subr_pool.c revision 1.42 1 /* $NetBSD: subr_pool.c,v 1.42 2000/12/06 18:20:52 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include "opt_pool.h"
41 #include "opt_poollog.h"
42 #include "opt_lockdebug.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/proc.h>
47 #include <sys/errno.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/lock.h>
51 #include <sys/pool.h>
52 #include <sys/syslog.h>
53
54 #include <uvm/uvm.h>
55
56 /*
57 * Pool resource management utility.
58 *
59 * Memory is allocated in pages which are split into pieces according
60 * to the pool item size. Each page is kept on a list headed by `pr_pagelist'
61 * in the pool structure and the individual pool items are on a linked list
62 * headed by `ph_itemlist' in each page header. The memory for building
63 * the page list is either taken from the allocated pages themselves (for
64 * small pool items) or taken from an internal pool of page headers (`phpool').
65 */
66
67 /* List of all pools */
68 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
69
70 /* Private pool for page header structures */
71 static struct pool phpool;
72
73 /* # of seconds to retain page after last use */
74 int pool_inactive_time = 10;
75
76 /* Next candidate for drainage (see pool_drain()) */
77 static struct pool *drainpp;
78
79 /* This spin lock protects both pool_head and drainpp. */
80 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
81
82 struct pool_item_header {
83 /* Page headers */
84 TAILQ_ENTRY(pool_item_header)
85 ph_pagelist; /* pool page list */
86 TAILQ_HEAD(,pool_item) ph_itemlist; /* chunk list for this page */
87 LIST_ENTRY(pool_item_header)
88 ph_hashlist; /* Off-page page headers */
89 int ph_nmissing; /* # of chunks in use */
90 caddr_t ph_page; /* this page's address */
91 struct timeval ph_time; /* last referenced */
92 };
93
94 struct pool_item {
95 #ifdef DIAGNOSTIC
96 int pi_magic;
97 #endif
98 #define PI_MAGIC 0xdeadbeef
99 /* Other entries use only this list entry */
100 TAILQ_ENTRY(pool_item) pi_list;
101 };
102
103
104 #define PR_HASH_INDEX(pp,addr) \
105 (((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1))
106
107
108
109 static int pool_catchup(struct pool *);
110 static void pool_prime_page(struct pool *, caddr_t);
111 static void *pool_page_alloc(unsigned long, int, int);
112 static void pool_page_free(void *, unsigned long, int);
113
114 static void pool_print1(struct pool *, const char *,
115 void (*)(const char *, ...));
116
117 /*
118 * Pool log entry. An array of these is allocated in pool_create().
119 */
120 struct pool_log {
121 const char *pl_file;
122 long pl_line;
123 int pl_action;
124 #define PRLOG_GET 1
125 #define PRLOG_PUT 2
126 void *pl_addr;
127 };
128
129 /* Number of entries in pool log buffers */
130 #ifndef POOL_LOGSIZE
131 #define POOL_LOGSIZE 10
132 #endif
133
134 int pool_logsize = POOL_LOGSIZE;
135
136 #ifdef DIAGNOSTIC
137 static __inline void
138 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
139 {
140 int n = pp->pr_curlogentry;
141 struct pool_log *pl;
142
143 if ((pp->pr_roflags & PR_LOGGING) == 0)
144 return;
145
146 /*
147 * Fill in the current entry. Wrap around and overwrite
148 * the oldest entry if necessary.
149 */
150 pl = &pp->pr_log[n];
151 pl->pl_file = file;
152 pl->pl_line = line;
153 pl->pl_action = action;
154 pl->pl_addr = v;
155 if (++n >= pp->pr_logsize)
156 n = 0;
157 pp->pr_curlogentry = n;
158 }
159
160 static void
161 pr_printlog(struct pool *pp, struct pool_item *pi,
162 void (*pr)(const char *, ...))
163 {
164 int i = pp->pr_logsize;
165 int n = pp->pr_curlogentry;
166
167 if ((pp->pr_roflags & PR_LOGGING) == 0)
168 return;
169
170 /*
171 * Print all entries in this pool's log.
172 */
173 while (i-- > 0) {
174 struct pool_log *pl = &pp->pr_log[n];
175 if (pl->pl_action != 0) {
176 if (pi == NULL || pi == pl->pl_addr) {
177 (*pr)("\tlog entry %d:\n", i);
178 (*pr)("\t\taction = %s, addr = %p\n",
179 pl->pl_action == PRLOG_GET ? "get" : "put",
180 pl->pl_addr);
181 (*pr)("\t\tfile: %s at line %lu\n",
182 pl->pl_file, pl->pl_line);
183 }
184 }
185 if (++n >= pp->pr_logsize)
186 n = 0;
187 }
188 }
189
190 static __inline void
191 pr_enter(struct pool *pp, const char *file, long line)
192 {
193
194 if (__predict_false(pp->pr_entered_file != NULL)) {
195 printf("pool %s: reentrancy at file %s line %ld\n",
196 pp->pr_wchan, file, line);
197 printf(" previous entry at file %s line %ld\n",
198 pp->pr_entered_file, pp->pr_entered_line);
199 panic("pr_enter");
200 }
201
202 pp->pr_entered_file = file;
203 pp->pr_entered_line = line;
204 }
205
206 static __inline void
207 pr_leave(struct pool *pp)
208 {
209
210 if (__predict_false(pp->pr_entered_file == NULL)) {
211 printf("pool %s not entered?\n", pp->pr_wchan);
212 panic("pr_leave");
213 }
214
215 pp->pr_entered_file = NULL;
216 pp->pr_entered_line = 0;
217 }
218
219 static __inline void
220 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
221 {
222
223 if (pp->pr_entered_file != NULL)
224 (*pr)("\n\tcurrently entered from file %s line %ld\n",
225 pp->pr_entered_file, pp->pr_entered_line);
226 }
227 #else
228 #define pr_log(pp, v, action, file, line)
229 #define pr_printlog(pp, pi, pr)
230 #define pr_enter(pp, file, line)
231 #define pr_leave(pp)
232 #define pr_enter_check(pp, pr)
233 #endif /* DIAGNOSTIC */
234
235 /*
236 * Return the pool page header based on page address.
237 */
238 static __inline struct pool_item_header *
239 pr_find_pagehead(struct pool *pp, caddr_t page)
240 {
241 struct pool_item_header *ph;
242
243 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
244 return ((struct pool_item_header *)(page + pp->pr_phoffset));
245
246 for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]);
247 ph != NULL;
248 ph = LIST_NEXT(ph, ph_hashlist)) {
249 if (ph->ph_page == page)
250 return (ph);
251 }
252 return (NULL);
253 }
254
255 /*
256 * Remove a page from the pool.
257 */
258 static __inline void
259 pr_rmpage(struct pool *pp, struct pool_item_header *ph)
260 {
261
262 /*
263 * If the page was idle, decrement the idle page count.
264 */
265 if (ph->ph_nmissing == 0) {
266 #ifdef DIAGNOSTIC
267 if (pp->pr_nidle == 0)
268 panic("pr_rmpage: nidle inconsistent");
269 if (pp->pr_nitems < pp->pr_itemsperpage)
270 panic("pr_rmpage: nitems inconsistent");
271 #endif
272 pp->pr_nidle--;
273 }
274
275 pp->pr_nitems -= pp->pr_itemsperpage;
276
277 /*
278 * Unlink a page from the pool and release it.
279 */
280 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
281 (*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype);
282 pp->pr_npages--;
283 pp->pr_npagefree++;
284
285 if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
286 int s;
287 LIST_REMOVE(ph, ph_hashlist);
288 s = splhigh();
289 pool_put(&phpool, ph);
290 splx(s);
291 }
292
293 if (pp->pr_curpage == ph) {
294 /*
295 * Find a new non-empty page header, if any.
296 * Start search from the page head, to increase the
297 * chance for "high water" pages to be freed.
298 */
299 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
300 ph = TAILQ_NEXT(ph, ph_pagelist))
301 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
302 break;
303
304 pp->pr_curpage = ph;
305 }
306 }
307
308 /*
309 * Allocate and initialize a pool.
310 */
311 struct pool *
312 pool_create(size_t size, u_int align, u_int ioff, int nitems,
313 const char *wchan, size_t pagesz,
314 void *(*alloc)(unsigned long, int, int),
315 void (*release)(void *, unsigned long, int),
316 int mtype)
317 {
318 struct pool *pp;
319 int flags;
320
321 pp = (struct pool *)malloc(sizeof(*pp), M_POOL, M_NOWAIT);
322 if (pp == NULL)
323 return (NULL);
324
325 flags = PR_FREEHEADER;
326 pool_init(pp, size, align, ioff, flags, wchan, pagesz,
327 alloc, release, mtype);
328
329 if (nitems != 0) {
330 if (pool_prime(pp, nitems, NULL) != 0) {
331 pool_destroy(pp);
332 return (NULL);
333 }
334 }
335
336 return (pp);
337 }
338
339 /*
340 * Initialize the given pool resource structure.
341 *
342 * We export this routine to allow other kernel parts to declare
343 * static pools that must be initialized before malloc() is available.
344 */
345 void
346 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
347 const char *wchan, size_t pagesz,
348 void *(*alloc)(unsigned long, int, int),
349 void (*release)(void *, unsigned long, int),
350 int mtype)
351 {
352 int off, slack, i;
353
354 #ifdef POOL_DIAGNOSTIC
355 /*
356 * Always log if POOL_DIAGNOSTIC is defined.
357 */
358 if (pool_logsize != 0)
359 flags |= PR_LOGGING;
360 #endif
361
362 /*
363 * Check arguments and construct default values.
364 */
365 if (!powerof2(pagesz))
366 panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz);
367
368 if (alloc == NULL && release == NULL) {
369 alloc = pool_page_alloc;
370 release = pool_page_free;
371 pagesz = PAGE_SIZE; /* Rounds to PAGE_SIZE anyhow. */
372 } else if ((alloc != NULL && release != NULL) == 0) {
373 /* If you specifiy one, must specify both. */
374 panic("pool_init: must specify alloc and release together");
375 }
376
377 if (pagesz == 0)
378 pagesz = PAGE_SIZE;
379
380 if (align == 0)
381 align = ALIGN(1);
382
383 if (size < sizeof(struct pool_item))
384 size = sizeof(struct pool_item);
385
386 size = ALIGN(size);
387 if (size >= pagesz)
388 panic("pool_init: pool item size (%lu) too large",
389 (u_long)size);
390
391 /*
392 * Initialize the pool structure.
393 */
394 TAILQ_INIT(&pp->pr_pagelist);
395 pp->pr_curpage = NULL;
396 pp->pr_npages = 0;
397 pp->pr_minitems = 0;
398 pp->pr_minpages = 0;
399 pp->pr_maxpages = UINT_MAX;
400 pp->pr_roflags = flags;
401 pp->pr_flags = 0;
402 pp->pr_size = size;
403 pp->pr_align = align;
404 pp->pr_wchan = wchan;
405 pp->pr_mtype = mtype;
406 pp->pr_alloc = alloc;
407 pp->pr_free = release;
408 pp->pr_pagesz = pagesz;
409 pp->pr_pagemask = ~(pagesz - 1);
410 pp->pr_pageshift = ffs(pagesz) - 1;
411 pp->pr_nitems = 0;
412 pp->pr_nout = 0;
413 pp->pr_hardlimit = UINT_MAX;
414 pp->pr_hardlimit_warning = NULL;
415 pp->pr_hardlimit_ratecap.tv_sec = 0;
416 pp->pr_hardlimit_ratecap.tv_usec = 0;
417 pp->pr_hardlimit_warning_last.tv_sec = 0;
418 pp->pr_hardlimit_warning_last.tv_usec = 0;
419
420 /*
421 * Decide whether to put the page header off page to avoid
422 * wasting too large a part of the page. Off-page page headers
423 * go on a hash table, so we can match a returned item
424 * with its header based on the page address.
425 * We use 1/16 of the page size as the threshold (XXX: tune)
426 */
427 if (pp->pr_size < pagesz/16) {
428 /* Use the end of the page for the page header */
429 pp->pr_roflags |= PR_PHINPAGE;
430 pp->pr_phoffset = off =
431 pagesz - ALIGN(sizeof(struct pool_item_header));
432 } else {
433 /* The page header will be taken from our page header pool */
434 pp->pr_phoffset = 0;
435 off = pagesz;
436 for (i = 0; i < PR_HASHTABSIZE; i++) {
437 LIST_INIT(&pp->pr_hashtab[i]);
438 }
439 }
440
441 /*
442 * Alignment is to take place at `ioff' within the item. This means
443 * we must reserve up to `align - 1' bytes on the page to allow
444 * appropriate positioning of each item.
445 *
446 * Silently enforce `0 <= ioff < align'.
447 */
448 pp->pr_itemoffset = ioff = ioff % align;
449 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
450
451 /*
452 * Use the slack between the chunks and the page header
453 * for "cache coloring".
454 */
455 slack = off - pp->pr_itemsperpage * pp->pr_size;
456 pp->pr_maxcolor = (slack / align) * align;
457 pp->pr_curcolor = 0;
458
459 pp->pr_nget = 0;
460 pp->pr_nfail = 0;
461 pp->pr_nput = 0;
462 pp->pr_npagealloc = 0;
463 pp->pr_npagefree = 0;
464 pp->pr_hiwat = 0;
465 pp->pr_nidle = 0;
466
467 if (flags & PR_LOGGING) {
468 if (kmem_map == NULL ||
469 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
470 M_TEMP, M_NOWAIT)) == NULL)
471 pp->pr_roflags &= ~PR_LOGGING;
472 pp->pr_curlogentry = 0;
473 pp->pr_logsize = pool_logsize;
474 }
475
476 pp->pr_entered_file = NULL;
477 pp->pr_entered_line = 0;
478
479 simple_lock_init(&pp->pr_slock);
480
481 /*
482 * Initialize private page header pool if we haven't done so yet.
483 * XXX LOCKING.
484 */
485 if (phpool.pr_size == 0) {
486 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
487 0, "phpool", 0, 0, 0, 0);
488 }
489
490 /* Insert into the list of all pools. */
491 simple_lock(&pool_head_slock);
492 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
493 simple_unlock(&pool_head_slock);
494 }
495
496 /*
497 * De-commision a pool resource.
498 */
499 void
500 pool_destroy(struct pool *pp)
501 {
502 struct pool_item_header *ph;
503
504 #ifdef DIAGNOSTIC
505 if (pp->pr_nout != 0) {
506 pr_printlog(pp, NULL, printf);
507 panic("pool_destroy: pool busy: still out: %u\n",
508 pp->pr_nout);
509 }
510 #endif
511
512 /* Remove all pages */
513 if ((pp->pr_roflags & PR_STATIC) == 0)
514 while ((ph = pp->pr_pagelist.tqh_first) != NULL)
515 pr_rmpage(pp, ph);
516
517 /* Remove from global pool list */
518 simple_lock(&pool_head_slock);
519 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
520 /* XXX Only clear this if we were drainpp? */
521 drainpp = NULL;
522 simple_unlock(&pool_head_slock);
523
524 if ((pp->pr_roflags & PR_LOGGING) != 0)
525 free(pp->pr_log, M_TEMP);
526
527 if (pp->pr_roflags & PR_FREEHEADER)
528 free(pp, M_POOL);
529 }
530
531
532 /*
533 * Grab an item from the pool; must be called at appropriate spl level
534 */
535 void *
536 _pool_get(struct pool *pp, int flags, const char *file, long line)
537 {
538 void *v;
539 struct pool_item *pi;
540 struct pool_item_header *ph;
541
542 #ifdef DIAGNOSTIC
543 if (__predict_false((pp->pr_roflags & PR_STATIC) &&
544 (flags & PR_MALLOCOK))) {
545 pr_printlog(pp, NULL, printf);
546 panic("pool_get: static");
547 }
548 #endif
549
550 if (__predict_false(curproc == NULL && doing_shutdown == 0 &&
551 (flags & PR_WAITOK) != 0))
552 panic("pool_get: must have NOWAIT");
553
554 simple_lock(&pp->pr_slock);
555 pr_enter(pp, file, line);
556
557 startover:
558 /*
559 * Check to see if we've reached the hard limit. If we have,
560 * and we can wait, then wait until an item has been returned to
561 * the pool.
562 */
563 #ifdef DIAGNOSTIC
564 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
565 pr_leave(pp);
566 simple_unlock(&pp->pr_slock);
567 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
568 }
569 #endif
570 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
571 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
572 /*
573 * XXX: A warning isn't logged in this case. Should
574 * it be?
575 */
576 pp->pr_flags |= PR_WANTED;
577 pr_leave(pp);
578 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
579 pr_enter(pp, file, line);
580 goto startover;
581 }
582
583 /*
584 * Log a message that the hard limit has been hit.
585 */
586 if (pp->pr_hardlimit_warning != NULL &&
587 ratecheck(&pp->pr_hardlimit_warning_last,
588 &pp->pr_hardlimit_ratecap))
589 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
590
591 if (flags & PR_URGENT)
592 panic("pool_get: urgent");
593
594 pp->pr_nfail++;
595
596 pr_leave(pp);
597 simple_unlock(&pp->pr_slock);
598 return (NULL);
599 }
600
601 /*
602 * The convention we use is that if `curpage' is not NULL, then
603 * it points at a non-empty bucket. In particular, `curpage'
604 * never points at a page header which has PR_PHINPAGE set and
605 * has no items in its bucket.
606 */
607 if ((ph = pp->pr_curpage) == NULL) {
608 void *v;
609
610 #ifdef DIAGNOSTIC
611 if (pp->pr_nitems != 0) {
612 simple_unlock(&pp->pr_slock);
613 printf("pool_get: %s: curpage NULL, nitems %u\n",
614 pp->pr_wchan, pp->pr_nitems);
615 panic("pool_get: nitems inconsistent\n");
616 }
617 #endif
618
619 /*
620 * Call the back-end page allocator for more memory.
621 * Release the pool lock, as the back-end page allocator
622 * may block.
623 */
624 pr_leave(pp);
625 simple_unlock(&pp->pr_slock);
626 v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype);
627 simple_lock(&pp->pr_slock);
628 pr_enter(pp, file, line);
629
630 if (v == NULL) {
631 /*
632 * We were unable to allocate a page, but
633 * we released the lock during allocation,
634 * so perhaps items were freed back to the
635 * pool. Check for this case.
636 */
637 if (pp->pr_curpage != NULL)
638 goto startover;
639
640 if (flags & PR_URGENT)
641 panic("pool_get: urgent");
642
643 if ((flags & PR_WAITOK) == 0) {
644 pp->pr_nfail++;
645 pr_leave(pp);
646 simple_unlock(&pp->pr_slock);
647 return (NULL);
648 }
649
650 /*
651 * Wait for items to be returned to this pool.
652 *
653 * XXX: we actually want to wait just until
654 * the page allocator has memory again. Depending
655 * on this pool's usage, we might get stuck here
656 * for a long time.
657 *
658 * XXX: maybe we should wake up once a second and
659 * try again?
660 */
661 pp->pr_flags |= PR_WANTED;
662 pr_leave(pp);
663 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
664 pr_enter(pp, file, line);
665 goto startover;
666 }
667
668 /* We have more memory; add it to the pool */
669 pp->pr_npagealloc++;
670 pool_prime_page(pp, v);
671
672 /* Start the allocation process over. */
673 goto startover;
674 }
675
676 if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
677 pr_leave(pp);
678 simple_unlock(&pp->pr_slock);
679 panic("pool_get: %s: page empty", pp->pr_wchan);
680 }
681 #ifdef DIAGNOSTIC
682 if (__predict_false(pp->pr_nitems == 0)) {
683 pr_leave(pp);
684 simple_unlock(&pp->pr_slock);
685 printf("pool_get: %s: items on itemlist, nitems %u\n",
686 pp->pr_wchan, pp->pr_nitems);
687 panic("pool_get: nitems inconsistent\n");
688 }
689 #endif
690 pr_log(pp, v, PRLOG_GET, file, line);
691
692 #ifdef DIAGNOSTIC
693 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
694 pr_printlog(pp, pi, printf);
695 panic("pool_get(%s): free list modified: magic=%x; page %p;"
696 " item addr %p\n",
697 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
698 }
699 #endif
700
701 /*
702 * Remove from item list.
703 */
704 TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
705 pp->pr_nitems--;
706 pp->pr_nout++;
707 if (ph->ph_nmissing == 0) {
708 #ifdef DIAGNOSTIC
709 if (__predict_false(pp->pr_nidle == 0))
710 panic("pool_get: nidle inconsistent");
711 #endif
712 pp->pr_nidle--;
713 }
714 ph->ph_nmissing++;
715 if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) {
716 #ifdef DIAGNOSTIC
717 if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
718 pr_leave(pp);
719 simple_unlock(&pp->pr_slock);
720 panic("pool_get: %s: nmissing inconsistent",
721 pp->pr_wchan);
722 }
723 #endif
724 /*
725 * Find a new non-empty page header, if any.
726 * Start search from the page head, to increase
727 * the chance for "high water" pages to be freed.
728 *
729 * Migrate empty pages to the end of the list. This
730 * will speed the update of curpage as pages become
731 * idle. Empty pages intermingled with idle pages
732 * is no big deal. As soon as a page becomes un-empty,
733 * it will move back to the head of the list.
734 */
735 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
736 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
737 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
738 ph = TAILQ_NEXT(ph, ph_pagelist))
739 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
740 break;
741
742 pp->pr_curpage = ph;
743 }
744
745 pp->pr_nget++;
746
747 /*
748 * If we have a low water mark and we are now below that low
749 * water mark, add more items to the pool.
750 */
751 if (pp->pr_nitems < pp->pr_minitems && pool_catchup(pp) != 0) {
752 /*
753 * XXX: Should we log a warning? Should we set up a timeout
754 * to try again in a second or so? The latter could break
755 * a caller's assumptions about interrupt protection, etc.
756 */
757 }
758
759 pr_leave(pp);
760 simple_unlock(&pp->pr_slock);
761 return (v);
762 }
763
764 /*
765 * Return resource to the pool; must be called at appropriate spl level
766 */
767 void
768 _pool_put(struct pool *pp, void *v, const char *file, long line)
769 {
770 struct pool_item *pi = v;
771 struct pool_item_header *ph;
772 caddr_t page;
773 int s;
774
775 page = (caddr_t)((u_long)v & pp->pr_pagemask);
776
777 simple_lock(&pp->pr_slock);
778 pr_enter(pp, file, line);
779
780 #ifdef DIAGNOSTIC
781 if (__predict_false(pp->pr_nout == 0)) {
782 printf("pool %s: putting with none out\n",
783 pp->pr_wchan);
784 panic("pool_put");
785 }
786 #endif
787
788 pr_log(pp, v, PRLOG_PUT, file, line);
789
790 if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
791 pr_printlog(pp, NULL, printf);
792 panic("pool_put: %s: page header missing", pp->pr_wchan);
793 }
794
795 #ifdef LOCKDEBUG
796 /*
797 * Check if we're freeing a locked simple lock.
798 */
799 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
800 #endif
801
802 /*
803 * Return to item list.
804 */
805 #ifdef DIAGNOSTIC
806 pi->pi_magic = PI_MAGIC;
807 #endif
808 #ifdef DEBUG
809 {
810 int i, *ip = v;
811
812 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
813 *ip++ = PI_MAGIC;
814 }
815 }
816 #endif
817
818 TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
819 ph->ph_nmissing--;
820 pp->pr_nput++;
821 pp->pr_nitems++;
822 pp->pr_nout--;
823
824 /* Cancel "pool empty" condition if it exists */
825 if (pp->pr_curpage == NULL)
826 pp->pr_curpage = ph;
827
828 if (pp->pr_flags & PR_WANTED) {
829 pp->pr_flags &= ~PR_WANTED;
830 if (ph->ph_nmissing == 0)
831 pp->pr_nidle++;
832 pr_leave(pp);
833 simple_unlock(&pp->pr_slock);
834 wakeup((caddr_t)pp);
835 return;
836 }
837
838 /*
839 * If this page is now complete, do one of two things:
840 *
841 * (1) If we have more pages than the page high water
842 * mark, free the page back to the system.
843 *
844 * (2) Move it to the end of the page list, so that
845 * we minimize our chances of fragmenting the
846 * pool. Idle pages migrate to the end (along with
847 * completely empty pages, so that we find un-empty
848 * pages more quickly when we update curpage) of the
849 * list so they can be more easily swept up by
850 * the pagedaemon when pages are scarce.
851 */
852 if (ph->ph_nmissing == 0) {
853 pp->pr_nidle++;
854 if (pp->pr_npages > pp->pr_maxpages) {
855 pr_rmpage(pp, ph);
856 } else {
857 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
858 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
859
860 /*
861 * Update the timestamp on the page. A page must
862 * be idle for some period of time before it can
863 * be reclaimed by the pagedaemon. This minimizes
864 * ping-pong'ing for memory.
865 */
866 s = splclock();
867 ph->ph_time = mono_time;
868 splx(s);
869
870 /*
871 * Update the current page pointer. Just look for
872 * the first page with any free items.
873 *
874 * XXX: Maybe we want an option to look for the
875 * page with the fewest available items, to minimize
876 * fragmentation?
877 */
878 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
879 ph = TAILQ_NEXT(ph, ph_pagelist))
880 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
881 break;
882
883 pp->pr_curpage = ph;
884 }
885 }
886 /*
887 * If the page has just become un-empty, move it to the head of
888 * the list, and make it the current page. The next allocation
889 * will get the item from this page, instead of further fragmenting
890 * the pool.
891 */
892 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
893 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
894 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
895 pp->pr_curpage = ph;
896 }
897
898 pr_leave(pp);
899 simple_unlock(&pp->pr_slock);
900
901 }
902
903 /*
904 * Add N items to the pool.
905 */
906 int
907 pool_prime(struct pool *pp, int n, caddr_t storage)
908 {
909 caddr_t cp;
910 int newnitems, newpages;
911
912 #ifdef DIAGNOSTIC
913 if (__predict_false(storage && !(pp->pr_roflags & PR_STATIC)))
914 panic("pool_prime: static");
915 /* !storage && static caught below */
916 #endif
917
918 simple_lock(&pp->pr_slock);
919
920 newnitems = pp->pr_minitems + n;
921 newpages =
922 roundup(newnitems, pp->pr_itemsperpage) / pp->pr_itemsperpage
923 - pp->pr_minpages;
924
925 while (newpages-- > 0) {
926 if (pp->pr_roflags & PR_STATIC) {
927 cp = storage;
928 storage += pp->pr_pagesz;
929 } else {
930 simple_unlock(&pp->pr_slock);
931 cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
932 simple_lock(&pp->pr_slock);
933 }
934
935 if (cp == NULL) {
936 simple_unlock(&pp->pr_slock);
937 return (ENOMEM);
938 }
939
940 pp->pr_npagealloc++;
941 pool_prime_page(pp, cp);
942 pp->pr_minpages++;
943 }
944
945 pp->pr_minitems = newnitems;
946
947 if (pp->pr_minpages >= pp->pr_maxpages)
948 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
949
950 simple_unlock(&pp->pr_slock);
951 return (0);
952 }
953
954 /*
955 * Add a page worth of items to the pool.
956 *
957 * Note, we must be called with the pool descriptor LOCKED.
958 */
959 static void
960 pool_prime_page(struct pool *pp, caddr_t storage)
961 {
962 struct pool_item *pi;
963 struct pool_item_header *ph;
964 caddr_t cp = storage;
965 unsigned int align = pp->pr_align;
966 unsigned int ioff = pp->pr_itemoffset;
967 int s, n;
968
969 if (((u_long)cp & (pp->pr_pagesz - 1)) != 0)
970 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
971
972 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
973 ph = (struct pool_item_header *)(cp + pp->pr_phoffset);
974 } else {
975 s = splhigh();
976 ph = pool_get(&phpool, PR_URGENT);
977 splx(s);
978 LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)],
979 ph, ph_hashlist);
980 }
981
982 /*
983 * Insert page header.
984 */
985 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
986 TAILQ_INIT(&ph->ph_itemlist);
987 ph->ph_page = storage;
988 ph->ph_nmissing = 0;
989 memset(&ph->ph_time, 0, sizeof(ph->ph_time));
990
991 pp->pr_nidle++;
992
993 /*
994 * Color this page.
995 */
996 cp = (caddr_t)(cp + pp->pr_curcolor);
997 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
998 pp->pr_curcolor = 0;
999
1000 /*
1001 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1002 */
1003 if (ioff != 0)
1004 cp = (caddr_t)(cp + (align - ioff));
1005
1006 /*
1007 * Insert remaining chunks on the bucket list.
1008 */
1009 n = pp->pr_itemsperpage;
1010 pp->pr_nitems += n;
1011
1012 while (n--) {
1013 pi = (struct pool_item *)cp;
1014
1015 /* Insert on page list */
1016 TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
1017 #ifdef DIAGNOSTIC
1018 pi->pi_magic = PI_MAGIC;
1019 #endif
1020 cp = (caddr_t)(cp + pp->pr_size);
1021 }
1022
1023 /*
1024 * If the pool was depleted, point at the new page.
1025 */
1026 if (pp->pr_curpage == NULL)
1027 pp->pr_curpage = ph;
1028
1029 if (++pp->pr_npages > pp->pr_hiwat)
1030 pp->pr_hiwat = pp->pr_npages;
1031 }
1032
1033 /*
1034 * Like pool_prime(), except this is used by pool_get() when nitems
1035 * drops below the low water mark. This is used to catch up nitmes
1036 * with the low water mark.
1037 *
1038 * Note 1, we never wait for memory here, we let the caller decide what to do.
1039 *
1040 * Note 2, this doesn't work with static pools.
1041 *
1042 * Note 3, we must be called with the pool already locked, and we return
1043 * with it locked.
1044 */
1045 static int
1046 pool_catchup(struct pool *pp)
1047 {
1048 caddr_t cp;
1049 int error = 0;
1050
1051 if (pp->pr_roflags & PR_STATIC) {
1052 /*
1053 * We dropped below the low water mark, and this is not a
1054 * good thing. Log a warning.
1055 *
1056 * XXX: rate-limit this?
1057 */
1058 printf("WARNING: static pool `%s' dropped below low water "
1059 "mark\n", pp->pr_wchan);
1060 return (0);
1061 }
1062
1063 while (pp->pr_nitems < pp->pr_minitems) {
1064 /*
1065 * Call the page back-end allocator for more memory.
1066 *
1067 * XXX: We never wait, so should we bother unlocking
1068 * the pool descriptor?
1069 */
1070 simple_unlock(&pp->pr_slock);
1071 cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
1072 simple_lock(&pp->pr_slock);
1073 if (__predict_false(cp == NULL)) {
1074 error = ENOMEM;
1075 break;
1076 }
1077 pp->pr_npagealloc++;
1078 pool_prime_page(pp, cp);
1079 }
1080
1081 return (error);
1082 }
1083
1084 void
1085 pool_setlowat(struct pool *pp, int n)
1086 {
1087 int error;
1088
1089 simple_lock(&pp->pr_slock);
1090
1091 pp->pr_minitems = n;
1092 pp->pr_minpages = (n == 0)
1093 ? 0
1094 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1095
1096 /* Make sure we're caught up with the newly-set low water mark. */
1097 if ((pp->pr_nitems < pp->pr_minitems) &&
1098 (error = pool_catchup(pp)) != 0) {
1099 /*
1100 * XXX: Should we log a warning? Should we set up a timeout
1101 * to try again in a second or so? The latter could break
1102 * a caller's assumptions about interrupt protection, etc.
1103 */
1104 }
1105
1106 simple_unlock(&pp->pr_slock);
1107 }
1108
1109 void
1110 pool_sethiwat(struct pool *pp, int n)
1111 {
1112
1113 simple_lock(&pp->pr_slock);
1114
1115 pp->pr_maxpages = (n == 0)
1116 ? 0
1117 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1118
1119 simple_unlock(&pp->pr_slock);
1120 }
1121
1122 void
1123 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1124 {
1125
1126 simple_lock(&pp->pr_slock);
1127
1128 pp->pr_hardlimit = n;
1129 pp->pr_hardlimit_warning = warnmess;
1130 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1131 pp->pr_hardlimit_warning_last.tv_sec = 0;
1132 pp->pr_hardlimit_warning_last.tv_usec = 0;
1133
1134 /*
1135 * In-line version of pool_sethiwat(), because we don't want to
1136 * release the lock.
1137 */
1138 pp->pr_maxpages = (n == 0)
1139 ? 0
1140 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1141
1142 simple_unlock(&pp->pr_slock);
1143 }
1144
1145 /*
1146 * Default page allocator.
1147 */
1148 static void *
1149 pool_page_alloc(unsigned long sz, int flags, int mtype)
1150 {
1151 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1152
1153 return ((void *)uvm_km_alloc_poolpage(waitok));
1154 }
1155
1156 static void
1157 pool_page_free(void *v, unsigned long sz, int mtype)
1158 {
1159
1160 uvm_km_free_poolpage((vaddr_t)v);
1161 }
1162
1163 /*
1164 * Alternate pool page allocator for pools that know they will
1165 * never be accessed in interrupt context.
1166 */
1167 void *
1168 pool_page_alloc_nointr(unsigned long sz, int flags, int mtype)
1169 {
1170 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1171
1172 return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object,
1173 waitok));
1174 }
1175
1176 void
1177 pool_page_free_nointr(void *v, unsigned long sz, int mtype)
1178 {
1179
1180 uvm_km_free_poolpage1(kernel_map, (vaddr_t)v);
1181 }
1182
1183
1184 /*
1185 * Release all complete pages that have not been used recently.
1186 */
1187 void
1188 _pool_reclaim(struct pool *pp, const char *file, long line)
1189 {
1190 struct pool_item_header *ph, *phnext;
1191 struct timeval curtime;
1192 int s;
1193
1194 if (pp->pr_roflags & PR_STATIC)
1195 return;
1196
1197 if (simple_lock_try(&pp->pr_slock) == 0)
1198 return;
1199 pr_enter(pp, file, line);
1200
1201 s = splclock();
1202 curtime = mono_time;
1203 splx(s);
1204
1205 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) {
1206 phnext = TAILQ_NEXT(ph, ph_pagelist);
1207
1208 /* Check our minimum page claim */
1209 if (pp->pr_npages <= pp->pr_minpages)
1210 break;
1211
1212 if (ph->ph_nmissing == 0) {
1213 struct timeval diff;
1214 timersub(&curtime, &ph->ph_time, &diff);
1215 if (diff.tv_sec < pool_inactive_time)
1216 continue;
1217
1218 /*
1219 * If freeing this page would put us below
1220 * the low water mark, stop now.
1221 */
1222 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1223 pp->pr_minitems)
1224 break;
1225
1226 pr_rmpage(pp, ph);
1227 }
1228 }
1229
1230 pr_leave(pp);
1231 simple_unlock(&pp->pr_slock);
1232 }
1233
1234
1235 /*
1236 * Drain pools, one at a time.
1237 *
1238 * Note, we must never be called from an interrupt context.
1239 */
1240 void
1241 pool_drain(void *arg)
1242 {
1243 struct pool *pp;
1244 int s;
1245
1246 s = splimp();
1247 simple_lock(&pool_head_slock);
1248
1249 if (drainpp == NULL && (drainpp = TAILQ_FIRST(&pool_head)) == NULL)
1250 goto out;
1251
1252 pp = drainpp;
1253 drainpp = TAILQ_NEXT(pp, pr_poollist);
1254
1255 pool_reclaim(pp);
1256
1257 out:
1258 simple_unlock(&pool_head_slock);
1259 splx(s);
1260 }
1261
1262
1263 /*
1264 * Diagnostic helpers.
1265 */
1266 void
1267 pool_print(struct pool *pp, const char *modif)
1268 {
1269 int s;
1270
1271 s = splimp();
1272 if (simple_lock_try(&pp->pr_slock) == 0) {
1273 printf("pool %s is locked; try again later\n",
1274 pp->pr_wchan);
1275 splx(s);
1276 return;
1277 }
1278 pool_print1(pp, modif, printf);
1279 simple_unlock(&pp->pr_slock);
1280 splx(s);
1281 }
1282
1283 void
1284 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1285 {
1286 int didlock = 0;
1287
1288 if (pp == NULL) {
1289 (*pr)("Must specify a pool to print.\n");
1290 return;
1291 }
1292
1293 /*
1294 * Called from DDB; interrupts should be blocked, and all
1295 * other processors should be paused. We can skip locking
1296 * the pool in this case.
1297 *
1298 * We do a simple_lock_try() just to print the lock
1299 * status, however.
1300 */
1301
1302 if (simple_lock_try(&pp->pr_slock) == 0)
1303 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1304 else
1305 didlock = 1;
1306
1307 pool_print1(pp, modif, pr);
1308
1309 if (didlock)
1310 simple_unlock(&pp->pr_slock);
1311 }
1312
1313 static void
1314 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1315 {
1316 struct pool_item_header *ph;
1317 #ifdef DIAGNOSTIC
1318 struct pool_item *pi;
1319 #endif
1320 int print_log = 0, print_pagelist = 0;
1321 char c;
1322
1323 while ((c = *modif++) != '\0') {
1324 if (c == 'l')
1325 print_log = 1;
1326 if (c == 'p')
1327 print_pagelist = 1;
1328 modif++;
1329 }
1330
1331 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1332 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1333 pp->pr_roflags);
1334 (*pr)("\tpagesz %u, mtype %d\n", pp->pr_pagesz, pp->pr_mtype);
1335 (*pr)("\talloc %p, release %p\n", pp->pr_alloc, pp->pr_free);
1336 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1337 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1338 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1339 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1340
1341 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1342 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1343 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1344 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1345
1346 if (print_pagelist == 0)
1347 goto skip_pagelist;
1348
1349 if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
1350 (*pr)("\n\tpage list:\n");
1351 for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) {
1352 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1353 ph->ph_page, ph->ph_nmissing,
1354 (u_long)ph->ph_time.tv_sec,
1355 (u_long)ph->ph_time.tv_usec);
1356 #ifdef DIAGNOSTIC
1357 for (pi = TAILQ_FIRST(&ph->ph_itemlist); pi != NULL;
1358 pi = TAILQ_NEXT(pi, pi_list)) {
1359 if (pi->pi_magic != PI_MAGIC) {
1360 (*pr)("\t\t\titem %p, magic 0x%x\n",
1361 pi, pi->pi_magic);
1362 }
1363 }
1364 #endif
1365 }
1366 if (pp->pr_curpage == NULL)
1367 (*pr)("\tno current page\n");
1368 else
1369 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1370
1371 skip_pagelist:
1372
1373 if (print_log == 0)
1374 goto skip_log;
1375
1376 (*pr)("\n");
1377 if ((pp->pr_roflags & PR_LOGGING) == 0)
1378 (*pr)("\tno log\n");
1379 else
1380 pr_printlog(pp, NULL, pr);
1381
1382 skip_log:
1383
1384 pr_enter_check(pp, pr);
1385 }
1386
1387 int
1388 pool_chk(struct pool *pp, const char *label)
1389 {
1390 struct pool_item_header *ph;
1391 int r = 0;
1392
1393 simple_lock(&pp->pr_slock);
1394
1395 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
1396 ph = TAILQ_NEXT(ph, ph_pagelist)) {
1397
1398 struct pool_item *pi;
1399 int n;
1400 caddr_t page;
1401
1402 page = (caddr_t)((u_long)ph & pp->pr_pagemask);
1403 if (page != ph->ph_page &&
1404 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1405 if (label != NULL)
1406 printf("%s: ", label);
1407 printf("pool(%p:%s): page inconsistency: page %p;"
1408 " at page head addr %p (p %p)\n", pp,
1409 pp->pr_wchan, ph->ph_page,
1410 ph, page);
1411 r++;
1412 goto out;
1413 }
1414
1415 for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
1416 pi != NULL;
1417 pi = TAILQ_NEXT(pi,pi_list), n++) {
1418
1419 #ifdef DIAGNOSTIC
1420 if (pi->pi_magic != PI_MAGIC) {
1421 if (label != NULL)
1422 printf("%s: ", label);
1423 printf("pool(%s): free list modified: magic=%x;"
1424 " page %p; item ordinal %d;"
1425 " addr %p (p %p)\n",
1426 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1427 n, pi, page);
1428 panic("pool");
1429 }
1430 #endif
1431 page = (caddr_t)((u_long)pi & pp->pr_pagemask);
1432 if (page == ph->ph_page)
1433 continue;
1434
1435 if (label != NULL)
1436 printf("%s: ", label);
1437 printf("pool(%p:%s): page inconsistency: page %p;"
1438 " item ordinal %d; addr %p (p %p)\n", pp,
1439 pp->pr_wchan, ph->ph_page,
1440 n, pi, page);
1441 r++;
1442 goto out;
1443 }
1444 }
1445 out:
1446 simple_unlock(&pp->pr_slock);
1447 return (r);
1448 }
1449