subr_pool.c revision 1.34.2.1 1 /* $NetBSD: subr_pool.c,v 1.34.2.1 2000/06/22 17:09:16 minoura Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include "opt_pool.h"
41 #include "opt_poollog.h"
42 #include "opt_lockdebug.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/proc.h>
47 #include <sys/errno.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/lock.h>
51 #include <sys/pool.h>
52 #include <sys/syslog.h>
53
54 #include <vm/vm.h>
55 #include <vm/vm_kern.h>
56
57 #include <uvm/uvm.h>
58
59 /*
60 * Pool resource management utility.
61 *
62 * Memory is allocated in pages which are split into pieces according
63 * to the pool item size. Each page is kept on a list headed by `pr_pagelist'
64 * in the pool structure and the individual pool items are on a linked list
65 * headed by `ph_itemlist' in each page header. The memory for building
66 * the page list is either taken from the allocated pages themselves (for
67 * small pool items) or taken from an internal pool of page headers (`phpool').
68 */
69
70 /* List of all pools */
71 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
72
73 /* Private pool for page header structures */
74 static struct pool phpool;
75
76 /* # of seconds to retain page after last use */
77 int pool_inactive_time = 10;
78
79 /* Next candidate for drainage (see pool_drain()) */
80 static struct pool *drainpp;
81
82 /* This spin lock protects both pool_head and drainpp. */
83 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
84
85 struct pool_item_header {
86 /* Page headers */
87 TAILQ_ENTRY(pool_item_header)
88 ph_pagelist; /* pool page list */
89 TAILQ_HEAD(,pool_item) ph_itemlist; /* chunk list for this page */
90 LIST_ENTRY(pool_item_header)
91 ph_hashlist; /* Off-page page headers */
92 int ph_nmissing; /* # of chunks in use */
93 caddr_t ph_page; /* this page's address */
94 struct timeval ph_time; /* last referenced */
95 };
96
97 struct pool_item {
98 #ifdef DIAGNOSTIC
99 int pi_magic;
100 #endif
101 #define PI_MAGIC 0xdeadbeef
102 /* Other entries use only this list entry */
103 TAILQ_ENTRY(pool_item) pi_list;
104 };
105
106
107 #define PR_HASH_INDEX(pp,addr) \
108 (((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1))
109
110
111
112 static struct pool_item_header
113 *pr_find_pagehead __P((struct pool *, caddr_t));
114 static void pr_rmpage __P((struct pool *, struct pool_item_header *));
115 static int pool_catchup __P((struct pool *));
116 static void pool_prime_page __P((struct pool *, caddr_t));
117 static void *pool_page_alloc __P((unsigned long, int, int));
118 static void pool_page_free __P((void *, unsigned long, int));
119
120 static void pool_print1 __P((struct pool *, const char *,
121 void (*)(const char *, ...)));
122
123 /*
124 * Pool log entry. An array of these is allocated in pool_create().
125 */
126 struct pool_log {
127 const char *pl_file;
128 long pl_line;
129 int pl_action;
130 #define PRLOG_GET 1
131 #define PRLOG_PUT 2
132 void *pl_addr;
133 };
134
135 /* Number of entries in pool log buffers */
136 #ifndef POOL_LOGSIZE
137 #define POOL_LOGSIZE 10
138 #endif
139
140 int pool_logsize = POOL_LOGSIZE;
141
142 #ifdef DIAGNOSTIC
143 static void pr_log __P((struct pool *, void *, int, const char *, long));
144 static void pr_printlog __P((struct pool *, struct pool_item *,
145 void (*)(const char *, ...)));
146 static void pr_enter __P((struct pool *, const char *, long));
147 static void pr_leave __P((struct pool *));
148 static void pr_enter_check __P((struct pool *,
149 void (*)(const char *, ...)));
150
151 static __inline__ void
152 pr_log(pp, v, action, file, line)
153 struct pool *pp;
154 void *v;
155 int action;
156 const char *file;
157 long line;
158 {
159 int n = pp->pr_curlogentry;
160 struct pool_log *pl;
161
162 if ((pp->pr_roflags & PR_LOGGING) == 0)
163 return;
164
165 /*
166 * Fill in the current entry. Wrap around and overwrite
167 * the oldest entry if necessary.
168 */
169 pl = &pp->pr_log[n];
170 pl->pl_file = file;
171 pl->pl_line = line;
172 pl->pl_action = action;
173 pl->pl_addr = v;
174 if (++n >= pp->pr_logsize)
175 n = 0;
176 pp->pr_curlogentry = n;
177 }
178
179 static void
180 pr_printlog(pp, pi, pr)
181 struct pool *pp;
182 struct pool_item *pi;
183 void (*pr) __P((const char *, ...));
184 {
185 int i = pp->pr_logsize;
186 int n = pp->pr_curlogentry;
187
188 if ((pp->pr_roflags & PR_LOGGING) == 0)
189 return;
190
191 /*
192 * Print all entries in this pool's log.
193 */
194 while (i-- > 0) {
195 struct pool_log *pl = &pp->pr_log[n];
196 if (pl->pl_action != 0) {
197 if (pi == NULL || pi == pl->pl_addr) {
198 (*pr)("\tlog entry %d:\n", i);
199 (*pr)("\t\taction = %s, addr = %p\n",
200 pl->pl_action == PRLOG_GET ? "get" : "put",
201 pl->pl_addr);
202 (*pr)("\t\tfile: %s at line %lu\n",
203 pl->pl_file, pl->pl_line);
204 }
205 }
206 if (++n >= pp->pr_logsize)
207 n = 0;
208 }
209 }
210
211 static __inline__ void
212 pr_enter(pp, file, line)
213 struct pool *pp;
214 const char *file;
215 long line;
216 {
217
218 if (__predict_false(pp->pr_entered_file != NULL)) {
219 printf("pool %s: reentrancy at file %s line %ld\n",
220 pp->pr_wchan, file, line);
221 printf(" previous entry at file %s line %ld\n",
222 pp->pr_entered_file, pp->pr_entered_line);
223 panic("pr_enter");
224 }
225
226 pp->pr_entered_file = file;
227 pp->pr_entered_line = line;
228 }
229
230 static __inline__ void
231 pr_leave(pp)
232 struct pool *pp;
233 {
234
235 if (__predict_false(pp->pr_entered_file == NULL)) {
236 printf("pool %s not entered?\n", pp->pr_wchan);
237 panic("pr_leave");
238 }
239
240 pp->pr_entered_file = NULL;
241 pp->pr_entered_line = 0;
242 }
243
244 static __inline__ void
245 pr_enter_check(pp, pr)
246 struct pool *pp;
247 void (*pr) __P((const char *, ...));
248 {
249
250 if (pp->pr_entered_file != NULL)
251 (*pr)("\n\tcurrently entered from file %s line %ld\n",
252 pp->pr_entered_file, pp->pr_entered_line);
253 }
254 #else
255 #define pr_log(pp, v, action, file, line)
256 #define pr_printlog(pp, pi, pr)
257 #define pr_enter(pp, file, line)
258 #define pr_leave(pp)
259 #define pr_enter_check(pp, pr)
260 #endif /* DIAGNOSTIC */
261
262 /*
263 * Return the pool page header based on page address.
264 */
265 static __inline__ struct pool_item_header *
266 pr_find_pagehead(pp, page)
267 struct pool *pp;
268 caddr_t page;
269 {
270 struct pool_item_header *ph;
271
272 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
273 return ((struct pool_item_header *)(page + pp->pr_phoffset));
274
275 for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]);
276 ph != NULL;
277 ph = LIST_NEXT(ph, ph_hashlist)) {
278 if (ph->ph_page == page)
279 return (ph);
280 }
281 return (NULL);
282 }
283
284 /*
285 * Remove a page from the pool.
286 */
287 static __inline__ void
288 pr_rmpage(pp, ph)
289 struct pool *pp;
290 struct pool_item_header *ph;
291 {
292
293 /*
294 * If the page was idle, decrement the idle page count.
295 */
296 if (ph->ph_nmissing == 0) {
297 #ifdef DIAGNOSTIC
298 if (pp->pr_nidle == 0)
299 panic("pr_rmpage: nidle inconsistent");
300 if (pp->pr_nitems < pp->pr_itemsperpage)
301 panic("pr_rmpage: nitems inconsistent");
302 #endif
303 pp->pr_nidle--;
304 }
305
306 pp->pr_nitems -= pp->pr_itemsperpage;
307
308 /*
309 * Unlink a page from the pool and release it.
310 */
311 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
312 (*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype);
313 pp->pr_npages--;
314 pp->pr_npagefree++;
315
316 if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
317 int s;
318 LIST_REMOVE(ph, ph_hashlist);
319 s = splhigh();
320 pool_put(&phpool, ph);
321 splx(s);
322 }
323
324 if (pp->pr_curpage == ph) {
325 /*
326 * Find a new non-empty page header, if any.
327 * Start search from the page head, to increase the
328 * chance for "high water" pages to be freed.
329 */
330 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
331 ph = TAILQ_NEXT(ph, ph_pagelist))
332 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
333 break;
334
335 pp->pr_curpage = ph;
336 }
337 }
338
339 /*
340 * Allocate and initialize a pool.
341 */
342 struct pool *
343 pool_create(size, align, ioff, nitems, wchan, pagesz, alloc, release, mtype)
344 size_t size;
345 u_int align;
346 u_int ioff;
347 int nitems;
348 const char *wchan;
349 size_t pagesz;
350 void *(*alloc) __P((unsigned long, int, int));
351 void (*release) __P((void *, unsigned long, int));
352 int mtype;
353 {
354 struct pool *pp;
355 int flags;
356
357 pp = (struct pool *)malloc(sizeof(*pp), M_POOL, M_NOWAIT);
358 if (pp == NULL)
359 return (NULL);
360
361 flags = PR_FREEHEADER;
362 pool_init(pp, size, align, ioff, flags, wchan, pagesz,
363 alloc, release, mtype);
364
365 if (nitems != 0) {
366 if (pool_prime(pp, nitems, NULL) != 0) {
367 pool_destroy(pp);
368 return (NULL);
369 }
370 }
371
372 return (pp);
373 }
374
375 /*
376 * Initialize the given pool resource structure.
377 *
378 * We export this routine to allow other kernel parts to declare
379 * static pools that must be initialized before malloc() is available.
380 */
381 void
382 pool_init(pp, size, align, ioff, flags, wchan, pagesz, alloc, release, mtype)
383 struct pool *pp;
384 size_t size;
385 u_int align;
386 u_int ioff;
387 int flags;
388 const char *wchan;
389 size_t pagesz;
390 void *(*alloc) __P((unsigned long, int, int));
391 void (*release) __P((void *, unsigned long, int));
392 int mtype;
393 {
394 int off, slack, i;
395
396 #ifdef POOL_DIAGNOSTIC
397 /*
398 * Always log if POOL_DIAGNOSTIC is defined.
399 */
400 if (pool_logsize != 0)
401 flags |= PR_LOGGING;
402 #endif
403
404 /*
405 * Check arguments and construct default values.
406 */
407 if (!powerof2(pagesz))
408 panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz);
409
410 if (alloc == NULL && release == NULL) {
411 alloc = pool_page_alloc;
412 release = pool_page_free;
413 pagesz = PAGE_SIZE; /* Rounds to PAGE_SIZE anyhow. */
414 } else if ((alloc != NULL && release != NULL) == 0) {
415 /* If you specifiy one, must specify both. */
416 panic("pool_init: must specify alloc and release together");
417 }
418
419 if (pagesz == 0)
420 pagesz = PAGE_SIZE;
421
422 if (align == 0)
423 align = ALIGN(1);
424
425 if (size < sizeof(struct pool_item))
426 size = sizeof(struct pool_item);
427
428 size = ALIGN(size);
429 if (size >= pagesz)
430 panic("pool_init: pool item size (%lu) too large",
431 (u_long)size);
432
433 /*
434 * Initialize the pool structure.
435 */
436 TAILQ_INIT(&pp->pr_pagelist);
437 pp->pr_curpage = NULL;
438 pp->pr_npages = 0;
439 pp->pr_minitems = 0;
440 pp->pr_minpages = 0;
441 pp->pr_maxpages = UINT_MAX;
442 pp->pr_roflags = flags;
443 pp->pr_flags = 0;
444 pp->pr_size = size;
445 pp->pr_align = align;
446 pp->pr_wchan = wchan;
447 pp->pr_mtype = mtype;
448 pp->pr_alloc = alloc;
449 pp->pr_free = release;
450 pp->pr_pagesz = pagesz;
451 pp->pr_pagemask = ~(pagesz - 1);
452 pp->pr_pageshift = ffs(pagesz) - 1;
453 pp->pr_nitems = 0;
454 pp->pr_nout = 0;
455 pp->pr_hardlimit = UINT_MAX;
456 pp->pr_hardlimit_warning = NULL;
457 pp->pr_hardlimit_ratecap.tv_sec = 0;
458 pp->pr_hardlimit_ratecap.tv_usec = 0;
459 pp->pr_hardlimit_warning_last.tv_sec = 0;
460 pp->pr_hardlimit_warning_last.tv_usec = 0;
461
462 /*
463 * Decide whether to put the page header off page to avoid
464 * wasting too large a part of the page. Off-page page headers
465 * go on a hash table, so we can match a returned item
466 * with its header based on the page address.
467 * We use 1/16 of the page size as the threshold (XXX: tune)
468 */
469 if (pp->pr_size < pagesz/16) {
470 /* Use the end of the page for the page header */
471 pp->pr_roflags |= PR_PHINPAGE;
472 pp->pr_phoffset = off =
473 pagesz - ALIGN(sizeof(struct pool_item_header));
474 } else {
475 /* The page header will be taken from our page header pool */
476 pp->pr_phoffset = 0;
477 off = pagesz;
478 for (i = 0; i < PR_HASHTABSIZE; i++) {
479 LIST_INIT(&pp->pr_hashtab[i]);
480 }
481 }
482
483 /*
484 * Alignment is to take place at `ioff' within the item. This means
485 * we must reserve up to `align - 1' bytes on the page to allow
486 * appropriate positioning of each item.
487 *
488 * Silently enforce `0 <= ioff < align'.
489 */
490 pp->pr_itemoffset = ioff = ioff % align;
491 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
492
493 /*
494 * Use the slack between the chunks and the page header
495 * for "cache coloring".
496 */
497 slack = off - pp->pr_itemsperpage * pp->pr_size;
498 pp->pr_maxcolor = (slack / align) * align;
499 pp->pr_curcolor = 0;
500
501 pp->pr_nget = 0;
502 pp->pr_nfail = 0;
503 pp->pr_nput = 0;
504 pp->pr_npagealloc = 0;
505 pp->pr_npagefree = 0;
506 pp->pr_hiwat = 0;
507 pp->pr_nidle = 0;
508
509 if (flags & PR_LOGGING) {
510 if (kmem_map == NULL ||
511 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
512 M_TEMP, M_NOWAIT)) == NULL)
513 pp->pr_roflags &= ~PR_LOGGING;
514 pp->pr_curlogentry = 0;
515 pp->pr_logsize = pool_logsize;
516 }
517
518 pp->pr_entered_file = NULL;
519 pp->pr_entered_line = 0;
520
521 simple_lock_init(&pp->pr_slock);
522
523 /*
524 * Initialize private page header pool if we haven't done so yet.
525 * XXX LOCKING.
526 */
527 if (phpool.pr_size == 0) {
528 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
529 0, "phpool", 0, 0, 0, 0);
530 }
531
532 /* Insert into the list of all pools. */
533 simple_lock(&pool_head_slock);
534 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
535 simple_unlock(&pool_head_slock);
536 }
537
538 /*
539 * De-commision a pool resource.
540 */
541 void
542 pool_destroy(pp)
543 struct pool *pp;
544 {
545 struct pool_item_header *ph;
546
547 #ifdef DIAGNOSTIC
548 if (pp->pr_nout != 0) {
549 pr_printlog(pp, NULL, printf);
550 panic("pool_destroy: pool busy: still out: %u\n",
551 pp->pr_nout);
552 }
553 #endif
554
555 /* Remove all pages */
556 if ((pp->pr_roflags & PR_STATIC) == 0)
557 while ((ph = pp->pr_pagelist.tqh_first) != NULL)
558 pr_rmpage(pp, ph);
559
560 /* Remove from global pool list */
561 simple_lock(&pool_head_slock);
562 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
563 /* XXX Only clear this if we were drainpp? */
564 drainpp = NULL;
565 simple_unlock(&pool_head_slock);
566
567 if ((pp->pr_roflags & PR_LOGGING) != 0)
568 free(pp->pr_log, M_TEMP);
569
570 if (pp->pr_roflags & PR_FREEHEADER)
571 free(pp, M_POOL);
572 }
573
574
575 /*
576 * Grab an item from the pool; must be called at appropriate spl level
577 */
578 void *
579 _pool_get(pp, flags, file, line)
580 struct pool *pp;
581 int flags;
582 const char *file;
583 long line;
584 {
585 void *v;
586 struct pool_item *pi;
587 struct pool_item_header *ph;
588
589 #ifdef DIAGNOSTIC
590 if (__predict_false((pp->pr_roflags & PR_STATIC) &&
591 (flags & PR_MALLOCOK))) {
592 pr_printlog(pp, NULL, printf);
593 panic("pool_get: static");
594 }
595 #endif
596
597 if (__predict_false(curproc == NULL && doing_shutdown == 0 &&
598 (flags & PR_WAITOK) != 0))
599 panic("pool_get: must have NOWAIT");
600
601 simple_lock(&pp->pr_slock);
602 pr_enter(pp, file, line);
603
604 startover:
605 /*
606 * Check to see if we've reached the hard limit. If we have,
607 * and we can wait, then wait until an item has been returned to
608 * the pool.
609 */
610 #ifdef DIAGNOSTIC
611 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
612 pr_leave(pp);
613 simple_unlock(&pp->pr_slock);
614 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
615 }
616 #endif
617 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
618 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
619 /*
620 * XXX: A warning isn't logged in this case. Should
621 * it be?
622 */
623 pp->pr_flags |= PR_WANTED;
624 pr_leave(pp);
625 simple_unlock(&pp->pr_slock);
626 tsleep((caddr_t)pp, PSWP, pp->pr_wchan, 0);
627 simple_lock(&pp->pr_slock);
628 pr_enter(pp, file, line);
629 goto startover;
630 }
631
632 /*
633 * Log a message that the hard limit has been hit.
634 */
635 if (pp->pr_hardlimit_warning != NULL &&
636 ratecheck(&pp->pr_hardlimit_warning_last,
637 &pp->pr_hardlimit_ratecap))
638 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
639
640 if (flags & PR_URGENT)
641 panic("pool_get: urgent");
642
643 pp->pr_nfail++;
644
645 pr_leave(pp);
646 simple_unlock(&pp->pr_slock);
647 return (NULL);
648 }
649
650 /*
651 * The convention we use is that if `curpage' is not NULL, then
652 * it points at a non-empty bucket. In particular, `curpage'
653 * never points at a page header which has PR_PHINPAGE set and
654 * has no items in its bucket.
655 */
656 if ((ph = pp->pr_curpage) == NULL) {
657 void *v;
658
659 #ifdef DIAGNOSTIC
660 if (pp->pr_nitems != 0) {
661 simple_unlock(&pp->pr_slock);
662 printf("pool_get: %s: curpage NULL, nitems %u\n",
663 pp->pr_wchan, pp->pr_nitems);
664 panic("pool_get: nitems inconsistent\n");
665 }
666 #endif
667
668 /*
669 * Call the back-end page allocator for more memory.
670 * Release the pool lock, as the back-end page allocator
671 * may block.
672 */
673 pr_leave(pp);
674 simple_unlock(&pp->pr_slock);
675 v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype);
676 simple_lock(&pp->pr_slock);
677 pr_enter(pp, file, line);
678
679 if (v == NULL) {
680 /*
681 * We were unable to allocate a page, but
682 * we released the lock during allocation,
683 * so perhaps items were freed back to the
684 * pool. Check for this case.
685 */
686 if (pp->pr_curpage != NULL)
687 goto startover;
688
689 if (flags & PR_URGENT)
690 panic("pool_get: urgent");
691
692 if ((flags & PR_WAITOK) == 0) {
693 pp->pr_nfail++;
694 pr_leave(pp);
695 simple_unlock(&pp->pr_slock);
696 return (NULL);
697 }
698
699 /*
700 * Wait for items to be returned to this pool.
701 *
702 * XXX: we actually want to wait just until
703 * the page allocator has memory again. Depending
704 * on this pool's usage, we might get stuck here
705 * for a long time.
706 *
707 * XXX: maybe we should wake up once a second and
708 * try again?
709 */
710 pp->pr_flags |= PR_WANTED;
711 pr_leave(pp);
712 simple_unlock(&pp->pr_slock);
713 tsleep((caddr_t)pp, PSWP, pp->pr_wchan, 0);
714 simple_lock(&pp->pr_slock);
715 pr_enter(pp, file, line);
716 goto startover;
717 }
718
719 /* We have more memory; add it to the pool */
720 pp->pr_npagealloc++;
721 pool_prime_page(pp, v);
722
723 /* Start the allocation process over. */
724 goto startover;
725 }
726
727 if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
728 pr_leave(pp);
729 simple_unlock(&pp->pr_slock);
730 panic("pool_get: %s: page empty", pp->pr_wchan);
731 }
732 #ifdef DIAGNOSTIC
733 if (__predict_false(pp->pr_nitems == 0)) {
734 pr_leave(pp);
735 simple_unlock(&pp->pr_slock);
736 printf("pool_get: %s: items on itemlist, nitems %u\n",
737 pp->pr_wchan, pp->pr_nitems);
738 panic("pool_get: nitems inconsistent\n");
739 }
740 #endif
741 pr_log(pp, v, PRLOG_GET, file, line);
742
743 #ifdef DIAGNOSTIC
744 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
745 pr_printlog(pp, pi, printf);
746 panic("pool_get(%s): free list modified: magic=%x; page %p;"
747 " item addr %p\n",
748 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
749 }
750 #endif
751
752 /*
753 * Remove from item list.
754 */
755 TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
756 pp->pr_nitems--;
757 pp->pr_nout++;
758 if (ph->ph_nmissing == 0) {
759 #ifdef DIAGNOSTIC
760 if (__predict_false(pp->pr_nidle == 0))
761 panic("pool_get: nidle inconsistent");
762 #endif
763 pp->pr_nidle--;
764 }
765 ph->ph_nmissing++;
766 if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) {
767 #ifdef DIAGNOSTIC
768 if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
769 pr_leave(pp);
770 simple_unlock(&pp->pr_slock);
771 panic("pool_get: %s: nmissing inconsistent",
772 pp->pr_wchan);
773 }
774 #endif
775 /*
776 * Find a new non-empty page header, if any.
777 * Start search from the page head, to increase
778 * the chance for "high water" pages to be freed.
779 *
780 * Migrate empty pages to the end of the list. This
781 * will speed the update of curpage as pages become
782 * idle. Empty pages intermingled with idle pages
783 * is no big deal. As soon as a page becomes un-empty,
784 * it will move back to the head of the list.
785 */
786 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
787 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
788 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
789 ph = TAILQ_NEXT(ph, ph_pagelist))
790 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
791 break;
792
793 pp->pr_curpage = ph;
794 }
795
796 pp->pr_nget++;
797
798 /*
799 * If we have a low water mark and we are now below that low
800 * water mark, add more items to the pool.
801 */
802 if (pp->pr_nitems < pp->pr_minitems && pool_catchup(pp) != 0) {
803 /*
804 * XXX: Should we log a warning? Should we set up a timeout
805 * to try again in a second or so? The latter could break
806 * a caller's assumptions about interrupt protection, etc.
807 */
808 }
809
810 pr_leave(pp);
811 simple_unlock(&pp->pr_slock);
812 return (v);
813 }
814
815 /*
816 * Return resource to the pool; must be called at appropriate spl level
817 */
818 void
819 _pool_put(pp, v, file, line)
820 struct pool *pp;
821 void *v;
822 const char *file;
823 long line;
824 {
825 struct pool_item *pi = v;
826 struct pool_item_header *ph;
827 caddr_t page;
828 int s;
829
830 page = (caddr_t)((u_long)v & pp->pr_pagemask);
831
832 simple_lock(&pp->pr_slock);
833 pr_enter(pp, file, line);
834
835 #ifdef DIAGNOSTIC
836 if (__predict_false(pp->pr_nout == 0)) {
837 printf("pool %s: putting with none out\n",
838 pp->pr_wchan);
839 panic("pool_put");
840 }
841 #endif
842
843 pr_log(pp, v, PRLOG_PUT, file, line);
844
845 if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
846 pr_printlog(pp, NULL, printf);
847 panic("pool_put: %s: page header missing", pp->pr_wchan);
848 }
849
850 #ifdef LOCKDEBUG
851 /*
852 * Check if we're freeing a locked simple lock.
853 */
854 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
855 #endif
856
857 /*
858 * Return to item list.
859 */
860 #ifdef DIAGNOSTIC
861 pi->pi_magic = PI_MAGIC;
862 #endif
863 #ifdef DEBUG
864 {
865 int i, *ip = v;
866
867 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
868 *ip++ = PI_MAGIC;
869 }
870 }
871 #endif
872
873 TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
874 ph->ph_nmissing--;
875 pp->pr_nput++;
876 pp->pr_nitems++;
877 pp->pr_nout--;
878
879 /* Cancel "pool empty" condition if it exists */
880 if (pp->pr_curpage == NULL)
881 pp->pr_curpage = ph;
882
883 if (pp->pr_flags & PR_WANTED) {
884 pp->pr_flags &= ~PR_WANTED;
885 if (ph->ph_nmissing == 0)
886 pp->pr_nidle++;
887 pr_leave(pp);
888 simple_unlock(&pp->pr_slock);
889 wakeup((caddr_t)pp);
890 return;
891 }
892
893 /*
894 * If this page is now complete, do one of two things:
895 *
896 * (1) If we have more pages than the page high water
897 * mark, free the page back to the system.
898 *
899 * (2) Move it to the end of the page list, so that
900 * we minimize our chances of fragmenting the
901 * pool. Idle pages migrate to the end (along with
902 * completely empty pages, so that we find un-empty
903 * pages more quickly when we update curpage) of the
904 * list so they can be more easily swept up by
905 * the pagedaemon when pages are scarce.
906 */
907 if (ph->ph_nmissing == 0) {
908 pp->pr_nidle++;
909 if (pp->pr_npages > pp->pr_maxpages) {
910 pr_rmpage(pp, ph);
911 } else {
912 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
913 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
914
915 /*
916 * Update the timestamp on the page. A page must
917 * be idle for some period of time before it can
918 * be reclaimed by the pagedaemon. This minimizes
919 * ping-pong'ing for memory.
920 */
921 s = splclock();
922 ph->ph_time = mono_time;
923 splx(s);
924
925 /*
926 * Update the current page pointer. Just look for
927 * the first page with any free items.
928 *
929 * XXX: Maybe we want an option to look for the
930 * page with the fewest available items, to minimize
931 * fragmentation?
932 */
933 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
934 ph = TAILQ_NEXT(ph, ph_pagelist))
935 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
936 break;
937
938 pp->pr_curpage = ph;
939 }
940 }
941 /*
942 * If the page has just become un-empty, move it to the head of
943 * the list, and make it the current page. The next allocation
944 * will get the item from this page, instead of further fragmenting
945 * the pool.
946 */
947 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
948 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
949 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
950 pp->pr_curpage = ph;
951 }
952
953 pr_leave(pp);
954 simple_unlock(&pp->pr_slock);
955
956 }
957
958 /*
959 * Add N items to the pool.
960 */
961 int
962 pool_prime(pp, n, storage)
963 struct pool *pp;
964 int n;
965 caddr_t storage;
966 {
967 caddr_t cp;
968 int newnitems, newpages;
969
970 #ifdef DIAGNOSTIC
971 if (__predict_false(storage && !(pp->pr_roflags & PR_STATIC)))
972 panic("pool_prime: static");
973 /* !storage && static caught below */
974 #endif
975
976 simple_lock(&pp->pr_slock);
977
978 newnitems = pp->pr_minitems + n;
979 newpages =
980 roundup(newnitems, pp->pr_itemsperpage) / pp->pr_itemsperpage
981 - pp->pr_minpages;
982
983 while (newpages-- > 0) {
984 if (pp->pr_roflags & PR_STATIC) {
985 cp = storage;
986 storage += pp->pr_pagesz;
987 } else {
988 simple_unlock(&pp->pr_slock);
989 cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
990 simple_lock(&pp->pr_slock);
991 }
992
993 if (cp == NULL) {
994 simple_unlock(&pp->pr_slock);
995 return (ENOMEM);
996 }
997
998 pp->pr_npagealloc++;
999 pool_prime_page(pp, cp);
1000 pp->pr_minpages++;
1001 }
1002
1003 pp->pr_minitems = newnitems;
1004
1005 if (pp->pr_minpages >= pp->pr_maxpages)
1006 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1007
1008 simple_unlock(&pp->pr_slock);
1009 return (0);
1010 }
1011
1012 /*
1013 * Add a page worth of items to the pool.
1014 *
1015 * Note, we must be called with the pool descriptor LOCKED.
1016 */
1017 static void
1018 pool_prime_page(pp, storage)
1019 struct pool *pp;
1020 caddr_t storage;
1021 {
1022 struct pool_item *pi;
1023 struct pool_item_header *ph;
1024 caddr_t cp = storage;
1025 unsigned int align = pp->pr_align;
1026 unsigned int ioff = pp->pr_itemoffset;
1027 int s, n;
1028
1029 if (((u_long)cp & (pp->pr_pagesz - 1)) != 0)
1030 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1031
1032 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
1033 ph = (struct pool_item_header *)(cp + pp->pr_phoffset);
1034 } else {
1035 s = splhigh();
1036 ph = pool_get(&phpool, PR_URGENT);
1037 splx(s);
1038 LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)],
1039 ph, ph_hashlist);
1040 }
1041
1042 /*
1043 * Insert page header.
1044 */
1045 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
1046 TAILQ_INIT(&ph->ph_itemlist);
1047 ph->ph_page = storage;
1048 ph->ph_nmissing = 0;
1049 memset(&ph->ph_time, 0, sizeof(ph->ph_time));
1050
1051 pp->pr_nidle++;
1052
1053 /*
1054 * Color this page.
1055 */
1056 cp = (caddr_t)(cp + pp->pr_curcolor);
1057 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1058 pp->pr_curcolor = 0;
1059
1060 /*
1061 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1062 */
1063 if (ioff != 0)
1064 cp = (caddr_t)(cp + (align - ioff));
1065
1066 /*
1067 * Insert remaining chunks on the bucket list.
1068 */
1069 n = pp->pr_itemsperpage;
1070 pp->pr_nitems += n;
1071
1072 while (n--) {
1073 pi = (struct pool_item *)cp;
1074
1075 /* Insert on page list */
1076 TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
1077 #ifdef DIAGNOSTIC
1078 pi->pi_magic = PI_MAGIC;
1079 #endif
1080 cp = (caddr_t)(cp + pp->pr_size);
1081 }
1082
1083 /*
1084 * If the pool was depleted, point at the new page.
1085 */
1086 if (pp->pr_curpage == NULL)
1087 pp->pr_curpage = ph;
1088
1089 if (++pp->pr_npages > pp->pr_hiwat)
1090 pp->pr_hiwat = pp->pr_npages;
1091 }
1092
1093 /*
1094 * Like pool_prime(), except this is used by pool_get() when nitems
1095 * drops below the low water mark. This is used to catch up nitmes
1096 * with the low water mark.
1097 *
1098 * Note 1, we never wait for memory here, we let the caller decide what to do.
1099 *
1100 * Note 2, this doesn't work with static pools.
1101 *
1102 * Note 3, we must be called with the pool already locked, and we return
1103 * with it locked.
1104 */
1105 static int
1106 pool_catchup(pp)
1107 struct pool *pp;
1108 {
1109 caddr_t cp;
1110 int error = 0;
1111
1112 if (pp->pr_roflags & PR_STATIC) {
1113 /*
1114 * We dropped below the low water mark, and this is not a
1115 * good thing. Log a warning.
1116 *
1117 * XXX: rate-limit this?
1118 */
1119 printf("WARNING: static pool `%s' dropped below low water "
1120 "mark\n", pp->pr_wchan);
1121 return (0);
1122 }
1123
1124 while (pp->pr_nitems < pp->pr_minitems) {
1125 /*
1126 * Call the page back-end allocator for more memory.
1127 *
1128 * XXX: We never wait, so should we bother unlocking
1129 * the pool descriptor?
1130 */
1131 simple_unlock(&pp->pr_slock);
1132 cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
1133 simple_lock(&pp->pr_slock);
1134 if (__predict_false(cp == NULL)) {
1135 error = ENOMEM;
1136 break;
1137 }
1138 pp->pr_npagealloc++;
1139 pool_prime_page(pp, cp);
1140 }
1141
1142 return (error);
1143 }
1144
1145 void
1146 pool_setlowat(pp, n)
1147 pool_handle_t pp;
1148 int n;
1149 {
1150 int error;
1151
1152 simple_lock(&pp->pr_slock);
1153
1154 pp->pr_minitems = n;
1155 pp->pr_minpages = (n == 0)
1156 ? 0
1157 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1158
1159 /* Make sure we're caught up with the newly-set low water mark. */
1160 if ((error = pool_catchup(pp)) != 0) {
1161 /*
1162 * XXX: Should we log a warning? Should we set up a timeout
1163 * to try again in a second or so? The latter could break
1164 * a caller's assumptions about interrupt protection, etc.
1165 */
1166 }
1167
1168 simple_unlock(&pp->pr_slock);
1169 }
1170
1171 void
1172 pool_sethiwat(pp, n)
1173 pool_handle_t pp;
1174 int n;
1175 {
1176
1177 simple_lock(&pp->pr_slock);
1178
1179 pp->pr_maxpages = (n == 0)
1180 ? 0
1181 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1182
1183 simple_unlock(&pp->pr_slock);
1184 }
1185
1186 void
1187 pool_sethardlimit(pp, n, warnmess, ratecap)
1188 pool_handle_t pp;
1189 int n;
1190 const char *warnmess;
1191 int ratecap;
1192 {
1193
1194 simple_lock(&pp->pr_slock);
1195
1196 pp->pr_hardlimit = n;
1197 pp->pr_hardlimit_warning = warnmess;
1198 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1199 pp->pr_hardlimit_warning_last.tv_sec = 0;
1200 pp->pr_hardlimit_warning_last.tv_usec = 0;
1201
1202 /*
1203 * In-line version of pool_sethiwat(), because we don't want to
1204 * release the lock.
1205 */
1206 pp->pr_maxpages = (n == 0)
1207 ? 0
1208 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1209
1210 simple_unlock(&pp->pr_slock);
1211 }
1212
1213 /*
1214 * Default page allocator.
1215 */
1216 static void *
1217 pool_page_alloc(sz, flags, mtype)
1218 unsigned long sz;
1219 int flags;
1220 int mtype;
1221 {
1222 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1223
1224 return ((void *)uvm_km_alloc_poolpage(waitok));
1225 }
1226
1227 static void
1228 pool_page_free(v, sz, mtype)
1229 void *v;
1230 unsigned long sz;
1231 int mtype;
1232 {
1233
1234 uvm_km_free_poolpage((vaddr_t)v);
1235 }
1236
1237 /*
1238 * Alternate pool page allocator for pools that know they will
1239 * never be accessed in interrupt context.
1240 */
1241 void *
1242 pool_page_alloc_nointr(sz, flags, mtype)
1243 unsigned long sz;
1244 int flags;
1245 int mtype;
1246 {
1247 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1248
1249 return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object,
1250 waitok));
1251 }
1252
1253 void
1254 pool_page_free_nointr(v, sz, mtype)
1255 void *v;
1256 unsigned long sz;
1257 int mtype;
1258 {
1259
1260 uvm_km_free_poolpage1(kernel_map, (vaddr_t)v);
1261 }
1262
1263
1264 /*
1265 * Release all complete pages that have not been used recently.
1266 */
1267 void
1268 _pool_reclaim(pp, file, line)
1269 pool_handle_t pp;
1270 const char *file;
1271 long line;
1272 {
1273 struct pool_item_header *ph, *phnext;
1274 struct timeval curtime;
1275 int s;
1276
1277 if (pp->pr_roflags & PR_STATIC)
1278 return;
1279
1280 if (simple_lock_try(&pp->pr_slock) == 0)
1281 return;
1282 pr_enter(pp, file, line);
1283
1284 s = splclock();
1285 curtime = mono_time;
1286 splx(s);
1287
1288 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) {
1289 phnext = TAILQ_NEXT(ph, ph_pagelist);
1290
1291 /* Check our minimum page claim */
1292 if (pp->pr_npages <= pp->pr_minpages)
1293 break;
1294
1295 if (ph->ph_nmissing == 0) {
1296 struct timeval diff;
1297 timersub(&curtime, &ph->ph_time, &diff);
1298 if (diff.tv_sec < pool_inactive_time)
1299 continue;
1300
1301 /*
1302 * If freeing this page would put us below
1303 * the low water mark, stop now.
1304 */
1305 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1306 pp->pr_minitems)
1307 break;
1308
1309 pr_rmpage(pp, ph);
1310 }
1311 }
1312
1313 pr_leave(pp);
1314 simple_unlock(&pp->pr_slock);
1315 }
1316
1317
1318 /*
1319 * Drain pools, one at a time.
1320 *
1321 * Note, we must never be called from an interrupt context.
1322 */
1323 void
1324 pool_drain(arg)
1325 void *arg;
1326 {
1327 struct pool *pp;
1328 int s;
1329
1330 s = splimp();
1331 simple_lock(&pool_head_slock);
1332
1333 if (drainpp == NULL && (drainpp = TAILQ_FIRST(&pool_head)) == NULL)
1334 goto out;
1335
1336 pp = drainpp;
1337 drainpp = TAILQ_NEXT(pp, pr_poollist);
1338
1339 pool_reclaim(pp);
1340
1341 out:
1342 simple_unlock(&pool_head_slock);
1343 splx(s);
1344 }
1345
1346
1347 /*
1348 * Diagnostic helpers.
1349 */
1350 void
1351 pool_print(pp, modif)
1352 struct pool *pp;
1353 const char *modif;
1354 {
1355 int s;
1356
1357 s = splimp();
1358 if (simple_lock_try(&pp->pr_slock) == 0) {
1359 printf("pool %s is locked; try again later\n",
1360 pp->pr_wchan);
1361 splx(s);
1362 return;
1363 }
1364 pool_print1(pp, modif, printf);
1365 simple_unlock(&pp->pr_slock);
1366 splx(s);
1367 }
1368
1369 void
1370 pool_printit(pp, modif, pr)
1371 struct pool *pp;
1372 const char *modif;
1373 void (*pr) __P((const char *, ...));
1374 {
1375 int didlock = 0;
1376
1377 if (pp == NULL) {
1378 (*pr)("Must specify a pool to print.\n");
1379 return;
1380 }
1381
1382 /*
1383 * Called from DDB; interrupts should be blocked, and all
1384 * other processors should be paused. We can skip locking
1385 * the pool in this case.
1386 *
1387 * We do a simple_lock_try() just to print the lock
1388 * status, however.
1389 */
1390
1391 if (simple_lock_try(&pp->pr_slock) == 0)
1392 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1393 else
1394 didlock = 1;
1395
1396 pool_print1(pp, modif, pr);
1397
1398 if (didlock)
1399 simple_unlock(&pp->pr_slock);
1400 }
1401
1402 static void
1403 pool_print1(pp, modif, pr)
1404 struct pool *pp;
1405 const char *modif;
1406 void (*pr) __P((const char *, ...));
1407 {
1408 struct pool_item_header *ph;
1409 #ifdef DIAGNOSTIC
1410 struct pool_item *pi;
1411 #endif
1412 int print_log = 0, print_pagelist = 0;
1413 char c;
1414
1415 while ((c = *modif++) != '\0') {
1416 if (c == 'l')
1417 print_log = 1;
1418 if (c == 'p')
1419 print_pagelist = 1;
1420 modif++;
1421 }
1422
1423 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1424 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1425 pp->pr_roflags);
1426 (*pr)("\tpagesz %u, mtype %d\n", pp->pr_pagesz, pp->pr_mtype);
1427 (*pr)("\talloc %p, release %p\n", pp->pr_alloc, pp->pr_free);
1428 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1429 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1430 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1431 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1432
1433 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1434 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1435 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1436 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1437
1438 if (print_pagelist == 0)
1439 goto skip_pagelist;
1440
1441 if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
1442 (*pr)("\n\tpage list:\n");
1443 for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) {
1444 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1445 ph->ph_page, ph->ph_nmissing,
1446 (u_long)ph->ph_time.tv_sec,
1447 (u_long)ph->ph_time.tv_usec);
1448 #ifdef DIAGNOSTIC
1449 for (pi = TAILQ_FIRST(&ph->ph_itemlist); pi != NULL;
1450 pi = TAILQ_NEXT(pi, pi_list)) {
1451 if (pi->pi_magic != PI_MAGIC) {
1452 (*pr)("\t\t\titem %p, magic 0x%x\n",
1453 pi, pi->pi_magic);
1454 }
1455 }
1456 #endif
1457 }
1458 if (pp->pr_curpage == NULL)
1459 (*pr)("\tno current page\n");
1460 else
1461 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1462
1463 skip_pagelist:
1464
1465 if (print_log == 0)
1466 goto skip_log;
1467
1468 (*pr)("\n");
1469 if ((pp->pr_roflags & PR_LOGGING) == 0)
1470 (*pr)("\tno log\n");
1471 else
1472 pr_printlog(pp, NULL, pr);
1473
1474 skip_log:
1475
1476 pr_enter_check(pp, pr);
1477 }
1478
1479 int
1480 pool_chk(pp, label)
1481 struct pool *pp;
1482 char *label;
1483 {
1484 struct pool_item_header *ph;
1485 int r = 0;
1486
1487 simple_lock(&pp->pr_slock);
1488
1489 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
1490 ph = TAILQ_NEXT(ph, ph_pagelist)) {
1491
1492 struct pool_item *pi;
1493 int n;
1494 caddr_t page;
1495
1496 page = (caddr_t)((u_long)ph & pp->pr_pagemask);
1497 if (page != ph->ph_page &&
1498 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1499 if (label != NULL)
1500 printf("%s: ", label);
1501 printf("pool(%p:%s): page inconsistency: page %p;"
1502 " at page head addr %p (p %p)\n", pp,
1503 pp->pr_wchan, ph->ph_page,
1504 ph, page);
1505 r++;
1506 goto out;
1507 }
1508
1509 for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
1510 pi != NULL;
1511 pi = TAILQ_NEXT(pi,pi_list), n++) {
1512
1513 #ifdef DIAGNOSTIC
1514 if (pi->pi_magic != PI_MAGIC) {
1515 if (label != NULL)
1516 printf("%s: ", label);
1517 printf("pool(%s): free list modified: magic=%x;"
1518 " page %p; item ordinal %d;"
1519 " addr %p (p %p)\n",
1520 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1521 n, pi, page);
1522 panic("pool");
1523 }
1524 #endif
1525 page = (caddr_t)((u_long)pi & pp->pr_pagemask);
1526 if (page == ph->ph_page)
1527 continue;
1528
1529 if (label != NULL)
1530 printf("%s: ", label);
1531 printf("pool(%p:%s): page inconsistency: page %p;"
1532 " item ordinal %d; addr %p (p %p)\n", pp,
1533 pp->pr_wchan, ph->ph_page,
1534 n, pi, page);
1535 r++;
1536 goto out;
1537 }
1538 }
1539 out:
1540 simple_unlock(&pp->pr_slock);
1541 return (r);
1542 }
1543