subr_pool.c revision 1.39 1 /* $NetBSD: subr_pool.c,v 1.39 2000/06/27 17:41:34 mrg Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include "opt_pool.h"
41 #include "opt_poollog.h"
42 #include "opt_lockdebug.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/proc.h>
47 #include <sys/errno.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/lock.h>
51 #include <sys/pool.h>
52 #include <sys/syslog.h>
53
54 #include <uvm/uvm.h>
55
56 /*
57 * Pool resource management utility.
58 *
59 * Memory is allocated in pages which are split into pieces according
60 * to the pool item size. Each page is kept on a list headed by `pr_pagelist'
61 * in the pool structure and the individual pool items are on a linked list
62 * headed by `ph_itemlist' in each page header. The memory for building
63 * the page list is either taken from the allocated pages themselves (for
64 * small pool items) or taken from an internal pool of page headers (`phpool').
65 */
66
67 /* List of all pools */
68 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
69
70 /* Private pool for page header structures */
71 static struct pool phpool;
72
73 /* # of seconds to retain page after last use */
74 int pool_inactive_time = 10;
75
76 /* Next candidate for drainage (see pool_drain()) */
77 static struct pool *drainpp;
78
79 /* This spin lock protects both pool_head and drainpp. */
80 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
81
82 struct pool_item_header {
83 /* Page headers */
84 TAILQ_ENTRY(pool_item_header)
85 ph_pagelist; /* pool page list */
86 TAILQ_HEAD(,pool_item) ph_itemlist; /* chunk list for this page */
87 LIST_ENTRY(pool_item_header)
88 ph_hashlist; /* Off-page page headers */
89 int ph_nmissing; /* # of chunks in use */
90 caddr_t ph_page; /* this page's address */
91 struct timeval ph_time; /* last referenced */
92 };
93
94 struct pool_item {
95 #ifdef DIAGNOSTIC
96 int pi_magic;
97 #endif
98 #define PI_MAGIC 0xdeadbeef
99 /* Other entries use only this list entry */
100 TAILQ_ENTRY(pool_item) pi_list;
101 };
102
103
104 #define PR_HASH_INDEX(pp,addr) \
105 (((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1))
106
107
108
109 static struct pool_item_header
110 *pr_find_pagehead __P((struct pool *, caddr_t));
111 static void pr_rmpage __P((struct pool *, struct pool_item_header *));
112 static int pool_catchup __P((struct pool *));
113 static void pool_prime_page __P((struct pool *, caddr_t));
114 static void *pool_page_alloc __P((unsigned long, int, int));
115 static void pool_page_free __P((void *, unsigned long, int));
116
117 static void pool_print1 __P((struct pool *, const char *,
118 void (*)(const char *, ...)));
119
120 /*
121 * Pool log entry. An array of these is allocated in pool_create().
122 */
123 struct pool_log {
124 const char *pl_file;
125 long pl_line;
126 int pl_action;
127 #define PRLOG_GET 1
128 #define PRLOG_PUT 2
129 void *pl_addr;
130 };
131
132 /* Number of entries in pool log buffers */
133 #ifndef POOL_LOGSIZE
134 #define POOL_LOGSIZE 10
135 #endif
136
137 int pool_logsize = POOL_LOGSIZE;
138
139 #ifdef DIAGNOSTIC
140 static void pr_log __P((struct pool *, void *, int, const char *, long));
141 static void pr_printlog __P((struct pool *, struct pool_item *,
142 void (*)(const char *, ...)));
143 static void pr_enter __P((struct pool *, const char *, long));
144 static void pr_leave __P((struct pool *));
145 static void pr_enter_check __P((struct pool *,
146 void (*)(const char *, ...)));
147
148 static __inline__ void
149 pr_log(pp, v, action, file, line)
150 struct pool *pp;
151 void *v;
152 int action;
153 const char *file;
154 long line;
155 {
156 int n = pp->pr_curlogentry;
157 struct pool_log *pl;
158
159 if ((pp->pr_roflags & PR_LOGGING) == 0)
160 return;
161
162 /*
163 * Fill in the current entry. Wrap around and overwrite
164 * the oldest entry if necessary.
165 */
166 pl = &pp->pr_log[n];
167 pl->pl_file = file;
168 pl->pl_line = line;
169 pl->pl_action = action;
170 pl->pl_addr = v;
171 if (++n >= pp->pr_logsize)
172 n = 0;
173 pp->pr_curlogentry = n;
174 }
175
176 static void
177 pr_printlog(pp, pi, pr)
178 struct pool *pp;
179 struct pool_item *pi;
180 void (*pr) __P((const char *, ...));
181 {
182 int i = pp->pr_logsize;
183 int n = pp->pr_curlogentry;
184
185 if ((pp->pr_roflags & PR_LOGGING) == 0)
186 return;
187
188 /*
189 * Print all entries in this pool's log.
190 */
191 while (i-- > 0) {
192 struct pool_log *pl = &pp->pr_log[n];
193 if (pl->pl_action != 0) {
194 if (pi == NULL || pi == pl->pl_addr) {
195 (*pr)("\tlog entry %d:\n", i);
196 (*pr)("\t\taction = %s, addr = %p\n",
197 pl->pl_action == PRLOG_GET ? "get" : "put",
198 pl->pl_addr);
199 (*pr)("\t\tfile: %s at line %lu\n",
200 pl->pl_file, pl->pl_line);
201 }
202 }
203 if (++n >= pp->pr_logsize)
204 n = 0;
205 }
206 }
207
208 static __inline__ void
209 pr_enter(pp, file, line)
210 struct pool *pp;
211 const char *file;
212 long line;
213 {
214
215 if (__predict_false(pp->pr_entered_file != NULL)) {
216 printf("pool %s: reentrancy at file %s line %ld\n",
217 pp->pr_wchan, file, line);
218 printf(" previous entry at file %s line %ld\n",
219 pp->pr_entered_file, pp->pr_entered_line);
220 panic("pr_enter");
221 }
222
223 pp->pr_entered_file = file;
224 pp->pr_entered_line = line;
225 }
226
227 static __inline__ void
228 pr_leave(pp)
229 struct pool *pp;
230 {
231
232 if (__predict_false(pp->pr_entered_file == NULL)) {
233 printf("pool %s not entered?\n", pp->pr_wchan);
234 panic("pr_leave");
235 }
236
237 pp->pr_entered_file = NULL;
238 pp->pr_entered_line = 0;
239 }
240
241 static __inline__ void
242 pr_enter_check(pp, pr)
243 struct pool *pp;
244 void (*pr) __P((const char *, ...));
245 {
246
247 if (pp->pr_entered_file != NULL)
248 (*pr)("\n\tcurrently entered from file %s line %ld\n",
249 pp->pr_entered_file, pp->pr_entered_line);
250 }
251 #else
252 #define pr_log(pp, v, action, file, line)
253 #define pr_printlog(pp, pi, pr)
254 #define pr_enter(pp, file, line)
255 #define pr_leave(pp)
256 #define pr_enter_check(pp, pr)
257 #endif /* DIAGNOSTIC */
258
259 /*
260 * Return the pool page header based on page address.
261 */
262 static __inline__ struct pool_item_header *
263 pr_find_pagehead(pp, page)
264 struct pool *pp;
265 caddr_t page;
266 {
267 struct pool_item_header *ph;
268
269 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
270 return ((struct pool_item_header *)(page + pp->pr_phoffset));
271
272 for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]);
273 ph != NULL;
274 ph = LIST_NEXT(ph, ph_hashlist)) {
275 if (ph->ph_page == page)
276 return (ph);
277 }
278 return (NULL);
279 }
280
281 /*
282 * Remove a page from the pool.
283 */
284 static __inline__ void
285 pr_rmpage(pp, ph)
286 struct pool *pp;
287 struct pool_item_header *ph;
288 {
289
290 /*
291 * If the page was idle, decrement the idle page count.
292 */
293 if (ph->ph_nmissing == 0) {
294 #ifdef DIAGNOSTIC
295 if (pp->pr_nidle == 0)
296 panic("pr_rmpage: nidle inconsistent");
297 if (pp->pr_nitems < pp->pr_itemsperpage)
298 panic("pr_rmpage: nitems inconsistent");
299 #endif
300 pp->pr_nidle--;
301 }
302
303 pp->pr_nitems -= pp->pr_itemsperpage;
304
305 /*
306 * Unlink a page from the pool and release it.
307 */
308 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
309 (*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype);
310 pp->pr_npages--;
311 pp->pr_npagefree++;
312
313 if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
314 int s;
315 LIST_REMOVE(ph, ph_hashlist);
316 s = splhigh();
317 pool_put(&phpool, ph);
318 splx(s);
319 }
320
321 if (pp->pr_curpage == ph) {
322 /*
323 * Find a new non-empty page header, if any.
324 * Start search from the page head, to increase the
325 * chance for "high water" pages to be freed.
326 */
327 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
328 ph = TAILQ_NEXT(ph, ph_pagelist))
329 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
330 break;
331
332 pp->pr_curpage = ph;
333 }
334 }
335
336 /*
337 * Allocate and initialize a pool.
338 */
339 struct pool *
340 pool_create(size, align, ioff, nitems, wchan, pagesz, alloc, release, mtype)
341 size_t size;
342 u_int align;
343 u_int ioff;
344 int nitems;
345 const char *wchan;
346 size_t pagesz;
347 void *(*alloc) __P((unsigned long, int, int));
348 void (*release) __P((void *, unsigned long, int));
349 int mtype;
350 {
351 struct pool *pp;
352 int flags;
353
354 pp = (struct pool *)malloc(sizeof(*pp), M_POOL, M_NOWAIT);
355 if (pp == NULL)
356 return (NULL);
357
358 flags = PR_FREEHEADER;
359 pool_init(pp, size, align, ioff, flags, wchan, pagesz,
360 alloc, release, mtype);
361
362 if (nitems != 0) {
363 if (pool_prime(pp, nitems, NULL) != 0) {
364 pool_destroy(pp);
365 return (NULL);
366 }
367 }
368
369 return (pp);
370 }
371
372 /*
373 * Initialize the given pool resource structure.
374 *
375 * We export this routine to allow other kernel parts to declare
376 * static pools that must be initialized before malloc() is available.
377 */
378 void
379 pool_init(pp, size, align, ioff, flags, wchan, pagesz, alloc, release, mtype)
380 struct pool *pp;
381 size_t size;
382 u_int align;
383 u_int ioff;
384 int flags;
385 const char *wchan;
386 size_t pagesz;
387 void *(*alloc) __P((unsigned long, int, int));
388 void (*release) __P((void *, unsigned long, int));
389 int mtype;
390 {
391 int off, slack, i;
392
393 #ifdef POOL_DIAGNOSTIC
394 /*
395 * Always log if POOL_DIAGNOSTIC is defined.
396 */
397 if (pool_logsize != 0)
398 flags |= PR_LOGGING;
399 #endif
400
401 /*
402 * Check arguments and construct default values.
403 */
404 if (!powerof2(pagesz))
405 panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz);
406
407 if (alloc == NULL && release == NULL) {
408 alloc = pool_page_alloc;
409 release = pool_page_free;
410 pagesz = PAGE_SIZE; /* Rounds to PAGE_SIZE anyhow. */
411 } else if ((alloc != NULL && release != NULL) == 0) {
412 /* If you specifiy one, must specify both. */
413 panic("pool_init: must specify alloc and release together");
414 }
415
416 if (pagesz == 0)
417 pagesz = PAGE_SIZE;
418
419 if (align == 0)
420 align = ALIGN(1);
421
422 if (size < sizeof(struct pool_item))
423 size = sizeof(struct pool_item);
424
425 size = ALIGN(size);
426 if (size >= pagesz)
427 panic("pool_init: pool item size (%lu) too large",
428 (u_long)size);
429
430 /*
431 * Initialize the pool structure.
432 */
433 TAILQ_INIT(&pp->pr_pagelist);
434 pp->pr_curpage = NULL;
435 pp->pr_npages = 0;
436 pp->pr_minitems = 0;
437 pp->pr_minpages = 0;
438 pp->pr_maxpages = UINT_MAX;
439 pp->pr_roflags = flags;
440 pp->pr_flags = 0;
441 pp->pr_size = size;
442 pp->pr_align = align;
443 pp->pr_wchan = wchan;
444 pp->pr_mtype = mtype;
445 pp->pr_alloc = alloc;
446 pp->pr_free = release;
447 pp->pr_pagesz = pagesz;
448 pp->pr_pagemask = ~(pagesz - 1);
449 pp->pr_pageshift = ffs(pagesz) - 1;
450 pp->pr_nitems = 0;
451 pp->pr_nout = 0;
452 pp->pr_hardlimit = UINT_MAX;
453 pp->pr_hardlimit_warning = NULL;
454 pp->pr_hardlimit_ratecap.tv_sec = 0;
455 pp->pr_hardlimit_ratecap.tv_usec = 0;
456 pp->pr_hardlimit_warning_last.tv_sec = 0;
457 pp->pr_hardlimit_warning_last.tv_usec = 0;
458
459 /*
460 * Decide whether to put the page header off page to avoid
461 * wasting too large a part of the page. Off-page page headers
462 * go on a hash table, so we can match a returned item
463 * with its header based on the page address.
464 * We use 1/16 of the page size as the threshold (XXX: tune)
465 */
466 if (pp->pr_size < pagesz/16) {
467 /* Use the end of the page for the page header */
468 pp->pr_roflags |= PR_PHINPAGE;
469 pp->pr_phoffset = off =
470 pagesz - ALIGN(sizeof(struct pool_item_header));
471 } else {
472 /* The page header will be taken from our page header pool */
473 pp->pr_phoffset = 0;
474 off = pagesz;
475 for (i = 0; i < PR_HASHTABSIZE; i++) {
476 LIST_INIT(&pp->pr_hashtab[i]);
477 }
478 }
479
480 /*
481 * Alignment is to take place at `ioff' within the item. This means
482 * we must reserve up to `align - 1' bytes on the page to allow
483 * appropriate positioning of each item.
484 *
485 * Silently enforce `0 <= ioff < align'.
486 */
487 pp->pr_itemoffset = ioff = ioff % align;
488 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
489
490 /*
491 * Use the slack between the chunks and the page header
492 * for "cache coloring".
493 */
494 slack = off - pp->pr_itemsperpage * pp->pr_size;
495 pp->pr_maxcolor = (slack / align) * align;
496 pp->pr_curcolor = 0;
497
498 pp->pr_nget = 0;
499 pp->pr_nfail = 0;
500 pp->pr_nput = 0;
501 pp->pr_npagealloc = 0;
502 pp->pr_npagefree = 0;
503 pp->pr_hiwat = 0;
504 pp->pr_nidle = 0;
505
506 if (flags & PR_LOGGING) {
507 if (kmem_map == NULL ||
508 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
509 M_TEMP, M_NOWAIT)) == NULL)
510 pp->pr_roflags &= ~PR_LOGGING;
511 pp->pr_curlogentry = 0;
512 pp->pr_logsize = pool_logsize;
513 }
514
515 pp->pr_entered_file = NULL;
516 pp->pr_entered_line = 0;
517
518 simple_lock_init(&pp->pr_slock);
519
520 /*
521 * Initialize private page header pool if we haven't done so yet.
522 * XXX LOCKING.
523 */
524 if (phpool.pr_size == 0) {
525 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
526 0, "phpool", 0, 0, 0, 0);
527 }
528
529 /* Insert into the list of all pools. */
530 simple_lock(&pool_head_slock);
531 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
532 simple_unlock(&pool_head_slock);
533 }
534
535 /*
536 * De-commision a pool resource.
537 */
538 void
539 pool_destroy(pp)
540 struct pool *pp;
541 {
542 struct pool_item_header *ph;
543
544 #ifdef DIAGNOSTIC
545 if (pp->pr_nout != 0) {
546 pr_printlog(pp, NULL, printf);
547 panic("pool_destroy: pool busy: still out: %u\n",
548 pp->pr_nout);
549 }
550 #endif
551
552 /* Remove all pages */
553 if ((pp->pr_roflags & PR_STATIC) == 0)
554 while ((ph = pp->pr_pagelist.tqh_first) != NULL)
555 pr_rmpage(pp, ph);
556
557 /* Remove from global pool list */
558 simple_lock(&pool_head_slock);
559 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
560 /* XXX Only clear this if we were drainpp? */
561 drainpp = NULL;
562 simple_unlock(&pool_head_slock);
563
564 if ((pp->pr_roflags & PR_LOGGING) != 0)
565 free(pp->pr_log, M_TEMP);
566
567 if (pp->pr_roflags & PR_FREEHEADER)
568 free(pp, M_POOL);
569 }
570
571
572 /*
573 * Grab an item from the pool; must be called at appropriate spl level
574 */
575 void *
576 _pool_get(pp, flags, file, line)
577 struct pool *pp;
578 int flags;
579 const char *file;
580 long line;
581 {
582 void *v;
583 struct pool_item *pi;
584 struct pool_item_header *ph;
585
586 #ifdef DIAGNOSTIC
587 if (__predict_false((pp->pr_roflags & PR_STATIC) &&
588 (flags & PR_MALLOCOK))) {
589 pr_printlog(pp, NULL, printf);
590 panic("pool_get: static");
591 }
592 #endif
593
594 if (__predict_false(curproc == NULL && doing_shutdown == 0 &&
595 (flags & PR_WAITOK) != 0))
596 panic("pool_get: must have NOWAIT");
597
598 simple_lock(&pp->pr_slock);
599 pr_enter(pp, file, line);
600
601 startover:
602 /*
603 * Check to see if we've reached the hard limit. If we have,
604 * and we can wait, then wait until an item has been returned to
605 * the pool.
606 */
607 #ifdef DIAGNOSTIC
608 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
609 pr_leave(pp);
610 simple_unlock(&pp->pr_slock);
611 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
612 }
613 #endif
614 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
615 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
616 /*
617 * XXX: A warning isn't logged in this case. Should
618 * it be?
619 */
620 pp->pr_flags |= PR_WANTED;
621 pr_leave(pp);
622 simple_unlock(&pp->pr_slock);
623 tsleep((caddr_t)pp, PSWP, pp->pr_wchan, 0);
624 simple_lock(&pp->pr_slock);
625 pr_enter(pp, file, line);
626 goto startover;
627 }
628
629 /*
630 * Log a message that the hard limit has been hit.
631 */
632 if (pp->pr_hardlimit_warning != NULL &&
633 ratecheck(&pp->pr_hardlimit_warning_last,
634 &pp->pr_hardlimit_ratecap))
635 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
636
637 if (flags & PR_URGENT)
638 panic("pool_get: urgent");
639
640 pp->pr_nfail++;
641
642 pr_leave(pp);
643 simple_unlock(&pp->pr_slock);
644 return (NULL);
645 }
646
647 /*
648 * The convention we use is that if `curpage' is not NULL, then
649 * it points at a non-empty bucket. In particular, `curpage'
650 * never points at a page header which has PR_PHINPAGE set and
651 * has no items in its bucket.
652 */
653 if ((ph = pp->pr_curpage) == NULL) {
654 void *v;
655
656 #ifdef DIAGNOSTIC
657 if (pp->pr_nitems != 0) {
658 simple_unlock(&pp->pr_slock);
659 printf("pool_get: %s: curpage NULL, nitems %u\n",
660 pp->pr_wchan, pp->pr_nitems);
661 panic("pool_get: nitems inconsistent\n");
662 }
663 #endif
664
665 /*
666 * Call the back-end page allocator for more memory.
667 * Release the pool lock, as the back-end page allocator
668 * may block.
669 */
670 pr_leave(pp);
671 simple_unlock(&pp->pr_slock);
672 v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype);
673 simple_lock(&pp->pr_slock);
674 pr_enter(pp, file, line);
675
676 if (v == NULL) {
677 /*
678 * We were unable to allocate a page, but
679 * we released the lock during allocation,
680 * so perhaps items were freed back to the
681 * pool. Check for this case.
682 */
683 if (pp->pr_curpage != NULL)
684 goto startover;
685
686 if (flags & PR_URGENT)
687 panic("pool_get: urgent");
688
689 if ((flags & PR_WAITOK) == 0) {
690 pp->pr_nfail++;
691 pr_leave(pp);
692 simple_unlock(&pp->pr_slock);
693 return (NULL);
694 }
695
696 /*
697 * Wait for items to be returned to this pool.
698 *
699 * XXX: we actually want to wait just until
700 * the page allocator has memory again. Depending
701 * on this pool's usage, we might get stuck here
702 * for a long time.
703 *
704 * XXX: maybe we should wake up once a second and
705 * try again?
706 */
707 pp->pr_flags |= PR_WANTED;
708 pr_leave(pp);
709 simple_unlock(&pp->pr_slock);
710 tsleep((caddr_t)pp, PSWP, pp->pr_wchan, 0);
711 simple_lock(&pp->pr_slock);
712 pr_enter(pp, file, line);
713 goto startover;
714 }
715
716 /* We have more memory; add it to the pool */
717 pp->pr_npagealloc++;
718 pool_prime_page(pp, v);
719
720 /* Start the allocation process over. */
721 goto startover;
722 }
723
724 if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
725 pr_leave(pp);
726 simple_unlock(&pp->pr_slock);
727 panic("pool_get: %s: page empty", pp->pr_wchan);
728 }
729 #ifdef DIAGNOSTIC
730 if (__predict_false(pp->pr_nitems == 0)) {
731 pr_leave(pp);
732 simple_unlock(&pp->pr_slock);
733 printf("pool_get: %s: items on itemlist, nitems %u\n",
734 pp->pr_wchan, pp->pr_nitems);
735 panic("pool_get: nitems inconsistent\n");
736 }
737 #endif
738 pr_log(pp, v, PRLOG_GET, file, line);
739
740 #ifdef DIAGNOSTIC
741 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
742 pr_printlog(pp, pi, printf);
743 panic("pool_get(%s): free list modified: magic=%x; page %p;"
744 " item addr %p\n",
745 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
746 }
747 #endif
748
749 /*
750 * Remove from item list.
751 */
752 TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
753 pp->pr_nitems--;
754 pp->pr_nout++;
755 if (ph->ph_nmissing == 0) {
756 #ifdef DIAGNOSTIC
757 if (__predict_false(pp->pr_nidle == 0))
758 panic("pool_get: nidle inconsistent");
759 #endif
760 pp->pr_nidle--;
761 }
762 ph->ph_nmissing++;
763 if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) {
764 #ifdef DIAGNOSTIC
765 if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
766 pr_leave(pp);
767 simple_unlock(&pp->pr_slock);
768 panic("pool_get: %s: nmissing inconsistent",
769 pp->pr_wchan);
770 }
771 #endif
772 /*
773 * Find a new non-empty page header, if any.
774 * Start search from the page head, to increase
775 * the chance for "high water" pages to be freed.
776 *
777 * Migrate empty pages to the end of the list. This
778 * will speed the update of curpage as pages become
779 * idle. Empty pages intermingled with idle pages
780 * is no big deal. As soon as a page becomes un-empty,
781 * it will move back to the head of the list.
782 */
783 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
784 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
785 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
786 ph = TAILQ_NEXT(ph, ph_pagelist))
787 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
788 break;
789
790 pp->pr_curpage = ph;
791 }
792
793 pp->pr_nget++;
794
795 /*
796 * If we have a low water mark and we are now below that low
797 * water mark, add more items to the pool.
798 */
799 if (pp->pr_nitems < pp->pr_minitems && pool_catchup(pp) != 0) {
800 /*
801 * XXX: Should we log a warning? Should we set up a timeout
802 * to try again in a second or so? The latter could break
803 * a caller's assumptions about interrupt protection, etc.
804 */
805 }
806
807 pr_leave(pp);
808 simple_unlock(&pp->pr_slock);
809 return (v);
810 }
811
812 /*
813 * Return resource to the pool; must be called at appropriate spl level
814 */
815 void
816 _pool_put(pp, v, file, line)
817 struct pool *pp;
818 void *v;
819 const char *file;
820 long line;
821 {
822 struct pool_item *pi = v;
823 struct pool_item_header *ph;
824 caddr_t page;
825 int s;
826
827 page = (caddr_t)((u_long)v & pp->pr_pagemask);
828
829 simple_lock(&pp->pr_slock);
830 pr_enter(pp, file, line);
831
832 #ifdef DIAGNOSTIC
833 if (__predict_false(pp->pr_nout == 0)) {
834 printf("pool %s: putting with none out\n",
835 pp->pr_wchan);
836 panic("pool_put");
837 }
838 #endif
839
840 pr_log(pp, v, PRLOG_PUT, file, line);
841
842 if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
843 pr_printlog(pp, NULL, printf);
844 panic("pool_put: %s: page header missing", pp->pr_wchan);
845 }
846
847 #ifdef LOCKDEBUG
848 /*
849 * Check if we're freeing a locked simple lock.
850 */
851 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
852 #endif
853
854 /*
855 * Return to item list.
856 */
857 #ifdef DIAGNOSTIC
858 pi->pi_magic = PI_MAGIC;
859 #endif
860 #ifdef DEBUG
861 {
862 int i, *ip = v;
863
864 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
865 *ip++ = PI_MAGIC;
866 }
867 }
868 #endif
869
870 TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
871 ph->ph_nmissing--;
872 pp->pr_nput++;
873 pp->pr_nitems++;
874 pp->pr_nout--;
875
876 /* Cancel "pool empty" condition if it exists */
877 if (pp->pr_curpage == NULL)
878 pp->pr_curpage = ph;
879
880 if (pp->pr_flags & PR_WANTED) {
881 pp->pr_flags &= ~PR_WANTED;
882 if (ph->ph_nmissing == 0)
883 pp->pr_nidle++;
884 pr_leave(pp);
885 simple_unlock(&pp->pr_slock);
886 wakeup((caddr_t)pp);
887 return;
888 }
889
890 /*
891 * If this page is now complete, do one of two things:
892 *
893 * (1) If we have more pages than the page high water
894 * mark, free the page back to the system.
895 *
896 * (2) Move it to the end of the page list, so that
897 * we minimize our chances of fragmenting the
898 * pool. Idle pages migrate to the end (along with
899 * completely empty pages, so that we find un-empty
900 * pages more quickly when we update curpage) of the
901 * list so they can be more easily swept up by
902 * the pagedaemon when pages are scarce.
903 */
904 if (ph->ph_nmissing == 0) {
905 pp->pr_nidle++;
906 if (pp->pr_npages > pp->pr_maxpages) {
907 pr_rmpage(pp, ph);
908 } else {
909 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
910 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
911
912 /*
913 * Update the timestamp on the page. A page must
914 * be idle for some period of time before it can
915 * be reclaimed by the pagedaemon. This minimizes
916 * ping-pong'ing for memory.
917 */
918 s = splclock();
919 ph->ph_time = mono_time;
920 splx(s);
921
922 /*
923 * Update the current page pointer. Just look for
924 * the first page with any free items.
925 *
926 * XXX: Maybe we want an option to look for the
927 * page with the fewest available items, to minimize
928 * fragmentation?
929 */
930 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
931 ph = TAILQ_NEXT(ph, ph_pagelist))
932 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
933 break;
934
935 pp->pr_curpage = ph;
936 }
937 }
938 /*
939 * If the page has just become un-empty, move it to the head of
940 * the list, and make it the current page. The next allocation
941 * will get the item from this page, instead of further fragmenting
942 * the pool.
943 */
944 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
945 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
946 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
947 pp->pr_curpage = ph;
948 }
949
950 pr_leave(pp);
951 simple_unlock(&pp->pr_slock);
952
953 }
954
955 /*
956 * Add N items to the pool.
957 */
958 int
959 pool_prime(pp, n, storage)
960 struct pool *pp;
961 int n;
962 caddr_t storage;
963 {
964 caddr_t cp;
965 int newnitems, newpages;
966
967 #ifdef DIAGNOSTIC
968 if (__predict_false(storage && !(pp->pr_roflags & PR_STATIC)))
969 panic("pool_prime: static");
970 /* !storage && static caught below */
971 #endif
972
973 simple_lock(&pp->pr_slock);
974
975 newnitems = pp->pr_minitems + n;
976 newpages =
977 roundup(newnitems, pp->pr_itemsperpage) / pp->pr_itemsperpage
978 - pp->pr_minpages;
979
980 while (newpages-- > 0) {
981 if (pp->pr_roflags & PR_STATIC) {
982 cp = storage;
983 storage += pp->pr_pagesz;
984 } else {
985 simple_unlock(&pp->pr_slock);
986 cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
987 simple_lock(&pp->pr_slock);
988 }
989
990 if (cp == NULL) {
991 simple_unlock(&pp->pr_slock);
992 return (ENOMEM);
993 }
994
995 pp->pr_npagealloc++;
996 pool_prime_page(pp, cp);
997 pp->pr_minpages++;
998 }
999
1000 pp->pr_minitems = newnitems;
1001
1002 if (pp->pr_minpages >= pp->pr_maxpages)
1003 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1004
1005 simple_unlock(&pp->pr_slock);
1006 return (0);
1007 }
1008
1009 /*
1010 * Add a page worth of items to the pool.
1011 *
1012 * Note, we must be called with the pool descriptor LOCKED.
1013 */
1014 static void
1015 pool_prime_page(pp, storage)
1016 struct pool *pp;
1017 caddr_t storage;
1018 {
1019 struct pool_item *pi;
1020 struct pool_item_header *ph;
1021 caddr_t cp = storage;
1022 unsigned int align = pp->pr_align;
1023 unsigned int ioff = pp->pr_itemoffset;
1024 int s, n;
1025
1026 if (((u_long)cp & (pp->pr_pagesz - 1)) != 0)
1027 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1028
1029 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
1030 ph = (struct pool_item_header *)(cp + pp->pr_phoffset);
1031 } else {
1032 s = splhigh();
1033 ph = pool_get(&phpool, PR_URGENT);
1034 splx(s);
1035 LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)],
1036 ph, ph_hashlist);
1037 }
1038
1039 /*
1040 * Insert page header.
1041 */
1042 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
1043 TAILQ_INIT(&ph->ph_itemlist);
1044 ph->ph_page = storage;
1045 ph->ph_nmissing = 0;
1046 memset(&ph->ph_time, 0, sizeof(ph->ph_time));
1047
1048 pp->pr_nidle++;
1049
1050 /*
1051 * Color this page.
1052 */
1053 cp = (caddr_t)(cp + pp->pr_curcolor);
1054 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1055 pp->pr_curcolor = 0;
1056
1057 /*
1058 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1059 */
1060 if (ioff != 0)
1061 cp = (caddr_t)(cp + (align - ioff));
1062
1063 /*
1064 * Insert remaining chunks on the bucket list.
1065 */
1066 n = pp->pr_itemsperpage;
1067 pp->pr_nitems += n;
1068
1069 while (n--) {
1070 pi = (struct pool_item *)cp;
1071
1072 /* Insert on page list */
1073 TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
1074 #ifdef DIAGNOSTIC
1075 pi->pi_magic = PI_MAGIC;
1076 #endif
1077 cp = (caddr_t)(cp + pp->pr_size);
1078 }
1079
1080 /*
1081 * If the pool was depleted, point at the new page.
1082 */
1083 if (pp->pr_curpage == NULL)
1084 pp->pr_curpage = ph;
1085
1086 if (++pp->pr_npages > pp->pr_hiwat)
1087 pp->pr_hiwat = pp->pr_npages;
1088 }
1089
1090 /*
1091 * Like pool_prime(), except this is used by pool_get() when nitems
1092 * drops below the low water mark. This is used to catch up nitmes
1093 * with the low water mark.
1094 *
1095 * Note 1, we never wait for memory here, we let the caller decide what to do.
1096 *
1097 * Note 2, this doesn't work with static pools.
1098 *
1099 * Note 3, we must be called with the pool already locked, and we return
1100 * with it locked.
1101 */
1102 static int
1103 pool_catchup(pp)
1104 struct pool *pp;
1105 {
1106 caddr_t cp;
1107 int error = 0;
1108
1109 if (pp->pr_roflags & PR_STATIC) {
1110 /*
1111 * We dropped below the low water mark, and this is not a
1112 * good thing. Log a warning.
1113 *
1114 * XXX: rate-limit this?
1115 */
1116 printf("WARNING: static pool `%s' dropped below low water "
1117 "mark\n", pp->pr_wchan);
1118 return (0);
1119 }
1120
1121 while (pp->pr_nitems < pp->pr_minitems) {
1122 /*
1123 * Call the page back-end allocator for more memory.
1124 *
1125 * XXX: We never wait, so should we bother unlocking
1126 * the pool descriptor?
1127 */
1128 simple_unlock(&pp->pr_slock);
1129 cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
1130 simple_lock(&pp->pr_slock);
1131 if (__predict_false(cp == NULL)) {
1132 error = ENOMEM;
1133 break;
1134 }
1135 pp->pr_npagealloc++;
1136 pool_prime_page(pp, cp);
1137 }
1138
1139 return (error);
1140 }
1141
1142 void
1143 pool_setlowat(pp, n)
1144 pool_handle_t pp;
1145 int n;
1146 {
1147 int error;
1148
1149 simple_lock(&pp->pr_slock);
1150
1151 pp->pr_minitems = n;
1152 pp->pr_minpages = (n == 0)
1153 ? 0
1154 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1155
1156 /* Make sure we're caught up with the newly-set low water mark. */
1157 if ((error = pool_catchup(pp)) != 0) {
1158 /*
1159 * XXX: Should we log a warning? Should we set up a timeout
1160 * to try again in a second or so? The latter could break
1161 * a caller's assumptions about interrupt protection, etc.
1162 */
1163 }
1164
1165 simple_unlock(&pp->pr_slock);
1166 }
1167
1168 void
1169 pool_sethiwat(pp, n)
1170 pool_handle_t pp;
1171 int n;
1172 {
1173
1174 simple_lock(&pp->pr_slock);
1175
1176 pp->pr_maxpages = (n == 0)
1177 ? 0
1178 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1179
1180 simple_unlock(&pp->pr_slock);
1181 }
1182
1183 void
1184 pool_sethardlimit(pp, n, warnmess, ratecap)
1185 pool_handle_t pp;
1186 int n;
1187 const char *warnmess;
1188 int ratecap;
1189 {
1190
1191 simple_lock(&pp->pr_slock);
1192
1193 pp->pr_hardlimit = n;
1194 pp->pr_hardlimit_warning = warnmess;
1195 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1196 pp->pr_hardlimit_warning_last.tv_sec = 0;
1197 pp->pr_hardlimit_warning_last.tv_usec = 0;
1198
1199 /*
1200 * In-line version of pool_sethiwat(), because we don't want to
1201 * release the lock.
1202 */
1203 pp->pr_maxpages = (n == 0)
1204 ? 0
1205 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1206
1207 simple_unlock(&pp->pr_slock);
1208 }
1209
1210 /*
1211 * Default page allocator.
1212 */
1213 static void *
1214 pool_page_alloc(sz, flags, mtype)
1215 unsigned long sz;
1216 int flags;
1217 int mtype;
1218 {
1219 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1220
1221 return ((void *)uvm_km_alloc_poolpage(waitok));
1222 }
1223
1224 static void
1225 pool_page_free(v, sz, mtype)
1226 void *v;
1227 unsigned long sz;
1228 int mtype;
1229 {
1230
1231 uvm_km_free_poolpage((vaddr_t)v);
1232 }
1233
1234 /*
1235 * Alternate pool page allocator for pools that know they will
1236 * never be accessed in interrupt context.
1237 */
1238 void *
1239 pool_page_alloc_nointr(sz, flags, mtype)
1240 unsigned long sz;
1241 int flags;
1242 int mtype;
1243 {
1244 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1245
1246 return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object,
1247 waitok));
1248 }
1249
1250 void
1251 pool_page_free_nointr(v, sz, mtype)
1252 void *v;
1253 unsigned long sz;
1254 int mtype;
1255 {
1256
1257 uvm_km_free_poolpage1(kernel_map, (vaddr_t)v);
1258 }
1259
1260
1261 /*
1262 * Release all complete pages that have not been used recently.
1263 */
1264 void
1265 _pool_reclaim(pp, file, line)
1266 pool_handle_t pp;
1267 const char *file;
1268 long line;
1269 {
1270 struct pool_item_header *ph, *phnext;
1271 struct timeval curtime;
1272 int s;
1273
1274 if (pp->pr_roflags & PR_STATIC)
1275 return;
1276
1277 if (simple_lock_try(&pp->pr_slock) == 0)
1278 return;
1279 pr_enter(pp, file, line);
1280
1281 s = splclock();
1282 curtime = mono_time;
1283 splx(s);
1284
1285 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) {
1286 phnext = TAILQ_NEXT(ph, ph_pagelist);
1287
1288 /* Check our minimum page claim */
1289 if (pp->pr_npages <= pp->pr_minpages)
1290 break;
1291
1292 if (ph->ph_nmissing == 0) {
1293 struct timeval diff;
1294 timersub(&curtime, &ph->ph_time, &diff);
1295 if (diff.tv_sec < pool_inactive_time)
1296 continue;
1297
1298 /*
1299 * If freeing this page would put us below
1300 * the low water mark, stop now.
1301 */
1302 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1303 pp->pr_minitems)
1304 break;
1305
1306 pr_rmpage(pp, ph);
1307 }
1308 }
1309
1310 pr_leave(pp);
1311 simple_unlock(&pp->pr_slock);
1312 }
1313
1314
1315 /*
1316 * Drain pools, one at a time.
1317 *
1318 * Note, we must never be called from an interrupt context.
1319 */
1320 void
1321 pool_drain(arg)
1322 void *arg;
1323 {
1324 struct pool *pp;
1325 int s;
1326
1327 s = splimp();
1328 simple_lock(&pool_head_slock);
1329
1330 if (drainpp == NULL && (drainpp = TAILQ_FIRST(&pool_head)) == NULL)
1331 goto out;
1332
1333 pp = drainpp;
1334 drainpp = TAILQ_NEXT(pp, pr_poollist);
1335
1336 pool_reclaim(pp);
1337
1338 out:
1339 simple_unlock(&pool_head_slock);
1340 splx(s);
1341 }
1342
1343
1344 /*
1345 * Diagnostic helpers.
1346 */
1347 void
1348 pool_print(pp, modif)
1349 struct pool *pp;
1350 const char *modif;
1351 {
1352 int s;
1353
1354 s = splimp();
1355 if (simple_lock_try(&pp->pr_slock) == 0) {
1356 printf("pool %s is locked; try again later\n",
1357 pp->pr_wchan);
1358 splx(s);
1359 return;
1360 }
1361 pool_print1(pp, modif, printf);
1362 simple_unlock(&pp->pr_slock);
1363 splx(s);
1364 }
1365
1366 void
1367 pool_printit(pp, modif, pr)
1368 struct pool *pp;
1369 const char *modif;
1370 void (*pr) __P((const char *, ...));
1371 {
1372 int didlock = 0;
1373
1374 if (pp == NULL) {
1375 (*pr)("Must specify a pool to print.\n");
1376 return;
1377 }
1378
1379 /*
1380 * Called from DDB; interrupts should be blocked, and all
1381 * other processors should be paused. We can skip locking
1382 * the pool in this case.
1383 *
1384 * We do a simple_lock_try() just to print the lock
1385 * status, however.
1386 */
1387
1388 if (simple_lock_try(&pp->pr_slock) == 0)
1389 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1390 else
1391 didlock = 1;
1392
1393 pool_print1(pp, modif, pr);
1394
1395 if (didlock)
1396 simple_unlock(&pp->pr_slock);
1397 }
1398
1399 static void
1400 pool_print1(pp, modif, pr)
1401 struct pool *pp;
1402 const char *modif;
1403 void (*pr) __P((const char *, ...));
1404 {
1405 struct pool_item_header *ph;
1406 #ifdef DIAGNOSTIC
1407 struct pool_item *pi;
1408 #endif
1409 int print_log = 0, print_pagelist = 0;
1410 char c;
1411
1412 while ((c = *modif++) != '\0') {
1413 if (c == 'l')
1414 print_log = 1;
1415 if (c == 'p')
1416 print_pagelist = 1;
1417 modif++;
1418 }
1419
1420 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1421 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1422 pp->pr_roflags);
1423 (*pr)("\tpagesz %u, mtype %d\n", pp->pr_pagesz, pp->pr_mtype);
1424 (*pr)("\talloc %p, release %p\n", pp->pr_alloc, pp->pr_free);
1425 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1426 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1427 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1428 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1429
1430 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1431 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1432 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1433 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1434
1435 if (print_pagelist == 0)
1436 goto skip_pagelist;
1437
1438 if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
1439 (*pr)("\n\tpage list:\n");
1440 for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) {
1441 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1442 ph->ph_page, ph->ph_nmissing,
1443 (u_long)ph->ph_time.tv_sec,
1444 (u_long)ph->ph_time.tv_usec);
1445 #ifdef DIAGNOSTIC
1446 for (pi = TAILQ_FIRST(&ph->ph_itemlist); pi != NULL;
1447 pi = TAILQ_NEXT(pi, pi_list)) {
1448 if (pi->pi_magic != PI_MAGIC) {
1449 (*pr)("\t\t\titem %p, magic 0x%x\n",
1450 pi, pi->pi_magic);
1451 }
1452 }
1453 #endif
1454 }
1455 if (pp->pr_curpage == NULL)
1456 (*pr)("\tno current page\n");
1457 else
1458 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1459
1460 skip_pagelist:
1461
1462 if (print_log == 0)
1463 goto skip_log;
1464
1465 (*pr)("\n");
1466 if ((pp->pr_roflags & PR_LOGGING) == 0)
1467 (*pr)("\tno log\n");
1468 else
1469 pr_printlog(pp, NULL, pr);
1470
1471 skip_log:
1472
1473 pr_enter_check(pp, pr);
1474 }
1475
1476 int
1477 pool_chk(pp, label)
1478 struct pool *pp;
1479 char *label;
1480 {
1481 struct pool_item_header *ph;
1482 int r = 0;
1483
1484 simple_lock(&pp->pr_slock);
1485
1486 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
1487 ph = TAILQ_NEXT(ph, ph_pagelist)) {
1488
1489 struct pool_item *pi;
1490 int n;
1491 caddr_t page;
1492
1493 page = (caddr_t)((u_long)ph & pp->pr_pagemask);
1494 if (page != ph->ph_page &&
1495 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1496 if (label != NULL)
1497 printf("%s: ", label);
1498 printf("pool(%p:%s): page inconsistency: page %p;"
1499 " at page head addr %p (p %p)\n", pp,
1500 pp->pr_wchan, ph->ph_page,
1501 ph, page);
1502 r++;
1503 goto out;
1504 }
1505
1506 for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
1507 pi != NULL;
1508 pi = TAILQ_NEXT(pi,pi_list), n++) {
1509
1510 #ifdef DIAGNOSTIC
1511 if (pi->pi_magic != PI_MAGIC) {
1512 if (label != NULL)
1513 printf("%s: ", label);
1514 printf("pool(%s): free list modified: magic=%x;"
1515 " page %p; item ordinal %d;"
1516 " addr %p (p %p)\n",
1517 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1518 n, pi, page);
1519 panic("pool");
1520 }
1521 #endif
1522 page = (caddr_t)((u_long)pi & pp->pr_pagemask);
1523 if (page == ph->ph_page)
1524 continue;
1525
1526 if (label != NULL)
1527 printf("%s: ", label);
1528 printf("pool(%p:%s): page inconsistency: page %p;"
1529 " item ordinal %d; addr %p (p %p)\n", pp,
1530 pp->pr_wchan, ph->ph_page,
1531 n, pi, page);
1532 r++;
1533 goto out;
1534 }
1535 }
1536 out:
1537 simple_unlock(&pp->pr_slock);
1538 return (r);
1539 }
1540