subr_pool.c revision 1.41 1 /* $NetBSD: subr_pool.c,v 1.41 2000/11/19 00:29:51 sommerfeld Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include "opt_pool.h"
41 #include "opt_poollog.h"
42 #include "opt_lockdebug.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/proc.h>
47 #include <sys/errno.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/lock.h>
51 #include <sys/pool.h>
52 #include <sys/syslog.h>
53
54 #include <uvm/uvm.h>
55
56 /*
57 * Pool resource management utility.
58 *
59 * Memory is allocated in pages which are split into pieces according
60 * to the pool item size. Each page is kept on a list headed by `pr_pagelist'
61 * in the pool structure and the individual pool items are on a linked list
62 * headed by `ph_itemlist' in each page header. The memory for building
63 * the page list is either taken from the allocated pages themselves (for
64 * small pool items) or taken from an internal pool of page headers (`phpool').
65 */
66
67 /* List of all pools */
68 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
69
70 /* Private pool for page header structures */
71 static struct pool phpool;
72
73 /* # of seconds to retain page after last use */
74 int pool_inactive_time = 10;
75
76 /* Next candidate for drainage (see pool_drain()) */
77 static struct pool *drainpp;
78
79 /* This spin lock protects both pool_head and drainpp. */
80 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
81
82 struct pool_item_header {
83 /* Page headers */
84 TAILQ_ENTRY(pool_item_header)
85 ph_pagelist; /* pool page list */
86 TAILQ_HEAD(,pool_item) ph_itemlist; /* chunk list for this page */
87 LIST_ENTRY(pool_item_header)
88 ph_hashlist; /* Off-page page headers */
89 int ph_nmissing; /* # of chunks in use */
90 caddr_t ph_page; /* this page's address */
91 struct timeval ph_time; /* last referenced */
92 };
93
94 struct pool_item {
95 #ifdef DIAGNOSTIC
96 int pi_magic;
97 #endif
98 #define PI_MAGIC 0xdeadbeef
99 /* Other entries use only this list entry */
100 TAILQ_ENTRY(pool_item) pi_list;
101 };
102
103
104 #define PR_HASH_INDEX(pp,addr) \
105 (((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1))
106
107
108
109 static struct pool_item_header
110 *pr_find_pagehead __P((struct pool *, caddr_t));
111 static void pr_rmpage __P((struct pool *, struct pool_item_header *));
112 static int pool_catchup __P((struct pool *));
113 static void pool_prime_page __P((struct pool *, caddr_t));
114 static void *pool_page_alloc __P((unsigned long, int, int));
115 static void pool_page_free __P((void *, unsigned long, int));
116
117 static void pool_print1 __P((struct pool *, const char *,
118 void (*)(const char *, ...)));
119
120 /*
121 * Pool log entry. An array of these is allocated in pool_create().
122 */
123 struct pool_log {
124 const char *pl_file;
125 long pl_line;
126 int pl_action;
127 #define PRLOG_GET 1
128 #define PRLOG_PUT 2
129 void *pl_addr;
130 };
131
132 /* Number of entries in pool log buffers */
133 #ifndef POOL_LOGSIZE
134 #define POOL_LOGSIZE 10
135 #endif
136
137 int pool_logsize = POOL_LOGSIZE;
138
139 #ifdef DIAGNOSTIC
140 static void pr_log __P((struct pool *, void *, int, const char *, long));
141 static void pr_printlog __P((struct pool *, struct pool_item *,
142 void (*)(const char *, ...)));
143 static void pr_enter __P((struct pool *, const char *, long));
144 static void pr_leave __P((struct pool *));
145 static void pr_enter_check __P((struct pool *,
146 void (*)(const char *, ...)));
147
148 static __inline__ void
149 pr_log(pp, v, action, file, line)
150 struct pool *pp;
151 void *v;
152 int action;
153 const char *file;
154 long line;
155 {
156 int n = pp->pr_curlogentry;
157 struct pool_log *pl;
158
159 if ((pp->pr_roflags & PR_LOGGING) == 0)
160 return;
161
162 /*
163 * Fill in the current entry. Wrap around and overwrite
164 * the oldest entry if necessary.
165 */
166 pl = &pp->pr_log[n];
167 pl->pl_file = file;
168 pl->pl_line = line;
169 pl->pl_action = action;
170 pl->pl_addr = v;
171 if (++n >= pp->pr_logsize)
172 n = 0;
173 pp->pr_curlogentry = n;
174 }
175
176 static void
177 pr_printlog(pp, pi, pr)
178 struct pool *pp;
179 struct pool_item *pi;
180 void (*pr) __P((const char *, ...));
181 {
182 int i = pp->pr_logsize;
183 int n = pp->pr_curlogentry;
184
185 if ((pp->pr_roflags & PR_LOGGING) == 0)
186 return;
187
188 /*
189 * Print all entries in this pool's log.
190 */
191 while (i-- > 0) {
192 struct pool_log *pl = &pp->pr_log[n];
193 if (pl->pl_action != 0) {
194 if (pi == NULL || pi == pl->pl_addr) {
195 (*pr)("\tlog entry %d:\n", i);
196 (*pr)("\t\taction = %s, addr = %p\n",
197 pl->pl_action == PRLOG_GET ? "get" : "put",
198 pl->pl_addr);
199 (*pr)("\t\tfile: %s at line %lu\n",
200 pl->pl_file, pl->pl_line);
201 }
202 }
203 if (++n >= pp->pr_logsize)
204 n = 0;
205 }
206 }
207
208 static __inline__ void
209 pr_enter(pp, file, line)
210 struct pool *pp;
211 const char *file;
212 long line;
213 {
214
215 if (__predict_false(pp->pr_entered_file != NULL)) {
216 printf("pool %s: reentrancy at file %s line %ld\n",
217 pp->pr_wchan, file, line);
218 printf(" previous entry at file %s line %ld\n",
219 pp->pr_entered_file, pp->pr_entered_line);
220 panic("pr_enter");
221 }
222
223 pp->pr_entered_file = file;
224 pp->pr_entered_line = line;
225 }
226
227 static __inline__ void
228 pr_leave(pp)
229 struct pool *pp;
230 {
231
232 if (__predict_false(pp->pr_entered_file == NULL)) {
233 printf("pool %s not entered?\n", pp->pr_wchan);
234 panic("pr_leave");
235 }
236
237 pp->pr_entered_file = NULL;
238 pp->pr_entered_line = 0;
239 }
240
241 static __inline__ void
242 pr_enter_check(pp, pr)
243 struct pool *pp;
244 void (*pr) __P((const char *, ...));
245 {
246
247 if (pp->pr_entered_file != NULL)
248 (*pr)("\n\tcurrently entered from file %s line %ld\n",
249 pp->pr_entered_file, pp->pr_entered_line);
250 }
251 #else
252 #define pr_log(pp, v, action, file, line)
253 #define pr_printlog(pp, pi, pr)
254 #define pr_enter(pp, file, line)
255 #define pr_leave(pp)
256 #define pr_enter_check(pp, pr)
257 #endif /* DIAGNOSTIC */
258
259 /*
260 * Return the pool page header based on page address.
261 */
262 static __inline__ struct pool_item_header *
263 pr_find_pagehead(pp, page)
264 struct pool *pp;
265 caddr_t page;
266 {
267 struct pool_item_header *ph;
268
269 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
270 return ((struct pool_item_header *)(page + pp->pr_phoffset));
271
272 for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]);
273 ph != NULL;
274 ph = LIST_NEXT(ph, ph_hashlist)) {
275 if (ph->ph_page == page)
276 return (ph);
277 }
278 return (NULL);
279 }
280
281 /*
282 * Remove a page from the pool.
283 */
284 static __inline__ void
285 pr_rmpage(pp, ph)
286 struct pool *pp;
287 struct pool_item_header *ph;
288 {
289
290 /*
291 * If the page was idle, decrement the idle page count.
292 */
293 if (ph->ph_nmissing == 0) {
294 #ifdef DIAGNOSTIC
295 if (pp->pr_nidle == 0)
296 panic("pr_rmpage: nidle inconsistent");
297 if (pp->pr_nitems < pp->pr_itemsperpage)
298 panic("pr_rmpage: nitems inconsistent");
299 #endif
300 pp->pr_nidle--;
301 }
302
303 pp->pr_nitems -= pp->pr_itemsperpage;
304
305 /*
306 * Unlink a page from the pool and release it.
307 */
308 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
309 (*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype);
310 pp->pr_npages--;
311 pp->pr_npagefree++;
312
313 if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
314 int s;
315 LIST_REMOVE(ph, ph_hashlist);
316 s = splhigh();
317 pool_put(&phpool, ph);
318 splx(s);
319 }
320
321 if (pp->pr_curpage == ph) {
322 /*
323 * Find a new non-empty page header, if any.
324 * Start search from the page head, to increase the
325 * chance for "high water" pages to be freed.
326 */
327 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
328 ph = TAILQ_NEXT(ph, ph_pagelist))
329 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
330 break;
331
332 pp->pr_curpage = ph;
333 }
334 }
335
336 /*
337 * Allocate and initialize a pool.
338 */
339 struct pool *
340 pool_create(size, align, ioff, nitems, wchan, pagesz, alloc, release, mtype)
341 size_t size;
342 u_int align;
343 u_int ioff;
344 int nitems;
345 const char *wchan;
346 size_t pagesz;
347 void *(*alloc) __P((unsigned long, int, int));
348 void (*release) __P((void *, unsigned long, int));
349 int mtype;
350 {
351 struct pool *pp;
352 int flags;
353
354 pp = (struct pool *)malloc(sizeof(*pp), M_POOL, M_NOWAIT);
355 if (pp == NULL)
356 return (NULL);
357
358 flags = PR_FREEHEADER;
359 pool_init(pp, size, align, ioff, flags, wchan, pagesz,
360 alloc, release, mtype);
361
362 if (nitems != 0) {
363 if (pool_prime(pp, nitems, NULL) != 0) {
364 pool_destroy(pp);
365 return (NULL);
366 }
367 }
368
369 return (pp);
370 }
371
372 /*
373 * Initialize the given pool resource structure.
374 *
375 * We export this routine to allow other kernel parts to declare
376 * static pools that must be initialized before malloc() is available.
377 */
378 void
379 pool_init(pp, size, align, ioff, flags, wchan, pagesz, alloc, release, mtype)
380 struct pool *pp;
381 size_t size;
382 u_int align;
383 u_int ioff;
384 int flags;
385 const char *wchan;
386 size_t pagesz;
387 void *(*alloc) __P((unsigned long, int, int));
388 void (*release) __P((void *, unsigned long, int));
389 int mtype;
390 {
391 int off, slack, i;
392
393 #ifdef POOL_DIAGNOSTIC
394 /*
395 * Always log if POOL_DIAGNOSTIC is defined.
396 */
397 if (pool_logsize != 0)
398 flags |= PR_LOGGING;
399 #endif
400
401 /*
402 * Check arguments and construct default values.
403 */
404 if (!powerof2(pagesz))
405 panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz);
406
407 if (alloc == NULL && release == NULL) {
408 alloc = pool_page_alloc;
409 release = pool_page_free;
410 pagesz = PAGE_SIZE; /* Rounds to PAGE_SIZE anyhow. */
411 } else if ((alloc != NULL && release != NULL) == 0) {
412 /* If you specifiy one, must specify both. */
413 panic("pool_init: must specify alloc and release together");
414 }
415
416 if (pagesz == 0)
417 pagesz = PAGE_SIZE;
418
419 if (align == 0)
420 align = ALIGN(1);
421
422 if (size < sizeof(struct pool_item))
423 size = sizeof(struct pool_item);
424
425 size = ALIGN(size);
426 if (size >= pagesz)
427 panic("pool_init: pool item size (%lu) too large",
428 (u_long)size);
429
430 /*
431 * Initialize the pool structure.
432 */
433 TAILQ_INIT(&pp->pr_pagelist);
434 pp->pr_curpage = NULL;
435 pp->pr_npages = 0;
436 pp->pr_minitems = 0;
437 pp->pr_minpages = 0;
438 pp->pr_maxpages = UINT_MAX;
439 pp->pr_roflags = flags;
440 pp->pr_flags = 0;
441 pp->pr_size = size;
442 pp->pr_align = align;
443 pp->pr_wchan = wchan;
444 pp->pr_mtype = mtype;
445 pp->pr_alloc = alloc;
446 pp->pr_free = release;
447 pp->pr_pagesz = pagesz;
448 pp->pr_pagemask = ~(pagesz - 1);
449 pp->pr_pageshift = ffs(pagesz) - 1;
450 pp->pr_nitems = 0;
451 pp->pr_nout = 0;
452 pp->pr_hardlimit = UINT_MAX;
453 pp->pr_hardlimit_warning = NULL;
454 pp->pr_hardlimit_ratecap.tv_sec = 0;
455 pp->pr_hardlimit_ratecap.tv_usec = 0;
456 pp->pr_hardlimit_warning_last.tv_sec = 0;
457 pp->pr_hardlimit_warning_last.tv_usec = 0;
458
459 /*
460 * Decide whether to put the page header off page to avoid
461 * wasting too large a part of the page. Off-page page headers
462 * go on a hash table, so we can match a returned item
463 * with its header based on the page address.
464 * We use 1/16 of the page size as the threshold (XXX: tune)
465 */
466 if (pp->pr_size < pagesz/16) {
467 /* Use the end of the page for the page header */
468 pp->pr_roflags |= PR_PHINPAGE;
469 pp->pr_phoffset = off =
470 pagesz - ALIGN(sizeof(struct pool_item_header));
471 } else {
472 /* The page header will be taken from our page header pool */
473 pp->pr_phoffset = 0;
474 off = pagesz;
475 for (i = 0; i < PR_HASHTABSIZE; i++) {
476 LIST_INIT(&pp->pr_hashtab[i]);
477 }
478 }
479
480 /*
481 * Alignment is to take place at `ioff' within the item. This means
482 * we must reserve up to `align - 1' bytes on the page to allow
483 * appropriate positioning of each item.
484 *
485 * Silently enforce `0 <= ioff < align'.
486 */
487 pp->pr_itemoffset = ioff = ioff % align;
488 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
489
490 /*
491 * Use the slack between the chunks and the page header
492 * for "cache coloring".
493 */
494 slack = off - pp->pr_itemsperpage * pp->pr_size;
495 pp->pr_maxcolor = (slack / align) * align;
496 pp->pr_curcolor = 0;
497
498 pp->pr_nget = 0;
499 pp->pr_nfail = 0;
500 pp->pr_nput = 0;
501 pp->pr_npagealloc = 0;
502 pp->pr_npagefree = 0;
503 pp->pr_hiwat = 0;
504 pp->pr_nidle = 0;
505
506 if (flags & PR_LOGGING) {
507 if (kmem_map == NULL ||
508 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
509 M_TEMP, M_NOWAIT)) == NULL)
510 pp->pr_roflags &= ~PR_LOGGING;
511 pp->pr_curlogentry = 0;
512 pp->pr_logsize = pool_logsize;
513 }
514
515 pp->pr_entered_file = NULL;
516 pp->pr_entered_line = 0;
517
518 simple_lock_init(&pp->pr_slock);
519
520 /*
521 * Initialize private page header pool if we haven't done so yet.
522 * XXX LOCKING.
523 */
524 if (phpool.pr_size == 0) {
525 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
526 0, "phpool", 0, 0, 0, 0);
527 }
528
529 /* Insert into the list of all pools. */
530 simple_lock(&pool_head_slock);
531 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
532 simple_unlock(&pool_head_slock);
533 }
534
535 /*
536 * De-commision a pool resource.
537 */
538 void
539 pool_destroy(pp)
540 struct pool *pp;
541 {
542 struct pool_item_header *ph;
543
544 #ifdef DIAGNOSTIC
545 if (pp->pr_nout != 0) {
546 pr_printlog(pp, NULL, printf);
547 panic("pool_destroy: pool busy: still out: %u\n",
548 pp->pr_nout);
549 }
550 #endif
551
552 /* Remove all pages */
553 if ((pp->pr_roflags & PR_STATIC) == 0)
554 while ((ph = pp->pr_pagelist.tqh_first) != NULL)
555 pr_rmpage(pp, ph);
556
557 /* Remove from global pool list */
558 simple_lock(&pool_head_slock);
559 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
560 /* XXX Only clear this if we were drainpp? */
561 drainpp = NULL;
562 simple_unlock(&pool_head_slock);
563
564 if ((pp->pr_roflags & PR_LOGGING) != 0)
565 free(pp->pr_log, M_TEMP);
566
567 if (pp->pr_roflags & PR_FREEHEADER)
568 free(pp, M_POOL);
569 }
570
571
572 /*
573 * Grab an item from the pool; must be called at appropriate spl level
574 */
575 void *
576 _pool_get(pp, flags, file, line)
577 struct pool *pp;
578 int flags;
579 const char *file;
580 long line;
581 {
582 void *v;
583 struct pool_item *pi;
584 struct pool_item_header *ph;
585
586 #ifdef DIAGNOSTIC
587 if (__predict_false((pp->pr_roflags & PR_STATIC) &&
588 (flags & PR_MALLOCOK))) {
589 pr_printlog(pp, NULL, printf);
590 panic("pool_get: static");
591 }
592 #endif
593
594 if (__predict_false(curproc == NULL && doing_shutdown == 0 &&
595 (flags & PR_WAITOK) != 0))
596 panic("pool_get: must have NOWAIT");
597
598 simple_lock(&pp->pr_slock);
599 pr_enter(pp, file, line);
600
601 startover:
602 /*
603 * Check to see if we've reached the hard limit. If we have,
604 * and we can wait, then wait until an item has been returned to
605 * the pool.
606 */
607 #ifdef DIAGNOSTIC
608 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
609 pr_leave(pp);
610 simple_unlock(&pp->pr_slock);
611 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
612 }
613 #endif
614 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
615 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
616 /*
617 * XXX: A warning isn't logged in this case. Should
618 * it be?
619 */
620 pp->pr_flags |= PR_WANTED;
621 pr_leave(pp);
622 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
623 pr_enter(pp, file, line);
624 goto startover;
625 }
626
627 /*
628 * Log a message that the hard limit has been hit.
629 */
630 if (pp->pr_hardlimit_warning != NULL &&
631 ratecheck(&pp->pr_hardlimit_warning_last,
632 &pp->pr_hardlimit_ratecap))
633 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
634
635 if (flags & PR_URGENT)
636 panic("pool_get: urgent");
637
638 pp->pr_nfail++;
639
640 pr_leave(pp);
641 simple_unlock(&pp->pr_slock);
642 return (NULL);
643 }
644
645 /*
646 * The convention we use is that if `curpage' is not NULL, then
647 * it points at a non-empty bucket. In particular, `curpage'
648 * never points at a page header which has PR_PHINPAGE set and
649 * has no items in its bucket.
650 */
651 if ((ph = pp->pr_curpage) == NULL) {
652 void *v;
653
654 #ifdef DIAGNOSTIC
655 if (pp->pr_nitems != 0) {
656 simple_unlock(&pp->pr_slock);
657 printf("pool_get: %s: curpage NULL, nitems %u\n",
658 pp->pr_wchan, pp->pr_nitems);
659 panic("pool_get: nitems inconsistent\n");
660 }
661 #endif
662
663 /*
664 * Call the back-end page allocator for more memory.
665 * Release the pool lock, as the back-end page allocator
666 * may block.
667 */
668 pr_leave(pp);
669 simple_unlock(&pp->pr_slock);
670 v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype);
671 simple_lock(&pp->pr_slock);
672 pr_enter(pp, file, line);
673
674 if (v == NULL) {
675 /*
676 * We were unable to allocate a page, but
677 * we released the lock during allocation,
678 * so perhaps items were freed back to the
679 * pool. Check for this case.
680 */
681 if (pp->pr_curpage != NULL)
682 goto startover;
683
684 if (flags & PR_URGENT)
685 panic("pool_get: urgent");
686
687 if ((flags & PR_WAITOK) == 0) {
688 pp->pr_nfail++;
689 pr_leave(pp);
690 simple_unlock(&pp->pr_slock);
691 return (NULL);
692 }
693
694 /*
695 * Wait for items to be returned to this pool.
696 *
697 * XXX: we actually want to wait just until
698 * the page allocator has memory again. Depending
699 * on this pool's usage, we might get stuck here
700 * for a long time.
701 *
702 * XXX: maybe we should wake up once a second and
703 * try again?
704 */
705 pp->pr_flags |= PR_WANTED;
706 pr_leave(pp);
707 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
708 pr_enter(pp, file, line);
709 goto startover;
710 }
711
712 /* We have more memory; add it to the pool */
713 pp->pr_npagealloc++;
714 pool_prime_page(pp, v);
715
716 /* Start the allocation process over. */
717 goto startover;
718 }
719
720 if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
721 pr_leave(pp);
722 simple_unlock(&pp->pr_slock);
723 panic("pool_get: %s: page empty", pp->pr_wchan);
724 }
725 #ifdef DIAGNOSTIC
726 if (__predict_false(pp->pr_nitems == 0)) {
727 pr_leave(pp);
728 simple_unlock(&pp->pr_slock);
729 printf("pool_get: %s: items on itemlist, nitems %u\n",
730 pp->pr_wchan, pp->pr_nitems);
731 panic("pool_get: nitems inconsistent\n");
732 }
733 #endif
734 pr_log(pp, v, PRLOG_GET, file, line);
735
736 #ifdef DIAGNOSTIC
737 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
738 pr_printlog(pp, pi, printf);
739 panic("pool_get(%s): free list modified: magic=%x; page %p;"
740 " item addr %p\n",
741 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
742 }
743 #endif
744
745 /*
746 * Remove from item list.
747 */
748 TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
749 pp->pr_nitems--;
750 pp->pr_nout++;
751 if (ph->ph_nmissing == 0) {
752 #ifdef DIAGNOSTIC
753 if (__predict_false(pp->pr_nidle == 0))
754 panic("pool_get: nidle inconsistent");
755 #endif
756 pp->pr_nidle--;
757 }
758 ph->ph_nmissing++;
759 if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) {
760 #ifdef DIAGNOSTIC
761 if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
762 pr_leave(pp);
763 simple_unlock(&pp->pr_slock);
764 panic("pool_get: %s: nmissing inconsistent",
765 pp->pr_wchan);
766 }
767 #endif
768 /*
769 * Find a new non-empty page header, if any.
770 * Start search from the page head, to increase
771 * the chance for "high water" pages to be freed.
772 *
773 * Migrate empty pages to the end of the list. This
774 * will speed the update of curpage as pages become
775 * idle. Empty pages intermingled with idle pages
776 * is no big deal. As soon as a page becomes un-empty,
777 * it will move back to the head of the list.
778 */
779 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
780 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
781 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
782 ph = TAILQ_NEXT(ph, ph_pagelist))
783 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
784 break;
785
786 pp->pr_curpage = ph;
787 }
788
789 pp->pr_nget++;
790
791 /*
792 * If we have a low water mark and we are now below that low
793 * water mark, add more items to the pool.
794 */
795 if (pp->pr_nitems < pp->pr_minitems && pool_catchup(pp) != 0) {
796 /*
797 * XXX: Should we log a warning? Should we set up a timeout
798 * to try again in a second or so? The latter could break
799 * a caller's assumptions about interrupt protection, etc.
800 */
801 }
802
803 pr_leave(pp);
804 simple_unlock(&pp->pr_slock);
805 return (v);
806 }
807
808 /*
809 * Return resource to the pool; must be called at appropriate spl level
810 */
811 void
812 _pool_put(pp, v, file, line)
813 struct pool *pp;
814 void *v;
815 const char *file;
816 long line;
817 {
818 struct pool_item *pi = v;
819 struct pool_item_header *ph;
820 caddr_t page;
821 int s;
822
823 page = (caddr_t)((u_long)v & pp->pr_pagemask);
824
825 simple_lock(&pp->pr_slock);
826 pr_enter(pp, file, line);
827
828 #ifdef DIAGNOSTIC
829 if (__predict_false(pp->pr_nout == 0)) {
830 printf("pool %s: putting with none out\n",
831 pp->pr_wchan);
832 panic("pool_put");
833 }
834 #endif
835
836 pr_log(pp, v, PRLOG_PUT, file, line);
837
838 if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
839 pr_printlog(pp, NULL, printf);
840 panic("pool_put: %s: page header missing", pp->pr_wchan);
841 }
842
843 #ifdef LOCKDEBUG
844 /*
845 * Check if we're freeing a locked simple lock.
846 */
847 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
848 #endif
849
850 /*
851 * Return to item list.
852 */
853 #ifdef DIAGNOSTIC
854 pi->pi_magic = PI_MAGIC;
855 #endif
856 #ifdef DEBUG
857 {
858 int i, *ip = v;
859
860 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
861 *ip++ = PI_MAGIC;
862 }
863 }
864 #endif
865
866 TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
867 ph->ph_nmissing--;
868 pp->pr_nput++;
869 pp->pr_nitems++;
870 pp->pr_nout--;
871
872 /* Cancel "pool empty" condition if it exists */
873 if (pp->pr_curpage == NULL)
874 pp->pr_curpage = ph;
875
876 if (pp->pr_flags & PR_WANTED) {
877 pp->pr_flags &= ~PR_WANTED;
878 if (ph->ph_nmissing == 0)
879 pp->pr_nidle++;
880 pr_leave(pp);
881 simple_unlock(&pp->pr_slock);
882 wakeup((caddr_t)pp);
883 return;
884 }
885
886 /*
887 * If this page is now complete, do one of two things:
888 *
889 * (1) If we have more pages than the page high water
890 * mark, free the page back to the system.
891 *
892 * (2) Move it to the end of the page list, so that
893 * we minimize our chances of fragmenting the
894 * pool. Idle pages migrate to the end (along with
895 * completely empty pages, so that we find un-empty
896 * pages more quickly when we update curpage) of the
897 * list so they can be more easily swept up by
898 * the pagedaemon when pages are scarce.
899 */
900 if (ph->ph_nmissing == 0) {
901 pp->pr_nidle++;
902 if (pp->pr_npages > pp->pr_maxpages) {
903 pr_rmpage(pp, ph);
904 } else {
905 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
906 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
907
908 /*
909 * Update the timestamp on the page. A page must
910 * be idle for some period of time before it can
911 * be reclaimed by the pagedaemon. This minimizes
912 * ping-pong'ing for memory.
913 */
914 s = splclock();
915 ph->ph_time = mono_time;
916 splx(s);
917
918 /*
919 * Update the current page pointer. Just look for
920 * the first page with any free items.
921 *
922 * XXX: Maybe we want an option to look for the
923 * page with the fewest available items, to minimize
924 * fragmentation?
925 */
926 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
927 ph = TAILQ_NEXT(ph, ph_pagelist))
928 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
929 break;
930
931 pp->pr_curpage = ph;
932 }
933 }
934 /*
935 * If the page has just become un-empty, move it to the head of
936 * the list, and make it the current page. The next allocation
937 * will get the item from this page, instead of further fragmenting
938 * the pool.
939 */
940 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
941 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
942 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
943 pp->pr_curpage = ph;
944 }
945
946 pr_leave(pp);
947 simple_unlock(&pp->pr_slock);
948
949 }
950
951 /*
952 * Add N items to the pool.
953 */
954 int
955 pool_prime(pp, n, storage)
956 struct pool *pp;
957 int n;
958 caddr_t storage;
959 {
960 caddr_t cp;
961 int newnitems, newpages;
962
963 #ifdef DIAGNOSTIC
964 if (__predict_false(storage && !(pp->pr_roflags & PR_STATIC)))
965 panic("pool_prime: static");
966 /* !storage && static caught below */
967 #endif
968
969 simple_lock(&pp->pr_slock);
970
971 newnitems = pp->pr_minitems + n;
972 newpages =
973 roundup(newnitems, pp->pr_itemsperpage) / pp->pr_itemsperpage
974 - pp->pr_minpages;
975
976 while (newpages-- > 0) {
977 if (pp->pr_roflags & PR_STATIC) {
978 cp = storage;
979 storage += pp->pr_pagesz;
980 } else {
981 simple_unlock(&pp->pr_slock);
982 cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
983 simple_lock(&pp->pr_slock);
984 }
985
986 if (cp == NULL) {
987 simple_unlock(&pp->pr_slock);
988 return (ENOMEM);
989 }
990
991 pp->pr_npagealloc++;
992 pool_prime_page(pp, cp);
993 pp->pr_minpages++;
994 }
995
996 pp->pr_minitems = newnitems;
997
998 if (pp->pr_minpages >= pp->pr_maxpages)
999 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1000
1001 simple_unlock(&pp->pr_slock);
1002 return (0);
1003 }
1004
1005 /*
1006 * Add a page worth of items to the pool.
1007 *
1008 * Note, we must be called with the pool descriptor LOCKED.
1009 */
1010 static void
1011 pool_prime_page(pp, storage)
1012 struct pool *pp;
1013 caddr_t storage;
1014 {
1015 struct pool_item *pi;
1016 struct pool_item_header *ph;
1017 caddr_t cp = storage;
1018 unsigned int align = pp->pr_align;
1019 unsigned int ioff = pp->pr_itemoffset;
1020 int s, n;
1021
1022 if (((u_long)cp & (pp->pr_pagesz - 1)) != 0)
1023 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1024
1025 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
1026 ph = (struct pool_item_header *)(cp + pp->pr_phoffset);
1027 } else {
1028 s = splhigh();
1029 ph = pool_get(&phpool, PR_URGENT);
1030 splx(s);
1031 LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)],
1032 ph, ph_hashlist);
1033 }
1034
1035 /*
1036 * Insert page header.
1037 */
1038 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
1039 TAILQ_INIT(&ph->ph_itemlist);
1040 ph->ph_page = storage;
1041 ph->ph_nmissing = 0;
1042 memset(&ph->ph_time, 0, sizeof(ph->ph_time));
1043
1044 pp->pr_nidle++;
1045
1046 /*
1047 * Color this page.
1048 */
1049 cp = (caddr_t)(cp + pp->pr_curcolor);
1050 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1051 pp->pr_curcolor = 0;
1052
1053 /*
1054 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1055 */
1056 if (ioff != 0)
1057 cp = (caddr_t)(cp + (align - ioff));
1058
1059 /*
1060 * Insert remaining chunks on the bucket list.
1061 */
1062 n = pp->pr_itemsperpage;
1063 pp->pr_nitems += n;
1064
1065 while (n--) {
1066 pi = (struct pool_item *)cp;
1067
1068 /* Insert on page list */
1069 TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
1070 #ifdef DIAGNOSTIC
1071 pi->pi_magic = PI_MAGIC;
1072 #endif
1073 cp = (caddr_t)(cp + pp->pr_size);
1074 }
1075
1076 /*
1077 * If the pool was depleted, point at the new page.
1078 */
1079 if (pp->pr_curpage == NULL)
1080 pp->pr_curpage = ph;
1081
1082 if (++pp->pr_npages > pp->pr_hiwat)
1083 pp->pr_hiwat = pp->pr_npages;
1084 }
1085
1086 /*
1087 * Like pool_prime(), except this is used by pool_get() when nitems
1088 * drops below the low water mark. This is used to catch up nitmes
1089 * with the low water mark.
1090 *
1091 * Note 1, we never wait for memory here, we let the caller decide what to do.
1092 *
1093 * Note 2, this doesn't work with static pools.
1094 *
1095 * Note 3, we must be called with the pool already locked, and we return
1096 * with it locked.
1097 */
1098 static int
1099 pool_catchup(pp)
1100 struct pool *pp;
1101 {
1102 caddr_t cp;
1103 int error = 0;
1104
1105 if (pp->pr_roflags & PR_STATIC) {
1106 /*
1107 * We dropped below the low water mark, and this is not a
1108 * good thing. Log a warning.
1109 *
1110 * XXX: rate-limit this?
1111 */
1112 printf("WARNING: static pool `%s' dropped below low water "
1113 "mark\n", pp->pr_wchan);
1114 return (0);
1115 }
1116
1117 while (pp->pr_nitems < pp->pr_minitems) {
1118 /*
1119 * Call the page back-end allocator for more memory.
1120 *
1121 * XXX: We never wait, so should we bother unlocking
1122 * the pool descriptor?
1123 */
1124 simple_unlock(&pp->pr_slock);
1125 cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
1126 simple_lock(&pp->pr_slock);
1127 if (__predict_false(cp == NULL)) {
1128 error = ENOMEM;
1129 break;
1130 }
1131 pp->pr_npagealloc++;
1132 pool_prime_page(pp, cp);
1133 }
1134
1135 return (error);
1136 }
1137
1138 void
1139 pool_setlowat(pp, n)
1140 pool_handle_t pp;
1141 int n;
1142 {
1143 int error;
1144
1145 simple_lock(&pp->pr_slock);
1146
1147 pp->pr_minitems = n;
1148 pp->pr_minpages = (n == 0)
1149 ? 0
1150 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1151
1152 /* Make sure we're caught up with the newly-set low water mark. */
1153 if ((pp->pr_nitems < pp->pr_minitems) &&
1154 (error = pool_catchup(pp)) != 0) {
1155 /*
1156 * XXX: Should we log a warning? Should we set up a timeout
1157 * to try again in a second or so? The latter could break
1158 * a caller's assumptions about interrupt protection, etc.
1159 */
1160 }
1161
1162 simple_unlock(&pp->pr_slock);
1163 }
1164
1165 void
1166 pool_sethiwat(pp, n)
1167 pool_handle_t pp;
1168 int n;
1169 {
1170
1171 simple_lock(&pp->pr_slock);
1172
1173 pp->pr_maxpages = (n == 0)
1174 ? 0
1175 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1176
1177 simple_unlock(&pp->pr_slock);
1178 }
1179
1180 void
1181 pool_sethardlimit(pp, n, warnmess, ratecap)
1182 pool_handle_t pp;
1183 int n;
1184 const char *warnmess;
1185 int ratecap;
1186 {
1187
1188 simple_lock(&pp->pr_slock);
1189
1190 pp->pr_hardlimit = n;
1191 pp->pr_hardlimit_warning = warnmess;
1192 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1193 pp->pr_hardlimit_warning_last.tv_sec = 0;
1194 pp->pr_hardlimit_warning_last.tv_usec = 0;
1195
1196 /*
1197 * In-line version of pool_sethiwat(), because we don't want to
1198 * release the lock.
1199 */
1200 pp->pr_maxpages = (n == 0)
1201 ? 0
1202 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1203
1204 simple_unlock(&pp->pr_slock);
1205 }
1206
1207 /*
1208 * Default page allocator.
1209 */
1210 static void *
1211 pool_page_alloc(sz, flags, mtype)
1212 unsigned long sz;
1213 int flags;
1214 int mtype;
1215 {
1216 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1217
1218 return ((void *)uvm_km_alloc_poolpage(waitok));
1219 }
1220
1221 static void
1222 pool_page_free(v, sz, mtype)
1223 void *v;
1224 unsigned long sz;
1225 int mtype;
1226 {
1227
1228 uvm_km_free_poolpage((vaddr_t)v);
1229 }
1230
1231 /*
1232 * Alternate pool page allocator for pools that know they will
1233 * never be accessed in interrupt context.
1234 */
1235 void *
1236 pool_page_alloc_nointr(sz, flags, mtype)
1237 unsigned long sz;
1238 int flags;
1239 int mtype;
1240 {
1241 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1242
1243 return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object,
1244 waitok));
1245 }
1246
1247 void
1248 pool_page_free_nointr(v, sz, mtype)
1249 void *v;
1250 unsigned long sz;
1251 int mtype;
1252 {
1253
1254 uvm_km_free_poolpage1(kernel_map, (vaddr_t)v);
1255 }
1256
1257
1258 /*
1259 * Release all complete pages that have not been used recently.
1260 */
1261 void
1262 _pool_reclaim(pp, file, line)
1263 pool_handle_t pp;
1264 const char *file;
1265 long line;
1266 {
1267 struct pool_item_header *ph, *phnext;
1268 struct timeval curtime;
1269 int s;
1270
1271 if (pp->pr_roflags & PR_STATIC)
1272 return;
1273
1274 if (simple_lock_try(&pp->pr_slock) == 0)
1275 return;
1276 pr_enter(pp, file, line);
1277
1278 s = splclock();
1279 curtime = mono_time;
1280 splx(s);
1281
1282 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) {
1283 phnext = TAILQ_NEXT(ph, ph_pagelist);
1284
1285 /* Check our minimum page claim */
1286 if (pp->pr_npages <= pp->pr_minpages)
1287 break;
1288
1289 if (ph->ph_nmissing == 0) {
1290 struct timeval diff;
1291 timersub(&curtime, &ph->ph_time, &diff);
1292 if (diff.tv_sec < pool_inactive_time)
1293 continue;
1294
1295 /*
1296 * If freeing this page would put us below
1297 * the low water mark, stop now.
1298 */
1299 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1300 pp->pr_minitems)
1301 break;
1302
1303 pr_rmpage(pp, ph);
1304 }
1305 }
1306
1307 pr_leave(pp);
1308 simple_unlock(&pp->pr_slock);
1309 }
1310
1311
1312 /*
1313 * Drain pools, one at a time.
1314 *
1315 * Note, we must never be called from an interrupt context.
1316 */
1317 void
1318 pool_drain(arg)
1319 void *arg;
1320 {
1321 struct pool *pp;
1322 int s;
1323
1324 s = splimp();
1325 simple_lock(&pool_head_slock);
1326
1327 if (drainpp == NULL && (drainpp = TAILQ_FIRST(&pool_head)) == NULL)
1328 goto out;
1329
1330 pp = drainpp;
1331 drainpp = TAILQ_NEXT(pp, pr_poollist);
1332
1333 pool_reclaim(pp);
1334
1335 out:
1336 simple_unlock(&pool_head_slock);
1337 splx(s);
1338 }
1339
1340
1341 /*
1342 * Diagnostic helpers.
1343 */
1344 void
1345 pool_print(pp, modif)
1346 struct pool *pp;
1347 const char *modif;
1348 {
1349 int s;
1350
1351 s = splimp();
1352 if (simple_lock_try(&pp->pr_slock) == 0) {
1353 printf("pool %s is locked; try again later\n",
1354 pp->pr_wchan);
1355 splx(s);
1356 return;
1357 }
1358 pool_print1(pp, modif, printf);
1359 simple_unlock(&pp->pr_slock);
1360 splx(s);
1361 }
1362
1363 void
1364 pool_printit(pp, modif, pr)
1365 struct pool *pp;
1366 const char *modif;
1367 void (*pr) __P((const char *, ...));
1368 {
1369 int didlock = 0;
1370
1371 if (pp == NULL) {
1372 (*pr)("Must specify a pool to print.\n");
1373 return;
1374 }
1375
1376 /*
1377 * Called from DDB; interrupts should be blocked, and all
1378 * other processors should be paused. We can skip locking
1379 * the pool in this case.
1380 *
1381 * We do a simple_lock_try() just to print the lock
1382 * status, however.
1383 */
1384
1385 if (simple_lock_try(&pp->pr_slock) == 0)
1386 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1387 else
1388 didlock = 1;
1389
1390 pool_print1(pp, modif, pr);
1391
1392 if (didlock)
1393 simple_unlock(&pp->pr_slock);
1394 }
1395
1396 static void
1397 pool_print1(pp, modif, pr)
1398 struct pool *pp;
1399 const char *modif;
1400 void (*pr) __P((const char *, ...));
1401 {
1402 struct pool_item_header *ph;
1403 #ifdef DIAGNOSTIC
1404 struct pool_item *pi;
1405 #endif
1406 int print_log = 0, print_pagelist = 0;
1407 char c;
1408
1409 while ((c = *modif++) != '\0') {
1410 if (c == 'l')
1411 print_log = 1;
1412 if (c == 'p')
1413 print_pagelist = 1;
1414 modif++;
1415 }
1416
1417 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1418 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1419 pp->pr_roflags);
1420 (*pr)("\tpagesz %u, mtype %d\n", pp->pr_pagesz, pp->pr_mtype);
1421 (*pr)("\talloc %p, release %p\n", pp->pr_alloc, pp->pr_free);
1422 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1423 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1424 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1425 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1426
1427 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1428 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1429 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1430 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1431
1432 if (print_pagelist == 0)
1433 goto skip_pagelist;
1434
1435 if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
1436 (*pr)("\n\tpage list:\n");
1437 for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) {
1438 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1439 ph->ph_page, ph->ph_nmissing,
1440 (u_long)ph->ph_time.tv_sec,
1441 (u_long)ph->ph_time.tv_usec);
1442 #ifdef DIAGNOSTIC
1443 for (pi = TAILQ_FIRST(&ph->ph_itemlist); pi != NULL;
1444 pi = TAILQ_NEXT(pi, pi_list)) {
1445 if (pi->pi_magic != PI_MAGIC) {
1446 (*pr)("\t\t\titem %p, magic 0x%x\n",
1447 pi, pi->pi_magic);
1448 }
1449 }
1450 #endif
1451 }
1452 if (pp->pr_curpage == NULL)
1453 (*pr)("\tno current page\n");
1454 else
1455 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1456
1457 skip_pagelist:
1458
1459 if (print_log == 0)
1460 goto skip_log;
1461
1462 (*pr)("\n");
1463 if ((pp->pr_roflags & PR_LOGGING) == 0)
1464 (*pr)("\tno log\n");
1465 else
1466 pr_printlog(pp, NULL, pr);
1467
1468 skip_log:
1469
1470 pr_enter_check(pp, pr);
1471 }
1472
1473 int
1474 pool_chk(pp, label)
1475 struct pool *pp;
1476 char *label;
1477 {
1478 struct pool_item_header *ph;
1479 int r = 0;
1480
1481 simple_lock(&pp->pr_slock);
1482
1483 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
1484 ph = TAILQ_NEXT(ph, ph_pagelist)) {
1485
1486 struct pool_item *pi;
1487 int n;
1488 caddr_t page;
1489
1490 page = (caddr_t)((u_long)ph & pp->pr_pagemask);
1491 if (page != ph->ph_page &&
1492 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1493 if (label != NULL)
1494 printf("%s: ", label);
1495 printf("pool(%p:%s): page inconsistency: page %p;"
1496 " at page head addr %p (p %p)\n", pp,
1497 pp->pr_wchan, ph->ph_page,
1498 ph, page);
1499 r++;
1500 goto out;
1501 }
1502
1503 for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
1504 pi != NULL;
1505 pi = TAILQ_NEXT(pi,pi_list), n++) {
1506
1507 #ifdef DIAGNOSTIC
1508 if (pi->pi_magic != PI_MAGIC) {
1509 if (label != NULL)
1510 printf("%s: ", label);
1511 printf("pool(%s): free list modified: magic=%x;"
1512 " page %p; item ordinal %d;"
1513 " addr %p (p %p)\n",
1514 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1515 n, pi, page);
1516 panic("pool");
1517 }
1518 #endif
1519 page = (caddr_t)((u_long)pi & pp->pr_pagemask);
1520 if (page == ph->ph_page)
1521 continue;
1522
1523 if (label != NULL)
1524 printf("%s: ", label);
1525 printf("pool(%p:%s): page inconsistency: page %p;"
1526 " item ordinal %d; addr %p (p %p)\n", pp,
1527 pp->pr_wchan, ph->ph_page,
1528 n, pi, page);
1529 r++;
1530 goto out;
1531 }
1532 }
1533 out:
1534 simple_unlock(&pp->pr_slock);
1535 return (r);
1536 }
1537