Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.40
      1 /*	$NetBSD: subr_pool.c,v 1.40 2000/08/12 16:28:30 sommerfeld Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9  * Simulation Facility, NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 #include "opt_pool.h"
     41 #include "opt_poollog.h"
     42 #include "opt_lockdebug.h"
     43 
     44 #include <sys/param.h>
     45 #include <sys/systm.h>
     46 #include <sys/proc.h>
     47 #include <sys/errno.h>
     48 #include <sys/kernel.h>
     49 #include <sys/malloc.h>
     50 #include <sys/lock.h>
     51 #include <sys/pool.h>
     52 #include <sys/syslog.h>
     53 
     54 #include <uvm/uvm.h>
     55 
     56 /*
     57  * Pool resource management utility.
     58  *
     59  * Memory is allocated in pages which are split into pieces according
     60  * to the pool item size. Each page is kept on a list headed by `pr_pagelist'
     61  * in the pool structure and the individual pool items are on a linked list
     62  * headed by `ph_itemlist' in each page header. The memory for building
     63  * the page list is either taken from the allocated pages themselves (for
     64  * small pool items) or taken from an internal pool of page headers (`phpool').
     65  */
     66 
     67 /* List of all pools */
     68 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     69 
     70 /* Private pool for page header structures */
     71 static struct pool phpool;
     72 
     73 /* # of seconds to retain page after last use */
     74 int pool_inactive_time = 10;
     75 
     76 /* Next candidate for drainage (see pool_drain()) */
     77 static struct pool	*drainpp;
     78 
     79 /* This spin lock protects both pool_head and drainpp. */
     80 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
     81 
     82 struct pool_item_header {
     83 	/* Page headers */
     84 	TAILQ_ENTRY(pool_item_header)
     85 				ph_pagelist;	/* pool page list */
     86 	TAILQ_HEAD(,pool_item)	ph_itemlist;	/* chunk list for this page */
     87 	LIST_ENTRY(pool_item_header)
     88 				ph_hashlist;	/* Off-page page headers */
     89 	int			ph_nmissing;	/* # of chunks in use */
     90 	caddr_t			ph_page;	/* this page's address */
     91 	struct timeval		ph_time;	/* last referenced */
     92 };
     93 
     94 struct pool_item {
     95 #ifdef DIAGNOSTIC
     96 	int pi_magic;
     97 #endif
     98 #define	PI_MAGIC 0xdeadbeef
     99 	/* Other entries use only this list entry */
    100 	TAILQ_ENTRY(pool_item)	pi_list;
    101 };
    102 
    103 
    104 #define	PR_HASH_INDEX(pp,addr) \
    105 	(((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1))
    106 
    107 
    108 
    109 static struct pool_item_header
    110 		*pr_find_pagehead __P((struct pool *, caddr_t));
    111 static void	pr_rmpage __P((struct pool *, struct pool_item_header *));
    112 static int	pool_catchup __P((struct pool *));
    113 static void	pool_prime_page __P((struct pool *, caddr_t));
    114 static void	*pool_page_alloc __P((unsigned long, int, int));
    115 static void	pool_page_free __P((void *, unsigned long, int));
    116 
    117 static void pool_print1 __P((struct pool *, const char *,
    118 	void (*)(const char *, ...)));
    119 
    120 /*
    121  * Pool log entry. An array of these is allocated in pool_create().
    122  */
    123 struct pool_log {
    124 	const char	*pl_file;
    125 	long		pl_line;
    126 	int		pl_action;
    127 #define	PRLOG_GET	1
    128 #define	PRLOG_PUT	2
    129 	void		*pl_addr;
    130 };
    131 
    132 /* Number of entries in pool log buffers */
    133 #ifndef POOL_LOGSIZE
    134 #define	POOL_LOGSIZE	10
    135 #endif
    136 
    137 int pool_logsize = POOL_LOGSIZE;
    138 
    139 #ifdef DIAGNOSTIC
    140 static void	pr_log __P((struct pool *, void *, int, const char *, long));
    141 static void	pr_printlog __P((struct pool *, struct pool_item *,
    142 		    void (*)(const char *, ...)));
    143 static void	pr_enter __P((struct pool *, const char *, long));
    144 static void	pr_leave __P((struct pool *));
    145 static void	pr_enter_check __P((struct pool *,
    146 		    void (*)(const char *, ...)));
    147 
    148 static __inline__ void
    149 pr_log(pp, v, action, file, line)
    150 	struct pool	*pp;
    151 	void		*v;
    152 	int		action;
    153 	const char	*file;
    154 	long		line;
    155 {
    156 	int n = pp->pr_curlogentry;
    157 	struct pool_log *pl;
    158 
    159 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    160 		return;
    161 
    162 	/*
    163 	 * Fill in the current entry. Wrap around and overwrite
    164 	 * the oldest entry if necessary.
    165 	 */
    166 	pl = &pp->pr_log[n];
    167 	pl->pl_file = file;
    168 	pl->pl_line = line;
    169 	pl->pl_action = action;
    170 	pl->pl_addr = v;
    171 	if (++n >= pp->pr_logsize)
    172 		n = 0;
    173 	pp->pr_curlogentry = n;
    174 }
    175 
    176 static void
    177 pr_printlog(pp, pi, pr)
    178 	struct pool *pp;
    179 	struct pool_item *pi;
    180 	void (*pr) __P((const char *, ...));
    181 {
    182 	int i = pp->pr_logsize;
    183 	int n = pp->pr_curlogentry;
    184 
    185 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    186 		return;
    187 
    188 	/*
    189 	 * Print all entries in this pool's log.
    190 	 */
    191 	while (i-- > 0) {
    192 		struct pool_log *pl = &pp->pr_log[n];
    193 		if (pl->pl_action != 0) {
    194 			if (pi == NULL || pi == pl->pl_addr) {
    195 				(*pr)("\tlog entry %d:\n", i);
    196 				(*pr)("\t\taction = %s, addr = %p\n",
    197 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    198 				    pl->pl_addr);
    199 				(*pr)("\t\tfile: %s at line %lu\n",
    200 				    pl->pl_file, pl->pl_line);
    201 			}
    202 		}
    203 		if (++n >= pp->pr_logsize)
    204 			n = 0;
    205 	}
    206 }
    207 
    208 static __inline__ void
    209 pr_enter(pp, file, line)
    210 	struct pool *pp;
    211 	const char *file;
    212 	long line;
    213 {
    214 
    215 	if (__predict_false(pp->pr_entered_file != NULL)) {
    216 		printf("pool %s: reentrancy at file %s line %ld\n",
    217 		    pp->pr_wchan, file, line);
    218 		printf("         previous entry at file %s line %ld\n",
    219 		    pp->pr_entered_file, pp->pr_entered_line);
    220 		panic("pr_enter");
    221 	}
    222 
    223 	pp->pr_entered_file = file;
    224 	pp->pr_entered_line = line;
    225 }
    226 
    227 static __inline__ void
    228 pr_leave(pp)
    229 	struct pool *pp;
    230 {
    231 
    232 	if (__predict_false(pp->pr_entered_file == NULL)) {
    233 		printf("pool %s not entered?\n", pp->pr_wchan);
    234 		panic("pr_leave");
    235 	}
    236 
    237 	pp->pr_entered_file = NULL;
    238 	pp->pr_entered_line = 0;
    239 }
    240 
    241 static __inline__ void
    242 pr_enter_check(pp, pr)
    243 	struct pool *pp;
    244 	void (*pr) __P((const char *, ...));
    245 {
    246 
    247 	if (pp->pr_entered_file != NULL)
    248 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    249 		    pp->pr_entered_file, pp->pr_entered_line);
    250 }
    251 #else
    252 #define	pr_log(pp, v, action, file, line)
    253 #define	pr_printlog(pp, pi, pr)
    254 #define	pr_enter(pp, file, line)
    255 #define	pr_leave(pp)
    256 #define	pr_enter_check(pp, pr)
    257 #endif /* DIAGNOSTIC */
    258 
    259 /*
    260  * Return the pool page header based on page address.
    261  */
    262 static __inline__ struct pool_item_header *
    263 pr_find_pagehead(pp, page)
    264 	struct pool *pp;
    265 	caddr_t page;
    266 {
    267 	struct pool_item_header *ph;
    268 
    269 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    270 		return ((struct pool_item_header *)(page + pp->pr_phoffset));
    271 
    272 	for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]);
    273 	     ph != NULL;
    274 	     ph = LIST_NEXT(ph, ph_hashlist)) {
    275 		if (ph->ph_page == page)
    276 			return (ph);
    277 	}
    278 	return (NULL);
    279 }
    280 
    281 /*
    282  * Remove a page from the pool.
    283  */
    284 static __inline__ void
    285 pr_rmpage(pp, ph)
    286 	struct pool *pp;
    287 	struct pool_item_header *ph;
    288 {
    289 
    290 	/*
    291 	 * If the page was idle, decrement the idle page count.
    292 	 */
    293 	if (ph->ph_nmissing == 0) {
    294 #ifdef DIAGNOSTIC
    295 		if (pp->pr_nidle == 0)
    296 			panic("pr_rmpage: nidle inconsistent");
    297 		if (pp->pr_nitems < pp->pr_itemsperpage)
    298 			panic("pr_rmpage: nitems inconsistent");
    299 #endif
    300 		pp->pr_nidle--;
    301 	}
    302 
    303 	pp->pr_nitems -= pp->pr_itemsperpage;
    304 
    305 	/*
    306 	 * Unlink a page from the pool and release it.
    307 	 */
    308 	TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    309 	(*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype);
    310 	pp->pr_npages--;
    311 	pp->pr_npagefree++;
    312 
    313 	if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    314 		int s;
    315 		LIST_REMOVE(ph, ph_hashlist);
    316 		s = splhigh();
    317 		pool_put(&phpool, ph);
    318 		splx(s);
    319 	}
    320 
    321 	if (pp->pr_curpage == ph) {
    322 		/*
    323 		 * Find a new non-empty page header, if any.
    324 		 * Start search from the page head, to increase the
    325 		 * chance for "high water" pages to be freed.
    326 		 */
    327 		for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
    328 		     ph = TAILQ_NEXT(ph, ph_pagelist))
    329 			if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    330 				break;
    331 
    332 		pp->pr_curpage = ph;
    333 	}
    334 }
    335 
    336 /*
    337  * Allocate and initialize a pool.
    338  */
    339 struct pool *
    340 pool_create(size, align, ioff, nitems, wchan, pagesz, alloc, release, mtype)
    341 	size_t	size;
    342 	u_int	align;
    343 	u_int	ioff;
    344 	int	nitems;
    345 	const char *wchan;
    346 	size_t	pagesz;
    347 	void	*(*alloc) __P((unsigned long, int, int));
    348 	void	(*release) __P((void *, unsigned long, int));
    349 	int	mtype;
    350 {
    351 	struct pool *pp;
    352 	int flags;
    353 
    354 	pp = (struct pool *)malloc(sizeof(*pp), M_POOL, M_NOWAIT);
    355 	if (pp == NULL)
    356 		return (NULL);
    357 
    358 	flags = PR_FREEHEADER;
    359 	pool_init(pp, size, align, ioff, flags, wchan, pagesz,
    360 		  alloc, release, mtype);
    361 
    362 	if (nitems != 0) {
    363 		if (pool_prime(pp, nitems, NULL) != 0) {
    364 			pool_destroy(pp);
    365 			return (NULL);
    366 		}
    367 	}
    368 
    369 	return (pp);
    370 }
    371 
    372 /*
    373  * Initialize the given pool resource structure.
    374  *
    375  * We export this routine to allow other kernel parts to declare
    376  * static pools that must be initialized before malloc() is available.
    377  */
    378 void
    379 pool_init(pp, size, align, ioff, flags, wchan, pagesz, alloc, release, mtype)
    380 	struct pool	*pp;
    381 	size_t		size;
    382 	u_int		align;
    383 	u_int		ioff;
    384 	int		flags;
    385 	const char	*wchan;
    386 	size_t		pagesz;
    387 	void		*(*alloc) __P((unsigned long, int, int));
    388 	void		(*release) __P((void *, unsigned long, int));
    389 	int		mtype;
    390 {
    391 	int off, slack, i;
    392 
    393 #ifdef POOL_DIAGNOSTIC
    394 	/*
    395 	 * Always log if POOL_DIAGNOSTIC is defined.
    396 	 */
    397 	if (pool_logsize != 0)
    398 		flags |= PR_LOGGING;
    399 #endif
    400 
    401 	/*
    402 	 * Check arguments and construct default values.
    403 	 */
    404 	if (!powerof2(pagesz))
    405 		panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz);
    406 
    407 	if (alloc == NULL && release == NULL) {
    408 		alloc = pool_page_alloc;
    409 		release = pool_page_free;
    410 		pagesz = PAGE_SIZE;	/* Rounds to PAGE_SIZE anyhow. */
    411 	} else if ((alloc != NULL && release != NULL) == 0) {
    412 		/* If you specifiy one, must specify both. */
    413 		panic("pool_init: must specify alloc and release together");
    414 	}
    415 
    416 	if (pagesz == 0)
    417 		pagesz = PAGE_SIZE;
    418 
    419 	if (align == 0)
    420 		align = ALIGN(1);
    421 
    422 	if (size < sizeof(struct pool_item))
    423 		size = sizeof(struct pool_item);
    424 
    425 	size = ALIGN(size);
    426 	if (size >= pagesz)
    427 		panic("pool_init: pool item size (%lu) too large",
    428 		      (u_long)size);
    429 
    430 	/*
    431 	 * Initialize the pool structure.
    432 	 */
    433 	TAILQ_INIT(&pp->pr_pagelist);
    434 	pp->pr_curpage = NULL;
    435 	pp->pr_npages = 0;
    436 	pp->pr_minitems = 0;
    437 	pp->pr_minpages = 0;
    438 	pp->pr_maxpages = UINT_MAX;
    439 	pp->pr_roflags = flags;
    440 	pp->pr_flags = 0;
    441 	pp->pr_size = size;
    442 	pp->pr_align = align;
    443 	pp->pr_wchan = wchan;
    444 	pp->pr_mtype = mtype;
    445 	pp->pr_alloc = alloc;
    446 	pp->pr_free = release;
    447 	pp->pr_pagesz = pagesz;
    448 	pp->pr_pagemask = ~(pagesz - 1);
    449 	pp->pr_pageshift = ffs(pagesz) - 1;
    450 	pp->pr_nitems = 0;
    451 	pp->pr_nout = 0;
    452 	pp->pr_hardlimit = UINT_MAX;
    453 	pp->pr_hardlimit_warning = NULL;
    454 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    455 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    456 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    457 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    458 
    459 	/*
    460 	 * Decide whether to put the page header off page to avoid
    461 	 * wasting too large a part of the page. Off-page page headers
    462 	 * go on a hash table, so we can match a returned item
    463 	 * with its header based on the page address.
    464 	 * We use 1/16 of the page size as the threshold (XXX: tune)
    465 	 */
    466 	if (pp->pr_size < pagesz/16) {
    467 		/* Use the end of the page for the page header */
    468 		pp->pr_roflags |= PR_PHINPAGE;
    469 		pp->pr_phoffset = off =
    470 			pagesz - ALIGN(sizeof(struct pool_item_header));
    471 	} else {
    472 		/* The page header will be taken from our page header pool */
    473 		pp->pr_phoffset = 0;
    474 		off = pagesz;
    475 		for (i = 0; i < PR_HASHTABSIZE; i++) {
    476 			LIST_INIT(&pp->pr_hashtab[i]);
    477 		}
    478 	}
    479 
    480 	/*
    481 	 * Alignment is to take place at `ioff' within the item. This means
    482 	 * we must reserve up to `align - 1' bytes on the page to allow
    483 	 * appropriate positioning of each item.
    484 	 *
    485 	 * Silently enforce `0 <= ioff < align'.
    486 	 */
    487 	pp->pr_itemoffset = ioff = ioff % align;
    488 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    489 
    490 	/*
    491 	 * Use the slack between the chunks and the page header
    492 	 * for "cache coloring".
    493 	 */
    494 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    495 	pp->pr_maxcolor = (slack / align) * align;
    496 	pp->pr_curcolor = 0;
    497 
    498 	pp->pr_nget = 0;
    499 	pp->pr_nfail = 0;
    500 	pp->pr_nput = 0;
    501 	pp->pr_npagealloc = 0;
    502 	pp->pr_npagefree = 0;
    503 	pp->pr_hiwat = 0;
    504 	pp->pr_nidle = 0;
    505 
    506 	if (flags & PR_LOGGING) {
    507 		if (kmem_map == NULL ||
    508 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    509 		     M_TEMP, M_NOWAIT)) == NULL)
    510 			pp->pr_roflags &= ~PR_LOGGING;
    511 		pp->pr_curlogentry = 0;
    512 		pp->pr_logsize = pool_logsize;
    513 	}
    514 
    515 	pp->pr_entered_file = NULL;
    516 	pp->pr_entered_line = 0;
    517 
    518 	simple_lock_init(&pp->pr_slock);
    519 
    520 	/*
    521 	 * Initialize private page header pool if we haven't done so yet.
    522 	 * XXX LOCKING.
    523 	 */
    524 	if (phpool.pr_size == 0) {
    525 		pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
    526 			  0, "phpool", 0, 0, 0, 0);
    527 	}
    528 
    529 	/* Insert into the list of all pools. */
    530 	simple_lock(&pool_head_slock);
    531 	TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    532 	simple_unlock(&pool_head_slock);
    533 }
    534 
    535 /*
    536  * De-commision a pool resource.
    537  */
    538 void
    539 pool_destroy(pp)
    540 	struct pool *pp;
    541 {
    542 	struct pool_item_header *ph;
    543 
    544 #ifdef DIAGNOSTIC
    545 	if (pp->pr_nout != 0) {
    546 		pr_printlog(pp, NULL, printf);
    547 		panic("pool_destroy: pool busy: still out: %u\n",
    548 		    pp->pr_nout);
    549 	}
    550 #endif
    551 
    552 	/* Remove all pages */
    553 	if ((pp->pr_roflags & PR_STATIC) == 0)
    554 		while ((ph = pp->pr_pagelist.tqh_first) != NULL)
    555 			pr_rmpage(pp, ph);
    556 
    557 	/* Remove from global pool list */
    558 	simple_lock(&pool_head_slock);
    559 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    560 	/* XXX Only clear this if we were drainpp? */
    561 	drainpp = NULL;
    562 	simple_unlock(&pool_head_slock);
    563 
    564 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    565 		free(pp->pr_log, M_TEMP);
    566 
    567 	if (pp->pr_roflags & PR_FREEHEADER)
    568 		free(pp, M_POOL);
    569 }
    570 
    571 
    572 /*
    573  * Grab an item from the pool; must be called at appropriate spl level
    574  */
    575 void *
    576 _pool_get(pp, flags, file, line)
    577 	struct pool *pp;
    578 	int flags;
    579 	const char *file;
    580 	long line;
    581 {
    582 	void *v;
    583 	struct pool_item *pi;
    584 	struct pool_item_header *ph;
    585 
    586 #ifdef DIAGNOSTIC
    587 	if (__predict_false((pp->pr_roflags & PR_STATIC) &&
    588 			    (flags & PR_MALLOCOK))) {
    589 		pr_printlog(pp, NULL, printf);
    590 		panic("pool_get: static");
    591 	}
    592 #endif
    593 
    594 	if (__predict_false(curproc == NULL && doing_shutdown == 0 &&
    595 			    (flags & PR_WAITOK) != 0))
    596 		panic("pool_get: must have NOWAIT");
    597 
    598 	simple_lock(&pp->pr_slock);
    599 	pr_enter(pp, file, line);
    600 
    601  startover:
    602 	/*
    603 	 * Check to see if we've reached the hard limit.  If we have,
    604 	 * and we can wait, then wait until an item has been returned to
    605 	 * the pool.
    606 	 */
    607 #ifdef DIAGNOSTIC
    608 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
    609 		pr_leave(pp);
    610 		simple_unlock(&pp->pr_slock);
    611 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
    612 	}
    613 #endif
    614 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    615 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    616 			/*
    617 			 * XXX: A warning isn't logged in this case.  Should
    618 			 * it be?
    619 			 */
    620 			pp->pr_flags |= PR_WANTED;
    621 			pr_leave(pp);
    622 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
    623 			pr_enter(pp, file, line);
    624 			goto startover;
    625 		}
    626 
    627 		/*
    628 		 * Log a message that the hard limit has been hit.
    629 		 */
    630 		if (pp->pr_hardlimit_warning != NULL &&
    631 		    ratecheck(&pp->pr_hardlimit_warning_last,
    632 			      &pp->pr_hardlimit_ratecap))
    633 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    634 
    635 		if (flags & PR_URGENT)
    636 			panic("pool_get: urgent");
    637 
    638 		pp->pr_nfail++;
    639 
    640 		pr_leave(pp);
    641 		simple_unlock(&pp->pr_slock);
    642 		return (NULL);
    643 	}
    644 
    645 	/*
    646 	 * The convention we use is that if `curpage' is not NULL, then
    647 	 * it points at a non-empty bucket. In particular, `curpage'
    648 	 * never points at a page header which has PR_PHINPAGE set and
    649 	 * has no items in its bucket.
    650 	 */
    651 	if ((ph = pp->pr_curpage) == NULL) {
    652 		void *v;
    653 
    654 #ifdef DIAGNOSTIC
    655 		if (pp->pr_nitems != 0) {
    656 			simple_unlock(&pp->pr_slock);
    657 			printf("pool_get: %s: curpage NULL, nitems %u\n",
    658 			    pp->pr_wchan, pp->pr_nitems);
    659 			panic("pool_get: nitems inconsistent\n");
    660 		}
    661 #endif
    662 
    663 		/*
    664 		 * Call the back-end page allocator for more memory.
    665 		 * Release the pool lock, as the back-end page allocator
    666 		 * may block.
    667 		 */
    668 		pr_leave(pp);
    669 		simple_unlock(&pp->pr_slock);
    670 		v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype);
    671 		simple_lock(&pp->pr_slock);
    672 		pr_enter(pp, file, line);
    673 
    674 		if (v == NULL) {
    675 			/*
    676 			 * We were unable to allocate a page, but
    677 			 * we released the lock during allocation,
    678 			 * so perhaps items were freed back to the
    679 			 * pool.  Check for this case.
    680 			 */
    681 			if (pp->pr_curpage != NULL)
    682 				goto startover;
    683 
    684 			if (flags & PR_URGENT)
    685 				panic("pool_get: urgent");
    686 
    687 			if ((flags & PR_WAITOK) == 0) {
    688 				pp->pr_nfail++;
    689 				pr_leave(pp);
    690 				simple_unlock(&pp->pr_slock);
    691 				return (NULL);
    692 			}
    693 
    694 			/*
    695 			 * Wait for items to be returned to this pool.
    696 			 *
    697 			 * XXX: we actually want to wait just until
    698 			 * the page allocator has memory again. Depending
    699 			 * on this pool's usage, we might get stuck here
    700 			 * for a long time.
    701 			 *
    702 			 * XXX: maybe we should wake up once a second and
    703 			 * try again?
    704 			 */
    705 			pp->pr_flags |= PR_WANTED;
    706 			pr_leave(pp);
    707 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
    708 			pr_enter(pp, file, line);
    709 			goto startover;
    710 		}
    711 
    712 		/* We have more memory; add it to the pool */
    713 		pp->pr_npagealloc++;
    714 		pool_prime_page(pp, v);
    715 
    716 		/* Start the allocation process over. */
    717 		goto startover;
    718 	}
    719 
    720 	if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
    721 		pr_leave(pp);
    722 		simple_unlock(&pp->pr_slock);
    723 		panic("pool_get: %s: page empty", pp->pr_wchan);
    724 	}
    725 #ifdef DIAGNOSTIC
    726 	if (__predict_false(pp->pr_nitems == 0)) {
    727 		pr_leave(pp);
    728 		simple_unlock(&pp->pr_slock);
    729 		printf("pool_get: %s: items on itemlist, nitems %u\n",
    730 		    pp->pr_wchan, pp->pr_nitems);
    731 		panic("pool_get: nitems inconsistent\n");
    732 	}
    733 #endif
    734 	pr_log(pp, v, PRLOG_GET, file, line);
    735 
    736 #ifdef DIAGNOSTIC
    737 	if (__predict_false(pi->pi_magic != PI_MAGIC)) {
    738 		pr_printlog(pp, pi, printf);
    739 		panic("pool_get(%s): free list modified: magic=%x; page %p;"
    740 		       " item addr %p\n",
    741 			pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    742 	}
    743 #endif
    744 
    745 	/*
    746 	 * Remove from item list.
    747 	 */
    748 	TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
    749 	pp->pr_nitems--;
    750 	pp->pr_nout++;
    751 	if (ph->ph_nmissing == 0) {
    752 #ifdef DIAGNOSTIC
    753 		if (__predict_false(pp->pr_nidle == 0))
    754 			panic("pool_get: nidle inconsistent");
    755 #endif
    756 		pp->pr_nidle--;
    757 	}
    758 	ph->ph_nmissing++;
    759 	if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) {
    760 #ifdef DIAGNOSTIC
    761 		if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
    762 			pr_leave(pp);
    763 			simple_unlock(&pp->pr_slock);
    764 			panic("pool_get: %s: nmissing inconsistent",
    765 			    pp->pr_wchan);
    766 		}
    767 #endif
    768 		/*
    769 		 * Find a new non-empty page header, if any.
    770 		 * Start search from the page head, to increase
    771 		 * the chance for "high water" pages to be freed.
    772 		 *
    773 		 * Migrate empty pages to the end of the list.  This
    774 		 * will speed the update of curpage as pages become
    775 		 * idle.  Empty pages intermingled with idle pages
    776 		 * is no big deal.  As soon as a page becomes un-empty,
    777 		 * it will move back to the head of the list.
    778 		 */
    779 		TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    780 		TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
    781 		for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
    782 		     ph = TAILQ_NEXT(ph, ph_pagelist))
    783 			if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    784 				break;
    785 
    786 		pp->pr_curpage = ph;
    787 	}
    788 
    789 	pp->pr_nget++;
    790 
    791 	/*
    792 	 * If we have a low water mark and we are now below that low
    793 	 * water mark, add more items to the pool.
    794 	 */
    795 	if (pp->pr_nitems < pp->pr_minitems && pool_catchup(pp) != 0) {
    796 		/*
    797 		 * XXX: Should we log a warning?  Should we set up a timeout
    798 		 * to try again in a second or so?  The latter could break
    799 		 * a caller's assumptions about interrupt protection, etc.
    800 		 */
    801 	}
    802 
    803 	pr_leave(pp);
    804 	simple_unlock(&pp->pr_slock);
    805 	return (v);
    806 }
    807 
    808 /*
    809  * Return resource to the pool; must be called at appropriate spl level
    810  */
    811 void
    812 _pool_put(pp, v, file, line)
    813 	struct pool *pp;
    814 	void *v;
    815 	const char *file;
    816 	long line;
    817 {
    818 	struct pool_item *pi = v;
    819 	struct pool_item_header *ph;
    820 	caddr_t page;
    821 	int s;
    822 
    823 	page = (caddr_t)((u_long)v & pp->pr_pagemask);
    824 
    825 	simple_lock(&pp->pr_slock);
    826 	pr_enter(pp, file, line);
    827 
    828 #ifdef DIAGNOSTIC
    829 	if (__predict_false(pp->pr_nout == 0)) {
    830 		printf("pool %s: putting with none out\n",
    831 		    pp->pr_wchan);
    832 		panic("pool_put");
    833 	}
    834 #endif
    835 
    836 	pr_log(pp, v, PRLOG_PUT, file, line);
    837 
    838 	if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
    839 		pr_printlog(pp, NULL, printf);
    840 		panic("pool_put: %s: page header missing", pp->pr_wchan);
    841 	}
    842 
    843 #ifdef LOCKDEBUG
    844 	/*
    845 	 * Check if we're freeing a locked simple lock.
    846 	 */
    847 	simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
    848 #endif
    849 
    850 	/*
    851 	 * Return to item list.
    852 	 */
    853 #ifdef DIAGNOSTIC
    854 	pi->pi_magic = PI_MAGIC;
    855 #endif
    856 #ifdef DEBUG
    857 	{
    858 		int i, *ip = v;
    859 
    860 		for (i = 0; i < pp->pr_size / sizeof(int); i++) {
    861 			*ip++ = PI_MAGIC;
    862 		}
    863 	}
    864 #endif
    865 
    866 	TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    867 	ph->ph_nmissing--;
    868 	pp->pr_nput++;
    869 	pp->pr_nitems++;
    870 	pp->pr_nout--;
    871 
    872 	/* Cancel "pool empty" condition if it exists */
    873 	if (pp->pr_curpage == NULL)
    874 		pp->pr_curpage = ph;
    875 
    876 	if (pp->pr_flags & PR_WANTED) {
    877 		pp->pr_flags &= ~PR_WANTED;
    878 		if (ph->ph_nmissing == 0)
    879 			pp->pr_nidle++;
    880 		pr_leave(pp);
    881 		simple_unlock(&pp->pr_slock);
    882 		wakeup((caddr_t)pp);
    883 		return;
    884 	}
    885 
    886 	/*
    887 	 * If this page is now complete, do one of two things:
    888 	 *
    889 	 *	(1) If we have more pages than the page high water
    890 	 *	    mark, free the page back to the system.
    891 	 *
    892 	 *	(2) Move it to the end of the page list, so that
    893 	 *	    we minimize our chances of fragmenting the
    894 	 *	    pool.  Idle pages migrate to the end (along with
    895 	 *	    completely empty pages, so that we find un-empty
    896 	 *	    pages more quickly when we update curpage) of the
    897 	 *	    list so they can be more easily swept up by
    898 	 *	    the pagedaemon when pages are scarce.
    899 	 */
    900 	if (ph->ph_nmissing == 0) {
    901 		pp->pr_nidle++;
    902 		if (pp->pr_npages > pp->pr_maxpages) {
    903 			pr_rmpage(pp, ph);
    904 		} else {
    905 			TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    906 			TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
    907 
    908 			/*
    909 			 * Update the timestamp on the page.  A page must
    910 			 * be idle for some period of time before it can
    911 			 * be reclaimed by the pagedaemon.  This minimizes
    912 			 * ping-pong'ing for memory.
    913 			 */
    914 			s = splclock();
    915 			ph->ph_time = mono_time;
    916 			splx(s);
    917 
    918 			/*
    919 			 * Update the current page pointer.  Just look for
    920 			 * the first page with any free items.
    921 			 *
    922 			 * XXX: Maybe we want an option to look for the
    923 			 * page with the fewest available items, to minimize
    924 			 * fragmentation?
    925 			 */
    926 			for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
    927 			     ph = TAILQ_NEXT(ph, ph_pagelist))
    928 				if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    929 					break;
    930 
    931 			pp->pr_curpage = ph;
    932 		}
    933 	}
    934 	/*
    935 	 * If the page has just become un-empty, move it to the head of
    936 	 * the list, and make it the current page.  The next allocation
    937 	 * will get the item from this page, instead of further fragmenting
    938 	 * the pool.
    939 	 */
    940 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
    941 		TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    942 		TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
    943 		pp->pr_curpage = ph;
    944 	}
    945 
    946 	pr_leave(pp);
    947 	simple_unlock(&pp->pr_slock);
    948 
    949 }
    950 
    951 /*
    952  * Add N items to the pool.
    953  */
    954 int
    955 pool_prime(pp, n, storage)
    956 	struct pool *pp;
    957 	int n;
    958 	caddr_t storage;
    959 {
    960 	caddr_t cp;
    961 	int newnitems, newpages;
    962 
    963 #ifdef DIAGNOSTIC
    964 	if (__predict_false(storage && !(pp->pr_roflags & PR_STATIC)))
    965 		panic("pool_prime: static");
    966 	/* !storage && static caught below */
    967 #endif
    968 
    969 	simple_lock(&pp->pr_slock);
    970 
    971 	newnitems = pp->pr_minitems + n;
    972 	newpages =
    973 		roundup(newnitems, pp->pr_itemsperpage) / pp->pr_itemsperpage
    974 		- pp->pr_minpages;
    975 
    976 	while (newpages-- > 0) {
    977 		if (pp->pr_roflags & PR_STATIC) {
    978 			cp = storage;
    979 			storage += pp->pr_pagesz;
    980 		} else {
    981 			simple_unlock(&pp->pr_slock);
    982 			cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
    983 			simple_lock(&pp->pr_slock);
    984 		}
    985 
    986 		if (cp == NULL) {
    987 			simple_unlock(&pp->pr_slock);
    988 			return (ENOMEM);
    989 		}
    990 
    991 		pp->pr_npagealloc++;
    992 		pool_prime_page(pp, cp);
    993 		pp->pr_minpages++;
    994 	}
    995 
    996 	pp->pr_minitems = newnitems;
    997 
    998 	if (pp->pr_minpages >= pp->pr_maxpages)
    999 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1000 
   1001 	simple_unlock(&pp->pr_slock);
   1002 	return (0);
   1003 }
   1004 
   1005 /*
   1006  * Add a page worth of items to the pool.
   1007  *
   1008  * Note, we must be called with the pool descriptor LOCKED.
   1009  */
   1010 static void
   1011 pool_prime_page(pp, storage)
   1012 	struct pool *pp;
   1013 	caddr_t storage;
   1014 {
   1015 	struct pool_item *pi;
   1016 	struct pool_item_header *ph;
   1017 	caddr_t cp = storage;
   1018 	unsigned int align = pp->pr_align;
   1019 	unsigned int ioff = pp->pr_itemoffset;
   1020 	int s, n;
   1021 
   1022 	if (((u_long)cp & (pp->pr_pagesz - 1)) != 0)
   1023 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1024 
   1025 	if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
   1026 		ph = (struct pool_item_header *)(cp + pp->pr_phoffset);
   1027 	} else {
   1028 		s = splhigh();
   1029 		ph = pool_get(&phpool, PR_URGENT);
   1030 		splx(s);
   1031 		LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)],
   1032 				 ph, ph_hashlist);
   1033 	}
   1034 
   1035 	/*
   1036 	 * Insert page header.
   1037 	 */
   1038 	TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
   1039 	TAILQ_INIT(&ph->ph_itemlist);
   1040 	ph->ph_page = storage;
   1041 	ph->ph_nmissing = 0;
   1042 	memset(&ph->ph_time, 0, sizeof(ph->ph_time));
   1043 
   1044 	pp->pr_nidle++;
   1045 
   1046 	/*
   1047 	 * Color this page.
   1048 	 */
   1049 	cp = (caddr_t)(cp + pp->pr_curcolor);
   1050 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1051 		pp->pr_curcolor = 0;
   1052 
   1053 	/*
   1054 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1055 	 */
   1056 	if (ioff != 0)
   1057 		cp = (caddr_t)(cp + (align - ioff));
   1058 
   1059 	/*
   1060 	 * Insert remaining chunks on the bucket list.
   1061 	 */
   1062 	n = pp->pr_itemsperpage;
   1063 	pp->pr_nitems += n;
   1064 
   1065 	while (n--) {
   1066 		pi = (struct pool_item *)cp;
   1067 
   1068 		/* Insert on page list */
   1069 		TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
   1070 #ifdef DIAGNOSTIC
   1071 		pi->pi_magic = PI_MAGIC;
   1072 #endif
   1073 		cp = (caddr_t)(cp + pp->pr_size);
   1074 	}
   1075 
   1076 	/*
   1077 	 * If the pool was depleted, point at the new page.
   1078 	 */
   1079 	if (pp->pr_curpage == NULL)
   1080 		pp->pr_curpage = ph;
   1081 
   1082 	if (++pp->pr_npages > pp->pr_hiwat)
   1083 		pp->pr_hiwat = pp->pr_npages;
   1084 }
   1085 
   1086 /*
   1087  * Like pool_prime(), except this is used by pool_get() when nitems
   1088  * drops below the low water mark.  This is used to catch up nitmes
   1089  * with the low water mark.
   1090  *
   1091  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1092  *
   1093  * Note 2, this doesn't work with static pools.
   1094  *
   1095  * Note 3, we must be called with the pool already locked, and we return
   1096  * with it locked.
   1097  */
   1098 static int
   1099 pool_catchup(pp)
   1100 	struct pool *pp;
   1101 {
   1102 	caddr_t cp;
   1103 	int error = 0;
   1104 
   1105 	if (pp->pr_roflags & PR_STATIC) {
   1106 		/*
   1107 		 * We dropped below the low water mark, and this is not a
   1108 		 * good thing.  Log a warning.
   1109 		 *
   1110 		 * XXX: rate-limit this?
   1111 		 */
   1112 		printf("WARNING: static pool `%s' dropped below low water "
   1113 		    "mark\n", pp->pr_wchan);
   1114 		return (0);
   1115 	}
   1116 
   1117 	while (pp->pr_nitems < pp->pr_minitems) {
   1118 		/*
   1119 		 * Call the page back-end allocator for more memory.
   1120 		 *
   1121 		 * XXX: We never wait, so should we bother unlocking
   1122 		 * the pool descriptor?
   1123 		 */
   1124 		simple_unlock(&pp->pr_slock);
   1125 		cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
   1126 		simple_lock(&pp->pr_slock);
   1127 		if (__predict_false(cp == NULL)) {
   1128 			error = ENOMEM;
   1129 			break;
   1130 		}
   1131 		pp->pr_npagealloc++;
   1132 		pool_prime_page(pp, cp);
   1133 	}
   1134 
   1135 	return (error);
   1136 }
   1137 
   1138 void
   1139 pool_setlowat(pp, n)
   1140 	pool_handle_t	pp;
   1141 	int n;
   1142 {
   1143 	int error;
   1144 
   1145 	simple_lock(&pp->pr_slock);
   1146 
   1147 	pp->pr_minitems = n;
   1148 	pp->pr_minpages = (n == 0)
   1149 		? 0
   1150 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1151 
   1152 	/* Make sure we're caught up with the newly-set low water mark. */
   1153 	if ((error = pool_catchup(pp)) != 0) {
   1154 		/*
   1155 		 * XXX: Should we log a warning?  Should we set up a timeout
   1156 		 * to try again in a second or so?  The latter could break
   1157 		 * a caller's assumptions about interrupt protection, etc.
   1158 		 */
   1159 	}
   1160 
   1161 	simple_unlock(&pp->pr_slock);
   1162 }
   1163 
   1164 void
   1165 pool_sethiwat(pp, n)
   1166 	pool_handle_t	pp;
   1167 	int n;
   1168 {
   1169 
   1170 	simple_lock(&pp->pr_slock);
   1171 
   1172 	pp->pr_maxpages = (n == 0)
   1173 		? 0
   1174 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1175 
   1176 	simple_unlock(&pp->pr_slock);
   1177 }
   1178 
   1179 void
   1180 pool_sethardlimit(pp, n, warnmess, ratecap)
   1181 	pool_handle_t pp;
   1182 	int n;
   1183 	const char *warnmess;
   1184 	int ratecap;
   1185 {
   1186 
   1187 	simple_lock(&pp->pr_slock);
   1188 
   1189 	pp->pr_hardlimit = n;
   1190 	pp->pr_hardlimit_warning = warnmess;
   1191 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1192 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1193 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1194 
   1195 	/*
   1196 	 * In-line version of pool_sethiwat(), because we don't want to
   1197 	 * release the lock.
   1198 	 */
   1199 	pp->pr_maxpages = (n == 0)
   1200 		? 0
   1201 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1202 
   1203 	simple_unlock(&pp->pr_slock);
   1204 }
   1205 
   1206 /*
   1207  * Default page allocator.
   1208  */
   1209 static void *
   1210 pool_page_alloc(sz, flags, mtype)
   1211 	unsigned long sz;
   1212 	int flags;
   1213 	int mtype;
   1214 {
   1215 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   1216 
   1217 	return ((void *)uvm_km_alloc_poolpage(waitok));
   1218 }
   1219 
   1220 static void
   1221 pool_page_free(v, sz, mtype)
   1222 	void *v;
   1223 	unsigned long sz;
   1224 	int mtype;
   1225 {
   1226 
   1227 	uvm_km_free_poolpage((vaddr_t)v);
   1228 }
   1229 
   1230 /*
   1231  * Alternate pool page allocator for pools that know they will
   1232  * never be accessed in interrupt context.
   1233  */
   1234 void *
   1235 pool_page_alloc_nointr(sz, flags, mtype)
   1236 	unsigned long sz;
   1237 	int flags;
   1238 	int mtype;
   1239 {
   1240 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   1241 
   1242 	return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object,
   1243 	    waitok));
   1244 }
   1245 
   1246 void
   1247 pool_page_free_nointr(v, sz, mtype)
   1248 	void *v;
   1249 	unsigned long sz;
   1250 	int mtype;
   1251 {
   1252 
   1253 	uvm_km_free_poolpage1(kernel_map, (vaddr_t)v);
   1254 }
   1255 
   1256 
   1257 /*
   1258  * Release all complete pages that have not been used recently.
   1259  */
   1260 void
   1261 _pool_reclaim(pp, file, line)
   1262 	pool_handle_t pp;
   1263 	const char *file;
   1264 	long line;
   1265 {
   1266 	struct pool_item_header *ph, *phnext;
   1267 	struct timeval curtime;
   1268 	int s;
   1269 
   1270 	if (pp->pr_roflags & PR_STATIC)
   1271 		return;
   1272 
   1273 	if (simple_lock_try(&pp->pr_slock) == 0)
   1274 		return;
   1275 	pr_enter(pp, file, line);
   1276 
   1277 	s = splclock();
   1278 	curtime = mono_time;
   1279 	splx(s);
   1280 
   1281 	for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) {
   1282 		phnext = TAILQ_NEXT(ph, ph_pagelist);
   1283 
   1284 		/* Check our minimum page claim */
   1285 		if (pp->pr_npages <= pp->pr_minpages)
   1286 			break;
   1287 
   1288 		if (ph->ph_nmissing == 0) {
   1289 			struct timeval diff;
   1290 			timersub(&curtime, &ph->ph_time, &diff);
   1291 			if (diff.tv_sec < pool_inactive_time)
   1292 				continue;
   1293 
   1294 			/*
   1295 			 * If freeing this page would put us below
   1296 			 * the low water mark, stop now.
   1297 			 */
   1298 			if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1299 			    pp->pr_minitems)
   1300 				break;
   1301 
   1302 			pr_rmpage(pp, ph);
   1303 		}
   1304 	}
   1305 
   1306 	pr_leave(pp);
   1307 	simple_unlock(&pp->pr_slock);
   1308 }
   1309 
   1310 
   1311 /*
   1312  * Drain pools, one at a time.
   1313  *
   1314  * Note, we must never be called from an interrupt context.
   1315  */
   1316 void
   1317 pool_drain(arg)
   1318 	void *arg;
   1319 {
   1320 	struct pool *pp;
   1321 	int s;
   1322 
   1323 	s = splimp();
   1324 	simple_lock(&pool_head_slock);
   1325 
   1326 	if (drainpp == NULL && (drainpp = TAILQ_FIRST(&pool_head)) == NULL)
   1327 		goto out;
   1328 
   1329 	pp = drainpp;
   1330 	drainpp = TAILQ_NEXT(pp, pr_poollist);
   1331 
   1332 	pool_reclaim(pp);
   1333 
   1334  out:
   1335 	simple_unlock(&pool_head_slock);
   1336 	splx(s);
   1337 }
   1338 
   1339 
   1340 /*
   1341  * Diagnostic helpers.
   1342  */
   1343 void
   1344 pool_print(pp, modif)
   1345 	struct pool *pp;
   1346 	const char *modif;
   1347 {
   1348 	int s;
   1349 
   1350 	s = splimp();
   1351 	if (simple_lock_try(&pp->pr_slock) == 0) {
   1352 		printf("pool %s is locked; try again later\n",
   1353 		    pp->pr_wchan);
   1354 		splx(s);
   1355 		return;
   1356 	}
   1357 	pool_print1(pp, modif, printf);
   1358 	simple_unlock(&pp->pr_slock);
   1359 	splx(s);
   1360 }
   1361 
   1362 void
   1363 pool_printit(pp, modif, pr)
   1364 	struct pool *pp;
   1365 	const char *modif;
   1366 	void (*pr) __P((const char *, ...));
   1367 {
   1368 	int didlock = 0;
   1369 
   1370 	if (pp == NULL) {
   1371 		(*pr)("Must specify a pool to print.\n");
   1372 		return;
   1373 	}
   1374 
   1375 	/*
   1376 	 * Called from DDB; interrupts should be blocked, and all
   1377 	 * other processors should be paused.  We can skip locking
   1378 	 * the pool in this case.
   1379 	 *
   1380 	 * We do a simple_lock_try() just to print the lock
   1381 	 * status, however.
   1382 	 */
   1383 
   1384 	if (simple_lock_try(&pp->pr_slock) == 0)
   1385 		(*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
   1386 	else
   1387 		didlock = 1;
   1388 
   1389 	pool_print1(pp, modif, pr);
   1390 
   1391 	if (didlock)
   1392 		simple_unlock(&pp->pr_slock);
   1393 }
   1394 
   1395 static void
   1396 pool_print1(pp, modif, pr)
   1397 	struct pool *pp;
   1398 	const char *modif;
   1399 	void (*pr) __P((const char *, ...));
   1400 {
   1401 	struct pool_item_header *ph;
   1402 #ifdef DIAGNOSTIC
   1403 	struct pool_item *pi;
   1404 #endif
   1405 	int print_log = 0, print_pagelist = 0;
   1406 	char c;
   1407 
   1408 	while ((c = *modif++) != '\0') {
   1409 		if (c == 'l')
   1410 			print_log = 1;
   1411 		if (c == 'p')
   1412 			print_pagelist = 1;
   1413 		modif++;
   1414 	}
   1415 
   1416 	(*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1417 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1418 	    pp->pr_roflags);
   1419 	(*pr)("\tpagesz %u, mtype %d\n", pp->pr_pagesz, pp->pr_mtype);
   1420 	(*pr)("\talloc %p, release %p\n", pp->pr_alloc, pp->pr_free);
   1421 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1422 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1423 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1424 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1425 
   1426 	(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
   1427 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1428 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1429 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1430 
   1431 	if (print_pagelist == 0)
   1432 		goto skip_pagelist;
   1433 
   1434 	if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
   1435 		(*pr)("\n\tpage list:\n");
   1436 	for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) {
   1437 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
   1438 		    ph->ph_page, ph->ph_nmissing,
   1439 		    (u_long)ph->ph_time.tv_sec,
   1440 		    (u_long)ph->ph_time.tv_usec);
   1441 #ifdef DIAGNOSTIC
   1442 		for (pi = TAILQ_FIRST(&ph->ph_itemlist); pi != NULL;
   1443 		     pi = TAILQ_NEXT(pi, pi_list)) {
   1444 			if (pi->pi_magic != PI_MAGIC) {
   1445 				(*pr)("\t\t\titem %p, magic 0x%x\n",
   1446 				    pi, pi->pi_magic);
   1447 			}
   1448 		}
   1449 #endif
   1450 	}
   1451 	if (pp->pr_curpage == NULL)
   1452 		(*pr)("\tno current page\n");
   1453 	else
   1454 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1455 
   1456  skip_pagelist:
   1457 
   1458 	if (print_log == 0)
   1459 		goto skip_log;
   1460 
   1461 	(*pr)("\n");
   1462 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1463 		(*pr)("\tno log\n");
   1464 	else
   1465 		pr_printlog(pp, NULL, pr);
   1466 
   1467  skip_log:
   1468 
   1469 	pr_enter_check(pp, pr);
   1470 }
   1471 
   1472 int
   1473 pool_chk(pp, label)
   1474 	struct pool *pp;
   1475 	char *label;
   1476 {
   1477 	struct pool_item_header *ph;
   1478 	int r = 0;
   1479 
   1480 	simple_lock(&pp->pr_slock);
   1481 
   1482 	for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
   1483 	     ph = TAILQ_NEXT(ph, ph_pagelist)) {
   1484 
   1485 		struct pool_item *pi;
   1486 		int n;
   1487 		caddr_t page;
   1488 
   1489 		page = (caddr_t)((u_long)ph & pp->pr_pagemask);
   1490 		if (page != ph->ph_page &&
   1491 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1492 			if (label != NULL)
   1493 				printf("%s: ", label);
   1494 			printf("pool(%p:%s): page inconsistency: page %p;"
   1495 			       " at page head addr %p (p %p)\n", pp,
   1496 				pp->pr_wchan, ph->ph_page,
   1497 				ph, page);
   1498 			r++;
   1499 			goto out;
   1500 		}
   1501 
   1502 		for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
   1503 		     pi != NULL;
   1504 		     pi = TAILQ_NEXT(pi,pi_list), n++) {
   1505 
   1506 #ifdef DIAGNOSTIC
   1507 			if (pi->pi_magic != PI_MAGIC) {
   1508 				if (label != NULL)
   1509 					printf("%s: ", label);
   1510 				printf("pool(%s): free list modified: magic=%x;"
   1511 				       " page %p; item ordinal %d;"
   1512 				       " addr %p (p %p)\n",
   1513 					pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1514 					n, pi, page);
   1515 				panic("pool");
   1516 			}
   1517 #endif
   1518 			page = (caddr_t)((u_long)pi & pp->pr_pagemask);
   1519 			if (page == ph->ph_page)
   1520 				continue;
   1521 
   1522 			if (label != NULL)
   1523 				printf("%s: ", label);
   1524 			printf("pool(%p:%s): page inconsistency: page %p;"
   1525 			       " item ordinal %d; addr %p (p %p)\n", pp,
   1526 				pp->pr_wchan, ph->ph_page,
   1527 				n, pi, page);
   1528 			r++;
   1529 			goto out;
   1530 		}
   1531 	}
   1532 out:
   1533 	simple_unlock(&pp->pr_slock);
   1534 	return (r);
   1535 }
   1536