subr_pool.c revision 1.36 1 /* $NetBSD: subr_pool.c,v 1.36 2000/05/31 15:29:42 pk Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include "opt_pool.h"
41 #include "opt_poollog.h"
42 #include "opt_lockdebug.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/proc.h>
47 #include <sys/errno.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/lock.h>
51 #include <sys/pool.h>
52 #include <sys/syslog.h>
53
54 #include <vm/vm.h>
55 #include <vm/vm_kern.h>
56
57 #include <uvm/uvm.h>
58
59 /*
60 * Pool resource management utility.
61 *
62 * Memory is allocated in pages which are split into pieces according
63 * to the pool item size. Each page is kept on a list headed by `pr_pagelist'
64 * in the pool structure and the individual pool items are on a linked list
65 * headed by `ph_itemlist' in each page header. The memory for building
66 * the page list is either taken from the allocated pages themselves (for
67 * small pool items) or taken from an internal pool of page headers (`phpool').
68 */
69
70 /* List of all pools */
71 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
72
73 /* Private pool for page header structures */
74 static struct pool phpool;
75
76 /* # of seconds to retain page after last use */
77 int pool_inactive_time = 10;
78
79 /* Next candidate for drainage (see pool_drain()) */
80 static struct pool *drainpp;
81
82 /* This spin lock protects both pool_head and drainpp. */
83 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
84
85 struct pool_item_header {
86 /* Page headers */
87 TAILQ_ENTRY(pool_item_header)
88 ph_pagelist; /* pool page list */
89 TAILQ_HEAD(,pool_item) ph_itemlist; /* chunk list for this page */
90 LIST_ENTRY(pool_item_header)
91 ph_hashlist; /* Off-page page headers */
92 int ph_nmissing; /* # of chunks in use */
93 caddr_t ph_page; /* this page's address */
94 struct timeval ph_time; /* last referenced */
95 };
96
97 struct pool_item {
98 #ifdef DIAGNOSTIC
99 int pi_magic;
100 #endif
101 #define PI_MAGIC 0xdeadbeef
102 /* Other entries use only this list entry */
103 TAILQ_ENTRY(pool_item) pi_list;
104 };
105
106
107 #define PR_HASH_INDEX(pp,addr) \
108 (((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1))
109
110
111
112 static struct pool_item_header
113 *pr_find_pagehead __P((struct pool *, caddr_t));
114 static void pr_rmpage __P((struct pool *, struct pool_item_header *));
115 static int pool_catchup __P((struct pool *));
116 static void pool_prime_page __P((struct pool *, caddr_t));
117 static void *pool_page_alloc __P((unsigned long, int, int));
118 static void pool_page_free __P((void *, unsigned long, int));
119
120 static void pool_print1 __P((struct pool *, const char *,
121 void (*)(const char *, ...)));
122
123 /*
124 * Pool log entry. An array of these is allocated in pool_create().
125 */
126 struct pool_log {
127 const char *pl_file;
128 long pl_line;
129 int pl_action;
130 #define PRLOG_GET 1
131 #define PRLOG_PUT 2
132 void *pl_addr;
133 };
134
135 /* Number of entries in pool log buffers */
136 #ifndef POOL_LOGSIZE
137 #define POOL_LOGSIZE 10
138 #endif
139
140 int pool_logsize = POOL_LOGSIZE;
141
142 #ifdef DIAGNOSTIC
143 static void pr_log __P((struct pool *, void *, int, const char *, long));
144 static void pr_printlog __P((struct pool *, struct pool_item *,
145 void (*)(const char *, ...)));
146 static void pr_enter __P((struct pool *, const char *, long));
147 static void pr_leave __P((struct pool *));
148 static void pr_enter_check __P((struct pool *,
149 void (*)(const char *, ...)));
150
151 static __inline__ void
152 pr_log(pp, v, action, file, line)
153 struct pool *pp;
154 void *v;
155 int action;
156 const char *file;
157 long line;
158 {
159 int n = pp->pr_curlogentry;
160 struct pool_log *pl;
161
162 if ((pp->pr_roflags & PR_LOGGING) == 0)
163 return;
164
165 /*
166 * Fill in the current entry. Wrap around and overwrite
167 * the oldest entry if necessary.
168 */
169 pl = &pp->pr_log[n];
170 pl->pl_file = file;
171 pl->pl_line = line;
172 pl->pl_action = action;
173 pl->pl_addr = v;
174 if (++n >= pp->pr_logsize)
175 n = 0;
176 pp->pr_curlogentry = n;
177 }
178
179 static void
180 pr_printlog(pp, pi, pr)
181 struct pool *pp;
182 struct pool_item *pi;
183 void (*pr) __P((const char *, ...));
184 {
185 int i = pp->pr_logsize;
186 int n = pp->pr_curlogentry;
187
188 if ((pp->pr_roflags & PR_LOGGING) == 0)
189 return;
190
191 /*
192 * Print all entries in this pool's log.
193 */
194 while (i-- > 0) {
195 struct pool_log *pl = &pp->pr_log[n];
196 if (pl->pl_action != 0) {
197 if (pi == NULL || pi == pl->pl_addr) {
198 (*pr)("\tlog entry %d:\n", i);
199 (*pr)("\t\taction = %s, addr = %p\n",
200 pl->pl_action == PRLOG_GET ? "get" : "put",
201 pl->pl_addr);
202 (*pr)("\t\tfile: %s at line %lu\n",
203 pl->pl_file, pl->pl_line);
204 }
205 }
206 if (++n >= pp->pr_logsize)
207 n = 0;
208 }
209 }
210
211 static __inline__ void
212 pr_enter(pp, file, line)
213 struct pool *pp;
214 const char *file;
215 long line;
216 {
217
218 if (__predict_false(pp->pr_entered_file != NULL)) {
219 printf("pool %s: reentrancy at file %s line %ld\n",
220 pp->pr_wchan, file, line);
221 printf(" previous entry at file %s line %ld\n",
222 pp->pr_entered_file, pp->pr_entered_line);
223 panic("pr_enter");
224 }
225
226 pp->pr_entered_file = file;
227 pp->pr_entered_line = line;
228 }
229
230 static __inline__ void
231 pr_leave(pp)
232 struct pool *pp;
233 {
234
235 if (__predict_false(pp->pr_entered_file == NULL)) {
236 printf("pool %s not entered?\n", pp->pr_wchan);
237 panic("pr_leave");
238 }
239
240 pp->pr_entered_file = NULL;
241 pp->pr_entered_line = 0;
242 }
243
244 static __inline__ void
245 pr_enter_check(pp, pr)
246 struct pool *pp;
247 void (*pr) __P((const char *, ...));
248 {
249
250 if (pp->pr_entered_file != NULL)
251 (*pr)("\n\tcurrently entered from file %s line %ld\n",
252 pp->pr_entered_file, pp->pr_entered_line);
253 }
254 #else
255 #define pr_log(pp, v, action, file, line)
256 #define pr_printlog(pp, pi, pr)
257 #define pr_enter(pp, file, line)
258 #define pr_leave(pp)
259 #define pr_enter_check(pp, pr)
260 #endif /* DIAGNOSTIC */
261
262 /*
263 * Return the pool page header based on page address.
264 */
265 static __inline__ struct pool_item_header *
266 pr_find_pagehead(pp, page)
267 struct pool *pp;
268 caddr_t page;
269 {
270 struct pool_item_header *ph;
271
272 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
273 return ((struct pool_item_header *)(page + pp->pr_phoffset));
274
275 for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]);
276 ph != NULL;
277 ph = LIST_NEXT(ph, ph_hashlist)) {
278 if (ph->ph_page == page)
279 return (ph);
280 }
281 return (NULL);
282 }
283
284 /*
285 * Remove a page from the pool.
286 */
287 static __inline__ void
288 pr_rmpage(pp, ph)
289 struct pool *pp;
290 struct pool_item_header *ph;
291 {
292
293 /*
294 * If the page was idle, decrement the idle page count.
295 */
296 if (ph->ph_nmissing == 0) {
297 #ifdef DIAGNOSTIC
298 if (pp->pr_nidle == 0)
299 panic("pr_rmpage: nidle inconsistent");
300 if (pp->pr_nitems < pp->pr_itemsperpage)
301 panic("pr_rmpage: nitems inconsistent");
302 #endif
303 pp->pr_nidle--;
304 }
305
306 pp->pr_nitems -= pp->pr_itemsperpage;
307
308 /*
309 * Unlink a page from the pool and release it.
310 */
311 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
312 (*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype);
313 pp->pr_npages--;
314 pp->pr_npagefree++;
315
316 if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
317 int s;
318 LIST_REMOVE(ph, ph_hashlist);
319 s = splhigh();
320 pool_put(&phpool, ph);
321 splx(s);
322 }
323
324 if (pp->pr_curpage == ph) {
325 /*
326 * Find a new non-empty page header, if any.
327 * Start search from the page head, to increase the
328 * chance for "high water" pages to be freed.
329 */
330 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
331 ph = TAILQ_NEXT(ph, ph_pagelist))
332 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
333 break;
334
335 pp->pr_curpage = ph;
336 }
337 }
338
339 /*
340 * Allocate and initialize a pool.
341 */
342 struct pool *
343 pool_create(size, align, ioff, nitems, wchan, pagesz, alloc, release, mtype)
344 size_t size;
345 u_int align;
346 u_int ioff;
347 int nitems;
348 const char *wchan;
349 size_t pagesz;
350 void *(*alloc) __P((unsigned long, int, int));
351 void (*release) __P((void *, unsigned long, int));
352 int mtype;
353 {
354 struct pool *pp;
355 int flags;
356
357 pp = (struct pool *)malloc(sizeof(*pp), M_POOL, M_NOWAIT);
358 if (pp == NULL)
359 return (NULL);
360
361 flags = PR_FREEHEADER;
362 pool_init(pp, size, align, ioff, flags, wchan, pagesz,
363 alloc, release, mtype);
364
365 if (nitems != 0) {
366 if (pool_prime(pp, nitems, NULL) != 0) {
367 pool_destroy(pp);
368 return (NULL);
369 }
370 }
371
372 return (pp);
373 }
374
375 /*
376 * Initialize the given pool resource structure.
377 *
378 * We export this routine to allow other kernel parts to declare
379 * static pools that must be initialized before malloc() is available.
380 */
381 void
382 pool_init(pp, size, align, ioff, flags, wchan, pagesz, alloc, release, mtype)
383 struct pool *pp;
384 size_t size;
385 u_int align;
386 u_int ioff;
387 int flags;
388 const char *wchan;
389 size_t pagesz;
390 void *(*alloc) __P((unsigned long, int, int));
391 void (*release) __P((void *, unsigned long, int));
392 int mtype;
393 {
394 int off, slack, i;
395
396 #ifdef POOL_DIAGNOSTIC
397 /*
398 * Always log if POOL_DIAGNOSTIC is defined.
399 */
400 if (pool_logsize != 0)
401 flags |= PR_LOGGING;
402 #endif
403
404 /*
405 * Check arguments and construct default values.
406 */
407 if (!powerof2(pagesz))
408 panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz);
409
410 if (alloc == NULL && release == NULL) {
411 alloc = pool_page_alloc;
412 release = pool_page_free;
413 pagesz = PAGE_SIZE; /* Rounds to PAGE_SIZE anyhow. */
414 } else if ((alloc != NULL && release != NULL) == 0) {
415 /* If you specifiy one, must specify both. */
416 panic("pool_init: must specify alloc and release together");
417 }
418
419 if (pagesz == 0)
420 pagesz = PAGE_SIZE;
421
422 if (align == 0)
423 align = ALIGN(1);
424
425 if (size < sizeof(struct pool_item))
426 size = sizeof(struct pool_item);
427
428 size = ALIGN(size);
429 if (size >= pagesz)
430 panic("pool_init: pool item size (%lu) too large",
431 (u_long)size);
432
433 /*
434 * Initialize the pool structure.
435 */
436 TAILQ_INIT(&pp->pr_pagelist);
437 pp->pr_curpage = NULL;
438 pp->pr_npages = 0;
439 pp->pr_minitems = 0;
440 pp->pr_minpages = 0;
441 pp->pr_maxpages = UINT_MAX;
442 pp->pr_roflags = flags;
443 pp->pr_flags = 0;
444 pp->pr_size = size;
445 pp->pr_align = align;
446 pp->pr_wchan = wchan;
447 pp->pr_mtype = mtype;
448 pp->pr_alloc = alloc;
449 pp->pr_free = release;
450 pp->pr_pagesz = pagesz;
451 pp->pr_pagemask = ~(pagesz - 1);
452 pp->pr_pageshift = ffs(pagesz) - 1;
453 pp->pr_nitems = 0;
454 pp->pr_nout = 0;
455 pp->pr_hardlimit = UINT_MAX;
456 pp->pr_hardlimit_warning = NULL;
457 pp->pr_hardlimit_ratecap.tv_sec = 0;
458 pp->pr_hardlimit_ratecap.tv_usec = 0;
459 pp->pr_hardlimit_warning_last.tv_sec = 0;
460 pp->pr_hardlimit_warning_last.tv_usec = 0;
461
462 /*
463 * Decide whether to put the page header off page to avoid
464 * wasting too large a part of the page. Off-page page headers
465 * go on a hash table, so we can match a returned item
466 * with its header based on the page address.
467 * We use 1/16 of the page size as the threshold (XXX: tune)
468 */
469 if (pp->pr_size < pagesz/16) {
470 /* Use the end of the page for the page header */
471 pp->pr_roflags |= PR_PHINPAGE;
472 pp->pr_phoffset = off =
473 pagesz - ALIGN(sizeof(struct pool_item_header));
474 } else {
475 /* The page header will be taken from our page header pool */
476 pp->pr_phoffset = 0;
477 off = pagesz;
478 for (i = 0; i < PR_HASHTABSIZE; i++) {
479 LIST_INIT(&pp->pr_hashtab[i]);
480 }
481 }
482
483 /*
484 * Alignment is to take place at `ioff' within the item. This means
485 * we must reserve up to `align - 1' bytes on the page to allow
486 * appropriate positioning of each item.
487 *
488 * Silently enforce `0 <= ioff < align'.
489 */
490 pp->pr_itemoffset = ioff = ioff % align;
491 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
492
493 /*
494 * Use the slack between the chunks and the page header
495 * for "cache coloring".
496 */
497 slack = off - pp->pr_itemsperpage * pp->pr_size;
498 pp->pr_maxcolor = (slack / align) * align;
499 pp->pr_curcolor = 0;
500
501 pp->pr_nget = 0;
502 pp->pr_nfail = 0;
503 pp->pr_nput = 0;
504 pp->pr_npagealloc = 0;
505 pp->pr_npagefree = 0;
506 pp->pr_hiwat = 0;
507 pp->pr_nidle = 0;
508
509 if (flags & PR_LOGGING) {
510 if (kmem_map == NULL ||
511 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
512 M_TEMP, M_NOWAIT)) == NULL)
513 pp->pr_roflags &= ~PR_LOGGING;
514 pp->pr_curlogentry = 0;
515 pp->pr_logsize = pool_logsize;
516 }
517
518 pp->pr_entered_file = NULL;
519 pp->pr_entered_line = 0;
520
521 simple_lock_init(&pp->pr_slock);
522
523 /*
524 * Initialize private page header pool if we haven't done so yet.
525 * XXX LOCKING.
526 */
527 if (phpool.pr_size == 0) {
528 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
529 0, "phpool", 0, 0, 0, 0);
530 }
531
532 /* Insert into the list of all pools. */
533 simple_lock(&pool_head_slock);
534 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
535 simple_unlock(&pool_head_slock);
536 }
537
538 /*
539 * De-commision a pool resource.
540 */
541 void
542 pool_destroy(pp)
543 struct pool *pp;
544 {
545 struct pool_item_header *ph;
546
547 #ifdef DIAGNOSTIC
548 if (pp->pr_nout != 0) {
549 pr_printlog(pp, NULL, printf);
550 panic("pool_destroy: pool busy: still out: %u\n",
551 pp->pr_nout);
552 }
553 #endif
554
555 /* Remove all pages */
556 if ((pp->pr_roflags & PR_STATIC) == 0)
557 while ((ph = pp->pr_pagelist.tqh_first) != NULL)
558 pr_rmpage(pp, ph);
559
560 /* Remove from global pool list */
561 simple_lock(&pool_head_slock);
562 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
563 /* XXX Only clear this if we were drainpp? */
564 drainpp = NULL;
565 simple_unlock(&pool_head_slock);
566
567 if ((pp->pr_roflags & PR_LOGGING) != 0)
568 free(pp->pr_log, M_TEMP);
569
570 if (pp->pr_roflags & PR_FREEHEADER)
571 free(pp, M_POOL);
572 }
573
574
575 /*
576 * Grab an item from the pool; must be called at appropriate spl level
577 */
578 void *
579 _pool_get(pp, flags, file, line)
580 struct pool *pp;
581 int flags;
582 const char *file;
583 long line;
584 {
585 void *v;
586 struct pool_item *pi;
587 struct pool_item_header *ph;
588
589 #ifdef DIAGNOSTIC
590 if (__predict_false((pp->pr_roflags & PR_STATIC) &&
591 (flags & PR_MALLOCOK))) {
592 pr_printlog(pp, NULL, printf);
593 panic("pool_get: static");
594 }
595 #endif
596
597 if (__predict_false(curproc == NULL && (flags & PR_WAITOK) != 0))
598 panic("pool_get: must have NOWAIT");
599
600 simple_lock(&pp->pr_slock);
601 pr_enter(pp, file, line);
602
603 startover:
604 /*
605 * Check to see if we've reached the hard limit. If we have,
606 * and we can wait, then wait until an item has been returned to
607 * the pool.
608 */
609 #ifdef DIAGNOSTIC
610 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
611 pr_leave(pp);
612 simple_unlock(&pp->pr_slock);
613 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
614 }
615 #endif
616 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
617 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
618 /*
619 * XXX: A warning isn't logged in this case. Should
620 * it be?
621 */
622 pp->pr_flags |= PR_WANTED;
623 pr_leave(pp);
624 simple_unlock(&pp->pr_slock);
625 tsleep((caddr_t)pp, PSWP, pp->pr_wchan, 0);
626 simple_lock(&pp->pr_slock);
627 pr_enter(pp, file, line);
628 goto startover;
629 }
630
631 /*
632 * Log a message that the hard limit has been hit.
633 */
634 if (pp->pr_hardlimit_warning != NULL &&
635 ratecheck(&pp->pr_hardlimit_warning_last,
636 &pp->pr_hardlimit_ratecap))
637 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
638
639 if (flags & PR_URGENT)
640 panic("pool_get: urgent");
641
642 pp->pr_nfail++;
643
644 pr_leave(pp);
645 simple_unlock(&pp->pr_slock);
646 return (NULL);
647 }
648
649 /*
650 * The convention we use is that if `curpage' is not NULL, then
651 * it points at a non-empty bucket. In particular, `curpage'
652 * never points at a page header which has PR_PHINPAGE set and
653 * has no items in its bucket.
654 */
655 if ((ph = pp->pr_curpage) == NULL) {
656 void *v;
657
658 #ifdef DIAGNOSTIC
659 if (pp->pr_nitems != 0) {
660 simple_unlock(&pp->pr_slock);
661 printf("pool_get: %s: curpage NULL, nitems %u\n",
662 pp->pr_wchan, pp->pr_nitems);
663 panic("pool_get: nitems inconsistent\n");
664 }
665 #endif
666
667 /*
668 * Call the back-end page allocator for more memory.
669 * Release the pool lock, as the back-end page allocator
670 * may block.
671 */
672 pr_leave(pp);
673 simple_unlock(&pp->pr_slock);
674 v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype);
675 simple_lock(&pp->pr_slock);
676 pr_enter(pp, file, line);
677
678 if (v == NULL) {
679 /*
680 * We were unable to allocate a page, but
681 * we released the lock during allocation,
682 * so perhaps items were freed back to the
683 * pool. Check for this case.
684 */
685 if (pp->pr_curpage != NULL)
686 goto startover;
687
688 if (flags & PR_URGENT)
689 panic("pool_get: urgent");
690
691 if ((flags & PR_WAITOK) == 0) {
692 pp->pr_nfail++;
693 pr_leave(pp);
694 simple_unlock(&pp->pr_slock);
695 return (NULL);
696 }
697
698 /*
699 * Wait for items to be returned to this pool.
700 *
701 * XXX: we actually want to wait just until
702 * the page allocator has memory again. Depending
703 * on this pool's usage, we might get stuck here
704 * for a long time.
705 *
706 * XXX: maybe we should wake up once a second and
707 * try again?
708 */
709 pp->pr_flags |= PR_WANTED;
710 pr_leave(pp);
711 simple_unlock(&pp->pr_slock);
712 tsleep((caddr_t)pp, PSWP, pp->pr_wchan, 0);
713 simple_lock(&pp->pr_slock);
714 pr_enter(pp, file, line);
715 goto startover;
716 }
717
718 /* We have more memory; add it to the pool */
719 pp->pr_npagealloc++;
720 pool_prime_page(pp, v);
721
722 /* Start the allocation process over. */
723 goto startover;
724 }
725
726 if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
727 pr_leave(pp);
728 simple_unlock(&pp->pr_slock);
729 panic("pool_get: %s: page empty", pp->pr_wchan);
730 }
731 #ifdef DIAGNOSTIC
732 if (__predict_false(pp->pr_nitems == 0)) {
733 pr_leave(pp);
734 simple_unlock(&pp->pr_slock);
735 printf("pool_get: %s: items on itemlist, nitems %u\n",
736 pp->pr_wchan, pp->pr_nitems);
737 panic("pool_get: nitems inconsistent\n");
738 }
739 #endif
740 pr_log(pp, v, PRLOG_GET, file, line);
741
742 #ifdef DIAGNOSTIC
743 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
744 pr_printlog(pp, pi, printf);
745 panic("pool_get(%s): free list modified: magic=%x; page %p;"
746 " item addr %p\n",
747 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
748 }
749 #endif
750
751 /*
752 * Remove from item list.
753 */
754 TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
755 pp->pr_nitems--;
756 pp->pr_nout++;
757 if (ph->ph_nmissing == 0) {
758 #ifdef DIAGNOSTIC
759 if (__predict_false(pp->pr_nidle == 0))
760 panic("pool_get: nidle inconsistent");
761 #endif
762 pp->pr_nidle--;
763 }
764 ph->ph_nmissing++;
765 if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) {
766 #ifdef DIAGNOSTIC
767 if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
768 pr_leave(pp);
769 simple_unlock(&pp->pr_slock);
770 panic("pool_get: %s: nmissing inconsistent",
771 pp->pr_wchan);
772 }
773 #endif
774 /*
775 * Find a new non-empty page header, if any.
776 * Start search from the page head, to increase
777 * the chance for "high water" pages to be freed.
778 *
779 * Migrate empty pages to the end of the list. This
780 * will speed the update of curpage as pages become
781 * idle. Empty pages intermingled with idle pages
782 * is no big deal. As soon as a page becomes un-empty,
783 * it will move back to the head of the list.
784 */
785 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
786 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
787 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
788 ph = TAILQ_NEXT(ph, ph_pagelist))
789 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
790 break;
791
792 pp->pr_curpage = ph;
793 }
794
795 pp->pr_nget++;
796
797 /*
798 * If we have a low water mark and we are now below that low
799 * water mark, add more items to the pool.
800 */
801 if (pp->pr_nitems < pp->pr_minitems && pool_catchup(pp) != 0) {
802 /*
803 * XXX: Should we log a warning? Should we set up a timeout
804 * to try again in a second or so? The latter could break
805 * a caller's assumptions about interrupt protection, etc.
806 */
807 }
808
809 pr_leave(pp);
810 simple_unlock(&pp->pr_slock);
811 return (v);
812 }
813
814 /*
815 * Return resource to the pool; must be called at appropriate spl level
816 */
817 void
818 _pool_put(pp, v, file, line)
819 struct pool *pp;
820 void *v;
821 const char *file;
822 long line;
823 {
824 struct pool_item *pi = v;
825 struct pool_item_header *ph;
826 caddr_t page;
827 int s;
828
829 page = (caddr_t)((u_long)v & pp->pr_pagemask);
830
831 simple_lock(&pp->pr_slock);
832 pr_enter(pp, file, line);
833
834 #ifdef DIAGNOSTIC
835 if (__predict_false(pp->pr_nout == 0)) {
836 printf("pool %s: putting with none out\n",
837 pp->pr_wchan);
838 panic("pool_put");
839 }
840 #endif
841
842 pr_log(pp, v, PRLOG_PUT, file, line);
843
844 if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
845 pr_printlog(pp, NULL, printf);
846 panic("pool_put: %s: page header missing", pp->pr_wchan);
847 }
848
849 #ifdef LOCKDEBUG
850 /*
851 * Check if we're freeing a locked simple lock.
852 */
853 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
854 #endif
855
856 /*
857 * Return to item list.
858 */
859 #ifdef DIAGNOSTIC
860 pi->pi_magic = PI_MAGIC;
861 #endif
862 #ifdef DEBUG
863 {
864 int i, *ip = v;
865
866 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
867 *ip++ = PI_MAGIC;
868 }
869 }
870 #endif
871
872 TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
873 ph->ph_nmissing--;
874 pp->pr_nput++;
875 pp->pr_nitems++;
876 pp->pr_nout--;
877
878 /* Cancel "pool empty" condition if it exists */
879 if (pp->pr_curpage == NULL)
880 pp->pr_curpage = ph;
881
882 if (pp->pr_flags & PR_WANTED) {
883 pp->pr_flags &= ~PR_WANTED;
884 if (ph->ph_nmissing == 0)
885 pp->pr_nidle++;
886 pr_leave(pp);
887 simple_unlock(&pp->pr_slock);
888 wakeup((caddr_t)pp);
889 return;
890 }
891
892 /*
893 * If this page is now complete, do one of two things:
894 *
895 * (1) If we have more pages than the page high water
896 * mark, free the page back to the system.
897 *
898 * (2) Move it to the end of the page list, so that
899 * we minimize our chances of fragmenting the
900 * pool. Idle pages migrate to the end (along with
901 * completely empty pages, so that we find un-empty
902 * pages more quickly when we update curpage) of the
903 * list so they can be more easily swept up by
904 * the pagedaemon when pages are scarce.
905 */
906 if (ph->ph_nmissing == 0) {
907 pp->pr_nidle++;
908 if (pp->pr_npages > pp->pr_maxpages) {
909 pr_rmpage(pp, ph);
910 } else {
911 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
912 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
913
914 /*
915 * Update the timestamp on the page. A page must
916 * be idle for some period of time before it can
917 * be reclaimed by the pagedaemon. This minimizes
918 * ping-pong'ing for memory.
919 */
920 s = splclock();
921 ph->ph_time = mono_time;
922 splx(s);
923
924 /*
925 * Update the current page pointer. Just look for
926 * the first page with any free items.
927 *
928 * XXX: Maybe we want an option to look for the
929 * page with the fewest available items, to minimize
930 * fragmentation?
931 */
932 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
933 ph = TAILQ_NEXT(ph, ph_pagelist))
934 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
935 break;
936
937 pp->pr_curpage = ph;
938 }
939 }
940 /*
941 * If the page has just become un-empty, move it to the head of
942 * the list, and make it the current page. The next allocation
943 * will get the item from this page, instead of further fragmenting
944 * the pool.
945 */
946 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
947 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
948 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
949 pp->pr_curpage = ph;
950 }
951
952 pr_leave(pp);
953 simple_unlock(&pp->pr_slock);
954
955 }
956
957 /*
958 * Add N items to the pool.
959 */
960 int
961 pool_prime(pp, n, storage)
962 struct pool *pp;
963 int n;
964 caddr_t storage;
965 {
966 caddr_t cp;
967 int newnitems, newpages;
968
969 #ifdef DIAGNOSTIC
970 if (__predict_false(storage && !(pp->pr_roflags & PR_STATIC)))
971 panic("pool_prime: static");
972 /* !storage && static caught below */
973 #endif
974
975 simple_lock(&pp->pr_slock);
976
977 newnitems = pp->pr_minitems + n;
978 newpages =
979 roundup(newnitems, pp->pr_itemsperpage) / pp->pr_itemsperpage
980 - pp->pr_minpages;
981
982 while (newpages-- > 0) {
983 if (pp->pr_roflags & PR_STATIC) {
984 cp = storage;
985 storage += pp->pr_pagesz;
986 } else {
987 simple_unlock(&pp->pr_slock);
988 cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
989 simple_lock(&pp->pr_slock);
990 }
991
992 if (cp == NULL) {
993 simple_unlock(&pp->pr_slock);
994 return (ENOMEM);
995 }
996
997 pp->pr_npagealloc++;
998 pool_prime_page(pp, cp);
999 pp->pr_minpages++;
1000 }
1001
1002 pp->pr_minitems = newnitems;
1003
1004 if (pp->pr_minpages >= pp->pr_maxpages)
1005 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1006
1007 simple_unlock(&pp->pr_slock);
1008 return (0);
1009 }
1010
1011 /*
1012 * Add a page worth of items to the pool.
1013 *
1014 * Note, we must be called with the pool descriptor LOCKED.
1015 */
1016 static void
1017 pool_prime_page(pp, storage)
1018 struct pool *pp;
1019 caddr_t storage;
1020 {
1021 struct pool_item *pi;
1022 struct pool_item_header *ph;
1023 caddr_t cp = storage;
1024 unsigned int align = pp->pr_align;
1025 unsigned int ioff = pp->pr_itemoffset;
1026 int s, n;
1027
1028 if (((u_long)cp & (pp->pr_pagesz - 1)) != 0)
1029 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1030
1031 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
1032 ph = (struct pool_item_header *)(cp + pp->pr_phoffset);
1033 } else {
1034 s = splhigh();
1035 ph = pool_get(&phpool, PR_URGENT);
1036 splx(s);
1037 LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)],
1038 ph, ph_hashlist);
1039 }
1040
1041 /*
1042 * Insert page header.
1043 */
1044 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
1045 TAILQ_INIT(&ph->ph_itemlist);
1046 ph->ph_page = storage;
1047 ph->ph_nmissing = 0;
1048 memset(&ph->ph_time, 0, sizeof(ph->ph_time));
1049
1050 pp->pr_nidle++;
1051
1052 /*
1053 * Color this page.
1054 */
1055 cp = (caddr_t)(cp + pp->pr_curcolor);
1056 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1057 pp->pr_curcolor = 0;
1058
1059 /*
1060 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1061 */
1062 if (ioff != 0)
1063 cp = (caddr_t)(cp + (align - ioff));
1064
1065 /*
1066 * Insert remaining chunks on the bucket list.
1067 */
1068 n = pp->pr_itemsperpage;
1069 pp->pr_nitems += n;
1070
1071 while (n--) {
1072 pi = (struct pool_item *)cp;
1073
1074 /* Insert on page list */
1075 TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
1076 #ifdef DIAGNOSTIC
1077 pi->pi_magic = PI_MAGIC;
1078 #endif
1079 cp = (caddr_t)(cp + pp->pr_size);
1080 }
1081
1082 /*
1083 * If the pool was depleted, point at the new page.
1084 */
1085 if (pp->pr_curpage == NULL)
1086 pp->pr_curpage = ph;
1087
1088 if (++pp->pr_npages > pp->pr_hiwat)
1089 pp->pr_hiwat = pp->pr_npages;
1090 }
1091
1092 /*
1093 * Like pool_prime(), except this is used by pool_get() when nitems
1094 * drops below the low water mark. This is used to catch up nitmes
1095 * with the low water mark.
1096 *
1097 * Note 1, we never wait for memory here, we let the caller decide what to do.
1098 *
1099 * Note 2, this doesn't work with static pools.
1100 *
1101 * Note 3, we must be called with the pool already locked, and we return
1102 * with it locked.
1103 */
1104 static int
1105 pool_catchup(pp)
1106 struct pool *pp;
1107 {
1108 caddr_t cp;
1109 int error = 0;
1110
1111 if (pp->pr_roflags & PR_STATIC) {
1112 /*
1113 * We dropped below the low water mark, and this is not a
1114 * good thing. Log a warning.
1115 *
1116 * XXX: rate-limit this?
1117 */
1118 printf("WARNING: static pool `%s' dropped below low water "
1119 "mark\n", pp->pr_wchan);
1120 return (0);
1121 }
1122
1123 while (pp->pr_nitems < pp->pr_minitems) {
1124 /*
1125 * Call the page back-end allocator for more memory.
1126 *
1127 * XXX: We never wait, so should we bother unlocking
1128 * the pool descriptor?
1129 */
1130 simple_unlock(&pp->pr_slock);
1131 cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
1132 simple_lock(&pp->pr_slock);
1133 if (__predict_false(cp == NULL)) {
1134 error = ENOMEM;
1135 break;
1136 }
1137 pp->pr_npagealloc++;
1138 pool_prime_page(pp, cp);
1139 }
1140
1141 return (error);
1142 }
1143
1144 void
1145 pool_setlowat(pp, n)
1146 pool_handle_t pp;
1147 int n;
1148 {
1149 int error;
1150
1151 simple_lock(&pp->pr_slock);
1152
1153 pp->pr_minitems = n;
1154 pp->pr_minpages = (n == 0)
1155 ? 0
1156 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1157
1158 /* Make sure we're caught up with the newly-set low water mark. */
1159 if ((error = pool_catchup(pp)) != 0) {
1160 /*
1161 * XXX: Should we log a warning? Should we set up a timeout
1162 * to try again in a second or so? The latter could break
1163 * a caller's assumptions about interrupt protection, etc.
1164 */
1165 }
1166
1167 simple_unlock(&pp->pr_slock);
1168 }
1169
1170 void
1171 pool_sethiwat(pp, n)
1172 pool_handle_t pp;
1173 int n;
1174 {
1175
1176 simple_lock(&pp->pr_slock);
1177
1178 pp->pr_maxpages = (n == 0)
1179 ? 0
1180 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1181
1182 simple_unlock(&pp->pr_slock);
1183 }
1184
1185 void
1186 pool_sethardlimit(pp, n, warnmess, ratecap)
1187 pool_handle_t pp;
1188 int n;
1189 const char *warnmess;
1190 int ratecap;
1191 {
1192
1193 simple_lock(&pp->pr_slock);
1194
1195 pp->pr_hardlimit = n;
1196 pp->pr_hardlimit_warning = warnmess;
1197 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1198 pp->pr_hardlimit_warning_last.tv_sec = 0;
1199 pp->pr_hardlimit_warning_last.tv_usec = 0;
1200
1201 /*
1202 * In-line version of pool_sethiwat(), because we don't want to
1203 * release the lock.
1204 */
1205 pp->pr_maxpages = (n == 0)
1206 ? 0
1207 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1208
1209 simple_unlock(&pp->pr_slock);
1210 }
1211
1212 /*
1213 * Default page allocator.
1214 */
1215 static void *
1216 pool_page_alloc(sz, flags, mtype)
1217 unsigned long sz;
1218 int flags;
1219 int mtype;
1220 {
1221 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1222
1223 return ((void *)uvm_km_alloc_poolpage(waitok));
1224 }
1225
1226 static void
1227 pool_page_free(v, sz, mtype)
1228 void *v;
1229 unsigned long sz;
1230 int mtype;
1231 {
1232
1233 uvm_km_free_poolpage((vaddr_t)v);
1234 }
1235
1236 /*
1237 * Alternate pool page allocator for pools that know they will
1238 * never be accessed in interrupt context.
1239 */
1240 void *
1241 pool_page_alloc_nointr(sz, flags, mtype)
1242 unsigned long sz;
1243 int flags;
1244 int mtype;
1245 {
1246 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1247
1248 return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object,
1249 waitok));
1250 }
1251
1252 void
1253 pool_page_free_nointr(v, sz, mtype)
1254 void *v;
1255 unsigned long sz;
1256 int mtype;
1257 {
1258
1259 uvm_km_free_poolpage1(kernel_map, (vaddr_t)v);
1260 }
1261
1262
1263 /*
1264 * Release all complete pages that have not been used recently.
1265 */
1266 void
1267 _pool_reclaim(pp, file, line)
1268 pool_handle_t pp;
1269 const char *file;
1270 long line;
1271 {
1272 struct pool_item_header *ph, *phnext;
1273 struct timeval curtime;
1274 int s;
1275
1276 if (pp->pr_roflags & PR_STATIC)
1277 return;
1278
1279 if (simple_lock_try(&pp->pr_slock) == 0)
1280 return;
1281 pr_enter(pp, file, line);
1282
1283 s = splclock();
1284 curtime = mono_time;
1285 splx(s);
1286
1287 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) {
1288 phnext = TAILQ_NEXT(ph, ph_pagelist);
1289
1290 /* Check our minimum page claim */
1291 if (pp->pr_npages <= pp->pr_minpages)
1292 break;
1293
1294 if (ph->ph_nmissing == 0) {
1295 struct timeval diff;
1296 timersub(&curtime, &ph->ph_time, &diff);
1297 if (diff.tv_sec < pool_inactive_time)
1298 continue;
1299
1300 /*
1301 * If freeing this page would put us below
1302 * the low water mark, stop now.
1303 */
1304 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1305 pp->pr_minitems)
1306 break;
1307
1308 pr_rmpage(pp, ph);
1309 }
1310 }
1311
1312 pr_leave(pp);
1313 simple_unlock(&pp->pr_slock);
1314 }
1315
1316
1317 /*
1318 * Drain pools, one at a time.
1319 *
1320 * Note, we must never be called from an interrupt context.
1321 */
1322 void
1323 pool_drain(arg)
1324 void *arg;
1325 {
1326 struct pool *pp;
1327 int s;
1328
1329 s = splimp();
1330 simple_lock(&pool_head_slock);
1331
1332 if (drainpp == NULL && (drainpp = TAILQ_FIRST(&pool_head)) == NULL)
1333 goto out;
1334
1335 pp = drainpp;
1336 drainpp = TAILQ_NEXT(pp, pr_poollist);
1337
1338 pool_reclaim(pp);
1339
1340 out:
1341 simple_unlock(&pool_head_slock);
1342 splx(s);
1343 }
1344
1345
1346 /*
1347 * Diagnostic helpers.
1348 */
1349 void
1350 pool_print(pp, modif)
1351 struct pool *pp;
1352 const char *modif;
1353 {
1354 int s;
1355
1356 s = splimp();
1357 if (simple_lock_try(&pp->pr_slock) == 0) {
1358 printf("pool %s is locked; try again later\n",
1359 pp->pr_wchan);
1360 splx(s);
1361 return;
1362 }
1363 pool_print1(pp, modif, printf);
1364 simple_unlock(&pp->pr_slock);
1365 splx(s);
1366 }
1367
1368 void
1369 pool_printit(pp, modif, pr)
1370 struct pool *pp;
1371 const char *modif;
1372 void (*pr) __P((const char *, ...));
1373 {
1374 int didlock = 0;
1375
1376 if (pp == NULL) {
1377 (*pr)("Must specify a pool to print.\n");
1378 return;
1379 }
1380
1381 /*
1382 * Called from DDB; interrupts should be blocked, and all
1383 * other processors should be paused. We can skip locking
1384 * the pool in this case.
1385 *
1386 * We do a simple_lock_try() just to print the lock
1387 * status, however.
1388 */
1389
1390 if (simple_lock_try(&pp->pr_slock) == 0)
1391 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1392 else
1393 didlock = 1;
1394
1395 pool_print1(pp, modif, pr);
1396
1397 if (didlock)
1398 simple_unlock(&pp->pr_slock);
1399 }
1400
1401 static void
1402 pool_print1(pp, modif, pr)
1403 struct pool *pp;
1404 const char *modif;
1405 void (*pr) __P((const char *, ...));
1406 {
1407 struct pool_item_header *ph;
1408 #ifdef DIAGNOSTIC
1409 struct pool_item *pi;
1410 #endif
1411 int print_log = 0, print_pagelist = 0;
1412 char c;
1413
1414 while ((c = *modif++) != '\0') {
1415 if (c == 'l')
1416 print_log = 1;
1417 if (c == 'p')
1418 print_pagelist = 1;
1419 modif++;
1420 }
1421
1422 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1423 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1424 pp->pr_roflags);
1425 (*pr)("\tpagesz %u, mtype %d\n", pp->pr_pagesz, pp->pr_mtype);
1426 (*pr)("\talloc %p, release %p\n", pp->pr_alloc, pp->pr_free);
1427 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1428 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1429 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1430 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1431
1432 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1433 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1434 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1435 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1436
1437 if (print_pagelist == 0)
1438 goto skip_pagelist;
1439
1440 if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
1441 (*pr)("\n\tpage list:\n");
1442 for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) {
1443 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1444 ph->ph_page, ph->ph_nmissing,
1445 (u_long)ph->ph_time.tv_sec,
1446 (u_long)ph->ph_time.tv_usec);
1447 #ifdef DIAGNOSTIC
1448 for (pi = TAILQ_FIRST(&ph->ph_itemlist); pi != NULL;
1449 pi = TAILQ_NEXT(pi, pi_list)) {
1450 if (pi->pi_magic != PI_MAGIC) {
1451 (*pr)("\t\t\titem %p, magic 0x%x\n",
1452 pi, pi->pi_magic);
1453 }
1454 }
1455 #endif
1456 }
1457 if (pp->pr_curpage == NULL)
1458 (*pr)("\tno current page\n");
1459 else
1460 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1461
1462 skip_pagelist:
1463
1464 if (print_log == 0)
1465 goto skip_log;
1466
1467 (*pr)("\n");
1468 if ((pp->pr_roflags & PR_LOGGING) == 0)
1469 (*pr)("\tno log\n");
1470 else
1471 pr_printlog(pp, NULL, pr);
1472
1473 skip_log:
1474
1475 pr_enter_check(pp, pr);
1476 }
1477
1478 int
1479 pool_chk(pp, label)
1480 struct pool *pp;
1481 char *label;
1482 {
1483 struct pool_item_header *ph;
1484 int r = 0;
1485
1486 simple_lock(&pp->pr_slock);
1487
1488 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
1489 ph = TAILQ_NEXT(ph, ph_pagelist)) {
1490
1491 struct pool_item *pi;
1492 int n;
1493 caddr_t page;
1494
1495 page = (caddr_t)((u_long)ph & pp->pr_pagemask);
1496 if (page != ph->ph_page &&
1497 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1498 if (label != NULL)
1499 printf("%s: ", label);
1500 printf("pool(%p:%s): page inconsistency: page %p;"
1501 " at page head addr %p (p %p)\n", pp,
1502 pp->pr_wchan, ph->ph_page,
1503 ph, page);
1504 r++;
1505 goto out;
1506 }
1507
1508 for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
1509 pi != NULL;
1510 pi = TAILQ_NEXT(pi,pi_list), n++) {
1511
1512 #ifdef DIAGNOSTIC
1513 if (pi->pi_magic != PI_MAGIC) {
1514 if (label != NULL)
1515 printf("%s: ", label);
1516 printf("pool(%s): free list modified: magic=%x;"
1517 " page %p; item ordinal %d;"
1518 " addr %p (p %p)\n",
1519 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1520 n, pi, page);
1521 panic("pool");
1522 }
1523 #endif
1524 page = (caddr_t)((u_long)pi & pp->pr_pagemask);
1525 if (page == ph->ph_page)
1526 continue;
1527
1528 if (label != NULL)
1529 printf("%s: ", label);
1530 printf("pool(%p:%s): page inconsistency: page %p;"
1531 " item ordinal %d; addr %p (p %p)\n", pp,
1532 pp->pr_wchan, ph->ph_page,
1533 n, pi, page);
1534 r++;
1535 goto out;
1536 }
1537 }
1538 out:
1539 simple_unlock(&pp->pr_slock);
1540 return (r);
1541 }
1542