Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.34
      1 /*	$NetBSD: subr_pool.c,v 1.34 2000/05/08 20:09:44 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9  * Simulation Facility, NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 #include "opt_pool.h"
     41 #include "opt_poollog.h"
     42 #include "opt_lockdebug.h"
     43 
     44 #include <sys/param.h>
     45 #include <sys/systm.h>
     46 #include <sys/proc.h>
     47 #include <sys/errno.h>
     48 #include <sys/kernel.h>
     49 #include <sys/malloc.h>
     50 #include <sys/lock.h>
     51 #include <sys/pool.h>
     52 #include <sys/syslog.h>
     53 
     54 #include <vm/vm.h>
     55 #include <vm/vm_kern.h>
     56 
     57 #include <uvm/uvm.h>
     58 
     59 /*
     60  * Pool resource management utility.
     61  *
     62  * Memory is allocated in pages which are split into pieces according
     63  * to the pool item size. Each page is kept on a list headed by `pr_pagelist'
     64  * in the pool structure and the individual pool items are on a linked list
     65  * headed by `ph_itemlist' in each page header. The memory for building
     66  * the page list is either taken from the allocated pages themselves (for
     67  * small pool items) or taken from an internal pool of page headers (`phpool').
     68  */
     69 
     70 /* List of all pools */
     71 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     72 
     73 /* Private pool for page header structures */
     74 static struct pool phpool;
     75 
     76 /* # of seconds to retain page after last use */
     77 int pool_inactive_time = 10;
     78 
     79 /* Next candidate for drainage (see pool_drain()) */
     80 static struct pool	*drainpp;
     81 
     82 /* This spin lock protects both pool_head and drainpp. */
     83 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
     84 
     85 struct pool_item_header {
     86 	/* Page headers */
     87 	TAILQ_ENTRY(pool_item_header)
     88 				ph_pagelist;	/* pool page list */
     89 	TAILQ_HEAD(,pool_item)	ph_itemlist;	/* chunk list for this page */
     90 	LIST_ENTRY(pool_item_header)
     91 				ph_hashlist;	/* Off-page page headers */
     92 	int			ph_nmissing;	/* # of chunks in use */
     93 	caddr_t			ph_page;	/* this page's address */
     94 	struct timeval		ph_time;	/* last referenced */
     95 };
     96 
     97 struct pool_item {
     98 #ifdef DIAGNOSTIC
     99 	int pi_magic;
    100 #endif
    101 #define	PI_MAGIC 0xdeadbeef
    102 	/* Other entries use only this list entry */
    103 	TAILQ_ENTRY(pool_item)	pi_list;
    104 };
    105 
    106 
    107 #define	PR_HASH_INDEX(pp,addr) \
    108 	(((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1))
    109 
    110 
    111 
    112 static struct pool_item_header
    113 		*pr_find_pagehead __P((struct pool *, caddr_t));
    114 static void	pr_rmpage __P((struct pool *, struct pool_item_header *));
    115 static int	pool_catchup __P((struct pool *));
    116 static void	pool_prime_page __P((struct pool *, caddr_t));
    117 static void	*pool_page_alloc __P((unsigned long, int, int));
    118 static void	pool_page_free __P((void *, unsigned long, int));
    119 
    120 static void pool_print1 __P((struct pool *, const char *,
    121 	void (*)(const char *, ...)));
    122 
    123 /*
    124  * Pool log entry. An array of these is allocated in pool_create().
    125  */
    126 struct pool_log {
    127 	const char	*pl_file;
    128 	long		pl_line;
    129 	int		pl_action;
    130 #define	PRLOG_GET	1
    131 #define	PRLOG_PUT	2
    132 	void		*pl_addr;
    133 };
    134 
    135 /* Number of entries in pool log buffers */
    136 #ifndef POOL_LOGSIZE
    137 #define	POOL_LOGSIZE	10
    138 #endif
    139 
    140 int pool_logsize = POOL_LOGSIZE;
    141 
    142 #ifdef DIAGNOSTIC
    143 static void	pr_log __P((struct pool *, void *, int, const char *, long));
    144 static void	pr_printlog __P((struct pool *, struct pool_item *,
    145 		    void (*)(const char *, ...)));
    146 static void	pr_enter __P((struct pool *, const char *, long));
    147 static void	pr_leave __P((struct pool *));
    148 static void	pr_enter_check __P((struct pool *,
    149 		    void (*)(const char *, ...)));
    150 
    151 static __inline__ void
    152 pr_log(pp, v, action, file, line)
    153 	struct pool	*pp;
    154 	void		*v;
    155 	int		action;
    156 	const char	*file;
    157 	long		line;
    158 {
    159 	int n = pp->pr_curlogentry;
    160 	struct pool_log *pl;
    161 
    162 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    163 		return;
    164 
    165 	/*
    166 	 * Fill in the current entry. Wrap around and overwrite
    167 	 * the oldest entry if necessary.
    168 	 */
    169 	pl = &pp->pr_log[n];
    170 	pl->pl_file = file;
    171 	pl->pl_line = line;
    172 	pl->pl_action = action;
    173 	pl->pl_addr = v;
    174 	if (++n >= pp->pr_logsize)
    175 		n = 0;
    176 	pp->pr_curlogentry = n;
    177 }
    178 
    179 static void
    180 pr_printlog(pp, pi, pr)
    181 	struct pool *pp;
    182 	struct pool_item *pi;
    183 	void (*pr) __P((const char *, ...));
    184 {
    185 	int i = pp->pr_logsize;
    186 	int n = pp->pr_curlogentry;
    187 
    188 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    189 		return;
    190 
    191 	/*
    192 	 * Print all entries in this pool's log.
    193 	 */
    194 	while (i-- > 0) {
    195 		struct pool_log *pl = &pp->pr_log[n];
    196 		if (pl->pl_action != 0) {
    197 			if (pi == NULL || pi == pl->pl_addr) {
    198 				(*pr)("\tlog entry %d:\n", i);
    199 				(*pr)("\t\taction = %s, addr = %p\n",
    200 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    201 				    pl->pl_addr);
    202 				(*pr)("\t\tfile: %s at line %lu\n",
    203 				    pl->pl_file, pl->pl_line);
    204 			}
    205 		}
    206 		if (++n >= pp->pr_logsize)
    207 			n = 0;
    208 	}
    209 }
    210 
    211 static __inline__ void
    212 pr_enter(pp, file, line)
    213 	struct pool *pp;
    214 	const char *file;
    215 	long line;
    216 {
    217 
    218 	if (__predict_false(pp->pr_entered_file != NULL)) {
    219 		printf("pool %s: reentrancy at file %s line %ld\n",
    220 		    pp->pr_wchan, file, line);
    221 		printf("         previous entry at file %s line %ld\n",
    222 		    pp->pr_entered_file, pp->pr_entered_line);
    223 		panic("pr_enter");
    224 	}
    225 
    226 	pp->pr_entered_file = file;
    227 	pp->pr_entered_line = line;
    228 }
    229 
    230 static __inline__ void
    231 pr_leave(pp)
    232 	struct pool *pp;
    233 {
    234 
    235 	if (__predict_false(pp->pr_entered_file == NULL)) {
    236 		printf("pool %s not entered?\n", pp->pr_wchan);
    237 		panic("pr_leave");
    238 	}
    239 
    240 	pp->pr_entered_file = NULL;
    241 	pp->pr_entered_line = 0;
    242 }
    243 
    244 static __inline__ void
    245 pr_enter_check(pp, pr)
    246 	struct pool *pp;
    247 	void (*pr) __P((const char *, ...));
    248 {
    249 
    250 	if (pp->pr_entered_file != NULL)
    251 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    252 		    pp->pr_entered_file, pp->pr_entered_line);
    253 }
    254 #else
    255 #define	pr_log(pp, v, action, file, line)
    256 #define	pr_printlog(pp, pi, pr)
    257 #define	pr_enter(pp, file, line)
    258 #define	pr_leave(pp)
    259 #define	pr_enter_check(pp, pr)
    260 #endif /* DIAGNOSTIC */
    261 
    262 /*
    263  * Return the pool page header based on page address.
    264  */
    265 static __inline__ struct pool_item_header *
    266 pr_find_pagehead(pp, page)
    267 	struct pool *pp;
    268 	caddr_t page;
    269 {
    270 	struct pool_item_header *ph;
    271 
    272 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    273 		return ((struct pool_item_header *)(page + pp->pr_phoffset));
    274 
    275 	for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]);
    276 	     ph != NULL;
    277 	     ph = LIST_NEXT(ph, ph_hashlist)) {
    278 		if (ph->ph_page == page)
    279 			return (ph);
    280 	}
    281 	return (NULL);
    282 }
    283 
    284 /*
    285  * Remove a page from the pool.
    286  */
    287 static __inline__ void
    288 pr_rmpage(pp, ph)
    289 	struct pool *pp;
    290 	struct pool_item_header *ph;
    291 {
    292 
    293 	/*
    294 	 * If the page was idle, decrement the idle page count.
    295 	 */
    296 	if (ph->ph_nmissing == 0) {
    297 #ifdef DIAGNOSTIC
    298 		if (pp->pr_nidle == 0)
    299 			panic("pr_rmpage: nidle inconsistent");
    300 		if (pp->pr_nitems < pp->pr_itemsperpage)
    301 			panic("pr_rmpage: nitems inconsistent");
    302 #endif
    303 		pp->pr_nidle--;
    304 	}
    305 
    306 	pp->pr_nitems -= pp->pr_itemsperpage;
    307 
    308 	/*
    309 	 * Unlink a page from the pool and release it.
    310 	 */
    311 	TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    312 	(*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype);
    313 	pp->pr_npages--;
    314 	pp->pr_npagefree++;
    315 
    316 	if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    317 		int s;
    318 		LIST_REMOVE(ph, ph_hashlist);
    319 		s = splhigh();
    320 		pool_put(&phpool, ph);
    321 		splx(s);
    322 	}
    323 
    324 	if (pp->pr_curpage == ph) {
    325 		/*
    326 		 * Find a new non-empty page header, if any.
    327 		 * Start search from the page head, to increase the
    328 		 * chance for "high water" pages to be freed.
    329 		 */
    330 		for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
    331 		     ph = TAILQ_NEXT(ph, ph_pagelist))
    332 			if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    333 				break;
    334 
    335 		pp->pr_curpage = ph;
    336 	}
    337 }
    338 
    339 /*
    340  * Allocate and initialize a pool.
    341  */
    342 struct pool *
    343 pool_create(size, align, ioff, nitems, wchan, pagesz, alloc, release, mtype)
    344 	size_t	size;
    345 	u_int	align;
    346 	u_int	ioff;
    347 	int	nitems;
    348 	const char *wchan;
    349 	size_t	pagesz;
    350 	void	*(*alloc) __P((unsigned long, int, int));
    351 	void	(*release) __P((void *, unsigned long, int));
    352 	int	mtype;
    353 {
    354 	struct pool *pp;
    355 	int flags;
    356 
    357 	pp = (struct pool *)malloc(sizeof(*pp), M_POOL, M_NOWAIT);
    358 	if (pp == NULL)
    359 		return (NULL);
    360 
    361 	flags = PR_FREEHEADER;
    362 	pool_init(pp, size, align, ioff, flags, wchan, pagesz,
    363 		  alloc, release, mtype);
    364 
    365 	if (nitems != 0) {
    366 		if (pool_prime(pp, nitems, NULL) != 0) {
    367 			pool_destroy(pp);
    368 			return (NULL);
    369 		}
    370 	}
    371 
    372 	return (pp);
    373 }
    374 
    375 /*
    376  * Initialize the given pool resource structure.
    377  *
    378  * We export this routine to allow other kernel parts to declare
    379  * static pools that must be initialized before malloc() is available.
    380  */
    381 void
    382 pool_init(pp, size, align, ioff, flags, wchan, pagesz, alloc, release, mtype)
    383 	struct pool	*pp;
    384 	size_t		size;
    385 	u_int		align;
    386 	u_int		ioff;
    387 	int		flags;
    388 	const char	*wchan;
    389 	size_t		pagesz;
    390 	void		*(*alloc) __P((unsigned long, int, int));
    391 	void		(*release) __P((void *, unsigned long, int));
    392 	int		mtype;
    393 {
    394 	int off, slack, i;
    395 
    396 #ifdef POOL_DIAGNOSTIC
    397 	/*
    398 	 * Always log if POOL_DIAGNOSTIC is defined.
    399 	 */
    400 	if (pool_logsize != 0)
    401 		flags |= PR_LOGGING;
    402 #endif
    403 
    404 	/*
    405 	 * Check arguments and construct default values.
    406 	 */
    407 	if (!powerof2(pagesz) || pagesz > PAGE_SIZE)
    408 		panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz);
    409 
    410 	if (alloc == NULL && release == NULL) {
    411 		alloc = pool_page_alloc;
    412 		release = pool_page_free;
    413 		pagesz = PAGE_SIZE;	/* Rounds to PAGE_SIZE anyhow. */
    414 	} else if ((alloc != NULL && release != NULL) == 0) {
    415 		/* If you specifiy one, must specify both. */
    416 		panic("pool_init: must specify alloc and release together");
    417 	}
    418 
    419 	if (pagesz == 0)
    420 		pagesz = PAGE_SIZE;
    421 
    422 	if (align == 0)
    423 		align = ALIGN(1);
    424 
    425 	if (size < sizeof(struct pool_item))
    426 		size = sizeof(struct pool_item);
    427 
    428 	/*
    429 	 * Initialize the pool structure.
    430 	 */
    431 	TAILQ_INIT(&pp->pr_pagelist);
    432 	pp->pr_curpage = NULL;
    433 	pp->pr_npages = 0;
    434 	pp->pr_minitems = 0;
    435 	pp->pr_minpages = 0;
    436 	pp->pr_maxpages = UINT_MAX;
    437 	pp->pr_roflags = flags;
    438 	pp->pr_flags = 0;
    439 	pp->pr_size = ALIGN(size);
    440 	pp->pr_align = align;
    441 	pp->pr_wchan = wchan;
    442 	pp->pr_mtype = mtype;
    443 	pp->pr_alloc = alloc;
    444 	pp->pr_free = release;
    445 	pp->pr_pagesz = pagesz;
    446 	pp->pr_pagemask = ~(pagesz - 1);
    447 	pp->pr_pageshift = ffs(pagesz) - 1;
    448 	pp->pr_nitems = 0;
    449 	pp->pr_nout = 0;
    450 	pp->pr_hardlimit = UINT_MAX;
    451 	pp->pr_hardlimit_warning = NULL;
    452 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    453 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    454 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    455 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    456 
    457 	/*
    458 	 * Decide whether to put the page header off page to avoid
    459 	 * wasting too large a part of the page. Off-page page headers
    460 	 * go on a hash table, so we can match a returned item
    461 	 * with its header based on the page address.
    462 	 * We use 1/16 of the page size as the threshold (XXX: tune)
    463 	 */
    464 	if (pp->pr_size < pagesz/16) {
    465 		/* Use the end of the page for the page header */
    466 		pp->pr_roflags |= PR_PHINPAGE;
    467 		pp->pr_phoffset = off =
    468 			pagesz - ALIGN(sizeof(struct pool_item_header));
    469 	} else {
    470 		/* The page header will be taken from our page header pool */
    471 		pp->pr_phoffset = 0;
    472 		off = pagesz;
    473 		for (i = 0; i < PR_HASHTABSIZE; i++) {
    474 			LIST_INIT(&pp->pr_hashtab[i]);
    475 		}
    476 	}
    477 
    478 	/*
    479 	 * Alignment is to take place at `ioff' within the item. This means
    480 	 * we must reserve up to `align - 1' bytes on the page to allow
    481 	 * appropriate positioning of each item.
    482 	 *
    483 	 * Silently enforce `0 <= ioff < align'.
    484 	 */
    485 	pp->pr_itemoffset = ioff = ioff % align;
    486 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    487 
    488 	/*
    489 	 * Use the slack between the chunks and the page header
    490 	 * for "cache coloring".
    491 	 */
    492 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    493 	pp->pr_maxcolor = (slack / align) * align;
    494 	pp->pr_curcolor = 0;
    495 
    496 	pp->pr_nget = 0;
    497 	pp->pr_nfail = 0;
    498 	pp->pr_nput = 0;
    499 	pp->pr_npagealloc = 0;
    500 	pp->pr_npagefree = 0;
    501 	pp->pr_hiwat = 0;
    502 	pp->pr_nidle = 0;
    503 
    504 	if (flags & PR_LOGGING) {
    505 		if (kmem_map == NULL ||
    506 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    507 		     M_TEMP, M_NOWAIT)) == NULL)
    508 			pp->pr_roflags &= ~PR_LOGGING;
    509 		pp->pr_curlogentry = 0;
    510 		pp->pr_logsize = pool_logsize;
    511 	}
    512 
    513 	pp->pr_entered_file = NULL;
    514 	pp->pr_entered_line = 0;
    515 
    516 	simple_lock_init(&pp->pr_slock);
    517 
    518 	/*
    519 	 * Initialize private page header pool if we haven't done so yet.
    520 	 * XXX LOCKING.
    521 	 */
    522 	if (phpool.pr_size == 0) {
    523 		pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
    524 			  0, "phpool", 0, 0, 0, 0);
    525 	}
    526 
    527 	/* Insert into the list of all pools. */
    528 	simple_lock(&pool_head_slock);
    529 	TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    530 	simple_unlock(&pool_head_slock);
    531 }
    532 
    533 /*
    534  * De-commision a pool resource.
    535  */
    536 void
    537 pool_destroy(pp)
    538 	struct pool *pp;
    539 {
    540 	struct pool_item_header *ph;
    541 
    542 #ifdef DIAGNOSTIC
    543 	if (pp->pr_nout != 0) {
    544 		pr_printlog(pp, NULL, printf);
    545 		panic("pool_destroy: pool busy: still out: %u\n",
    546 		    pp->pr_nout);
    547 	}
    548 #endif
    549 
    550 	/* Remove all pages */
    551 	if ((pp->pr_roflags & PR_STATIC) == 0)
    552 		while ((ph = pp->pr_pagelist.tqh_first) != NULL)
    553 			pr_rmpage(pp, ph);
    554 
    555 	/* Remove from global pool list */
    556 	simple_lock(&pool_head_slock);
    557 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    558 	/* XXX Only clear this if we were drainpp? */
    559 	drainpp = NULL;
    560 	simple_unlock(&pool_head_slock);
    561 
    562 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    563 		free(pp->pr_log, M_TEMP);
    564 
    565 	if (pp->pr_roflags & PR_FREEHEADER)
    566 		free(pp, M_POOL);
    567 }
    568 
    569 
    570 /*
    571  * Grab an item from the pool; must be called at appropriate spl level
    572  */
    573 void *
    574 _pool_get(pp, flags, file, line)
    575 	struct pool *pp;
    576 	int flags;
    577 	const char *file;
    578 	long line;
    579 {
    580 	void *v;
    581 	struct pool_item *pi;
    582 	struct pool_item_header *ph;
    583 
    584 #ifdef DIAGNOSTIC
    585 	if (__predict_false((pp->pr_roflags & PR_STATIC) &&
    586 			    (flags & PR_MALLOCOK))) {
    587 		pr_printlog(pp, NULL, printf);
    588 		panic("pool_get: static");
    589 	}
    590 #endif
    591 
    592 	if (__predict_false(curproc == NULL && (flags & PR_WAITOK) != 0))
    593 		panic("pool_get: must have NOWAIT");
    594 
    595 	simple_lock(&pp->pr_slock);
    596 	pr_enter(pp, file, line);
    597 
    598  startover:
    599 	/*
    600 	 * Check to see if we've reached the hard limit.  If we have,
    601 	 * and we can wait, then wait until an item has been returned to
    602 	 * the pool.
    603 	 */
    604 #ifdef DIAGNOSTIC
    605 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
    606 		pr_leave(pp);
    607 		simple_unlock(&pp->pr_slock);
    608 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
    609 	}
    610 #endif
    611 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    612 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    613 			/*
    614 			 * XXX: A warning isn't logged in this case.  Should
    615 			 * it be?
    616 			 */
    617 			pp->pr_flags |= PR_WANTED;
    618 			pr_leave(pp);
    619 			simple_unlock(&pp->pr_slock);
    620 			tsleep((caddr_t)pp, PSWP, pp->pr_wchan, 0);
    621 			simple_lock(&pp->pr_slock);
    622 			pr_enter(pp, file, line);
    623 			goto startover;
    624 		}
    625 
    626 		/*
    627 		 * Log a message that the hard limit has been hit.
    628 		 */
    629 		if (pp->pr_hardlimit_warning != NULL &&
    630 		    ratecheck(&pp->pr_hardlimit_warning_last,
    631 			      &pp->pr_hardlimit_ratecap))
    632 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    633 
    634 		if (flags & PR_URGENT)
    635 			panic("pool_get: urgent");
    636 
    637 		pp->pr_nfail++;
    638 
    639 		pr_leave(pp);
    640 		simple_unlock(&pp->pr_slock);
    641 		return (NULL);
    642 	}
    643 
    644 	/*
    645 	 * The convention we use is that if `curpage' is not NULL, then
    646 	 * it points at a non-empty bucket. In particular, `curpage'
    647 	 * never points at a page header which has PR_PHINPAGE set and
    648 	 * has no items in its bucket.
    649 	 */
    650 	if ((ph = pp->pr_curpage) == NULL) {
    651 		void *v;
    652 
    653 #ifdef DIAGNOSTIC
    654 		if (pp->pr_nitems != 0) {
    655 			simple_unlock(&pp->pr_slock);
    656 			printf("pool_get: %s: curpage NULL, nitems %u\n",
    657 			    pp->pr_wchan, pp->pr_nitems);
    658 			panic("pool_get: nitems inconsistent\n");
    659 		}
    660 #endif
    661 
    662 		/*
    663 		 * Call the back-end page allocator for more memory.
    664 		 * Release the pool lock, as the back-end page allocator
    665 		 * may block.
    666 		 */
    667 		pr_leave(pp);
    668 		simple_unlock(&pp->pr_slock);
    669 		v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype);
    670 		simple_lock(&pp->pr_slock);
    671 		pr_enter(pp, file, line);
    672 
    673 		if (v == NULL) {
    674 			/*
    675 			 * We were unable to allocate a page, but
    676 			 * we released the lock during allocation,
    677 			 * so perhaps items were freed back to the
    678 			 * pool.  Check for this case.
    679 			 */
    680 			if (pp->pr_curpage != NULL)
    681 				goto startover;
    682 
    683 			if (flags & PR_URGENT)
    684 				panic("pool_get: urgent");
    685 
    686 			if ((flags & PR_WAITOK) == 0) {
    687 				pp->pr_nfail++;
    688 				pr_leave(pp);
    689 				simple_unlock(&pp->pr_slock);
    690 				return (NULL);
    691 			}
    692 
    693 			/*
    694 			 * Wait for items to be returned to this pool.
    695 			 *
    696 			 * XXX: we actually want to wait just until
    697 			 * the page allocator has memory again. Depending
    698 			 * on this pool's usage, we might get stuck here
    699 			 * for a long time.
    700 			 *
    701 			 * XXX: maybe we should wake up once a second and
    702 			 * try again?
    703 			 */
    704 			pp->pr_flags |= PR_WANTED;
    705 			pr_leave(pp);
    706 			simple_unlock(&pp->pr_slock);
    707 			tsleep((caddr_t)pp, PSWP, pp->pr_wchan, 0);
    708 			simple_lock(&pp->pr_slock);
    709 			pr_enter(pp, file, line);
    710 			goto startover;
    711 		}
    712 
    713 		/* We have more memory; add it to the pool */
    714 		pp->pr_npagealloc++;
    715 		pool_prime_page(pp, v);
    716 
    717 		/* Start the allocation process over. */
    718 		goto startover;
    719 	}
    720 
    721 	if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
    722 		pr_leave(pp);
    723 		simple_unlock(&pp->pr_slock);
    724 		panic("pool_get: %s: page empty", pp->pr_wchan);
    725 	}
    726 #ifdef DIAGNOSTIC
    727 	if (__predict_false(pp->pr_nitems == 0)) {
    728 		pr_leave(pp);
    729 		simple_unlock(&pp->pr_slock);
    730 		printf("pool_get: %s: items on itemlist, nitems %u\n",
    731 		    pp->pr_wchan, pp->pr_nitems);
    732 		panic("pool_get: nitems inconsistent\n");
    733 	}
    734 #endif
    735 	pr_log(pp, v, PRLOG_GET, file, line);
    736 
    737 #ifdef DIAGNOSTIC
    738 	if (__predict_false(pi->pi_magic != PI_MAGIC)) {
    739 		pr_printlog(pp, pi, printf);
    740 		panic("pool_get(%s): free list modified: magic=%x; page %p;"
    741 		       " item addr %p\n",
    742 			pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    743 	}
    744 #endif
    745 
    746 	/*
    747 	 * Remove from item list.
    748 	 */
    749 	TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
    750 	pp->pr_nitems--;
    751 	pp->pr_nout++;
    752 	if (ph->ph_nmissing == 0) {
    753 #ifdef DIAGNOSTIC
    754 		if (__predict_false(pp->pr_nidle == 0))
    755 			panic("pool_get: nidle inconsistent");
    756 #endif
    757 		pp->pr_nidle--;
    758 	}
    759 	ph->ph_nmissing++;
    760 	if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) {
    761 #ifdef DIAGNOSTIC
    762 		if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
    763 			pr_leave(pp);
    764 			simple_unlock(&pp->pr_slock);
    765 			panic("pool_get: %s: nmissing inconsistent",
    766 			    pp->pr_wchan);
    767 		}
    768 #endif
    769 		/*
    770 		 * Find a new non-empty page header, if any.
    771 		 * Start search from the page head, to increase
    772 		 * the chance for "high water" pages to be freed.
    773 		 *
    774 		 * Migrate empty pages to the end of the list.  This
    775 		 * will speed the update of curpage as pages become
    776 		 * idle.  Empty pages intermingled with idle pages
    777 		 * is no big deal.  As soon as a page becomes un-empty,
    778 		 * it will move back to the head of the list.
    779 		 */
    780 		TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    781 		TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
    782 		for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
    783 		     ph = TAILQ_NEXT(ph, ph_pagelist))
    784 			if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    785 				break;
    786 
    787 		pp->pr_curpage = ph;
    788 	}
    789 
    790 	pp->pr_nget++;
    791 
    792 	/*
    793 	 * If we have a low water mark and we are now below that low
    794 	 * water mark, add more items to the pool.
    795 	 */
    796 	if (pp->pr_nitems < pp->pr_minitems && pool_catchup(pp) != 0) {
    797 		/*
    798 		 * XXX: Should we log a warning?  Should we set up a timeout
    799 		 * to try again in a second or so?  The latter could break
    800 		 * a caller's assumptions about interrupt protection, etc.
    801 		 */
    802 	}
    803 
    804 	pr_leave(pp);
    805 	simple_unlock(&pp->pr_slock);
    806 	return (v);
    807 }
    808 
    809 /*
    810  * Return resource to the pool; must be called at appropriate spl level
    811  */
    812 void
    813 _pool_put(pp, v, file, line)
    814 	struct pool *pp;
    815 	void *v;
    816 	const char *file;
    817 	long line;
    818 {
    819 	struct pool_item *pi = v;
    820 	struct pool_item_header *ph;
    821 	caddr_t page;
    822 	int s;
    823 
    824 	page = (caddr_t)((u_long)v & pp->pr_pagemask);
    825 
    826 	simple_lock(&pp->pr_slock);
    827 	pr_enter(pp, file, line);
    828 
    829 #ifdef DIAGNOSTIC
    830 	if (__predict_false(pp->pr_nout == 0)) {
    831 		printf("pool %s: putting with none out\n",
    832 		    pp->pr_wchan);
    833 		panic("pool_put");
    834 	}
    835 #endif
    836 
    837 	pr_log(pp, v, PRLOG_PUT, file, line);
    838 
    839 	if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
    840 		pr_printlog(pp, NULL, printf);
    841 		panic("pool_put: %s: page header missing", pp->pr_wchan);
    842 	}
    843 
    844 #ifdef LOCKDEBUG
    845 	/*
    846 	 * Check if we're freeing a locked simple lock.
    847 	 */
    848 	simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
    849 #endif
    850 
    851 	/*
    852 	 * Return to item list.
    853 	 */
    854 #ifdef DIAGNOSTIC
    855 	pi->pi_magic = PI_MAGIC;
    856 #endif
    857 #ifdef DEBUG
    858 	{
    859 		int i, *ip = v;
    860 
    861 		for (i = 0; i < pp->pr_size / sizeof(int); i++) {
    862 			*ip++ = PI_MAGIC;
    863 		}
    864 	}
    865 #endif
    866 
    867 	TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    868 	ph->ph_nmissing--;
    869 	pp->pr_nput++;
    870 	pp->pr_nitems++;
    871 	pp->pr_nout--;
    872 
    873 	/* Cancel "pool empty" condition if it exists */
    874 	if (pp->pr_curpage == NULL)
    875 		pp->pr_curpage = ph;
    876 
    877 	if (pp->pr_flags & PR_WANTED) {
    878 		pp->pr_flags &= ~PR_WANTED;
    879 		if (ph->ph_nmissing == 0)
    880 			pp->pr_nidle++;
    881 		pr_leave(pp);
    882 		simple_unlock(&pp->pr_slock);
    883 		wakeup((caddr_t)pp);
    884 		return;
    885 	}
    886 
    887 	/*
    888 	 * If this page is now complete, do one of two things:
    889 	 *
    890 	 *	(1) If we have more pages than the page high water
    891 	 *	    mark, free the page back to the system.
    892 	 *
    893 	 *	(2) Move it to the end of the page list, so that
    894 	 *	    we minimize our chances of fragmenting the
    895 	 *	    pool.  Idle pages migrate to the end (along with
    896 	 *	    completely empty pages, so that we find un-empty
    897 	 *	    pages more quickly when we update curpage) of the
    898 	 *	    list so they can be more easily swept up by
    899 	 *	    the pagedaemon when pages are scarce.
    900 	 */
    901 	if (ph->ph_nmissing == 0) {
    902 		pp->pr_nidle++;
    903 		if (pp->pr_npages > pp->pr_maxpages) {
    904 			pr_rmpage(pp, ph);
    905 		} else {
    906 			TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    907 			TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
    908 
    909 			/*
    910 			 * Update the timestamp on the page.  A page must
    911 			 * be idle for some period of time before it can
    912 			 * be reclaimed by the pagedaemon.  This minimizes
    913 			 * ping-pong'ing for memory.
    914 			 */
    915 			s = splclock();
    916 			ph->ph_time = mono_time;
    917 			splx(s);
    918 
    919 			/*
    920 			 * Update the current page pointer.  Just look for
    921 			 * the first page with any free items.
    922 			 *
    923 			 * XXX: Maybe we want an option to look for the
    924 			 * page with the fewest available items, to minimize
    925 			 * fragmentation?
    926 			 */
    927 			for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
    928 			     ph = TAILQ_NEXT(ph, ph_pagelist))
    929 				if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    930 					break;
    931 
    932 			pp->pr_curpage = ph;
    933 		}
    934 	}
    935 	/*
    936 	 * If the page has just become un-empty, move it to the head of
    937 	 * the list, and make it the current page.  The next allocation
    938 	 * will get the item from this page, instead of further fragmenting
    939 	 * the pool.
    940 	 */
    941 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
    942 		TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    943 		TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
    944 		pp->pr_curpage = ph;
    945 	}
    946 
    947 	pr_leave(pp);
    948 	simple_unlock(&pp->pr_slock);
    949 
    950 }
    951 
    952 /*
    953  * Add N items to the pool.
    954  */
    955 int
    956 pool_prime(pp, n, storage)
    957 	struct pool *pp;
    958 	int n;
    959 	caddr_t storage;
    960 {
    961 	caddr_t cp;
    962 	int newnitems, newpages;
    963 
    964 #ifdef DIAGNOSTIC
    965 	if (__predict_false(storage && !(pp->pr_roflags & PR_STATIC)))
    966 		panic("pool_prime: static");
    967 	/* !storage && static caught below */
    968 #endif
    969 
    970 	simple_lock(&pp->pr_slock);
    971 
    972 	newnitems = pp->pr_minitems + n;
    973 	newpages =
    974 		roundup(newnitems, pp->pr_itemsperpage) / pp->pr_itemsperpage
    975 		- pp->pr_minpages;
    976 
    977 	while (newpages-- > 0) {
    978 		if (pp->pr_roflags & PR_STATIC) {
    979 			cp = storage;
    980 			storage += pp->pr_pagesz;
    981 		} else {
    982 			simple_unlock(&pp->pr_slock);
    983 			cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
    984 			simple_lock(&pp->pr_slock);
    985 		}
    986 
    987 		if (cp == NULL) {
    988 			simple_unlock(&pp->pr_slock);
    989 			return (ENOMEM);
    990 		}
    991 
    992 		pp->pr_npagealloc++;
    993 		pool_prime_page(pp, cp);
    994 		pp->pr_minpages++;
    995 	}
    996 
    997 	pp->pr_minitems = newnitems;
    998 
    999 	if (pp->pr_minpages >= pp->pr_maxpages)
   1000 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1001 
   1002 	simple_unlock(&pp->pr_slock);
   1003 	return (0);
   1004 }
   1005 
   1006 /*
   1007  * Add a page worth of items to the pool.
   1008  *
   1009  * Note, we must be called with the pool descriptor LOCKED.
   1010  */
   1011 static void
   1012 pool_prime_page(pp, storage)
   1013 	struct pool *pp;
   1014 	caddr_t storage;
   1015 {
   1016 	struct pool_item *pi;
   1017 	struct pool_item_header *ph;
   1018 	caddr_t cp = storage;
   1019 	unsigned int align = pp->pr_align;
   1020 	unsigned int ioff = pp->pr_itemoffset;
   1021 	int s, n;
   1022 
   1023 	if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   1024 		ph = (struct pool_item_header *)(cp + pp->pr_phoffset);
   1025 	} else {
   1026 		s = splhigh();
   1027 		ph = pool_get(&phpool, PR_URGENT);
   1028 		splx(s);
   1029 		LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)],
   1030 				 ph, ph_hashlist);
   1031 	}
   1032 
   1033 	/*
   1034 	 * Insert page header.
   1035 	 */
   1036 	TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
   1037 	TAILQ_INIT(&ph->ph_itemlist);
   1038 	ph->ph_page = storage;
   1039 	ph->ph_nmissing = 0;
   1040 	memset(&ph->ph_time, 0, sizeof(ph->ph_time));
   1041 
   1042 	pp->pr_nidle++;
   1043 
   1044 	/*
   1045 	 * Color this page.
   1046 	 */
   1047 	cp = (caddr_t)(cp + pp->pr_curcolor);
   1048 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1049 		pp->pr_curcolor = 0;
   1050 
   1051 	/*
   1052 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1053 	 */
   1054 	if (ioff != 0)
   1055 		cp = (caddr_t)(cp + (align - ioff));
   1056 
   1057 	/*
   1058 	 * Insert remaining chunks on the bucket list.
   1059 	 */
   1060 	n = pp->pr_itemsperpage;
   1061 	pp->pr_nitems += n;
   1062 
   1063 	while (n--) {
   1064 		pi = (struct pool_item *)cp;
   1065 
   1066 		/* Insert on page list */
   1067 		TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
   1068 #ifdef DIAGNOSTIC
   1069 		pi->pi_magic = PI_MAGIC;
   1070 #endif
   1071 		cp = (caddr_t)(cp + pp->pr_size);
   1072 	}
   1073 
   1074 	/*
   1075 	 * If the pool was depleted, point at the new page.
   1076 	 */
   1077 	if (pp->pr_curpage == NULL)
   1078 		pp->pr_curpage = ph;
   1079 
   1080 	if (++pp->pr_npages > pp->pr_hiwat)
   1081 		pp->pr_hiwat = pp->pr_npages;
   1082 }
   1083 
   1084 /*
   1085  * Like pool_prime(), except this is used by pool_get() when nitems
   1086  * drops below the low water mark.  This is used to catch up nitmes
   1087  * with the low water mark.
   1088  *
   1089  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1090  *
   1091  * Note 2, this doesn't work with static pools.
   1092  *
   1093  * Note 3, we must be called with the pool already locked, and we return
   1094  * with it locked.
   1095  */
   1096 static int
   1097 pool_catchup(pp)
   1098 	struct pool *pp;
   1099 {
   1100 	caddr_t cp;
   1101 	int error = 0;
   1102 
   1103 	if (pp->pr_roflags & PR_STATIC) {
   1104 		/*
   1105 		 * We dropped below the low water mark, and this is not a
   1106 		 * good thing.  Log a warning.
   1107 		 *
   1108 		 * XXX: rate-limit this?
   1109 		 */
   1110 		printf("WARNING: static pool `%s' dropped below low water "
   1111 		    "mark\n", pp->pr_wchan);
   1112 		return (0);
   1113 	}
   1114 
   1115 	while (pp->pr_nitems < pp->pr_minitems) {
   1116 		/*
   1117 		 * Call the page back-end allocator for more memory.
   1118 		 *
   1119 		 * XXX: We never wait, so should we bother unlocking
   1120 		 * the pool descriptor?
   1121 		 */
   1122 		simple_unlock(&pp->pr_slock);
   1123 		cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
   1124 		simple_lock(&pp->pr_slock);
   1125 		if (__predict_false(cp == NULL)) {
   1126 			error = ENOMEM;
   1127 			break;
   1128 		}
   1129 		pp->pr_npagealloc++;
   1130 		pool_prime_page(pp, cp);
   1131 	}
   1132 
   1133 	return (error);
   1134 }
   1135 
   1136 void
   1137 pool_setlowat(pp, n)
   1138 	pool_handle_t	pp;
   1139 	int n;
   1140 {
   1141 	int error;
   1142 
   1143 	simple_lock(&pp->pr_slock);
   1144 
   1145 	pp->pr_minitems = n;
   1146 	pp->pr_minpages = (n == 0)
   1147 		? 0
   1148 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1149 
   1150 	/* Make sure we're caught up with the newly-set low water mark. */
   1151 	if ((error = pool_catchup(pp)) != 0) {
   1152 		/*
   1153 		 * XXX: Should we log a warning?  Should we set up a timeout
   1154 		 * to try again in a second or so?  The latter could break
   1155 		 * a caller's assumptions about interrupt protection, etc.
   1156 		 */
   1157 	}
   1158 
   1159 	simple_unlock(&pp->pr_slock);
   1160 }
   1161 
   1162 void
   1163 pool_sethiwat(pp, n)
   1164 	pool_handle_t	pp;
   1165 	int n;
   1166 {
   1167 
   1168 	simple_lock(&pp->pr_slock);
   1169 
   1170 	pp->pr_maxpages = (n == 0)
   1171 		? 0
   1172 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1173 
   1174 	simple_unlock(&pp->pr_slock);
   1175 }
   1176 
   1177 void
   1178 pool_sethardlimit(pp, n, warnmess, ratecap)
   1179 	pool_handle_t pp;
   1180 	int n;
   1181 	const char *warnmess;
   1182 	int ratecap;
   1183 {
   1184 
   1185 	simple_lock(&pp->pr_slock);
   1186 
   1187 	pp->pr_hardlimit = n;
   1188 	pp->pr_hardlimit_warning = warnmess;
   1189 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1190 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1191 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1192 
   1193 	/*
   1194 	 * In-line version of pool_sethiwat(), because we don't want to
   1195 	 * release the lock.
   1196 	 */
   1197 	pp->pr_maxpages = (n == 0)
   1198 		? 0
   1199 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1200 
   1201 	simple_unlock(&pp->pr_slock);
   1202 }
   1203 
   1204 /*
   1205  * Default page allocator.
   1206  */
   1207 static void *
   1208 pool_page_alloc(sz, flags, mtype)
   1209 	unsigned long sz;
   1210 	int flags;
   1211 	int mtype;
   1212 {
   1213 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   1214 
   1215 	return ((void *)uvm_km_alloc_poolpage(waitok));
   1216 }
   1217 
   1218 static void
   1219 pool_page_free(v, sz, mtype)
   1220 	void *v;
   1221 	unsigned long sz;
   1222 	int mtype;
   1223 {
   1224 
   1225 	uvm_km_free_poolpage((vaddr_t)v);
   1226 }
   1227 
   1228 /*
   1229  * Alternate pool page allocator for pools that know they will
   1230  * never be accessed in interrupt context.
   1231  */
   1232 void *
   1233 pool_page_alloc_nointr(sz, flags, mtype)
   1234 	unsigned long sz;
   1235 	int flags;
   1236 	int mtype;
   1237 {
   1238 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   1239 
   1240 	return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object,
   1241 	    waitok));
   1242 }
   1243 
   1244 void
   1245 pool_page_free_nointr(v, sz, mtype)
   1246 	void *v;
   1247 	unsigned long sz;
   1248 	int mtype;
   1249 {
   1250 
   1251 	uvm_km_free_poolpage1(kernel_map, (vaddr_t)v);
   1252 }
   1253 
   1254 
   1255 /*
   1256  * Release all complete pages that have not been used recently.
   1257  */
   1258 void
   1259 _pool_reclaim(pp, file, line)
   1260 	pool_handle_t pp;
   1261 	const char *file;
   1262 	long line;
   1263 {
   1264 	struct pool_item_header *ph, *phnext;
   1265 	struct timeval curtime;
   1266 	int s;
   1267 
   1268 	if (pp->pr_roflags & PR_STATIC)
   1269 		return;
   1270 
   1271 	if (simple_lock_try(&pp->pr_slock) == 0)
   1272 		return;
   1273 	pr_enter(pp, file, line);
   1274 
   1275 	s = splclock();
   1276 	curtime = mono_time;
   1277 	splx(s);
   1278 
   1279 	for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) {
   1280 		phnext = TAILQ_NEXT(ph, ph_pagelist);
   1281 
   1282 		/* Check our minimum page claim */
   1283 		if (pp->pr_npages <= pp->pr_minpages)
   1284 			break;
   1285 
   1286 		if (ph->ph_nmissing == 0) {
   1287 			struct timeval diff;
   1288 			timersub(&curtime, &ph->ph_time, &diff);
   1289 			if (diff.tv_sec < pool_inactive_time)
   1290 				continue;
   1291 
   1292 			/*
   1293 			 * If freeing this page would put us below
   1294 			 * the low water mark, stop now.
   1295 			 */
   1296 			if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1297 			    pp->pr_minitems)
   1298 				break;
   1299 
   1300 			pr_rmpage(pp, ph);
   1301 		}
   1302 	}
   1303 
   1304 	pr_leave(pp);
   1305 	simple_unlock(&pp->pr_slock);
   1306 }
   1307 
   1308 
   1309 /*
   1310  * Drain pools, one at a time.
   1311  *
   1312  * Note, we must never be called from an interrupt context.
   1313  */
   1314 void
   1315 pool_drain(arg)
   1316 	void *arg;
   1317 {
   1318 	struct pool *pp;
   1319 	int s;
   1320 
   1321 	s = splimp();
   1322 	simple_lock(&pool_head_slock);
   1323 
   1324 	if (drainpp == NULL && (drainpp = TAILQ_FIRST(&pool_head)) == NULL)
   1325 		goto out;
   1326 
   1327 	pp = drainpp;
   1328 	drainpp = TAILQ_NEXT(pp, pr_poollist);
   1329 
   1330 	pool_reclaim(pp);
   1331 
   1332  out:
   1333 	simple_unlock(&pool_head_slock);
   1334 	splx(s);
   1335 }
   1336 
   1337 
   1338 /*
   1339  * Diagnostic helpers.
   1340  */
   1341 void
   1342 pool_print(pp, modif)
   1343 	struct pool *pp;
   1344 	const char *modif;
   1345 {
   1346 	int s;
   1347 
   1348 	s = splimp();
   1349 	if (simple_lock_try(&pp->pr_slock) == 0) {
   1350 		printf("pool %s is locked; try again later\n",
   1351 		    pp->pr_wchan);
   1352 		splx(s);
   1353 		return;
   1354 	}
   1355 	pool_print1(pp, modif, printf);
   1356 	simple_unlock(&pp->pr_slock);
   1357 	splx(s);
   1358 }
   1359 
   1360 void
   1361 pool_printit(pp, modif, pr)
   1362 	struct pool *pp;
   1363 	const char *modif;
   1364 	void (*pr) __P((const char *, ...));
   1365 {
   1366 	int didlock = 0;
   1367 
   1368 	if (pp == NULL) {
   1369 		(*pr)("Must specify a pool to print.\n");
   1370 		return;
   1371 	}
   1372 
   1373 	/*
   1374 	 * Called from DDB; interrupts should be blocked, and all
   1375 	 * other processors should be paused.  We can skip locking
   1376 	 * the pool in this case.
   1377 	 *
   1378 	 * We do a simple_lock_try() just to print the lock
   1379 	 * status, however.
   1380 	 */
   1381 
   1382 	if (simple_lock_try(&pp->pr_slock) == 0)
   1383 		(*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
   1384 	else
   1385 		didlock = 1;
   1386 
   1387 	pool_print1(pp, modif, pr);
   1388 
   1389 	if (didlock)
   1390 		simple_unlock(&pp->pr_slock);
   1391 }
   1392 
   1393 static void
   1394 pool_print1(pp, modif, pr)
   1395 	struct pool *pp;
   1396 	const char *modif;
   1397 	void (*pr) __P((const char *, ...));
   1398 {
   1399 	struct pool_item_header *ph;
   1400 #ifdef DIAGNOSTIC
   1401 	struct pool_item *pi;
   1402 #endif
   1403 	int print_log = 0, print_pagelist = 0;
   1404 	char c;
   1405 
   1406 	while ((c = *modif++) != '\0') {
   1407 		if (c == 'l')
   1408 			print_log = 1;
   1409 		if (c == 'p')
   1410 			print_pagelist = 1;
   1411 		modif++;
   1412 	}
   1413 
   1414 	(*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1415 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1416 	    pp->pr_roflags);
   1417 	(*pr)("\tpagesz %u, mtype %d\n", pp->pr_pagesz, pp->pr_mtype);
   1418 	(*pr)("\talloc %p, release %p\n", pp->pr_alloc, pp->pr_free);
   1419 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1420 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1421 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1422 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1423 
   1424 	(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
   1425 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1426 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1427 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1428 
   1429 	if (print_pagelist == 0)
   1430 		goto skip_pagelist;
   1431 
   1432 	if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
   1433 		(*pr)("\n\tpage list:\n");
   1434 	for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) {
   1435 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
   1436 		    ph->ph_page, ph->ph_nmissing,
   1437 		    (u_long)ph->ph_time.tv_sec,
   1438 		    (u_long)ph->ph_time.tv_usec);
   1439 #ifdef DIAGNOSTIC
   1440 		for (pi = TAILQ_FIRST(&ph->ph_itemlist); pi != NULL;
   1441 		     pi = TAILQ_NEXT(pi, pi_list)) {
   1442 			if (pi->pi_magic != PI_MAGIC) {
   1443 				(*pr)("\t\t\titem %p, magic 0x%x\n",
   1444 				    pi, pi->pi_magic);
   1445 			}
   1446 		}
   1447 #endif
   1448 	}
   1449 	if (pp->pr_curpage == NULL)
   1450 		(*pr)("\tno current page\n");
   1451 	else
   1452 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1453 
   1454  skip_pagelist:
   1455 
   1456 	if (print_log == 0)
   1457 		goto skip_log;
   1458 
   1459 	(*pr)("\n");
   1460 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1461 		(*pr)("\tno log\n");
   1462 	else
   1463 		pr_printlog(pp, NULL, pr);
   1464 
   1465  skip_log:
   1466 
   1467 	pr_enter_check(pp, pr);
   1468 }
   1469 
   1470 int
   1471 pool_chk(pp, label)
   1472 	struct pool *pp;
   1473 	char *label;
   1474 {
   1475 	struct pool_item_header *ph;
   1476 	int r = 0;
   1477 
   1478 	simple_lock(&pp->pr_slock);
   1479 
   1480 	for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
   1481 	     ph = TAILQ_NEXT(ph, ph_pagelist)) {
   1482 
   1483 		struct pool_item *pi;
   1484 		int n;
   1485 		caddr_t page;
   1486 
   1487 		page = (caddr_t)((u_long)ph & pp->pr_pagemask);
   1488 		if (page != ph->ph_page &&
   1489 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1490 			if (label != NULL)
   1491 				printf("%s: ", label);
   1492 			printf("pool(%p:%s): page inconsistency: page %p;"
   1493 			       " at page head addr %p (p %p)\n", pp,
   1494 				pp->pr_wchan, ph->ph_page,
   1495 				ph, page);
   1496 			r++;
   1497 			goto out;
   1498 		}
   1499 
   1500 		for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
   1501 		     pi != NULL;
   1502 		     pi = TAILQ_NEXT(pi,pi_list), n++) {
   1503 
   1504 #ifdef DIAGNOSTIC
   1505 			if (pi->pi_magic != PI_MAGIC) {
   1506 				if (label != NULL)
   1507 					printf("%s: ", label);
   1508 				printf("pool(%s): free list modified: magic=%x;"
   1509 				       " page %p; item ordinal %d;"
   1510 				       " addr %p (p %p)\n",
   1511 					pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1512 					n, pi, page);
   1513 				panic("pool");
   1514 			}
   1515 #endif
   1516 			page = (caddr_t)((u_long)pi & pp->pr_pagemask);
   1517 			if (page == ph->ph_page)
   1518 				continue;
   1519 
   1520 			if (label != NULL)
   1521 				printf("%s: ", label);
   1522 			printf("pool(%p:%s): page inconsistency: page %p;"
   1523 			       " item ordinal %d; addr %p (p %p)\n", pp,
   1524 				pp->pr_wchan, ph->ph_page,
   1525 				n, pi, page);
   1526 			r++;
   1527 			goto out;
   1528 		}
   1529 	}
   1530 out:
   1531 	simple_unlock(&pp->pr_slock);
   1532 	return (r);
   1533 }
   1534