop now.
1295 */
1296 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1297 pp->pr_minitems)
1298 break;
1299
1300 pr_rmpage(pp, ph);
1301 }
1302 }
1303
1304 pr_leave(pp);
1305 simple_unlock(&pp->pr_slock);
1306 }
1307
1308
1309 /*
1310 * Drain pools, one at a time.
1311 *
1312 * Note, we must never be called from an interrupt context.
1313 */
1314 void
1315 pool_drain(arg)
1316 void *arg;
1317 {
1318 struct pool *pp;
1319 int s;
1320
1321 s = splimp();
1322 simple_lock(&pool_head_slock);
1323
1324 if (drainpp == NULL && (drainpp = TAILQ_FIRST(&pool_head)) == NULL)
1325 goto out;
1326
1327 pp = drainpp;
1328 drainpp = TAILQ_NEXT(pp, pr_poollist);
1329
1330 pool_reclaim(pp);
1331
1332 out:
1333 simple_unlock(&pool_head_slock);
1334 splx(s);
1335 }
1336
1337
1338 /*
1339 * Diagnostic helpers.
1340 */
1341 void
1342 pool_print(pp, modif)
1343 struct pool *pp;
1344 const char *modif;
1345 {
1346 int s;
1347
1348 s = splimp();
1349 if (simple_lock_try(&pp->pr_slock) == 0) {
1350 printf("pool %s is locked; try again later\n",
1351 pp->pr_wchan);
1352 splx(s);
1353 return;
1354 }
1355 pool_print1(pp, modif, printf);
1356 simple_unlock(&pp->pr_slock);
1357 splx(s);
1358 }
1359
1360 void
1361 pool_printit(pp, modif, pr)
1362 struct pool *pp;
1363 const char *modif;
1364 void (*pr) __P((const char *, ...));
1365 {
1366 int didlock = 0;
1367
1368 if (pp == NULL) {
1369 (*pr)("Must specify a pool to print.\n");
1370 return;
1371 }
1372
1373 /*
1374 * Called from DDB; interrupts should be blocked, and all
1375 * other processors should be paused. We can skip locking
1376 * the pool in this case.
1377 *
1378 * We do a simple_lock_try() just to print the lock
1379 * status, however.
1380 */
1381
1382 if (simple_lock_try(&pp->pr_slock) == 0)
1383 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1384 else
1385 didlock = 1;
1386
1387 pool_print1(pp, modif, pr);
1388
1389 if (didlock)
1390 simple_unlock(&pp->pr_slock);
1391 }
1392
1393 static void
1394 pool_print1(pp, modif, pr)
1395 struct pool *pp;
1396 const char *modif;
1397 void (*pr) __P((const char *, ...));
1398 {
1399 struct pool_item_header *ph;
1400 #ifdef DIAGNOSTIC
1401 struct pool_item *pi;
1402 #endif
1403 int print_log = 0, print_pagelist = 0;
1404 char c;
1405
1406 while ((c = *modif++) != '\0') {
1407 if (c == 'l')
1408 print_log = 1;
1409 if (c == 'p')
1410 print_pagelist = 1;
1411 modif++;
1412 }
1413
1414 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1415 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1416 pp->pr_roflags);
1417 (*pr)("\tpagesz %u, mtype %d\n", pp->pr_pagesz, pp->pr_mtype);
1418 (*pr)("\talloc %p, release %p\n", pp->pr_alloc, pp->pr_free);
1419 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1420 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1421 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1422 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1423
1424 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1425 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1426 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1427 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1428
1429 if (print_pagelist == 0)
1430 goto skip_pagelist;
1431
1432 if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
1433 (*pr)("\n\tpage list:\n");
1434 for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) {
1435 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1436 ph->ph_page, ph->ph_nmissing,
1437 (u_long)ph->ph_time.tv_sec,
1438 (u_long)ph->ph_time.tv_usec);
1439 #ifdef DIAGNOSTIC
1440 for (pi = TAILQ_FIRST(&ph->ph_itemlist); pi != NULL;
1441 pi = TAILQ_NEXT(pi, pi_list)) {
1442 if (pi->pi_magic != PI_MAGIC) {
1443 (*pr)("\t\t\titem %p, magic 0x%x\n",
1444 pi, pi->pi_magic);
1445 }
1446 }
1447 #endif
1448 }
1449 if (pp->pr_curpage == NULL)
1450 (*pr)("\tno current page\n");
1451 else
1452 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1453
1454 skip_pagelist:
1455
1456 if (print_log == 0)
1457 goto skip_log;
1458
1459 (*pr)("\n");
1460 if ((pp->pr_roflags & PR_LOGGING) == 0)
1461 (*pr)("\tno log\n");
1462 else
1463 pr_printlog(pp, NULL, pr);
1464
1465 skip_log:
1466
1467 pr_enter_check(pp, pr);
1468 }
1469
1470 int
1471 pool_chk(pp, label)
1472 struct pool *pp;
1473 char *label;
1474 {
1475 struct pool_item_header *ph;
1476 int r = 0;
1477
1478 simple_lock(&pp->pr_slock);
1479
1480 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
1481 ph = TAILQ_NEXT(ph, ph_pagelist)) {
1482
1483 struct pool_item *pi;
1484 int n;
1485 caddr_t page;
1486
1487 page = (caddr_t)((u_long)ph & pp->pr_pagemask);
1488 if (page != ph->ph_page &&
1489 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1490 if (label != NULL)
1491 printf("%s: ", label);
1492 printf("pool(%p:%s): page inconsistency: page %p;"
1493 " at page head addr %p (p %p)\n", pp,
1494 pp->pr_wchan, ph->ph_page,
1495 ph, page);
1496 r++;
1497 goto out;
1498 }
1499
1500 for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
1501 pi != NULL;
1502 pi = TAILQ_NEXT(pi,pi_list), n++) {
1503
1504 #ifdef DIAGNOSTIC
1505 if (pi->pi_magic != PI_MAGIC) {
1506 if (label != NULL)
1507 printf("%s: ", label);
1508 printf("pool(%s): free list modified: magic=%x;"
1509 " page %p; item ordinal %d;"
1510 " addr %p (p %p)\n",
1511 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1512 n, pi, page);
1513 panic("pool");
1514 }
1515 #endif
1516 page = (caddr_t)((u_long)pi & pp->pr_pagemask);
1517 if (page == ph->ph_page)
1518 continue;
1519
1520 if (label != NULL)
1521 printf("%s: ", label);
1522 printf("pool(%p:%s): page inconsistency: page %p;"
1523 " item ordinal %d; addr %p (p %p)\n", pp,
1524 pp->pr_wchan, ph->ph_page,
1525 n, pi, page);
1526 r++;
1527 goto out;
1528 }
1529 }
1530 out:
1531 simple_unlock(&pp->pr_slock);
1532 return (r);
1533 }
1534