Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.37
      1 /*	$NetBSD: subr_pool.c,v 1.37 2000/06/10 18:44:44 sommerfeld Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9  * Simulation Facility, NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 #include "opt_pool.h"
     41 #include "opt_poollog.h"
     42 #include "opt_lockdebug.h"
     43 
     44 #include <sys/param.h>
     45 #include <sys/systm.h>
     46 #include <sys/proc.h>
     47 #include <sys/errno.h>
     48 #include <sys/kernel.h>
     49 #include <sys/malloc.h>
     50 #include <sys/lock.h>
     51 #include <sys/pool.h>
     52 #include <sys/syslog.h>
     53 
     54 #include <vm/vm.h>
     55 #include <vm/vm_kern.h>
     56 
     57 #include <uvm/uvm.h>
     58 
     59 /*
     60  * Pool resource management utility.
     61  *
     62  * Memory is allocated in pages which are split into pieces according
     63  * to the pool item size. Each page is kept on a list headed by `pr_pagelist'
     64  * in the pool structure and the individual pool items are on a linked list
     65  * headed by `ph_itemlist' in each page header. The memory for building
     66  * the page list is either taken from the allocated pages themselves (for
     67  * small pool items) or taken from an internal pool of page headers (`phpool').
     68  */
     69 
     70 /* List of all pools */
     71 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     72 
     73 /* Private pool for page header structures */
     74 static struct pool phpool;
     75 
     76 /* # of seconds to retain page after last use */
     77 int pool_inactive_time = 10;
     78 
     79 /* Next candidate for drainage (see pool_drain()) */
     80 static struct pool	*drainpp;
     81 
     82 /* This spin lock protects both pool_head and drainpp. */
     83 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
     84 
     85 struct pool_item_header {
     86 	/* Page headers */
     87 	TAILQ_ENTRY(pool_item_header)
     88 				ph_pagelist;	/* pool page list */
     89 	TAILQ_HEAD(,pool_item)	ph_itemlist;	/* chunk list for this page */
     90 	LIST_ENTRY(pool_item_header)
     91 				ph_hashlist;	/* Off-page page headers */
     92 	int			ph_nmissing;	/* # of chunks in use */
     93 	caddr_t			ph_page;	/* this page's address */
     94 	struct timeval		ph_time;	/* last referenced */
     95 };
     96 
     97 struct pool_item {
     98 #ifdef DIAGNOSTIC
     99 	int pi_magic;
    100 #endif
    101 #define	PI_MAGIC 0xdeadbeef
    102 	/* Other entries use only this list entry */
    103 	TAILQ_ENTRY(pool_item)	pi_list;
    104 };
    105 
    106 
    107 #define	PR_HASH_INDEX(pp,addr) \
    108 	(((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1))
    109 
    110 
    111 
    112 static struct pool_item_header
    113 		*pr_find_pagehead __P((struct pool *, caddr_t));
    114 static void	pr_rmpage __P((struct pool *, struct pool_item_header *));
    115 static int	pool_catchup __P((struct pool *));
    116 static void	pool_prime_page __P((struct pool *, caddr_t));
    117 static void	*pool_page_alloc __P((unsigned long, int, int));
    118 static void	pool_page_free __P((void *, unsigned long, int));
    119 
    120 static void pool_print1 __P((struct pool *, const char *,
    121 	void (*)(const char *, ...)));
    122 
    123 /*
    124  * Pool log entry. An array of these is allocated in pool_create().
    125  */
    126 struct pool_log {
    127 	const char	*pl_file;
    128 	long		pl_line;
    129 	int		pl_action;
    130 #define	PRLOG_GET	1
    131 #define	PRLOG_PUT	2
    132 	void		*pl_addr;
    133 };
    134 
    135 /* Number of entries in pool log buffers */
    136 #ifndef POOL_LOGSIZE
    137 #define	POOL_LOGSIZE	10
    138 #endif
    139 
    140 int pool_logsize = POOL_LOGSIZE;
    141 
    142 #ifdef DIAGNOSTIC
    143 static void	pr_log __P((struct pool *, void *, int, const char *, long));
    144 static void	pr_printlog __P((struct pool *, struct pool_item *,
    145 		    void (*)(const char *, ...)));
    146 static void	pr_enter __P((struct pool *, const char *, long));
    147 static void	pr_leave __P((struct pool *));
    148 static void	pr_enter_check __P((struct pool *,
    149 		    void (*)(const char *, ...)));
    150 
    151 static __inline__ void
    152 pr_log(pp, v, action, file, line)
    153 	struct pool	*pp;
    154 	void		*v;
    155 	int		action;
    156 	const char	*file;
    157 	long		line;
    158 {
    159 	int n = pp->pr_curlogentry;
    160 	struct pool_log *pl;
    161 
    162 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    163 		return;
    164 
    165 	/*
    166 	 * Fill in the current entry. Wrap around and overwrite
    167 	 * the oldest entry if necessary.
    168 	 */
    169 	pl = &pp->pr_log[n];
    170 	pl->pl_file = file;
    171 	pl->pl_line = line;
    172 	pl->pl_action = action;
    173 	pl->pl_addr = v;
    174 	if (++n >= pp->pr_logsize)
    175 		n = 0;
    176 	pp->pr_curlogentry = n;
    177 }
    178 
    179 static void
    180 pr_printlog(pp, pi, pr)
    181 	struct pool *pp;
    182 	struct pool_item *pi;
    183 	void (*pr) __P((const char *, ...));
    184 {
    185 	int i = pp->pr_logsize;
    186 	int n = pp->pr_curlogentry;
    187 
    188 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    189 		return;
    190 
    191 	/*
    192 	 * Print all entries in this pool's log.
    193 	 */
    194 	while (i-- > 0) {
    195 		struct pool_log *pl = &pp->pr_log[n];
    196 		if (pl->pl_action != 0) {
    197 			if (pi == NULL || pi == pl->pl_addr) {
    198 				(*pr)("\tlog entry %d:\n", i);
    199 				(*pr)("\t\taction = %s, addr = %p\n",
    200 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    201 				    pl->pl_addr);
    202 				(*pr)("\t\tfile: %s at line %lu\n",
    203 				    pl->pl_file, pl->pl_line);
    204 			}
    205 		}
    206 		if (++n >= pp->pr_logsize)
    207 			n = 0;
    208 	}
    209 }
    210 
    211 static __inline__ void
    212 pr_enter(pp, file, line)
    213 	struct pool *pp;
    214 	const char *file;
    215 	long line;
    216 {
    217 
    218 	if (__predict_false(pp->pr_entered_file != NULL)) {
    219 		printf("pool %s: reentrancy at file %s line %ld\n",
    220 		    pp->pr_wchan, file, line);
    221 		printf("         previous entry at file %s line %ld\n",
    222 		    pp->pr_entered_file, pp->pr_entered_line);
    223 		panic("pr_enter");
    224 	}
    225 
    226 	pp->pr_entered_file = file;
    227 	pp->pr_entered_line = line;
    228 }
    229 
    230 static __inline__ void
    231 pr_leave(pp)
    232 	struct pool *pp;
    233 {
    234 
    235 	if (__predict_false(pp->pr_entered_file == NULL)) {
    236 		printf("pool %s not entered?\n", pp->pr_wchan);
    237 		panic("pr_leave");
    238 	}
    239 
    240 	pp->pr_entered_file = NULL;
    241 	pp->pr_entered_line = 0;
    242 }
    243 
    244 static __inline__ void
    245 pr_enter_check(pp, pr)
    246 	struct pool *pp;
    247 	void (*pr) __P((const char *, ...));
    248 {
    249 
    250 	if (pp->pr_entered_file != NULL)
    251 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    252 		    pp->pr_entered_file, pp->pr_entered_line);
    253 }
    254 #else
    255 #define	pr_log(pp, v, action, file, line)
    256 #define	pr_printlog(pp, pi, pr)
    257 #define	pr_enter(pp, file, line)
    258 #define	pr_leave(pp)
    259 #define	pr_enter_check(pp, pr)
    260 #endif /* DIAGNOSTIC */
    261 
    262 /*
    263  * Return the pool page header based on page address.
    264  */
    265 static __inline__ struct pool_item_header *
    266 pr_find_pagehead(pp, page)
    267 	struct pool *pp;
    268 	caddr_t page;
    269 {
    270 	struct pool_item_header *ph;
    271 
    272 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    273 		return ((struct pool_item_header *)(page + pp->pr_phoffset));
    274 
    275 	for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]);
    276 	     ph != NULL;
    277 	     ph = LIST_NEXT(ph, ph_hashlist)) {
    278 		if (ph->ph_page == page)
    279 			return (ph);
    280 	}
    281 	return (NULL);
    282 }
    283 
    284 /*
    285  * Remove a page from the pool.
    286  */
    287 static __inline__ void
    288 pr_rmpage(pp, ph)
    289 	struct pool *pp;
    290 	struct pool_item_header *ph;
    291 {
    292 
    293 	/*
    294 	 * If the page was idle, decrement the idle page count.
    295 	 */
    296 	if (ph->ph_nmissing == 0) {
    297 #ifdef DIAGNOSTIC
    298 		if (pp->pr_nidle == 0)
    299 			panic("pr_rmpage: nidle inconsistent");
    300 		if (pp->pr_nitems < pp->pr_itemsperpage)
    301 			panic("pr_rmpage: nitems inconsistent");
    302 #endif
    303 		pp->pr_nidle--;
    304 	}
    305 
    306 	pp->pr_nitems -= pp->pr_itemsperpage;
    307 
    308 	/*
    309 	 * Unlink a page from the pool and release it.
    310 	 */
    311 	TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    312 	(*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype);
    313 	pp->pr_npages--;
    314 	pp->pr_npagefree++;
    315 
    316 	if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    317 		int s;
    318 		LIST_REMOVE(ph, ph_hashlist);
    319 		s = splhigh();
    320 		pool_put(&phpool, ph);
    321 		splx(s);
    322 	}
    323 
    324 	if (pp->pr_curpage == ph) {
    325 		/*
    326 		 * Find a new non-empty page header, if any.
    327 		 * Start search from the page head, to increase the
    328 		 * chance for "high water" pages to be freed.
    329 		 */
    330 		for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
    331 		     ph = TAILQ_NEXT(ph, ph_pagelist))
    332 			if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    333 				break;
    334 
    335 		pp->pr_curpage = ph;
    336 	}
    337 }
    338 
    339 /*
    340  * Allocate and initialize a pool.
    341  */
    342 struct pool *
    343 pool_create(size, align, ioff, nitems, wchan, pagesz, alloc, release, mtype)
    344 	size_t	size;
    345 	u_int	align;
    346 	u_int	ioff;
    347 	int	nitems;
    348 	const char *wchan;
    349 	size_t	pagesz;
    350 	void	*(*alloc) __P((unsigned long, int, int));
    351 	void	(*release) __P((void *, unsigned long, int));
    352 	int	mtype;
    353 {
    354 	struct pool *pp;
    355 	int flags;
    356 
    357 	pp = (struct pool *)malloc(sizeof(*pp), M_POOL, M_NOWAIT);
    358 	if (pp == NULL)
    359 		return (NULL);
    360 
    361 	flags = PR_FREEHEADER;
    362 	pool_init(pp, size, align, ioff, flags, wchan, pagesz,
    363 		  alloc, release, mtype);
    364 
    365 	if (nitems != 0) {
    366 		if (pool_prime(pp, nitems, NULL) != 0) {
    367 			pool_destroy(pp);
    368 			return (NULL);
    369 		}
    370 	}
    371 
    372 	return (pp);
    373 }
    374 
    375 /*
    376  * Initialize the given pool resource structure.
    377  *
    378  * We export this routine to allow other kernel parts to declare
    379  * static pools that must be initialized before malloc() is available.
    380  */
    381 void
    382 pool_init(pp, size, align, ioff, flags, wchan, pagesz, alloc, release, mtype)
    383 	struct pool	*pp;
    384 	size_t		size;
    385 	u_int		align;
    386 	u_int		ioff;
    387 	int		flags;
    388 	const char	*wchan;
    389 	size_t		pagesz;
    390 	void		*(*alloc) __P((unsigned long, int, int));
    391 	void		(*release) __P((void *, unsigned long, int));
    392 	int		mtype;
    393 {
    394 	int off, slack, i;
    395 
    396 #ifdef POOL_DIAGNOSTIC
    397 	/*
    398 	 * Always log if POOL_DIAGNOSTIC is defined.
    399 	 */
    400 	if (pool_logsize != 0)
    401 		flags |= PR_LOGGING;
    402 #endif
    403 
    404 	/*
    405 	 * Check arguments and construct default values.
    406 	 */
    407 	if (!powerof2(pagesz))
    408 		panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz);
    409 
    410 	if (alloc == NULL && release == NULL) {
    411 		alloc = pool_page_alloc;
    412 		release = pool_page_free;
    413 		pagesz = PAGE_SIZE;	/* Rounds to PAGE_SIZE anyhow. */
    414 	} else if ((alloc != NULL && release != NULL) == 0) {
    415 		/* If you specifiy one, must specify both. */
    416 		panic("pool_init: must specify alloc and release together");
    417 	}
    418 
    419 	if (pagesz == 0)
    420 		pagesz = PAGE_SIZE;
    421 
    422 	if (align == 0)
    423 		align = ALIGN(1);
    424 
    425 	if (size < sizeof(struct pool_item))
    426 		size = sizeof(struct pool_item);
    427 
    428 	size = ALIGN(size);
    429 	if (size >= pagesz)
    430 		panic("pool_init: pool item size (%lu) too large",
    431 		      (u_long)size);
    432 
    433 	/*
    434 	 * Initialize the pool structure.
    435 	 */
    436 	TAILQ_INIT(&pp->pr_pagelist);
    437 	pp->pr_curpage = NULL;
    438 	pp->pr_npages = 0;
    439 	pp->pr_minitems = 0;
    440 	pp->pr_minpages = 0;
    441 	pp->pr_maxpages = UINT_MAX;
    442 	pp->pr_roflags = flags;
    443 	pp->pr_flags = 0;
    444 	pp->pr_size = size;
    445 	pp->pr_align = align;
    446 	pp->pr_wchan = wchan;
    447 	pp->pr_mtype = mtype;
    448 	pp->pr_alloc = alloc;
    449 	pp->pr_free = release;
    450 	pp->pr_pagesz = pagesz;
    451 	pp->pr_pagemask = ~(pagesz - 1);
    452 	pp->pr_pageshift = ffs(pagesz) - 1;
    453 	pp->pr_nitems = 0;
    454 	pp->pr_nout = 0;
    455 	pp->pr_hardlimit = UINT_MAX;
    456 	pp->pr_hardlimit_warning = NULL;
    457 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    458 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    459 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    460 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    461 
    462 	/*
    463 	 * Decide whether to put the page header off page to avoid
    464 	 * wasting too large a part of the page. Off-page page headers
    465 	 * go on a hash table, so we can match a returned item
    466 	 * with its header based on the page address.
    467 	 * We use 1/16 of the page size as the threshold (XXX: tune)
    468 	 */
    469 	if (pp->pr_size < pagesz/16) {
    470 		/* Use the end of the page for the page header */
    471 		pp->pr_roflags |= PR_PHINPAGE;
    472 		pp->pr_phoffset = off =
    473 			pagesz - ALIGN(sizeof(struct pool_item_header));
    474 	} else {
    475 		/* The page header will be taken from our page header pool */
    476 		pp->pr_phoffset = 0;
    477 		off = pagesz;
    478 		for (i = 0; i < PR_HASHTABSIZE; i++) {
    479 			LIST_INIT(&pp->pr_hashtab[i]);
    480 		}
    481 	}
    482 
    483 	/*
    484 	 * Alignment is to take place at `ioff' within the item. This means
    485 	 * we must reserve up to `align - 1' bytes on the page to allow
    486 	 * appropriate positioning of each item.
    487 	 *
    488 	 * Silently enforce `0 <= ioff < align'.
    489 	 */
    490 	pp->pr_itemoffset = ioff = ioff % align;
    491 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    492 
    493 	/*
    494 	 * Use the slack between the chunks and the page header
    495 	 * for "cache coloring".
    496 	 */
    497 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    498 	pp->pr_maxcolor = (slack / align) * align;
    499 	pp->pr_curcolor = 0;
    500 
    501 	pp->pr_nget = 0;
    502 	pp->pr_nfail = 0;
    503 	pp->pr_nput = 0;
    504 	pp->pr_npagealloc = 0;
    505 	pp->pr_npagefree = 0;
    506 	pp->pr_hiwat = 0;
    507 	pp->pr_nidle = 0;
    508 
    509 	if (flags & PR_LOGGING) {
    510 		if (kmem_map == NULL ||
    511 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    512 		     M_TEMP, M_NOWAIT)) == NULL)
    513 			pp->pr_roflags &= ~PR_LOGGING;
    514 		pp->pr_curlogentry = 0;
    515 		pp->pr_logsize = pool_logsize;
    516 	}
    517 
    518 	pp->pr_entered_file = NULL;
    519 	pp->pr_entered_line = 0;
    520 
    521 	simple_lock_init(&pp->pr_slock);
    522 
    523 	/*
    524 	 * Initialize private page header pool if we haven't done so yet.
    525 	 * XXX LOCKING.
    526 	 */
    527 	if (phpool.pr_size == 0) {
    528 		pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
    529 			  0, "phpool", 0, 0, 0, 0);
    530 	}
    531 
    532 	/* Insert into the list of all pools. */
    533 	simple_lock(&pool_head_slock);
    534 	TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    535 	simple_unlock(&pool_head_slock);
    536 }
    537 
    538 /*
    539  * De-commision a pool resource.
    540  */
    541 void
    542 pool_destroy(pp)
    543 	struct pool *pp;
    544 {
    545 	struct pool_item_header *ph;
    546 
    547 #ifdef DIAGNOSTIC
    548 	if (pp->pr_nout != 0) {
    549 		pr_printlog(pp, NULL, printf);
    550 		panic("pool_destroy: pool busy: still out: %u\n",
    551 		    pp->pr_nout);
    552 	}
    553 #endif
    554 
    555 	/* Remove all pages */
    556 	if ((pp->pr_roflags & PR_STATIC) == 0)
    557 		while ((ph = pp->pr_pagelist.tqh_first) != NULL)
    558 			pr_rmpage(pp, ph);
    559 
    560 	/* Remove from global pool list */
    561 	simple_lock(&pool_head_slock);
    562 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    563 	/* XXX Only clear this if we were drainpp? */
    564 	drainpp = NULL;
    565 	simple_unlock(&pool_head_slock);
    566 
    567 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    568 		free(pp->pr_log, M_TEMP);
    569 
    570 	if (pp->pr_roflags & PR_FREEHEADER)
    571 		free(pp, M_POOL);
    572 }
    573 
    574 
    575 /*
    576  * Grab an item from the pool; must be called at appropriate spl level
    577  */
    578 void *
    579 _pool_get(pp, flags, file, line)
    580 	struct pool *pp;
    581 	int flags;
    582 	const char *file;
    583 	long line;
    584 {
    585 	void *v;
    586 	struct pool_item *pi;
    587 	struct pool_item_header *ph;
    588 
    589 #ifdef DIAGNOSTIC
    590 	if (__predict_false((pp->pr_roflags & PR_STATIC) &&
    591 			    (flags & PR_MALLOCOK))) {
    592 		pr_printlog(pp, NULL, printf);
    593 		panic("pool_get: static");
    594 	}
    595 #endif
    596 
    597 	if (__predict_false(curproc == NULL && doing_shutdown == 0 &&
    598 			    (flags & PR_WAITOK) != 0))
    599 		panic("pool_get: must have NOWAIT");
    600 
    601 	simple_lock(&pp->pr_slock);
    602 	pr_enter(pp, file, line);
    603 
    604  startover:
    605 	/*
    606 	 * Check to see if we've reached the hard limit.  If we have,
    607 	 * and we can wait, then wait until an item has been returned to
    608 	 * the pool.
    609 	 */
    610 #ifdef DIAGNOSTIC
    611 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
    612 		pr_leave(pp);
    613 		simple_unlock(&pp->pr_slock);
    614 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
    615 	}
    616 #endif
    617 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    618 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    619 			/*
    620 			 * XXX: A warning isn't logged in this case.  Should
    621 			 * it be?
    622 			 */
    623 			pp->pr_flags |= PR_WANTED;
    624 			pr_leave(pp);
    625 			simple_unlock(&pp->pr_slock);
    626 			tsleep((caddr_t)pp, PSWP, pp->pr_wchan, 0);
    627 			simple_lock(&pp->pr_slock);
    628 			pr_enter(pp, file, line);
    629 			goto startover;
    630 		}
    631 
    632 		/*
    633 		 * Log a message that the hard limit has been hit.
    634 		 */
    635 		if (pp->pr_hardlimit_warning != NULL &&
    636 		    ratecheck(&pp->pr_hardlimit_warning_last,
    637 			      &pp->pr_hardlimit_ratecap))
    638 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    639 
    640 		if (flags & PR_URGENT)
    641 			panic("pool_get: urgent");
    642 
    643 		pp->pr_nfail++;
    644 
    645 		pr_leave(pp);
    646 		simple_unlock(&pp->pr_slock);
    647 		return (NULL);
    648 	}
    649 
    650 	/*
    651 	 * The convention we use is that if `curpage' is not NULL, then
    652 	 * it points at a non-empty bucket. In particular, `curpage'
    653 	 * never points at a page header which has PR_PHINPAGE set and
    654 	 * has no items in its bucket.
    655 	 */
    656 	if ((ph = pp->pr_curpage) == NULL) {
    657 		void *v;
    658 
    659 #ifdef DIAGNOSTIC
    660 		if (pp->pr_nitems != 0) {
    661 			simple_unlock(&pp->pr_slock);
    662 			printf("pool_get: %s: curpage NULL, nitems %u\n",
    663 			    pp->pr_wchan, pp->pr_nitems);
    664 			panic("pool_get: nitems inconsistent\n");
    665 		}
    666 #endif
    667 
    668 		/*
    669 		 * Call the back-end page allocator for more memory.
    670 		 * Release the pool lock, as the back-end page allocator
    671 		 * may block.
    672 		 */
    673 		pr_leave(pp);
    674 		simple_unlock(&pp->pr_slock);
    675 		v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype);
    676 		simple_lock(&pp->pr_slock);
    677 		pr_enter(pp, file, line);
    678 
    679 		if (v == NULL) {
    680 			/*
    681 			 * We were unable to allocate a page, but
    682 			 * we released the lock during allocation,
    683 			 * so perhaps items were freed back to the
    684 			 * pool.  Check for this case.
    685 			 */
    686 			if (pp->pr_curpage != NULL)
    687 				goto startover;
    688 
    689 			if (flags & PR_URGENT)
    690 				panic("pool_get: urgent");
    691 
    692 			if ((flags & PR_WAITOK) == 0) {
    693 				pp->pr_nfail++;
    694 				pr_leave(pp);
    695 				simple_unlock(&pp->pr_slock);
    696 				return (NULL);
    697 			}
    698 
    699 			/*
    700 			 * Wait for items to be returned to this pool.
    701 			 *
    702 			 * XXX: we actually want to wait just until
    703 			 * the page allocator has memory again. Depending
    704 			 * on this pool's usage, we might get stuck here
    705 			 * for a long time.
    706 			 *
    707 			 * XXX: maybe we should wake up once a second and
    708 			 * try again?
    709 			 */
    710 			pp->pr_flags |= PR_WANTED;
    711 			pr_leave(pp);
    712 			simple_unlock(&pp->pr_slock);
    713 			tsleep((caddr_t)pp, PSWP, pp->pr_wchan, 0);
    714 			simple_lock(&pp->pr_slock);
    715 			pr_enter(pp, file, line);
    716 			goto startover;
    717 		}
    718 
    719 		/* We have more memory; add it to the pool */
    720 		pp->pr_npagealloc++;
    721 		pool_prime_page(pp, v);
    722 
    723 		/* Start the allocation process over. */
    724 		goto startover;
    725 	}
    726 
    727 	if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
    728 		pr_leave(pp);
    729 		simple_unlock(&pp->pr_slock);
    730 		panic("pool_get: %s: page empty", pp->pr_wchan);
    731 	}
    732 #ifdef DIAGNOSTIC
    733 	if (__predict_false(pp->pr_nitems == 0)) {
    734 		pr_leave(pp);
    735 		simple_unlock(&pp->pr_slock);
    736 		printf("pool_get: %s: items on itemlist, nitems %u\n",
    737 		    pp->pr_wchan, pp->pr_nitems);
    738 		panic("pool_get: nitems inconsistent\n");
    739 	}
    740 #endif
    741 	pr_log(pp, v, PRLOG_GET, file, line);
    742 
    743 #ifdef DIAGNOSTIC
    744 	if (__predict_false(pi->pi_magic != PI_MAGIC)) {
    745 		pr_printlog(pp, pi, printf);
    746 		panic("pool_get(%s): free list modified: magic=%x; page %p;"
    747 		       " item addr %p\n",
    748 			pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    749 	}
    750 #endif
    751 
    752 	/*
    753 	 * Remove from item list.
    754 	 */
    755 	TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
    756 	pp->pr_nitems--;
    757 	pp->pr_nout++;
    758 	if (ph->ph_nmissing == 0) {
    759 #ifdef DIAGNOSTIC
    760 		if (__predict_false(pp->pr_nidle == 0))
    761 			panic("pool_get: nidle inconsistent");
    762 #endif
    763 		pp->pr_nidle--;
    764 	}
    765 	ph->ph_nmissing++;
    766 	if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) {
    767 #ifdef DIAGNOSTIC
    768 		if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
    769 			pr_leave(pp);
    770 			simple_unlock(&pp->pr_slock);
    771 			panic("pool_get: %s: nmissing inconsistent",
    772 			    pp->pr_wchan);
    773 		}
    774 #endif
    775 		/*
    776 		 * Find a new non-empty page header, if any.
    777 		 * Start search from the page head, to increase
    778 		 * the chance for "high water" pages to be freed.
    779 		 *
    780 		 * Migrate empty pages to the end of the list.  This
    781 		 * will speed the update of curpage as pages become
    782 		 * idle.  Empty pages intermingled with idle pages
    783 		 * is no big deal.  As soon as a page becomes un-empty,
    784 		 * it will move back to the head of the list.
    785 		 */
    786 		TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    787 		TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
    788 		for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
    789 		     ph = TAILQ_NEXT(ph, ph_pagelist))
    790 			if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    791 				break;
    792 
    793 		pp->pr_curpage = ph;
    794 	}
    795 
    796 	pp->pr_nget++;
    797 
    798 	/*
    799 	 * If we have a low water mark and we are now below that low
    800 	 * water mark, add more items to the pool.
    801 	 */
    802 	if (pp->pr_nitems < pp->pr_minitems && pool_catchup(pp) != 0) {
    803 		/*
    804 		 * XXX: Should we log a warning?  Should we set up a timeout
    805 		 * to try again in a second or so?  The latter could break
    806 		 * a caller's assumptions about interrupt protection, etc.
    807 		 */
    808 	}
    809 
    810 	pr_leave(pp);
    811 	simple_unlock(&pp->pr_slock);
    812 	return (v);
    813 }
    814 
    815 /*
    816  * Return resource to the pool; must be called at appropriate spl level
    817  */
    818 void
    819 _pool_put(pp, v, file, line)
    820 	struct pool *pp;
    821 	void *v;
    822 	const char *file;
    823 	long line;
    824 {
    825 	struct pool_item *pi = v;
    826 	struct pool_item_header *ph;
    827 	caddr_t page;
    828 	int s;
    829 
    830 	page = (caddr_t)((u_long)v & pp->pr_pagemask);
    831 
    832 	simple_lock(&pp->pr_slock);
    833 	pr_enter(pp, file, line);
    834 
    835 #ifdef DIAGNOSTIC
    836 	if (__predict_false(pp->pr_nout == 0)) {
    837 		printf("pool %s: putting with none out\n",
    838 		    pp->pr_wchan);
    839 		panic("pool_put");
    840 	}
    841 #endif
    842 
    843 	pr_log(pp, v, PRLOG_PUT, file, line);
    844 
    845 	if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
    846 		pr_printlog(pp, NULL, printf);
    847 		panic("pool_put: %s: page header missing", pp->pr_wchan);
    848 	}
    849 
    850 #ifdef LOCKDEBUG
    851 	/*
    852 	 * Check if we're freeing a locked simple lock.
    853 	 */
    854 	simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
    855 #endif
    856 
    857 	/*
    858 	 * Return to item list.
    859 	 */
    860 #ifdef DIAGNOSTIC
    861 	pi->pi_magic = PI_MAGIC;
    862 #endif
    863 #ifdef DEBUG
    864 	{
    865 		int i, *ip = v;
    866 
    867 		for (i = 0; i < pp->pr_size / sizeof(int); i++) {
    868 			*ip++ = PI_MAGIC;
    869 		}
    870 	}
    871 #endif
    872 
    873 	TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    874 	ph->ph_nmissing--;
    875 	pp->pr_nput++;
    876 	pp->pr_nitems++;
    877 	pp->pr_nout--;
    878 
    879 	/* Cancel "pool empty" condition if it exists */
    880 	if (pp->pr_curpage == NULL)
    881 		pp->pr_curpage = ph;
    882 
    883 	if (pp->pr_flags & PR_WANTED) {
    884 		pp->pr_flags &= ~PR_WANTED;
    885 		if (ph->ph_nmissing == 0)
    886 			pp->pr_nidle++;
    887 		pr_leave(pp);
    888 		simple_unlock(&pp->pr_slock);
    889 		wakeup((caddr_t)pp);
    890 		return;
    891 	}
    892 
    893 	/*
    894 	 * If this page is now complete, do one of two things:
    895 	 *
    896 	 *	(1) If we have more pages than the page high water
    897 	 *	    mark, free the page back to the system.
    898 	 *
    899 	 *	(2) Move it to the end of the page list, so that
    900 	 *	    we minimize our chances of fragmenting the
    901 	 *	    pool.  Idle pages migrate to the end (along with
    902 	 *	    completely empty pages, so that we find un-empty
    903 	 *	    pages more quickly when we update curpage) of the
    904 	 *	    list so they can be more easily swept up by
    905 	 *	    the pagedaemon when pages are scarce.
    906 	 */
    907 	if (ph->ph_nmissing == 0) {
    908 		pp->pr_nidle++;
    909 		if (pp->pr_npages > pp->pr_maxpages) {
    910 			pr_rmpage(pp, ph);
    911 		} else {
    912 			TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    913 			TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
    914 
    915 			/*
    916 			 * Update the timestamp on the page.  A page must
    917 			 * be idle for some period of time before it can
    918 			 * be reclaimed by the pagedaemon.  This minimizes
    919 			 * ping-pong'ing for memory.
    920 			 */
    921 			s = splclock();
    922 			ph->ph_time = mono_time;
    923 			splx(s);
    924 
    925 			/*
    926 			 * Update the current page pointer.  Just look for
    927 			 * the first page with any free items.
    928 			 *
    929 			 * XXX: Maybe we want an option to look for the
    930 			 * page with the fewest available items, to minimize
    931 			 * fragmentation?
    932 			 */
    933 			for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
    934 			     ph = TAILQ_NEXT(ph, ph_pagelist))
    935 				if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    936 					break;
    937 
    938 			pp->pr_curpage = ph;
    939 		}
    940 	}
    941 	/*
    942 	 * If the page has just become un-empty, move it to the head of
    943 	 * the list, and make it the current page.  The next allocation
    944 	 * will get the item from this page, instead of further fragmenting
    945 	 * the pool.
    946 	 */
    947 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
    948 		TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    949 		TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
    950 		pp->pr_curpage = ph;
    951 	}
    952 
    953 	pr_leave(pp);
    954 	simple_unlock(&pp->pr_slock);
    955 
    956 }
    957 
    958 /*
    959  * Add N items to the pool.
    960  */
    961 int
    962 pool_prime(pp, n, storage)
    963 	struct pool *pp;
    964 	int n;
    965 	caddr_t storage;
    966 {
    967 	caddr_t cp;
    968 	int newnitems, newpages;
    969 
    970 #ifdef DIAGNOSTIC
    971 	if (__predict_false(storage && !(pp->pr_roflags & PR_STATIC)))
    972 		panic("pool_prime: static");
    973 	/* !storage && static caught below */
    974 #endif
    975 
    976 	simple_lock(&pp->pr_slock);
    977 
    978 	newnitems = pp->pr_minitems + n;
    979 	newpages =
    980 		roundup(newnitems, pp->pr_itemsperpage) / pp->pr_itemsperpage
    981 		- pp->pr_minpages;
    982 
    983 	while (newpages-- > 0) {
    984 		if (pp->pr_roflags & PR_STATIC) {
    985 			cp = storage;
    986 			storage += pp->pr_pagesz;
    987 		} else {
    988 			simple_unlock(&pp->pr_slock);
    989 			cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
    990 			simple_lock(&pp->pr_slock);
    991 		}
    992 
    993 		if (cp == NULL) {
    994 			simple_unlock(&pp->pr_slock);
    995 			return (ENOMEM);
    996 		}
    997 
    998 		pp->pr_npagealloc++;
    999 		pool_prime_page(pp, cp);
   1000 		pp->pr_minpages++;
   1001 	}
   1002 
   1003 	pp->pr_minitems = newnitems;
   1004 
   1005 	if (pp->pr_minpages >= pp->pr_maxpages)
   1006 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1007 
   1008 	simple_unlock(&pp->pr_slock);
   1009 	return (0);
   1010 }
   1011 
   1012 /*
   1013  * Add a page worth of items to the pool.
   1014  *
   1015  * Note, we must be called with the pool descriptor LOCKED.
   1016  */
   1017 static void
   1018 pool_prime_page(pp, storage)
   1019 	struct pool *pp;
   1020 	caddr_t storage;
   1021 {
   1022 	struct pool_item *pi;
   1023 	struct pool_item_header *ph;
   1024 	caddr_t cp = storage;
   1025 	unsigned int align = pp->pr_align;
   1026 	unsigned int ioff = pp->pr_itemoffset;
   1027 	int s, n;
   1028 
   1029 	if (((u_long)cp & (pp->pr_pagesz - 1)) != 0)
   1030 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1031 
   1032 	if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   1033 		ph = (struct pool_item_header *)(cp + pp->pr_phoffset);
   1034 	} else {
   1035 		s = splhigh();
   1036 		ph = pool_get(&phpool, PR_URGENT);
   1037 		splx(s);
   1038 		LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)],
   1039 				 ph, ph_hashlist);
   1040 	}
   1041 
   1042 	/*
   1043 	 * Insert page header.
   1044 	 */
   1045 	TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
   1046 	TAILQ_INIT(&ph->ph_itemlist);
   1047 	ph->ph_page = storage;
   1048 	ph->ph_nmissing = 0;
   1049 	memset(&ph->ph_time, 0, sizeof(ph->ph_time));
   1050 
   1051 	pp->pr_nidle++;
   1052 
   1053 	/*
   1054 	 * Color this page.
   1055 	 */
   1056 	cp = (caddr_t)(cp + pp->pr_curcolor);
   1057 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1058 		pp->pr_curcolor = 0;
   1059 
   1060 	/*
   1061 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1062 	 */
   1063 	if (ioff != 0)
   1064 		cp = (caddr_t)(cp + (align - ioff));
   1065 
   1066 	/*
   1067 	 * Insert remaining chunks on the bucket list.
   1068 	 */
   1069 	n = pp->pr_itemsperpage;
   1070 	pp->pr_nitems += n;
   1071 
   1072 	while (n--) {
   1073 		pi = (struct pool_item *)cp;
   1074 
   1075 		/* Insert on page list */
   1076 		TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
   1077 #ifdef DIAGNOSTIC
   1078 		pi->pi_magic = PI_MAGIC;
   1079 #endif
   1080 		cp = (caddr_t)(cp + pp->pr_size);
   1081 	}
   1082 
   1083 	/*
   1084 	 * If the pool was depleted, point at the new page.
   1085 	 */
   1086 	if (pp->pr_curpage == NULL)
   1087 		pp->pr_curpage = ph;
   1088 
   1089 	if (++pp->pr_npages > pp->pr_hiwat)
   1090 		pp->pr_hiwat = pp->pr_npages;
   1091 }
   1092 
   1093 /*
   1094  * Like pool_prime(), except this is used by pool_get() when nitems
   1095  * drops below the low water mark.  This is used to catch up nitmes
   1096  * with the low water mark.
   1097  *
   1098  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1099  *
   1100  * Note 2, this doesn't work with static pools.
   1101  *
   1102  * Note 3, we must be called with the pool already locked, and we return
   1103  * with it locked.
   1104  */
   1105 static int
   1106 pool_catchup(pp)
   1107 	struct pool *pp;
   1108 {
   1109 	caddr_t cp;
   1110 	int error = 0;
   1111 
   1112 	if (pp->pr_roflags & PR_STATIC) {
   1113 		/*
   1114 		 * We dropped below the low water mark, and this is not a
   1115 		 * good thing.  Log a warning.
   1116 		 *
   1117 		 * XXX: rate-limit this?
   1118 		 */
   1119 		printf("WARNING: static pool `%s' dropped below low water "
   1120 		    "mark\n", pp->pr_wchan);
   1121 		return (0);
   1122 	}
   1123 
   1124 	while (pp->pr_nitems < pp->pr_minitems) {
   1125 		/*
   1126 		 * Call the page back-end allocator for more memory.
   1127 		 *
   1128 		 * XXX: We never wait, so should we bother unlocking
   1129 		 * the pool descriptor?
   1130 		 */
   1131 		simple_unlock(&pp->pr_slock);
   1132 		cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
   1133 		simple_lock(&pp->pr_slock);
   1134 		if (__predict_false(cp == NULL)) {
   1135 			error = ENOMEM;
   1136 			break;
   1137 		}
   1138 		pp->pr_npagealloc++;
   1139 		pool_prime_page(pp, cp);
   1140 	}
   1141 
   1142 	return (error);
   1143 }
   1144 
   1145 void
   1146 pool_setlowat(pp, n)
   1147 	pool_handle_t	pp;
   1148 	int n;
   1149 {
   1150 	int error;
   1151 
   1152 	simple_lock(&pp->pr_slock);
   1153 
   1154 	pp->pr_minitems = n;
   1155 	pp->pr_minpages = (n == 0)
   1156 		? 0
   1157 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1158 
   1159 	/* Make sure we're caught up with the newly-set low water mark. */
   1160 	if ((error = pool_catchup(pp)) != 0) {
   1161 		/*
   1162 		 * XXX: Should we log a warning?  Should we set up a timeout
   1163 		 * to try again in a second or so?  The latter could break
   1164 		 * a caller's assumptions about interrupt protection, etc.
   1165 		 */
   1166 	}
   1167 
   1168 	simple_unlock(&pp->pr_slock);
   1169 }
   1170 
   1171 void
   1172 pool_sethiwat(pp, n)
   1173 	pool_handle_t	pp;
   1174 	int n;
   1175 {
   1176 
   1177 	simple_lock(&pp->pr_slock);
   1178 
   1179 	pp->pr_maxpages = (n == 0)
   1180 		? 0
   1181 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1182 
   1183 	simple_unlock(&pp->pr_slock);
   1184 }
   1185 
   1186 void
   1187 pool_sethardlimit(pp, n, warnmess, ratecap)
   1188 	pool_handle_t pp;
   1189 	int n;
   1190 	const char *warnmess;
   1191 	int ratecap;
   1192 {
   1193 
   1194 	simple_lock(&pp->pr_slock);
   1195 
   1196 	pp->pr_hardlimit = n;
   1197 	pp->pr_hardlimit_warning = warnmess;
   1198 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1199 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1200 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1201 
   1202 	/*
   1203 	 * In-line version of pool_sethiwat(), because we don't want to
   1204 	 * release the lock.
   1205 	 */
   1206 	pp->pr_maxpages = (n == 0)
   1207 		? 0
   1208 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1209 
   1210 	simple_unlock(&pp->pr_slock);
   1211 }
   1212 
   1213 /*
   1214  * Default page allocator.
   1215  */
   1216 static void *
   1217 pool_page_alloc(sz, flags, mtype)
   1218 	unsigned long sz;
   1219 	int flags;
   1220 	int mtype;
   1221 {
   1222 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   1223 
   1224 	return ((void *)uvm_km_alloc_poolpage(waitok));
   1225 }
   1226 
   1227 static void
   1228 pool_page_free(v, sz, mtype)
   1229 	void *v;
   1230 	unsigned long sz;
   1231 	int mtype;
   1232 {
   1233 
   1234 	uvm_km_free_poolpage((vaddr_t)v);
   1235 }
   1236 
   1237 /*
   1238  * Alternate pool page allocator for pools that know they will
   1239  * never be accessed in interrupt context.
   1240  */
   1241 void *
   1242 pool_page_alloc_nointr(sz, flags, mtype)
   1243 	unsigned long sz;
   1244 	int flags;
   1245 	int mtype;
   1246 {
   1247 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   1248 
   1249 	return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object,
   1250 	    waitok));
   1251 }
   1252 
   1253 void
   1254 pool_page_free_nointr(v, sz, mtype)
   1255 	void *v;
   1256 	unsigned long sz;
   1257 	int mtype;
   1258 {
   1259 
   1260 	uvm_km_free_poolpage1(kernel_map, (vaddr_t)v);
   1261 }
   1262 
   1263 
   1264 /*
   1265  * Release all complete pages that have not been used recently.
   1266  */
   1267 void
   1268 _pool_reclaim(pp, file, line)
   1269 	pool_handle_t pp;
   1270 	const char *file;
   1271 	long line;
   1272 {
   1273 	struct pool_item_header *ph, *phnext;
   1274 	struct timeval curtime;
   1275 	int s;
   1276 
   1277 	if (pp->pr_roflags & PR_STATIC)
   1278 		return;
   1279 
   1280 	if (simple_lock_try(&pp->pr_slock) == 0)
   1281 		return;
   1282 	pr_enter(pp, file, line);
   1283 
   1284 	s = splclock();
   1285 	curtime = mono_time;
   1286 	splx(s);
   1287 
   1288 	for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) {
   1289 		phnext = TAILQ_NEXT(ph, ph_pagelist);
   1290 
   1291 		/* Check our minimum page claim */
   1292 		if (pp->pr_npages <= pp->pr_minpages)
   1293 			break;
   1294 
   1295 		if (ph->ph_nmissing == 0) {
   1296 			struct timeval diff;
   1297 			timersub(&curtime, &ph->ph_time, &diff);
   1298 			if (diff.tv_sec < pool_inactive_time)
   1299 				continue;
   1300 
   1301 			/*
   1302 			 * If freeing this page would put us below
   1303 			 * the low water mark, stop now.
   1304 			 */
   1305 			if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1306 			    pp->pr_minitems)
   1307 				break;
   1308 
   1309 			pr_rmpage(pp, ph);
   1310 		}
   1311 	}
   1312 
   1313 	pr_leave(pp);
   1314 	simple_unlock(&pp->pr_slock);
   1315 }
   1316 
   1317 
   1318 /*
   1319  * Drain pools, one at a time.
   1320  *
   1321  * Note, we must never be called from an interrupt context.
   1322  */
   1323 void
   1324 pool_drain(arg)
   1325 	void *arg;
   1326 {
   1327 	struct pool *pp;
   1328 	int s;
   1329 
   1330 	s = splimp();
   1331 	simple_lock(&pool_head_slock);
   1332 
   1333 	if (drainpp == NULL && (drainpp = TAILQ_FIRST(&pool_head)) == NULL)
   1334 		goto out;
   1335 
   1336 	pp = drainpp;
   1337 	drainpp = TAILQ_NEXT(pp, pr_poollist);
   1338 
   1339 	pool_reclaim(pp);
   1340 
   1341  out:
   1342 	simple_unlock(&pool_head_slock);
   1343 	splx(s);
   1344 }
   1345 
   1346 
   1347 /*
   1348  * Diagnostic helpers.
   1349  */
   1350 void
   1351 pool_print(pp, modif)
   1352 	struct pool *pp;
   1353 	const char *modif;
   1354 {
   1355 	int s;
   1356 
   1357 	s = splimp();
   1358 	if (simple_lock_try(&pp->pr_slock) == 0) {
   1359 		printf("pool %s is locked; try again later\n",
   1360 		    pp->pr_wchan);
   1361 		splx(s);
   1362 		return;
   1363 	}
   1364 	pool_print1(pp, modif, printf);
   1365 	simple_unlock(&pp->pr_slock);
   1366 	splx(s);
   1367 }
   1368 
   1369 void
   1370 pool_printit(pp, modif, pr)
   1371 	struct pool *pp;
   1372 	const char *modif;
   1373 	void (*pr) __P((const char *, ...));
   1374 {
   1375 	int didlock = 0;
   1376 
   1377 	if (pp == NULL) {
   1378 		(*pr)("Must specify a pool to print.\n");
   1379 		return;
   1380 	}
   1381 
   1382 	/*
   1383 	 * Called from DDB; interrupts should be blocked, and all
   1384 	 * other processors should be paused.  We can skip locking
   1385 	 * the pool in this case.
   1386 	 *
   1387 	 * We do a simple_lock_try() just to print the lock
   1388 	 * status, however.
   1389 	 */
   1390 
   1391 	if (simple_lock_try(&pp->pr_slock) == 0)
   1392 		(*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
   1393 	else
   1394 		didlock = 1;
   1395 
   1396 	pool_print1(pp, modif, pr);
   1397 
   1398 	if (didlock)
   1399 		simple_unlock(&pp->pr_slock);
   1400 }
   1401 
   1402 static void
   1403 pool_print1(pp, modif, pr)
   1404 	struct pool *pp;
   1405 	const char *modif;
   1406 	void (*pr) __P((const char *, ...));
   1407 {
   1408 	struct pool_item_header *ph;
   1409 #ifdef DIAGNOSTIC
   1410 	struct pool_item *pi;
   1411 #endif
   1412 	int print_log = 0, print_pagelist = 0;
   1413 	char c;
   1414 
   1415 	while ((c = *modif++) != '\0') {
   1416 		if (c == 'l')
   1417 			print_log = 1;
   1418 		if (c == 'p')
   1419 			print_pagelist = 1;
   1420 		modif++;
   1421 	}
   1422 
   1423 	(*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1424 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1425 	    pp->pr_roflags);
   1426 	(*pr)("\tpagesz %u, mtype %d\n", pp->pr_pagesz, pp->pr_mtype);
   1427 	(*pr)("\talloc %p, release %p\n", pp->pr_alloc, pp->pr_free);
   1428 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1429 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1430 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1431 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1432 
   1433 	(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
   1434 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1435 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1436 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1437 
   1438 	if (print_pagelist == 0)
   1439 		goto skip_pagelist;
   1440 
   1441 	if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
   1442 		(*pr)("\n\tpage list:\n");
   1443 	for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) {
   1444 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
   1445 		    ph->ph_page, ph->ph_nmissing,
   1446 		    (u_long)ph->ph_time.tv_sec,
   1447 		    (u_long)ph->ph_time.tv_usec);
   1448 #ifdef DIAGNOSTIC
   1449 		for (pi = TAILQ_FIRST(&ph->ph_itemlist); pi != NULL;
   1450 		     pi = TAILQ_NEXT(pi, pi_list)) {
   1451 			if (pi->pi_magic != PI_MAGIC) {
   1452 				(*pr)("\t\t\titem %p, magic 0x%x\n",
   1453 				    pi, pi->pi_magic);
   1454 			}
   1455 		}
   1456 #endif
   1457 	}
   1458 	if (pp->pr_curpage == NULL)
   1459 		(*pr)("\tno current page\n");
   1460 	else
   1461 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1462 
   1463  skip_pagelist:
   1464 
   1465 	if (print_log == 0)
   1466 		goto skip_log;
   1467 
   1468 	(*pr)("\n");
   1469 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1470 		(*pr)("\tno log\n");
   1471 	else
   1472 		pr_printlog(pp, NULL, pr);
   1473 
   1474  skip_log:
   1475 
   1476 	pr_enter_check(pp, pr);
   1477 }
   1478 
   1479 int
   1480 pool_chk(pp, label)
   1481 	struct pool *pp;
   1482 	char *label;
   1483 {
   1484 	struct pool_item_header *ph;
   1485 	int r = 0;
   1486 
   1487 	simple_lock(&pp->pr_slock);
   1488 
   1489 	for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
   1490 	     ph = TAILQ_NEXT(ph, ph_pagelist)) {
   1491 
   1492 		struct pool_item *pi;
   1493 		int n;
   1494 		caddr_t page;
   1495 
   1496 		page = (caddr_t)((u_long)ph & pp->pr_pagemask);
   1497 		if (page != ph->ph_page &&
   1498 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1499 			if (label != NULL)
   1500 				printf("%s: ", label);
   1501 			printf("pool(%p:%s): page inconsistency: page %p;"
   1502 			       " at page head addr %p (p %p)\n", pp,
   1503 				pp->pr_wchan, ph->ph_page,
   1504 				ph, page);
   1505 			r++;
   1506 			goto out;
   1507 		}
   1508 
   1509 		for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
   1510 		     pi != NULL;
   1511 		     pi = TAILQ_NEXT(pi,pi_list), n++) {
   1512 
   1513 #ifdef DIAGNOSTIC
   1514 			if (pi->pi_magic != PI_MAGIC) {
   1515 				if (label != NULL)
   1516 					printf("%s: ", label);
   1517 				printf("pool(%s): free list modified: magic=%x;"
   1518 				       " page %p; item ordinal %d;"
   1519 				       " addr %p (p %p)\n",
   1520 					pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1521 					n, pi, page);
   1522 				panic("pool");
   1523 			}
   1524 #endif
   1525 			page = (caddr_t)((u_long)pi & pp->pr_pagemask);
   1526 			if (page == ph->ph_page)
   1527 				continue;
   1528 
   1529 			if (label != NULL)
   1530 				printf("%s: ", label);
   1531 			printf("pool(%p:%s): page inconsistency: page %p;"
   1532 			       " item ordinal %d; addr %p (p %p)\n", pp,
   1533 				pp->pr_wchan, ph->ph_page,
   1534 				n, pi, page);
   1535 			r++;
   1536 			goto out;
   1537 		}
   1538 	}
   1539 out:
   1540 	simple_unlock(&pp->pr_slock);
   1541 	return (r);
   1542 }
   1543