subr_pool.c revision 1.48 1 /* $NetBSD: subr_pool.c,v 1.48 2000/12/11 05:22:56 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include "opt_pool.h"
41 #include "opt_poollog.h"
42 #include "opt_lockdebug.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/proc.h>
47 #include <sys/errno.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/lock.h>
51 #include <sys/pool.h>
52 #include <sys/syslog.h>
53
54 #include <uvm/uvm.h>
55
56 /*
57 * Pool resource management utility.
58 *
59 * Memory is allocated in pages which are split into pieces according
60 * to the pool item size. Each page is kept on a list headed by `pr_pagelist'
61 * in the pool structure and the individual pool items are on a linked list
62 * headed by `ph_itemlist' in each page header. The memory for building
63 * the page list is either taken from the allocated pages themselves (for
64 * small pool items) or taken from an internal pool of page headers (`phpool').
65 */
66
67 /* List of all pools */
68 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
69
70 /* Private pool for page header structures */
71 static struct pool phpool;
72
73 /* # of seconds to retain page after last use */
74 int pool_inactive_time = 10;
75
76 /* Next candidate for drainage (see pool_drain()) */
77 static struct pool *drainpp;
78
79 /* This spin lock protects both pool_head and drainpp. */
80 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
81
82 struct pool_item_header {
83 /* Page headers */
84 TAILQ_ENTRY(pool_item_header)
85 ph_pagelist; /* pool page list */
86 TAILQ_HEAD(,pool_item) ph_itemlist; /* chunk list for this page */
87 LIST_ENTRY(pool_item_header)
88 ph_hashlist; /* Off-page page headers */
89 int ph_nmissing; /* # of chunks in use */
90 caddr_t ph_page; /* this page's address */
91 struct timeval ph_time; /* last referenced */
92 };
93
94 struct pool_item {
95 #ifdef DIAGNOSTIC
96 int pi_magic;
97 #endif
98 #define PI_MAGIC 0xdeadbeef
99 /* Other entries use only this list entry */
100 TAILQ_ENTRY(pool_item) pi_list;
101 };
102
103 #define PR_HASH_INDEX(pp,addr) \
104 (((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1))
105
106 /*
107 * Pool cache management.
108 *
109 * Pool caches provide a way for constructed objects to be cached by the
110 * pool subsystem. This can lead to performance improvements by avoiding
111 * needless object construction/destruction; it is deferred until absolutely
112 * necessary.
113 *
114 * Caches are grouped into cache groups. Each cache group references
115 * up to 16 constructed objects. When a cache allocates an object
116 * from the pool, it calls the object's constructor and places it into
117 * a cache group. When a cache group frees an object back to the pool,
118 * it first calls the object's destructor. This allows the object to
119 * persist in constructed form while freed to the cache.
120 *
121 * Multiple caches may exist for each pool. This allows a single
122 * object type to have multiple constructed forms. The pool references
123 * each cache, so that when a pool is drained by the pagedaemon, it can
124 * drain each individual cache as well. Each time a cache is drained,
125 * the most idle cache group is freed to the pool in its entirety.
126 *
127 * Pool caches are layed on top of pools. By layering them, we can avoid
128 * the complexity of cache management for pools which would not benefit
129 * from it.
130 */
131
132 /* The cache group pool. */
133 static struct pool pcgpool;
134
135 /* The pool cache group. */
136 #define PCG_NOBJECTS 16
137 struct pool_cache_group {
138 TAILQ_ENTRY(pool_cache_group)
139 pcg_list; /* link in the pool cache's group list */
140 u_int pcg_avail; /* # available objects */
141 /* pointers to the objects */
142 void *pcg_objects[PCG_NOBJECTS];
143 };
144
145 static void pool_cache_reclaim(struct pool_cache *);
146
147 static int pool_catchup(struct pool *);
148 static void pool_prime_page(struct pool *, caddr_t);
149 static void *pool_page_alloc(unsigned long, int, int);
150 static void pool_page_free(void *, unsigned long, int);
151
152 static void pool_print1(struct pool *, const char *,
153 void (*)(const char *, ...));
154
155 /*
156 * Pool log entry. An array of these is allocated in pool_create().
157 */
158 struct pool_log {
159 const char *pl_file;
160 long pl_line;
161 int pl_action;
162 #define PRLOG_GET 1
163 #define PRLOG_PUT 2
164 void *pl_addr;
165 };
166
167 /* Number of entries in pool log buffers */
168 #ifndef POOL_LOGSIZE
169 #define POOL_LOGSIZE 10
170 #endif
171
172 int pool_logsize = POOL_LOGSIZE;
173
174 #ifdef DIAGNOSTIC
175 static __inline void
176 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
177 {
178 int n = pp->pr_curlogentry;
179 struct pool_log *pl;
180
181 if ((pp->pr_roflags & PR_LOGGING) == 0)
182 return;
183
184 /*
185 * Fill in the current entry. Wrap around and overwrite
186 * the oldest entry if necessary.
187 */
188 pl = &pp->pr_log[n];
189 pl->pl_file = file;
190 pl->pl_line = line;
191 pl->pl_action = action;
192 pl->pl_addr = v;
193 if (++n >= pp->pr_logsize)
194 n = 0;
195 pp->pr_curlogentry = n;
196 }
197
198 static void
199 pr_printlog(struct pool *pp, struct pool_item *pi,
200 void (*pr)(const char *, ...))
201 {
202 int i = pp->pr_logsize;
203 int n = pp->pr_curlogentry;
204
205 if ((pp->pr_roflags & PR_LOGGING) == 0)
206 return;
207
208 /*
209 * Print all entries in this pool's log.
210 */
211 while (i-- > 0) {
212 struct pool_log *pl = &pp->pr_log[n];
213 if (pl->pl_action != 0) {
214 if (pi == NULL || pi == pl->pl_addr) {
215 (*pr)("\tlog entry %d:\n", i);
216 (*pr)("\t\taction = %s, addr = %p\n",
217 pl->pl_action == PRLOG_GET ? "get" : "put",
218 pl->pl_addr);
219 (*pr)("\t\tfile: %s at line %lu\n",
220 pl->pl_file, pl->pl_line);
221 }
222 }
223 if (++n >= pp->pr_logsize)
224 n = 0;
225 }
226 }
227
228 static __inline void
229 pr_enter(struct pool *pp, const char *file, long line)
230 {
231
232 if (__predict_false(pp->pr_entered_file != NULL)) {
233 printf("pool %s: reentrancy at file %s line %ld\n",
234 pp->pr_wchan, file, line);
235 printf(" previous entry at file %s line %ld\n",
236 pp->pr_entered_file, pp->pr_entered_line);
237 panic("pr_enter");
238 }
239
240 pp->pr_entered_file = file;
241 pp->pr_entered_line = line;
242 }
243
244 static __inline void
245 pr_leave(struct pool *pp)
246 {
247
248 if (__predict_false(pp->pr_entered_file == NULL)) {
249 printf("pool %s not entered?\n", pp->pr_wchan);
250 panic("pr_leave");
251 }
252
253 pp->pr_entered_file = NULL;
254 pp->pr_entered_line = 0;
255 }
256
257 static __inline void
258 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
259 {
260
261 if (pp->pr_entered_file != NULL)
262 (*pr)("\n\tcurrently entered from file %s line %ld\n",
263 pp->pr_entered_file, pp->pr_entered_line);
264 }
265 #else
266 #define pr_log(pp, v, action, file, line)
267 #define pr_printlog(pp, pi, pr)
268 #define pr_enter(pp, file, line)
269 #define pr_leave(pp)
270 #define pr_enter_check(pp, pr)
271 #endif /* DIAGNOSTIC */
272
273 /*
274 * Return the pool page header based on page address.
275 */
276 static __inline struct pool_item_header *
277 pr_find_pagehead(struct pool *pp, caddr_t page)
278 {
279 struct pool_item_header *ph;
280
281 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
282 return ((struct pool_item_header *)(page + pp->pr_phoffset));
283
284 for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]);
285 ph != NULL;
286 ph = LIST_NEXT(ph, ph_hashlist)) {
287 if (ph->ph_page == page)
288 return (ph);
289 }
290 return (NULL);
291 }
292
293 /*
294 * Remove a page from the pool.
295 */
296 static __inline void
297 pr_rmpage(struct pool *pp, struct pool_item_header *ph)
298 {
299
300 /*
301 * If the page was idle, decrement the idle page count.
302 */
303 if (ph->ph_nmissing == 0) {
304 #ifdef DIAGNOSTIC
305 if (pp->pr_nidle == 0)
306 panic("pr_rmpage: nidle inconsistent");
307 if (pp->pr_nitems < pp->pr_itemsperpage)
308 panic("pr_rmpage: nitems inconsistent");
309 #endif
310 pp->pr_nidle--;
311 }
312
313 pp->pr_nitems -= pp->pr_itemsperpage;
314
315 /*
316 * Unlink a page from the pool and release it.
317 */
318 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
319 (*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype);
320 pp->pr_npages--;
321 pp->pr_npagefree++;
322
323 if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
324 int s;
325 LIST_REMOVE(ph, ph_hashlist);
326 s = splhigh();
327 pool_put(&phpool, ph);
328 splx(s);
329 }
330
331 if (pp->pr_curpage == ph) {
332 /*
333 * Find a new non-empty page header, if any.
334 * Start search from the page head, to increase the
335 * chance for "high water" pages to be freed.
336 */
337 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
338 ph = TAILQ_NEXT(ph, ph_pagelist))
339 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
340 break;
341
342 pp->pr_curpage = ph;
343 }
344 }
345
346 /*
347 * Allocate and initialize a pool.
348 */
349 struct pool *
350 pool_create(size_t size, u_int align, u_int ioff, int nitems,
351 const char *wchan, size_t pagesz,
352 void *(*alloc)(unsigned long, int, int),
353 void (*release)(void *, unsigned long, int),
354 int mtype)
355 {
356 struct pool *pp;
357 int flags;
358
359 pp = (struct pool *)malloc(sizeof(*pp), M_POOL, M_NOWAIT);
360 if (pp == NULL)
361 return (NULL);
362
363 flags = PR_FREEHEADER;
364 pool_init(pp, size, align, ioff, flags, wchan, pagesz,
365 alloc, release, mtype);
366
367 if (nitems != 0) {
368 if (pool_prime(pp, nitems, NULL) != 0) {
369 pool_destroy(pp);
370 return (NULL);
371 }
372 }
373
374 return (pp);
375 }
376
377 /*
378 * Initialize the given pool resource structure.
379 *
380 * We export this routine to allow other kernel parts to declare
381 * static pools that must be initialized before malloc() is available.
382 */
383 void
384 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
385 const char *wchan, size_t pagesz,
386 void *(*alloc)(unsigned long, int, int),
387 void (*release)(void *, unsigned long, int),
388 int mtype)
389 {
390 int off, slack, i;
391
392 #ifdef POOL_DIAGNOSTIC
393 /*
394 * Always log if POOL_DIAGNOSTIC is defined.
395 */
396 if (pool_logsize != 0)
397 flags |= PR_LOGGING;
398 #endif
399
400 /*
401 * Check arguments and construct default values.
402 */
403 if (!powerof2(pagesz))
404 panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz);
405
406 if (alloc == NULL && release == NULL) {
407 alloc = pool_page_alloc;
408 release = pool_page_free;
409 pagesz = PAGE_SIZE; /* Rounds to PAGE_SIZE anyhow. */
410 } else if ((alloc != NULL && release != NULL) == 0) {
411 /* If you specifiy one, must specify both. */
412 panic("pool_init: must specify alloc and release together");
413 }
414
415 if (pagesz == 0)
416 pagesz = PAGE_SIZE;
417
418 if (align == 0)
419 align = ALIGN(1);
420
421 if (size < sizeof(struct pool_item))
422 size = sizeof(struct pool_item);
423
424 size = ALIGN(size);
425 if (size > pagesz)
426 panic("pool_init: pool item size (%lu) too large",
427 (u_long)size);
428
429 /*
430 * Initialize the pool structure.
431 */
432 TAILQ_INIT(&pp->pr_pagelist);
433 TAILQ_INIT(&pp->pr_cachelist);
434 pp->pr_curpage = NULL;
435 pp->pr_npages = 0;
436 pp->pr_minitems = 0;
437 pp->pr_minpages = 0;
438 pp->pr_maxpages = UINT_MAX;
439 pp->pr_roflags = flags;
440 pp->pr_flags = 0;
441 pp->pr_size = size;
442 pp->pr_align = align;
443 pp->pr_wchan = wchan;
444 pp->pr_mtype = mtype;
445 pp->pr_alloc = alloc;
446 pp->pr_free = release;
447 pp->pr_pagesz = pagesz;
448 pp->pr_pagemask = ~(pagesz - 1);
449 pp->pr_pageshift = ffs(pagesz) - 1;
450 pp->pr_nitems = 0;
451 pp->pr_nout = 0;
452 pp->pr_hardlimit = UINT_MAX;
453 pp->pr_hardlimit_warning = NULL;
454 pp->pr_hardlimit_ratecap.tv_sec = 0;
455 pp->pr_hardlimit_ratecap.tv_usec = 0;
456 pp->pr_hardlimit_warning_last.tv_sec = 0;
457 pp->pr_hardlimit_warning_last.tv_usec = 0;
458
459 /*
460 * Decide whether to put the page header off page to avoid
461 * wasting too large a part of the page. Off-page page headers
462 * go on a hash table, so we can match a returned item
463 * with its header based on the page address.
464 * We use 1/16 of the page size as the threshold (XXX: tune)
465 */
466 if (pp->pr_size < pagesz/16) {
467 /* Use the end of the page for the page header */
468 pp->pr_roflags |= PR_PHINPAGE;
469 pp->pr_phoffset = off =
470 pagesz - ALIGN(sizeof(struct pool_item_header));
471 } else {
472 /* The page header will be taken from our page header pool */
473 pp->pr_phoffset = 0;
474 off = pagesz;
475 for (i = 0; i < PR_HASHTABSIZE; i++) {
476 LIST_INIT(&pp->pr_hashtab[i]);
477 }
478 }
479
480 /*
481 * Alignment is to take place at `ioff' within the item. This means
482 * we must reserve up to `align - 1' bytes on the page to allow
483 * appropriate positioning of each item.
484 *
485 * Silently enforce `0 <= ioff < align'.
486 */
487 pp->pr_itemoffset = ioff = ioff % align;
488 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
489 KASSERT(pp->pr_itemsperpage != 0);
490
491 /*
492 * Use the slack between the chunks and the page header
493 * for "cache coloring".
494 */
495 slack = off - pp->pr_itemsperpage * pp->pr_size;
496 pp->pr_maxcolor = (slack / align) * align;
497 pp->pr_curcolor = 0;
498
499 pp->pr_nget = 0;
500 pp->pr_nfail = 0;
501 pp->pr_nput = 0;
502 pp->pr_npagealloc = 0;
503 pp->pr_npagefree = 0;
504 pp->pr_hiwat = 0;
505 pp->pr_nidle = 0;
506
507 if (flags & PR_LOGGING) {
508 if (kmem_map == NULL ||
509 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
510 M_TEMP, M_NOWAIT)) == NULL)
511 pp->pr_roflags &= ~PR_LOGGING;
512 pp->pr_curlogentry = 0;
513 pp->pr_logsize = pool_logsize;
514 }
515
516 pp->pr_entered_file = NULL;
517 pp->pr_entered_line = 0;
518
519 simple_lock_init(&pp->pr_slock);
520
521 /*
522 * Initialize private page header pool and cache magazine pool if we
523 * haven't done so yet.
524 * XXX LOCKING.
525 */
526 if (phpool.pr_size == 0) {
527 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
528 0, "phpool", 0, 0, 0, 0);
529 pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
530 0, "pcgpool", 0, 0, 0, 0);
531 }
532
533 /* Insert into the list of all pools. */
534 simple_lock(&pool_head_slock);
535 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
536 simple_unlock(&pool_head_slock);
537 }
538
539 /*
540 * De-commision a pool resource.
541 */
542 void
543 pool_destroy(struct pool *pp)
544 {
545 struct pool_item_header *ph;
546 struct pool_cache *pc;
547
548 /* Destroy all caches for this pool. */
549 while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL)
550 pool_cache_destroy(pc);
551
552 #ifdef DIAGNOSTIC
553 if (pp->pr_nout != 0) {
554 pr_printlog(pp, NULL, printf);
555 panic("pool_destroy: pool busy: still out: %u\n",
556 pp->pr_nout);
557 }
558 #endif
559
560 /* Remove all pages */
561 if ((pp->pr_roflags & PR_STATIC) == 0)
562 while ((ph = pp->pr_pagelist.tqh_first) != NULL)
563 pr_rmpage(pp, ph);
564
565 /* Remove from global pool list */
566 simple_lock(&pool_head_slock);
567 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
568 /* XXX Only clear this if we were drainpp? */
569 drainpp = NULL;
570 simple_unlock(&pool_head_slock);
571
572 if ((pp->pr_roflags & PR_LOGGING) != 0)
573 free(pp->pr_log, M_TEMP);
574
575 if (pp->pr_roflags & PR_FREEHEADER)
576 free(pp, M_POOL);
577 }
578
579
580 /*
581 * Grab an item from the pool; must be called at appropriate spl level
582 */
583 void *
584 _pool_get(struct pool *pp, int flags, const char *file, long line)
585 {
586 void *v;
587 struct pool_item *pi;
588 struct pool_item_header *ph;
589
590 #ifdef DIAGNOSTIC
591 if (__predict_false((pp->pr_roflags & PR_STATIC) &&
592 (flags & PR_MALLOCOK))) {
593 pr_printlog(pp, NULL, printf);
594 panic("pool_get: static");
595 }
596 #endif
597
598 if (__predict_false(curproc == NULL && doing_shutdown == 0 &&
599 (flags & PR_WAITOK) != 0))
600 panic("pool_get: must have NOWAIT");
601
602 simple_lock(&pp->pr_slock);
603 pr_enter(pp, file, line);
604
605 startover:
606 /*
607 * Check to see if we've reached the hard limit. If we have,
608 * and we can wait, then wait until an item has been returned to
609 * the pool.
610 */
611 #ifdef DIAGNOSTIC
612 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
613 pr_leave(pp);
614 simple_unlock(&pp->pr_slock);
615 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
616 }
617 #endif
618 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
619 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
620 /*
621 * XXX: A warning isn't logged in this case. Should
622 * it be?
623 */
624 pp->pr_flags |= PR_WANTED;
625 pr_leave(pp);
626 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
627 pr_enter(pp, file, line);
628 goto startover;
629 }
630
631 /*
632 * Log a message that the hard limit has been hit.
633 */
634 if (pp->pr_hardlimit_warning != NULL &&
635 ratecheck(&pp->pr_hardlimit_warning_last,
636 &pp->pr_hardlimit_ratecap))
637 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
638
639 if (flags & PR_URGENT)
640 panic("pool_get: urgent");
641
642 pp->pr_nfail++;
643
644 pr_leave(pp);
645 simple_unlock(&pp->pr_slock);
646 return (NULL);
647 }
648
649 /*
650 * The convention we use is that if `curpage' is not NULL, then
651 * it points at a non-empty bucket. In particular, `curpage'
652 * never points at a page header which has PR_PHINPAGE set and
653 * has no items in its bucket.
654 */
655 if ((ph = pp->pr_curpage) == NULL) {
656 void *v;
657
658 #ifdef DIAGNOSTIC
659 if (pp->pr_nitems != 0) {
660 simple_unlock(&pp->pr_slock);
661 printf("pool_get: %s: curpage NULL, nitems %u\n",
662 pp->pr_wchan, pp->pr_nitems);
663 panic("pool_get: nitems inconsistent\n");
664 }
665 #endif
666
667 /*
668 * Call the back-end page allocator for more memory.
669 * Release the pool lock, as the back-end page allocator
670 * may block.
671 */
672 pr_leave(pp);
673 simple_unlock(&pp->pr_slock);
674 v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype);
675 simple_lock(&pp->pr_slock);
676 pr_enter(pp, file, line);
677
678 if (v == NULL) {
679 /*
680 * We were unable to allocate a page, but
681 * we released the lock during allocation,
682 * so perhaps items were freed back to the
683 * pool. Check for this case.
684 */
685 if (pp->pr_curpage != NULL)
686 goto startover;
687
688 if (flags & PR_URGENT)
689 panic("pool_get: urgent");
690
691 if ((flags & PR_WAITOK) == 0) {
692 pp->pr_nfail++;
693 pr_leave(pp);
694 simple_unlock(&pp->pr_slock);
695 return (NULL);
696 }
697
698 /*
699 * Wait for items to be returned to this pool.
700 *
701 * XXX: we actually want to wait just until
702 * the page allocator has memory again. Depending
703 * on this pool's usage, we might get stuck here
704 * for a long time.
705 *
706 * XXX: maybe we should wake up once a second and
707 * try again?
708 */
709 pp->pr_flags |= PR_WANTED;
710 pr_leave(pp);
711 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
712 pr_enter(pp, file, line);
713 goto startover;
714 }
715
716 /* We have more memory; add it to the pool */
717 pp->pr_npagealloc++;
718 pool_prime_page(pp, v);
719
720 /* Start the allocation process over. */
721 goto startover;
722 }
723
724 if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
725 pr_leave(pp);
726 simple_unlock(&pp->pr_slock);
727 panic("pool_get: %s: page empty", pp->pr_wchan);
728 }
729 #ifdef DIAGNOSTIC
730 if (__predict_false(pp->pr_nitems == 0)) {
731 pr_leave(pp);
732 simple_unlock(&pp->pr_slock);
733 printf("pool_get: %s: items on itemlist, nitems %u\n",
734 pp->pr_wchan, pp->pr_nitems);
735 panic("pool_get: nitems inconsistent\n");
736 }
737 #endif
738 pr_log(pp, v, PRLOG_GET, file, line);
739
740 #ifdef DIAGNOSTIC
741 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
742 pr_printlog(pp, pi, printf);
743 panic("pool_get(%s): free list modified: magic=%x; page %p;"
744 " item addr %p\n",
745 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
746 }
747 #endif
748
749 /*
750 * Remove from item list.
751 */
752 TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
753 pp->pr_nitems--;
754 pp->pr_nout++;
755 if (ph->ph_nmissing == 0) {
756 #ifdef DIAGNOSTIC
757 if (__predict_false(pp->pr_nidle == 0))
758 panic("pool_get: nidle inconsistent");
759 #endif
760 pp->pr_nidle--;
761 }
762 ph->ph_nmissing++;
763 if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) {
764 #ifdef DIAGNOSTIC
765 if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
766 pr_leave(pp);
767 simple_unlock(&pp->pr_slock);
768 panic("pool_get: %s: nmissing inconsistent",
769 pp->pr_wchan);
770 }
771 #endif
772 /*
773 * Find a new non-empty page header, if any.
774 * Start search from the page head, to increase
775 * the chance for "high water" pages to be freed.
776 *
777 * Migrate empty pages to the end of the list. This
778 * will speed the update of curpage as pages become
779 * idle. Empty pages intermingled with idle pages
780 * is no big deal. As soon as a page becomes un-empty,
781 * it will move back to the head of the list.
782 */
783 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
784 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
785 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
786 ph = TAILQ_NEXT(ph, ph_pagelist))
787 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
788 break;
789
790 pp->pr_curpage = ph;
791 }
792
793 pp->pr_nget++;
794
795 /*
796 * If we have a low water mark and we are now below that low
797 * water mark, add more items to the pool.
798 */
799 if (pp->pr_nitems < pp->pr_minitems && pool_catchup(pp) != 0) {
800 /*
801 * XXX: Should we log a warning? Should we set up a timeout
802 * to try again in a second or so? The latter could break
803 * a caller's assumptions about interrupt protection, etc.
804 */
805 }
806
807 pr_leave(pp);
808 simple_unlock(&pp->pr_slock);
809 return (v);
810 }
811
812 /*
813 * Internal version of pool_put(). Pool is already locked/entered.
814 */
815 static void
816 pool_do_put(struct pool *pp, void *v, const char *file, long line)
817 {
818 struct pool_item *pi = v;
819 struct pool_item_header *ph;
820 caddr_t page;
821 int s;
822
823 page = (caddr_t)((u_long)v & pp->pr_pagemask);
824
825 #ifdef DIAGNOSTIC
826 if (__predict_false(pp->pr_nout == 0)) {
827 printf("pool %s: putting with none out\n",
828 pp->pr_wchan);
829 panic("pool_put");
830 }
831 #endif
832
833 pr_log(pp, v, PRLOG_PUT, file, line);
834
835 if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
836 pr_printlog(pp, NULL, printf);
837 panic("pool_put: %s: page header missing", pp->pr_wchan);
838 }
839
840 #ifdef LOCKDEBUG
841 /*
842 * Check if we're freeing a locked simple lock.
843 */
844 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
845 #endif
846
847 /*
848 * Return to item list.
849 */
850 #ifdef DIAGNOSTIC
851 pi->pi_magic = PI_MAGIC;
852 #endif
853 #ifdef DEBUG
854 {
855 int i, *ip = v;
856
857 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
858 *ip++ = PI_MAGIC;
859 }
860 }
861 #endif
862
863 TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
864 ph->ph_nmissing--;
865 pp->pr_nput++;
866 pp->pr_nitems++;
867 pp->pr_nout--;
868
869 /* Cancel "pool empty" condition if it exists */
870 if (pp->pr_curpage == NULL)
871 pp->pr_curpage = ph;
872
873 if (pp->pr_flags & PR_WANTED) {
874 pp->pr_flags &= ~PR_WANTED;
875 if (ph->ph_nmissing == 0)
876 pp->pr_nidle++;
877 wakeup((caddr_t)pp);
878 return;
879 }
880
881 /*
882 * If this page is now complete, do one of two things:
883 *
884 * (1) If we have more pages than the page high water
885 * mark, free the page back to the system.
886 *
887 * (2) Move it to the end of the page list, so that
888 * we minimize our chances of fragmenting the
889 * pool. Idle pages migrate to the end (along with
890 * completely empty pages, so that we find un-empty
891 * pages more quickly when we update curpage) of the
892 * list so they can be more easily swept up by
893 * the pagedaemon when pages are scarce.
894 */
895 if (ph->ph_nmissing == 0) {
896 pp->pr_nidle++;
897 if (pp->pr_npages > pp->pr_maxpages) {
898 pr_rmpage(pp, ph);
899 } else {
900 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
901 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
902
903 /*
904 * Update the timestamp on the page. A page must
905 * be idle for some period of time before it can
906 * be reclaimed by the pagedaemon. This minimizes
907 * ping-pong'ing for memory.
908 */
909 s = splclock();
910 ph->ph_time = mono_time;
911 splx(s);
912
913 /*
914 * Update the current page pointer. Just look for
915 * the first page with any free items.
916 *
917 * XXX: Maybe we want an option to look for the
918 * page with the fewest available items, to minimize
919 * fragmentation?
920 */
921 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
922 ph = TAILQ_NEXT(ph, ph_pagelist))
923 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
924 break;
925
926 pp->pr_curpage = ph;
927 }
928 }
929 /*
930 * If the page has just become un-empty, move it to the head of
931 * the list, and make it the current page. The next allocation
932 * will get the item from this page, instead of further fragmenting
933 * the pool.
934 */
935 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
936 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
937 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
938 pp->pr_curpage = ph;
939 }
940 }
941
942 /*
943 * Return resource to the pool; must be called at appropriate spl level
944 */
945 void
946 _pool_put(struct pool *pp, void *v, const char *file, long line)
947 {
948
949 simple_lock(&pp->pr_slock);
950 pr_enter(pp, file, line);
951
952 pool_do_put(pp, v, file, line);
953
954 pr_leave(pp);
955 simple_unlock(&pp->pr_slock);
956 }
957
958 /*
959 * Add N items to the pool.
960 */
961 int
962 pool_prime(struct pool *pp, int n, caddr_t storage)
963 {
964 caddr_t cp;
965 int newnitems, newpages;
966
967 #ifdef DIAGNOSTIC
968 if (__predict_false(storage && !(pp->pr_roflags & PR_STATIC)))
969 panic("pool_prime: static");
970 /* !storage && static caught below */
971 #endif
972
973 simple_lock(&pp->pr_slock);
974
975 newnitems = pp->pr_minitems + n;
976 newpages =
977 roundup(newnitems, pp->pr_itemsperpage) / pp->pr_itemsperpage
978 - pp->pr_minpages;
979
980 while (newpages-- > 0) {
981 if (pp->pr_roflags & PR_STATIC) {
982 cp = storage;
983 storage += pp->pr_pagesz;
984 } else {
985 simple_unlock(&pp->pr_slock);
986 cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
987 simple_lock(&pp->pr_slock);
988 }
989
990 if (cp == NULL) {
991 simple_unlock(&pp->pr_slock);
992 return (ENOMEM);
993 }
994
995 pp->pr_npagealloc++;
996 pool_prime_page(pp, cp);
997 pp->pr_minpages++;
998 }
999
1000 pp->pr_minitems = newnitems;
1001
1002 if (pp->pr_minpages >= pp->pr_maxpages)
1003 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1004
1005 simple_unlock(&pp->pr_slock);
1006 return (0);
1007 }
1008
1009 /*
1010 * Add a page worth of items to the pool.
1011 *
1012 * Note, we must be called with the pool descriptor LOCKED.
1013 */
1014 static void
1015 pool_prime_page(struct pool *pp, caddr_t storage)
1016 {
1017 struct pool_item *pi;
1018 struct pool_item_header *ph;
1019 caddr_t cp = storage;
1020 unsigned int align = pp->pr_align;
1021 unsigned int ioff = pp->pr_itemoffset;
1022 int s, n;
1023
1024 if (((u_long)cp & (pp->pr_pagesz - 1)) != 0)
1025 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1026
1027 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
1028 ph = (struct pool_item_header *)(cp + pp->pr_phoffset);
1029 } else {
1030 s = splhigh();
1031 ph = pool_get(&phpool, PR_URGENT);
1032 splx(s);
1033 LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)],
1034 ph, ph_hashlist);
1035 }
1036
1037 /*
1038 * Insert page header.
1039 */
1040 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
1041 TAILQ_INIT(&ph->ph_itemlist);
1042 ph->ph_page = storage;
1043 ph->ph_nmissing = 0;
1044 memset(&ph->ph_time, 0, sizeof(ph->ph_time));
1045
1046 pp->pr_nidle++;
1047
1048 /*
1049 * Color this page.
1050 */
1051 cp = (caddr_t)(cp + pp->pr_curcolor);
1052 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1053 pp->pr_curcolor = 0;
1054
1055 /*
1056 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1057 */
1058 if (ioff != 0)
1059 cp = (caddr_t)(cp + (align - ioff));
1060
1061 /*
1062 * Insert remaining chunks on the bucket list.
1063 */
1064 n = pp->pr_itemsperpage;
1065 pp->pr_nitems += n;
1066
1067 while (n--) {
1068 pi = (struct pool_item *)cp;
1069
1070 /* Insert on page list */
1071 TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
1072 #ifdef DIAGNOSTIC
1073 pi->pi_magic = PI_MAGIC;
1074 #endif
1075 cp = (caddr_t)(cp + pp->pr_size);
1076 }
1077
1078 /*
1079 * If the pool was depleted, point at the new page.
1080 */
1081 if (pp->pr_curpage == NULL)
1082 pp->pr_curpage = ph;
1083
1084 if (++pp->pr_npages > pp->pr_hiwat)
1085 pp->pr_hiwat = pp->pr_npages;
1086 }
1087
1088 /*
1089 * Like pool_prime(), except this is used by pool_get() when nitems
1090 * drops below the low water mark. This is used to catch up nitmes
1091 * with the low water mark.
1092 *
1093 * Note 1, we never wait for memory here, we let the caller decide what to do.
1094 *
1095 * Note 2, this doesn't work with static pools.
1096 *
1097 * Note 3, we must be called with the pool already locked, and we return
1098 * with it locked.
1099 */
1100 static int
1101 pool_catchup(struct pool *pp)
1102 {
1103 caddr_t cp;
1104 int error = 0;
1105
1106 if (pp->pr_roflags & PR_STATIC) {
1107 /*
1108 * We dropped below the low water mark, and this is not a
1109 * good thing. Log a warning.
1110 *
1111 * XXX: rate-limit this?
1112 */
1113 printf("WARNING: static pool `%s' dropped below low water "
1114 "mark\n", pp->pr_wchan);
1115 return (0);
1116 }
1117
1118 while (pp->pr_nitems < pp->pr_minitems) {
1119 /*
1120 * Call the page back-end allocator for more memory.
1121 *
1122 * XXX: We never wait, so should we bother unlocking
1123 * the pool descriptor?
1124 */
1125 simple_unlock(&pp->pr_slock);
1126 cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
1127 simple_lock(&pp->pr_slock);
1128 if (__predict_false(cp == NULL)) {
1129 error = ENOMEM;
1130 break;
1131 }
1132 pp->pr_npagealloc++;
1133 pool_prime_page(pp, cp);
1134 }
1135
1136 return (error);
1137 }
1138
1139 void
1140 pool_setlowat(struct pool *pp, int n)
1141 {
1142 int error;
1143
1144 simple_lock(&pp->pr_slock);
1145
1146 pp->pr_minitems = n;
1147 pp->pr_minpages = (n == 0)
1148 ? 0
1149 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1150
1151 /* Make sure we're caught up with the newly-set low water mark. */
1152 if ((pp->pr_nitems < pp->pr_minitems) &&
1153 (error = pool_catchup(pp)) != 0) {
1154 /*
1155 * XXX: Should we log a warning? Should we set up a timeout
1156 * to try again in a second or so? The latter could break
1157 * a caller's assumptions about interrupt protection, etc.
1158 */
1159 }
1160
1161 simple_unlock(&pp->pr_slock);
1162 }
1163
1164 void
1165 pool_sethiwat(struct pool *pp, int n)
1166 {
1167
1168 simple_lock(&pp->pr_slock);
1169
1170 pp->pr_maxpages = (n == 0)
1171 ? 0
1172 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1173
1174 simple_unlock(&pp->pr_slock);
1175 }
1176
1177 void
1178 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1179 {
1180
1181 simple_lock(&pp->pr_slock);
1182
1183 pp->pr_hardlimit = n;
1184 pp->pr_hardlimit_warning = warnmess;
1185 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1186 pp->pr_hardlimit_warning_last.tv_sec = 0;
1187 pp->pr_hardlimit_warning_last.tv_usec = 0;
1188
1189 /*
1190 * In-line version of pool_sethiwat(), because we don't want to
1191 * release the lock.
1192 */
1193 pp->pr_maxpages = (n == 0)
1194 ? 0
1195 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1196
1197 simple_unlock(&pp->pr_slock);
1198 }
1199
1200 /*
1201 * Default page allocator.
1202 */
1203 static void *
1204 pool_page_alloc(unsigned long sz, int flags, int mtype)
1205 {
1206 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1207
1208 return ((void *)uvm_km_alloc_poolpage(waitok));
1209 }
1210
1211 static void
1212 pool_page_free(void *v, unsigned long sz, int mtype)
1213 {
1214
1215 uvm_km_free_poolpage((vaddr_t)v);
1216 }
1217
1218 /*
1219 * Alternate pool page allocator for pools that know they will
1220 * never be accessed in interrupt context.
1221 */
1222 void *
1223 pool_page_alloc_nointr(unsigned long sz, int flags, int mtype)
1224 {
1225 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1226
1227 return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object,
1228 waitok));
1229 }
1230
1231 void
1232 pool_page_free_nointr(void *v, unsigned long sz, int mtype)
1233 {
1234
1235 uvm_km_free_poolpage1(kernel_map, (vaddr_t)v);
1236 }
1237
1238
1239 /*
1240 * Release all complete pages that have not been used recently.
1241 */
1242 void
1243 _pool_reclaim(struct pool *pp, const char *file, long line)
1244 {
1245 struct pool_item_header *ph, *phnext;
1246 struct pool_cache *pc;
1247 struct timeval curtime;
1248 int s;
1249
1250 if (pp->pr_roflags & PR_STATIC)
1251 return;
1252
1253 if (simple_lock_try(&pp->pr_slock) == 0)
1254 return;
1255 pr_enter(pp, file, line);
1256
1257 /*
1258 * Reclaim items from the pool's caches.
1259 */
1260 for (pc = TAILQ_FIRST(&pp->pr_cachelist); pc != NULL;
1261 pc = TAILQ_NEXT(pc, pc_poollist))
1262 pool_cache_reclaim(pc);
1263
1264 s = splclock();
1265 curtime = mono_time;
1266 splx(s);
1267
1268 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) {
1269 phnext = TAILQ_NEXT(ph, ph_pagelist);
1270
1271 /* Check our minimum page claim */
1272 if (pp->pr_npages <= pp->pr_minpages)
1273 break;
1274
1275 if (ph->ph_nmissing == 0) {
1276 struct timeval diff;
1277 timersub(&curtime, &ph->ph_time, &diff);
1278 if (diff.tv_sec < pool_inactive_time)
1279 continue;
1280
1281 /*
1282 * If freeing this page would put us below
1283 * the low water mark, stop now.
1284 */
1285 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1286 pp->pr_minitems)
1287 break;
1288
1289 pr_rmpage(pp, ph);
1290 }
1291 }
1292
1293 pr_leave(pp);
1294 simple_unlock(&pp->pr_slock);
1295 }
1296
1297
1298 /*
1299 * Drain pools, one at a time.
1300 *
1301 * Note, we must never be called from an interrupt context.
1302 */
1303 void
1304 pool_drain(void *arg)
1305 {
1306 struct pool *pp;
1307 int s;
1308
1309 s = splimp();
1310 simple_lock(&pool_head_slock);
1311
1312 if (drainpp == NULL && (drainpp = TAILQ_FIRST(&pool_head)) == NULL)
1313 goto out;
1314
1315 pp = drainpp;
1316 drainpp = TAILQ_NEXT(pp, pr_poollist);
1317
1318 pool_reclaim(pp);
1319
1320 out:
1321 simple_unlock(&pool_head_slock);
1322 splx(s);
1323 }
1324
1325
1326 /*
1327 * Diagnostic helpers.
1328 */
1329 void
1330 pool_print(struct pool *pp, const char *modif)
1331 {
1332 int s;
1333
1334 s = splimp();
1335 if (simple_lock_try(&pp->pr_slock) == 0) {
1336 printf("pool %s is locked; try again later\n",
1337 pp->pr_wchan);
1338 splx(s);
1339 return;
1340 }
1341 pool_print1(pp, modif, printf);
1342 simple_unlock(&pp->pr_slock);
1343 splx(s);
1344 }
1345
1346 void
1347 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1348 {
1349 int didlock = 0;
1350
1351 if (pp == NULL) {
1352 (*pr)("Must specify a pool to print.\n");
1353 return;
1354 }
1355
1356 /*
1357 * Called from DDB; interrupts should be blocked, and all
1358 * other processors should be paused. We can skip locking
1359 * the pool in this case.
1360 *
1361 * We do a simple_lock_try() just to print the lock
1362 * status, however.
1363 */
1364
1365 if (simple_lock_try(&pp->pr_slock) == 0)
1366 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1367 else
1368 didlock = 1;
1369
1370 pool_print1(pp, modif, pr);
1371
1372 if (didlock)
1373 simple_unlock(&pp->pr_slock);
1374 }
1375
1376 static void
1377 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1378 {
1379 struct pool_item_header *ph;
1380 struct pool_cache *pc;
1381 struct pool_cache_group *pcg;
1382 #ifdef DIAGNOSTIC
1383 struct pool_item *pi;
1384 #endif
1385 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1386 char c;
1387
1388 while ((c = *modif++) != '\0') {
1389 if (c == 'l')
1390 print_log = 1;
1391 if (c == 'p')
1392 print_pagelist = 1;
1393 if (c == 'c')
1394 print_cache = 1;
1395 modif++;
1396 }
1397
1398 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1399 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1400 pp->pr_roflags);
1401 (*pr)("\tpagesz %u, mtype %d\n", pp->pr_pagesz, pp->pr_mtype);
1402 (*pr)("\talloc %p, release %p\n", pp->pr_alloc, pp->pr_free);
1403 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1404 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1405 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1406 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1407
1408 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1409 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1410 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1411 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1412
1413 if (print_pagelist == 0)
1414 goto skip_pagelist;
1415
1416 if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
1417 (*pr)("\n\tpage list:\n");
1418 for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) {
1419 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1420 ph->ph_page, ph->ph_nmissing,
1421 (u_long)ph->ph_time.tv_sec,
1422 (u_long)ph->ph_time.tv_usec);
1423 #ifdef DIAGNOSTIC
1424 for (pi = TAILQ_FIRST(&ph->ph_itemlist); pi != NULL;
1425 pi = TAILQ_NEXT(pi, pi_list)) {
1426 if (pi->pi_magic != PI_MAGIC) {
1427 (*pr)("\t\t\titem %p, magic 0x%x\n",
1428 pi, pi->pi_magic);
1429 }
1430 }
1431 #endif
1432 }
1433 if (pp->pr_curpage == NULL)
1434 (*pr)("\tno current page\n");
1435 else
1436 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1437
1438 skip_pagelist:
1439
1440 if (print_log == 0)
1441 goto skip_log;
1442
1443 (*pr)("\n");
1444 if ((pp->pr_roflags & PR_LOGGING) == 0)
1445 (*pr)("\tno log\n");
1446 else
1447 pr_printlog(pp, NULL, pr);
1448
1449 skip_log:
1450
1451 if (print_cache == 0)
1452 goto skip_cache;
1453
1454 for (pc = TAILQ_FIRST(&pp->pr_cachelist); pc != NULL;
1455 pc = TAILQ_NEXT(pc, pc_poollist)) {
1456 (*pr)("\tcache %p: allocfrom %p freeto %p\n", pc,
1457 pc->pc_allocfrom, pc->pc_freeto);
1458 (*pr)("\t hits %lu misses %lu ngroups %lu nitems %lu\n",
1459 pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
1460 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1461 pcg = TAILQ_NEXT(pcg, pcg_list)) {
1462 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);
1463 for (i = 0; i < PCG_NOBJECTS; i++)
1464 (*pr)("\t\t\t%p\n", pcg->pcg_objects[i]);
1465 }
1466 }
1467
1468 skip_cache:
1469
1470 pr_enter_check(pp, pr);
1471 }
1472
1473 int
1474 pool_chk(struct pool *pp, const char *label)
1475 {
1476 struct pool_item_header *ph;
1477 int r = 0;
1478
1479 simple_lock(&pp->pr_slock);
1480
1481 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
1482 ph = TAILQ_NEXT(ph, ph_pagelist)) {
1483
1484 struct pool_item *pi;
1485 int n;
1486 caddr_t page;
1487
1488 page = (caddr_t)((u_long)ph & pp->pr_pagemask);
1489 if (page != ph->ph_page &&
1490 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1491 if (label != NULL)
1492 printf("%s: ", label);
1493 printf("pool(%p:%s): page inconsistency: page %p;"
1494 " at page head addr %p (p %p)\n", pp,
1495 pp->pr_wchan, ph->ph_page,
1496 ph, page);
1497 r++;
1498 goto out;
1499 }
1500
1501 for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
1502 pi != NULL;
1503 pi = TAILQ_NEXT(pi,pi_list), n++) {
1504
1505 #ifdef DIAGNOSTIC
1506 if (pi->pi_magic != PI_MAGIC) {
1507 if (label != NULL)
1508 printf("%s: ", label);
1509 printf("pool(%s): free list modified: magic=%x;"
1510 " page %p; item ordinal %d;"
1511 " addr %p (p %p)\n",
1512 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1513 n, pi, page);
1514 panic("pool");
1515 }
1516 #endif
1517 page = (caddr_t)((u_long)pi & pp->pr_pagemask);
1518 if (page == ph->ph_page)
1519 continue;
1520
1521 if (label != NULL)
1522 printf("%s: ", label);
1523 printf("pool(%p:%s): page inconsistency: page %p;"
1524 " item ordinal %d; addr %p (p %p)\n", pp,
1525 pp->pr_wchan, ph->ph_page,
1526 n, pi, page);
1527 r++;
1528 goto out;
1529 }
1530 }
1531 out:
1532 simple_unlock(&pp->pr_slock);
1533 return (r);
1534 }
1535
1536 /*
1537 * pool_cache_init:
1538 *
1539 * Initialize a pool cache.
1540 *
1541 * NOTE: If the pool must be protected from interrupts, we expect
1542 * to be called at the appropriate interrupt priority level.
1543 */
1544 void
1545 pool_cache_init(struct pool_cache *pc, struct pool *pp,
1546 int (*ctor)(void *, void *, int),
1547 void (*dtor)(void *, void *),
1548 void *arg)
1549 {
1550
1551 TAILQ_INIT(&pc->pc_grouplist);
1552 simple_lock_init(&pc->pc_slock);
1553
1554 pc->pc_allocfrom = NULL;
1555 pc->pc_freeto = NULL;
1556 pc->pc_pool = pp;
1557
1558 pc->pc_ctor = ctor;
1559 pc->pc_dtor = dtor;
1560 pc->pc_arg = arg;
1561
1562 pc->pc_hits = 0;
1563 pc->pc_misses = 0;
1564
1565 pc->pc_ngroups = 0;
1566
1567 pc->pc_nitems = 0;
1568
1569 simple_lock(&pp->pr_slock);
1570 TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist);
1571 simple_unlock(&pp->pr_slock);
1572 }
1573
1574 /*
1575 * pool_cache_destroy:
1576 *
1577 * Destroy a pool cache.
1578 */
1579 void
1580 pool_cache_destroy(struct pool_cache *pc)
1581 {
1582 struct pool *pp = pc->pc_pool;
1583
1584 /* First, invalidate the entire cache. */
1585 pool_cache_invalidate(pc);
1586
1587 /* ...and remove it from the pool's cache list. */
1588 simple_lock(&pp->pr_slock);
1589 TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist);
1590 simple_unlock(&pp->pr_slock);
1591 }
1592
1593 static __inline void *
1594 pcg_get(struct pool_cache_group *pcg)
1595 {
1596 void *object;
1597 u_int idx;
1598
1599 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
1600 KASSERT(pcg->pcg_avail != 0);
1601 idx = --pcg->pcg_avail;
1602
1603 KASSERT(pcg->pcg_objects[idx] != NULL);
1604 object = pcg->pcg_objects[idx];
1605 pcg->pcg_objects[idx] = NULL;
1606
1607 return (object);
1608 }
1609
1610 static __inline void
1611 pcg_put(struct pool_cache_group *pcg, void *object)
1612 {
1613 u_int idx;
1614
1615 KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
1616 idx = pcg->pcg_avail++;
1617
1618 KASSERT(pcg->pcg_objects[idx] == NULL);
1619 pcg->pcg_objects[idx] = object;
1620 }
1621
1622 /*
1623 * pool_cache_get:
1624 *
1625 * Get an object from a pool cache.
1626 */
1627 void *
1628 pool_cache_get(struct pool_cache *pc, int flags)
1629 {
1630 struct pool_cache_group *pcg;
1631 void *object;
1632
1633 simple_lock(&pc->pc_slock);
1634
1635 if ((pcg = pc->pc_allocfrom) == NULL) {
1636 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1637 pcg = TAILQ_NEXT(pcg, pcg_list)) {
1638 if (pcg->pcg_avail != 0) {
1639 pc->pc_allocfrom = pcg;
1640 goto have_group;
1641 }
1642 }
1643
1644 /*
1645 * No groups with any available objects. Allocate
1646 * a new object, construct it, and return it to
1647 * the caller. We will allocate a group, if necessary,
1648 * when the object is freed back to the cache.
1649 */
1650 pc->pc_misses++;
1651 simple_unlock(&pc->pc_slock);
1652 object = pool_get(pc->pc_pool, flags);
1653 if (object != NULL && pc->pc_ctor != NULL) {
1654 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
1655 pool_put(pc->pc_pool, object);
1656 return (NULL);
1657 }
1658 }
1659 return (object);
1660 }
1661
1662 have_group:
1663 pc->pc_hits++;
1664 pc->pc_nitems--;
1665 object = pcg_get(pcg);
1666
1667 if (pcg->pcg_avail == 0)
1668 pc->pc_allocfrom = NULL;
1669
1670 simple_unlock(&pc->pc_slock);
1671
1672 return (object);
1673 }
1674
1675 /*
1676 * pool_cache_put:
1677 *
1678 * Put an object back to the pool cache.
1679 */
1680 void
1681 pool_cache_put(struct pool_cache *pc, void *object)
1682 {
1683 struct pool_cache_group *pcg;
1684
1685 simple_lock(&pc->pc_slock);
1686
1687 if ((pcg = pc->pc_freeto) == NULL) {
1688 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1689 pcg = TAILQ_NEXT(pcg, pcg_list)) {
1690 if (pcg->pcg_avail != PCG_NOBJECTS) {
1691 pc->pc_freeto = pcg;
1692 goto have_group;
1693 }
1694 }
1695
1696 /*
1697 * No empty groups to free the object to. Attempt to
1698 * allocate one.
1699 */
1700 simple_unlock(&pc->pc_slock);
1701 pcg = pool_get(&pcgpool, PR_NOWAIT);
1702 if (pcg != NULL) {
1703 memset(pcg, 0, sizeof(*pcg));
1704 simple_lock(&pc->pc_slock);
1705 pc->pc_ngroups++;
1706 TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list);
1707 if (pc->pc_freeto == NULL)
1708 pc->pc_freeto = pcg;
1709 goto have_group;
1710 }
1711
1712 /*
1713 * Unable to allocate a cache group; destruct the object
1714 * and free it back to the pool.
1715 */
1716 if (pc->pc_dtor != NULL)
1717 (*pc->pc_dtor)(pc->pc_arg, object);
1718 pool_put(pc->pc_pool, object);
1719 return;
1720 }
1721
1722 have_group:
1723 pc->pc_nitems++;
1724 pcg_put(pcg, object);
1725
1726 if (pcg->pcg_avail == PCG_NOBJECTS)
1727 pc->pc_freeto = NULL;
1728
1729 simple_unlock(&pc->pc_slock);
1730 }
1731
1732 /*
1733 * pool_cache_do_invalidate:
1734 *
1735 * This internal function implements pool_cache_invalidate() and
1736 * pool_cache_reclaim().
1737 */
1738 static void
1739 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups,
1740 void (*putit)(struct pool *, void *, const char *, long))
1741 {
1742 struct pool_cache_group *pcg, *npcg;
1743 void *object;
1744
1745 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1746 pcg = npcg) {
1747 npcg = TAILQ_NEXT(pcg, pcg_list);
1748 while (pcg->pcg_avail != 0) {
1749 pc->pc_nitems--;
1750 object = pcg_get(pcg);
1751 if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg)
1752 pc->pc_allocfrom = NULL;
1753 if (pc->pc_dtor != NULL)
1754 (*pc->pc_dtor)(pc->pc_arg, object);
1755 (*putit)(pc->pc_pool, object, __FILE__, __LINE__);
1756 }
1757 if (free_groups) {
1758 pc->pc_ngroups--;
1759 TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list);
1760 if (pc->pc_freeto == pcg)
1761 pc->pc_freeto = NULL;
1762 pool_put(&pcgpool, pcg);
1763 }
1764 }
1765 }
1766
1767 /*
1768 * pool_cache_invalidate:
1769 *
1770 * Invalidate a pool cache (destruct and release all of the
1771 * cached objects).
1772 */
1773 void
1774 pool_cache_invalidate(struct pool_cache *pc)
1775 {
1776
1777 simple_lock(&pc->pc_slock);
1778 pool_cache_do_invalidate(pc, 0, _pool_put);
1779 simple_unlock(&pc->pc_slock);
1780 }
1781
1782 /*
1783 * pool_cache_reclaim:
1784 *
1785 * Reclaim a pool cache for pool_reclaim().
1786 */
1787 static void
1788 pool_cache_reclaim(struct pool_cache *pc)
1789 {
1790
1791 simple_lock(&pc->pc_slock);
1792 pool_cache_do_invalidate(pc, 1, pool_do_put);
1793 simple_unlock(&pc->pc_slock);
1794 }
1795