subr_pool.c revision 1.50 1 /* $NetBSD: subr_pool.c,v 1.50 2001/01/29 02:38:02 enami Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include "opt_pool.h"
41 #include "opt_poollog.h"
42 #include "opt_lockdebug.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/proc.h>
47 #include <sys/errno.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/lock.h>
51 #include <sys/pool.h>
52 #include <sys/syslog.h>
53
54 #include <uvm/uvm.h>
55
56 /*
57 * Pool resource management utility.
58 *
59 * Memory is allocated in pages which are split into pieces according
60 * to the pool item size. Each page is kept on a list headed by `pr_pagelist'
61 * in the pool structure and the individual pool items are on a linked list
62 * headed by `ph_itemlist' in each page header. The memory for building
63 * the page list is either taken from the allocated pages themselves (for
64 * small pool items) or taken from an internal pool of page headers (`phpool').
65 */
66
67 /* List of all pools */
68 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
69
70 /* Private pool for page header structures */
71 static struct pool phpool;
72
73 /* # of seconds to retain page after last use */
74 int pool_inactive_time = 10;
75
76 /* Next candidate for drainage (see pool_drain()) */
77 static struct pool *drainpp;
78
79 /* This spin lock protects both pool_head and drainpp. */
80 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
81
82 struct pool_item_header {
83 /* Page headers */
84 TAILQ_ENTRY(pool_item_header)
85 ph_pagelist; /* pool page list */
86 TAILQ_HEAD(,pool_item) ph_itemlist; /* chunk list for this page */
87 LIST_ENTRY(pool_item_header)
88 ph_hashlist; /* Off-page page headers */
89 int ph_nmissing; /* # of chunks in use */
90 caddr_t ph_page; /* this page's address */
91 struct timeval ph_time; /* last referenced */
92 };
93
94 struct pool_item {
95 #ifdef DIAGNOSTIC
96 int pi_magic;
97 #endif
98 #define PI_MAGIC 0xdeadbeef
99 /* Other entries use only this list entry */
100 TAILQ_ENTRY(pool_item) pi_list;
101 };
102
103 #define PR_HASH_INDEX(pp,addr) \
104 (((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1))
105
106 /*
107 * Pool cache management.
108 *
109 * Pool caches provide a way for constructed objects to be cached by the
110 * pool subsystem. This can lead to performance improvements by avoiding
111 * needless object construction/destruction; it is deferred until absolutely
112 * necessary.
113 *
114 * Caches are grouped into cache groups. Each cache group references
115 * up to 16 constructed objects. When a cache allocates an object
116 * from the pool, it calls the object's constructor and places it into
117 * a cache group. When a cache group frees an object back to the pool,
118 * it first calls the object's destructor. This allows the object to
119 * persist in constructed form while freed to the cache.
120 *
121 * Multiple caches may exist for each pool. This allows a single
122 * object type to have multiple constructed forms. The pool references
123 * each cache, so that when a pool is drained by the pagedaemon, it can
124 * drain each individual cache as well. Each time a cache is drained,
125 * the most idle cache group is freed to the pool in its entirety.
126 *
127 * Pool caches are layed on top of pools. By layering them, we can avoid
128 * the complexity of cache management for pools which would not benefit
129 * from it.
130 */
131
132 /* The cache group pool. */
133 static struct pool pcgpool;
134
135 /* The pool cache group. */
136 #define PCG_NOBJECTS 16
137 struct pool_cache_group {
138 TAILQ_ENTRY(pool_cache_group)
139 pcg_list; /* link in the pool cache's group list */
140 u_int pcg_avail; /* # available objects */
141 /* pointers to the objects */
142 void *pcg_objects[PCG_NOBJECTS];
143 };
144
145 static void pool_cache_reclaim(struct pool_cache *);
146
147 static int pool_catchup(struct pool *);
148 static int pool_prime_page(struct pool *, caddr_t, int);
149 static void *pool_page_alloc(unsigned long, int, int);
150 static void pool_page_free(void *, unsigned long, int);
151
152 static void pool_print1(struct pool *, const char *,
153 void (*)(const char *, ...));
154
155 /*
156 * Pool log entry. An array of these is allocated in pool_create().
157 */
158 struct pool_log {
159 const char *pl_file;
160 long pl_line;
161 int pl_action;
162 #define PRLOG_GET 1
163 #define PRLOG_PUT 2
164 void *pl_addr;
165 };
166
167 /* Number of entries in pool log buffers */
168 #ifndef POOL_LOGSIZE
169 #define POOL_LOGSIZE 10
170 #endif
171
172 int pool_logsize = POOL_LOGSIZE;
173
174 #ifdef DIAGNOSTIC
175 static __inline void
176 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
177 {
178 int n = pp->pr_curlogentry;
179 struct pool_log *pl;
180
181 if ((pp->pr_roflags & PR_LOGGING) == 0)
182 return;
183
184 /*
185 * Fill in the current entry. Wrap around and overwrite
186 * the oldest entry if necessary.
187 */
188 pl = &pp->pr_log[n];
189 pl->pl_file = file;
190 pl->pl_line = line;
191 pl->pl_action = action;
192 pl->pl_addr = v;
193 if (++n >= pp->pr_logsize)
194 n = 0;
195 pp->pr_curlogentry = n;
196 }
197
198 static void
199 pr_printlog(struct pool *pp, struct pool_item *pi,
200 void (*pr)(const char *, ...))
201 {
202 int i = pp->pr_logsize;
203 int n = pp->pr_curlogentry;
204
205 if ((pp->pr_roflags & PR_LOGGING) == 0)
206 return;
207
208 /*
209 * Print all entries in this pool's log.
210 */
211 while (i-- > 0) {
212 struct pool_log *pl = &pp->pr_log[n];
213 if (pl->pl_action != 0) {
214 if (pi == NULL || pi == pl->pl_addr) {
215 (*pr)("\tlog entry %d:\n", i);
216 (*pr)("\t\taction = %s, addr = %p\n",
217 pl->pl_action == PRLOG_GET ? "get" : "put",
218 pl->pl_addr);
219 (*pr)("\t\tfile: %s at line %lu\n",
220 pl->pl_file, pl->pl_line);
221 }
222 }
223 if (++n >= pp->pr_logsize)
224 n = 0;
225 }
226 }
227
228 static __inline void
229 pr_enter(struct pool *pp, const char *file, long line)
230 {
231
232 if (__predict_false(pp->pr_entered_file != NULL)) {
233 printf("pool %s: reentrancy at file %s line %ld\n",
234 pp->pr_wchan, file, line);
235 printf(" previous entry at file %s line %ld\n",
236 pp->pr_entered_file, pp->pr_entered_line);
237 panic("pr_enter");
238 }
239
240 pp->pr_entered_file = file;
241 pp->pr_entered_line = line;
242 }
243
244 static __inline void
245 pr_leave(struct pool *pp)
246 {
247
248 if (__predict_false(pp->pr_entered_file == NULL)) {
249 printf("pool %s not entered?\n", pp->pr_wchan);
250 panic("pr_leave");
251 }
252
253 pp->pr_entered_file = NULL;
254 pp->pr_entered_line = 0;
255 }
256
257 static __inline void
258 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
259 {
260
261 if (pp->pr_entered_file != NULL)
262 (*pr)("\n\tcurrently entered from file %s line %ld\n",
263 pp->pr_entered_file, pp->pr_entered_line);
264 }
265 #else
266 #define pr_log(pp, v, action, file, line)
267 #define pr_printlog(pp, pi, pr)
268 #define pr_enter(pp, file, line)
269 #define pr_leave(pp)
270 #define pr_enter_check(pp, pr)
271 #endif /* DIAGNOSTIC */
272
273 /*
274 * Return the pool page header based on page address.
275 */
276 static __inline struct pool_item_header *
277 pr_find_pagehead(struct pool *pp, caddr_t page)
278 {
279 struct pool_item_header *ph;
280
281 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
282 return ((struct pool_item_header *)(page + pp->pr_phoffset));
283
284 for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]);
285 ph != NULL;
286 ph = LIST_NEXT(ph, ph_hashlist)) {
287 if (ph->ph_page == page)
288 return (ph);
289 }
290 return (NULL);
291 }
292
293 /*
294 * Remove a page from the pool.
295 */
296 static __inline void
297 pr_rmpage(struct pool *pp, struct pool_item_header *ph)
298 {
299
300 /*
301 * If the page was idle, decrement the idle page count.
302 */
303 if (ph->ph_nmissing == 0) {
304 #ifdef DIAGNOSTIC
305 if (pp->pr_nidle == 0)
306 panic("pr_rmpage: nidle inconsistent");
307 if (pp->pr_nitems < pp->pr_itemsperpage)
308 panic("pr_rmpage: nitems inconsistent");
309 #endif
310 pp->pr_nidle--;
311 }
312
313 pp->pr_nitems -= pp->pr_itemsperpage;
314
315 /*
316 * Unlink a page from the pool and release it.
317 */
318 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
319 (*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype);
320 pp->pr_npages--;
321 pp->pr_npagefree++;
322
323 if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
324 int s;
325 LIST_REMOVE(ph, ph_hashlist);
326 s = splhigh();
327 pool_put(&phpool, ph);
328 splx(s);
329 }
330
331 if (pp->pr_curpage == ph) {
332 /*
333 * Find a new non-empty page header, if any.
334 * Start search from the page head, to increase the
335 * chance for "high water" pages to be freed.
336 */
337 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
338 ph = TAILQ_NEXT(ph, ph_pagelist))
339 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
340 break;
341
342 pp->pr_curpage = ph;
343 }
344 }
345
346 /*
347 * Allocate and initialize a pool.
348 */
349 struct pool *
350 pool_create(size_t size, u_int align, u_int ioff, int nitems,
351 const char *wchan, size_t pagesz,
352 void *(*alloc)(unsigned long, int, int),
353 void (*release)(void *, unsigned long, int),
354 int mtype)
355 {
356 struct pool *pp;
357 int flags;
358
359 pp = (struct pool *)malloc(sizeof(*pp), M_POOL, M_NOWAIT);
360 if (pp == NULL)
361 return (NULL);
362
363 flags = PR_FREEHEADER;
364 pool_init(pp, size, align, ioff, flags, wchan, pagesz,
365 alloc, release, mtype);
366
367 if (nitems != 0) {
368 if (pool_prime(pp, nitems, NULL) != 0) {
369 pool_destroy(pp);
370 return (NULL);
371 }
372 }
373
374 return (pp);
375 }
376
377 /*
378 * Initialize the given pool resource structure.
379 *
380 * We export this routine to allow other kernel parts to declare
381 * static pools that must be initialized before malloc() is available.
382 */
383 void
384 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
385 const char *wchan, size_t pagesz,
386 void *(*alloc)(unsigned long, int, int),
387 void (*release)(void *, unsigned long, int),
388 int mtype)
389 {
390 int off, slack, i;
391
392 #ifdef POOL_DIAGNOSTIC
393 /*
394 * Always log if POOL_DIAGNOSTIC is defined.
395 */
396 if (pool_logsize != 0)
397 flags |= PR_LOGGING;
398 #endif
399
400 /*
401 * Check arguments and construct default values.
402 */
403 if (!powerof2(pagesz))
404 panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz);
405
406 if (alloc == NULL && release == NULL) {
407 alloc = pool_page_alloc;
408 release = pool_page_free;
409 pagesz = PAGE_SIZE; /* Rounds to PAGE_SIZE anyhow. */
410 } else if ((alloc != NULL && release != NULL) == 0) {
411 /* If you specifiy one, must specify both. */
412 panic("pool_init: must specify alloc and release together");
413 }
414
415 if (pagesz == 0)
416 pagesz = PAGE_SIZE;
417
418 if (align == 0)
419 align = ALIGN(1);
420
421 if (size < sizeof(struct pool_item))
422 size = sizeof(struct pool_item);
423
424 size = ALIGN(size);
425 if (size > pagesz)
426 panic("pool_init: pool item size (%lu) too large",
427 (u_long)size);
428
429 /*
430 * Initialize the pool structure.
431 */
432 TAILQ_INIT(&pp->pr_pagelist);
433 TAILQ_INIT(&pp->pr_cachelist);
434 pp->pr_curpage = NULL;
435 pp->pr_npages = 0;
436 pp->pr_minitems = 0;
437 pp->pr_minpages = 0;
438 pp->pr_maxpages = UINT_MAX;
439 pp->pr_roflags = flags;
440 pp->pr_flags = 0;
441 pp->pr_size = size;
442 pp->pr_align = align;
443 pp->pr_wchan = wchan;
444 pp->pr_mtype = mtype;
445 pp->pr_alloc = alloc;
446 pp->pr_free = release;
447 pp->pr_pagesz = pagesz;
448 pp->pr_pagemask = ~(pagesz - 1);
449 pp->pr_pageshift = ffs(pagesz) - 1;
450 pp->pr_nitems = 0;
451 pp->pr_nout = 0;
452 pp->pr_hardlimit = UINT_MAX;
453 pp->pr_hardlimit_warning = NULL;
454 pp->pr_hardlimit_ratecap.tv_sec = 0;
455 pp->pr_hardlimit_ratecap.tv_usec = 0;
456 pp->pr_hardlimit_warning_last.tv_sec = 0;
457 pp->pr_hardlimit_warning_last.tv_usec = 0;
458
459 /*
460 * Decide whether to put the page header off page to avoid
461 * wasting too large a part of the page. Off-page page headers
462 * go on a hash table, so we can match a returned item
463 * with its header based on the page address.
464 * We use 1/16 of the page size as the threshold (XXX: tune)
465 */
466 if (pp->pr_size < pagesz/16) {
467 /* Use the end of the page for the page header */
468 pp->pr_roflags |= PR_PHINPAGE;
469 pp->pr_phoffset = off =
470 pagesz - ALIGN(sizeof(struct pool_item_header));
471 } else {
472 /* The page header will be taken from our page header pool */
473 pp->pr_phoffset = 0;
474 off = pagesz;
475 for (i = 0; i < PR_HASHTABSIZE; i++) {
476 LIST_INIT(&pp->pr_hashtab[i]);
477 }
478 }
479
480 /*
481 * Alignment is to take place at `ioff' within the item. This means
482 * we must reserve up to `align - 1' bytes on the page to allow
483 * appropriate positioning of each item.
484 *
485 * Silently enforce `0 <= ioff < align'.
486 */
487 pp->pr_itemoffset = ioff = ioff % align;
488 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
489 KASSERT(pp->pr_itemsperpage != 0);
490
491 /*
492 * Use the slack between the chunks and the page header
493 * for "cache coloring".
494 */
495 slack = off - pp->pr_itemsperpage * pp->pr_size;
496 pp->pr_maxcolor = (slack / align) * align;
497 pp->pr_curcolor = 0;
498
499 pp->pr_nget = 0;
500 pp->pr_nfail = 0;
501 pp->pr_nput = 0;
502 pp->pr_npagealloc = 0;
503 pp->pr_npagefree = 0;
504 pp->pr_hiwat = 0;
505 pp->pr_nidle = 0;
506
507 if (flags & PR_LOGGING) {
508 if (kmem_map == NULL ||
509 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
510 M_TEMP, M_NOWAIT)) == NULL)
511 pp->pr_roflags &= ~PR_LOGGING;
512 pp->pr_curlogentry = 0;
513 pp->pr_logsize = pool_logsize;
514 }
515
516 pp->pr_entered_file = NULL;
517 pp->pr_entered_line = 0;
518
519 simple_lock_init(&pp->pr_slock);
520
521 /*
522 * Initialize private page header pool and cache magazine pool if we
523 * haven't done so yet.
524 * XXX LOCKING.
525 */
526 if (phpool.pr_size == 0) {
527 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
528 0, "phpool", 0, 0, 0, 0);
529 pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
530 0, "pcgpool", 0, 0, 0, 0);
531 }
532
533 /* Insert into the list of all pools. */
534 simple_lock(&pool_head_slock);
535 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
536 simple_unlock(&pool_head_slock);
537 }
538
539 /*
540 * De-commision a pool resource.
541 */
542 void
543 pool_destroy(struct pool *pp)
544 {
545 struct pool_item_header *ph;
546 struct pool_cache *pc;
547
548 /* Destroy all caches for this pool. */
549 while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL)
550 pool_cache_destroy(pc);
551
552 #ifdef DIAGNOSTIC
553 if (pp->pr_nout != 0) {
554 pr_printlog(pp, NULL, printf);
555 panic("pool_destroy: pool busy: still out: %u\n",
556 pp->pr_nout);
557 }
558 #endif
559
560 /* Remove all pages */
561 if ((pp->pr_roflags & PR_STATIC) == 0)
562 while ((ph = pp->pr_pagelist.tqh_first) != NULL)
563 pr_rmpage(pp, ph);
564
565 /* Remove from global pool list */
566 simple_lock(&pool_head_slock);
567 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
568 /* XXX Only clear this if we were drainpp? */
569 drainpp = NULL;
570 simple_unlock(&pool_head_slock);
571
572 if ((pp->pr_roflags & PR_LOGGING) != 0)
573 free(pp->pr_log, M_TEMP);
574
575 if (pp->pr_roflags & PR_FREEHEADER)
576 free(pp, M_POOL);
577 }
578
579
580 /*
581 * Grab an item from the pool; must be called at appropriate spl level
582 */
583 void *
584 _pool_get(struct pool *pp, int flags, const char *file, long line)
585 {
586 void *v;
587 struct pool_item *pi;
588 struct pool_item_header *ph;
589
590 #ifdef DIAGNOSTIC
591 if (__predict_false((pp->pr_roflags & PR_STATIC) &&
592 (flags & PR_MALLOCOK))) {
593 pr_printlog(pp, NULL, printf);
594 panic("pool_get: static");
595 }
596 #endif
597
598 if (__predict_false(curproc == NULL && doing_shutdown == 0 &&
599 (flags & PR_WAITOK) != 0))
600 panic("pool_get: must have NOWAIT");
601
602 simple_lock(&pp->pr_slock);
603 pr_enter(pp, file, line);
604
605 startover:
606 /*
607 * Check to see if we've reached the hard limit. If we have,
608 * and we can wait, then wait until an item has been returned to
609 * the pool.
610 */
611 #ifdef DIAGNOSTIC
612 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
613 pr_leave(pp);
614 simple_unlock(&pp->pr_slock);
615 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
616 }
617 #endif
618 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
619 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
620 /*
621 * XXX: A warning isn't logged in this case. Should
622 * it be?
623 */
624 pp->pr_flags |= PR_WANTED;
625 pr_leave(pp);
626 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
627 pr_enter(pp, file, line);
628 goto startover;
629 }
630
631 /*
632 * Log a message that the hard limit has been hit.
633 */
634 if (pp->pr_hardlimit_warning != NULL &&
635 ratecheck(&pp->pr_hardlimit_warning_last,
636 &pp->pr_hardlimit_ratecap))
637 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
638
639 if (flags & PR_URGENT)
640 panic("pool_get: urgent");
641
642 pp->pr_nfail++;
643
644 pr_leave(pp);
645 simple_unlock(&pp->pr_slock);
646 return (NULL);
647 }
648
649 /*
650 * The convention we use is that if `curpage' is not NULL, then
651 * it points at a non-empty bucket. In particular, `curpage'
652 * never points at a page header which has PR_PHINPAGE set and
653 * has no items in its bucket.
654 */
655 if ((ph = pp->pr_curpage) == NULL) {
656 void *v;
657
658 #ifdef DIAGNOSTIC
659 if (pp->pr_nitems != 0) {
660 simple_unlock(&pp->pr_slock);
661 printf("pool_get: %s: curpage NULL, nitems %u\n",
662 pp->pr_wchan, pp->pr_nitems);
663 panic("pool_get: nitems inconsistent\n");
664 }
665 #endif
666
667 /*
668 * Call the back-end page allocator for more memory.
669 * Release the pool lock, as the back-end page allocator
670 * may block.
671 */
672 pr_leave(pp);
673 simple_unlock(&pp->pr_slock);
674 v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype);
675 simple_lock(&pp->pr_slock);
676 pr_enter(pp, file, line);
677
678 if (v == NULL) {
679 /*
680 * We were unable to allocate a page, but
681 * we released the lock during allocation,
682 * so perhaps items were freed back to the
683 * pool. Check for this case.
684 */
685 if (pp->pr_curpage != NULL)
686 goto startover;
687
688 if (flags & PR_URGENT)
689 panic("pool_get: urgent");
690
691 if ((flags & PR_WAITOK) == 0) {
692 pp->pr_nfail++;
693 pr_leave(pp);
694 simple_unlock(&pp->pr_slock);
695 return (NULL);
696 }
697
698 /*
699 * Wait for items to be returned to this pool.
700 *
701 * XXX: we actually want to wait just until
702 * the page allocator has memory again. Depending
703 * on this pool's usage, we might get stuck here
704 * for a long time.
705 *
706 * XXX: maybe we should wake up once a second and
707 * try again?
708 */
709 pp->pr_flags |= PR_WANTED;
710 pr_leave(pp);
711 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
712 pr_enter(pp, file, line);
713 goto startover;
714 }
715
716 /* We have more memory; add it to the pool */
717 if (pool_prime_page(pp, v, flags & PR_WAITOK) != 0) {
718 /*
719 * Probably, we don't allowed to wait and
720 * couldn't allocate a page header.
721 */
722 (*pp->pr_free)(v, pp->pr_pagesz, pp->pr_mtype);
723 pp->pr_nfail++;
724 pr_leave(pp);
725 simple_unlock(&pp->pr_slock);
726 return (NULL);
727 }
728 pp->pr_npagealloc++;
729
730 /* Start the allocation process over. */
731 goto startover;
732 }
733
734 if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
735 pr_leave(pp);
736 simple_unlock(&pp->pr_slock);
737 panic("pool_get: %s: page empty", pp->pr_wchan);
738 }
739 #ifdef DIAGNOSTIC
740 if (__predict_false(pp->pr_nitems == 0)) {
741 pr_leave(pp);
742 simple_unlock(&pp->pr_slock);
743 printf("pool_get: %s: items on itemlist, nitems %u\n",
744 pp->pr_wchan, pp->pr_nitems);
745 panic("pool_get: nitems inconsistent\n");
746 }
747 #endif
748 pr_log(pp, v, PRLOG_GET, file, line);
749
750 #ifdef DIAGNOSTIC
751 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
752 pr_printlog(pp, pi, printf);
753 panic("pool_get(%s): free list modified: magic=%x; page %p;"
754 " item addr %p\n",
755 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
756 }
757 #endif
758
759 /*
760 * Remove from item list.
761 */
762 TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
763 pp->pr_nitems--;
764 pp->pr_nout++;
765 if (ph->ph_nmissing == 0) {
766 #ifdef DIAGNOSTIC
767 if (__predict_false(pp->pr_nidle == 0))
768 panic("pool_get: nidle inconsistent");
769 #endif
770 pp->pr_nidle--;
771 }
772 ph->ph_nmissing++;
773 if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) {
774 #ifdef DIAGNOSTIC
775 if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
776 pr_leave(pp);
777 simple_unlock(&pp->pr_slock);
778 panic("pool_get: %s: nmissing inconsistent",
779 pp->pr_wchan);
780 }
781 #endif
782 /*
783 * Find a new non-empty page header, if any.
784 * Start search from the page head, to increase
785 * the chance for "high water" pages to be freed.
786 *
787 * Migrate empty pages to the end of the list. This
788 * will speed the update of curpage as pages become
789 * idle. Empty pages intermingled with idle pages
790 * is no big deal. As soon as a page becomes un-empty,
791 * it will move back to the head of the list.
792 */
793 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
794 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
795 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
796 ph = TAILQ_NEXT(ph, ph_pagelist))
797 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
798 break;
799
800 pp->pr_curpage = ph;
801 }
802
803 pp->pr_nget++;
804
805 /*
806 * If we have a low water mark and we are now below that low
807 * water mark, add more items to the pool.
808 */
809 if (pp->pr_nitems < pp->pr_minitems && pool_catchup(pp) != 0) {
810 /*
811 * XXX: Should we log a warning? Should we set up a timeout
812 * to try again in a second or so? The latter could break
813 * a caller's assumptions about interrupt protection, etc.
814 */
815 }
816
817 pr_leave(pp);
818 simple_unlock(&pp->pr_slock);
819 return (v);
820 }
821
822 /*
823 * Internal version of pool_put(). Pool is already locked/entered.
824 */
825 static void
826 pool_do_put(struct pool *pp, void *v, const char *file, long line)
827 {
828 struct pool_item *pi = v;
829 struct pool_item_header *ph;
830 caddr_t page;
831 int s;
832
833 page = (caddr_t)((u_long)v & pp->pr_pagemask);
834
835 #ifdef DIAGNOSTIC
836 if (__predict_false(pp->pr_nout == 0)) {
837 printf("pool %s: putting with none out\n",
838 pp->pr_wchan);
839 panic("pool_put");
840 }
841 #endif
842
843 pr_log(pp, v, PRLOG_PUT, file, line);
844
845 if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
846 pr_printlog(pp, NULL, printf);
847 panic("pool_put: %s: page header missing", pp->pr_wchan);
848 }
849
850 #ifdef LOCKDEBUG
851 /*
852 * Check if we're freeing a locked simple lock.
853 */
854 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
855 #endif
856
857 /*
858 * Return to item list.
859 */
860 #ifdef DIAGNOSTIC
861 pi->pi_magic = PI_MAGIC;
862 #endif
863 #ifdef DEBUG
864 {
865 int i, *ip = v;
866
867 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
868 *ip++ = PI_MAGIC;
869 }
870 }
871 #endif
872
873 TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
874 ph->ph_nmissing--;
875 pp->pr_nput++;
876 pp->pr_nitems++;
877 pp->pr_nout--;
878
879 /* Cancel "pool empty" condition if it exists */
880 if (pp->pr_curpage == NULL)
881 pp->pr_curpage = ph;
882
883 if (pp->pr_flags & PR_WANTED) {
884 pp->pr_flags &= ~PR_WANTED;
885 if (ph->ph_nmissing == 0)
886 pp->pr_nidle++;
887 wakeup((caddr_t)pp);
888 return;
889 }
890
891 /*
892 * If this page is now complete, do one of two things:
893 *
894 * (1) If we have more pages than the page high water
895 * mark, free the page back to the system.
896 *
897 * (2) Move it to the end of the page list, so that
898 * we minimize our chances of fragmenting the
899 * pool. Idle pages migrate to the end (along with
900 * completely empty pages, so that we find un-empty
901 * pages more quickly when we update curpage) of the
902 * list so they can be more easily swept up by
903 * the pagedaemon when pages are scarce.
904 */
905 if (ph->ph_nmissing == 0) {
906 pp->pr_nidle++;
907 if (pp->pr_npages > pp->pr_maxpages) {
908 pr_rmpage(pp, ph);
909 } else {
910 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
911 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
912
913 /*
914 * Update the timestamp on the page. A page must
915 * be idle for some period of time before it can
916 * be reclaimed by the pagedaemon. This minimizes
917 * ping-pong'ing for memory.
918 */
919 s = splclock();
920 ph->ph_time = mono_time;
921 splx(s);
922
923 /*
924 * Update the current page pointer. Just look for
925 * the first page with any free items.
926 *
927 * XXX: Maybe we want an option to look for the
928 * page with the fewest available items, to minimize
929 * fragmentation?
930 */
931 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
932 ph = TAILQ_NEXT(ph, ph_pagelist))
933 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
934 break;
935
936 pp->pr_curpage = ph;
937 }
938 }
939 /*
940 * If the page has just become un-empty, move it to the head of
941 * the list, and make it the current page. The next allocation
942 * will get the item from this page, instead of further fragmenting
943 * the pool.
944 */
945 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
946 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
947 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
948 pp->pr_curpage = ph;
949 }
950 }
951
952 /*
953 * Return resource to the pool; must be called at appropriate spl level
954 */
955 void
956 _pool_put(struct pool *pp, void *v, const char *file, long line)
957 {
958
959 simple_lock(&pp->pr_slock);
960 pr_enter(pp, file, line);
961
962 pool_do_put(pp, v, file, line);
963
964 pr_leave(pp);
965 simple_unlock(&pp->pr_slock);
966 }
967
968 /*
969 * Add N items to the pool.
970 */
971 int
972 pool_prime(struct pool *pp, int n, caddr_t storage)
973 {
974 caddr_t cp;
975 int error, newnitems, newpages;
976
977 #ifdef DIAGNOSTIC
978 if (__predict_false(storage && !(pp->pr_roflags & PR_STATIC)))
979 panic("pool_prime: static");
980 /* !storage && static caught below */
981 #endif
982
983 simple_lock(&pp->pr_slock);
984
985 newnitems = pp->pr_minitems + n;
986 newpages =
987 roundup(newnitems, pp->pr_itemsperpage) / pp->pr_itemsperpage
988 - pp->pr_minpages;
989
990 while (newpages-- > 0) {
991 if (pp->pr_roflags & PR_STATIC) {
992 cp = storage;
993 storage += pp->pr_pagesz;
994 } else {
995 simple_unlock(&pp->pr_slock);
996 cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
997 simple_lock(&pp->pr_slock);
998 }
999
1000 if (cp == NULL) {
1001 simple_unlock(&pp->pr_slock);
1002 return (ENOMEM);
1003 }
1004
1005 if ((error = pool_prime_page(pp, cp, PR_NOWAIT)) != 0) {
1006 if ((pp->pr_roflags & PR_STATIC) == 0)
1007 (*pp->pr_free)(cp, pp->pr_pagesz,
1008 pp->pr_mtype);
1009 simple_unlock(&pp->pr_slock);
1010 return (error);
1011 }
1012 pp->pr_npagealloc++;
1013 pp->pr_minpages++;
1014 }
1015
1016 pp->pr_minitems = newnitems;
1017
1018 if (pp->pr_minpages >= pp->pr_maxpages)
1019 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1020
1021 simple_unlock(&pp->pr_slock);
1022 return (0);
1023 }
1024
1025 /*
1026 * Add a page worth of items to the pool.
1027 *
1028 * Note, we must be called with the pool descriptor LOCKED.
1029 */
1030 static int
1031 pool_prime_page(struct pool *pp, caddr_t storage, int flags)
1032 {
1033 struct pool_item *pi;
1034 struct pool_item_header *ph;
1035 caddr_t cp = storage;
1036 unsigned int align = pp->pr_align;
1037 unsigned int ioff = pp->pr_itemoffset;
1038 int s, n;
1039
1040 if (((u_long)cp & (pp->pr_pagesz - 1)) != 0)
1041 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1042
1043 if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
1044 ph = (struct pool_item_header *)(cp + pp->pr_phoffset);
1045 } else {
1046 s = splhigh();
1047 ph = pool_get(&phpool, flags);
1048 splx(s);
1049 if (ph == NULL)
1050 return (ENOMEM);
1051 LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)],
1052 ph, ph_hashlist);
1053 }
1054
1055 /*
1056 * Insert page header.
1057 */
1058 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
1059 TAILQ_INIT(&ph->ph_itemlist);
1060 ph->ph_page = storage;
1061 ph->ph_nmissing = 0;
1062 memset(&ph->ph_time, 0, sizeof(ph->ph_time));
1063
1064 pp->pr_nidle++;
1065
1066 /*
1067 * Color this page.
1068 */
1069 cp = (caddr_t)(cp + pp->pr_curcolor);
1070 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1071 pp->pr_curcolor = 0;
1072
1073 /*
1074 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1075 */
1076 if (ioff != 0)
1077 cp = (caddr_t)(cp + (align - ioff));
1078
1079 /*
1080 * Insert remaining chunks on the bucket list.
1081 */
1082 n = pp->pr_itemsperpage;
1083 pp->pr_nitems += n;
1084
1085 while (n--) {
1086 pi = (struct pool_item *)cp;
1087
1088 /* Insert on page list */
1089 TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
1090 #ifdef DIAGNOSTIC
1091 pi->pi_magic = PI_MAGIC;
1092 #endif
1093 cp = (caddr_t)(cp + pp->pr_size);
1094 }
1095
1096 /*
1097 * If the pool was depleted, point at the new page.
1098 */
1099 if (pp->pr_curpage == NULL)
1100 pp->pr_curpage = ph;
1101
1102 if (++pp->pr_npages > pp->pr_hiwat)
1103 pp->pr_hiwat = pp->pr_npages;
1104
1105 return (0);
1106 }
1107
1108 /*
1109 * Like pool_prime(), except this is used by pool_get() when nitems
1110 * drops below the low water mark. This is used to catch up nitmes
1111 * with the low water mark.
1112 *
1113 * Note 1, we never wait for memory here, we let the caller decide what to do.
1114 *
1115 * Note 2, this doesn't work with static pools.
1116 *
1117 * Note 3, we must be called with the pool already locked, and we return
1118 * with it locked.
1119 */
1120 static int
1121 pool_catchup(struct pool *pp)
1122 {
1123 caddr_t cp;
1124 int error = 0;
1125
1126 if (pp->pr_roflags & PR_STATIC) {
1127 /*
1128 * We dropped below the low water mark, and this is not a
1129 * good thing. Log a warning.
1130 *
1131 * XXX: rate-limit this?
1132 */
1133 printf("WARNING: static pool `%s' dropped below low water "
1134 "mark\n", pp->pr_wchan);
1135 return (0);
1136 }
1137
1138 while (pp->pr_nitems < pp->pr_minitems) {
1139 /*
1140 * Call the page back-end allocator for more memory.
1141 *
1142 * XXX: We never wait, so should we bother unlocking
1143 * the pool descriptor?
1144 */
1145 simple_unlock(&pp->pr_slock);
1146 cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
1147 simple_lock(&pp->pr_slock);
1148 if (__predict_false(cp == NULL)) {
1149 error = ENOMEM;
1150 break;
1151 }
1152 if ((error = pool_prime_page(pp, cp, PR_NOWAIT)) != 0) {
1153 (*pp->pr_free)(cp, pp->pr_pagesz, pp->pr_mtype);
1154 break;
1155 }
1156 pp->pr_npagealloc++;
1157 }
1158
1159 return (error);
1160 }
1161
1162 void
1163 pool_setlowat(struct pool *pp, int n)
1164 {
1165 int error;
1166
1167 simple_lock(&pp->pr_slock);
1168
1169 pp->pr_minitems = n;
1170 pp->pr_minpages = (n == 0)
1171 ? 0
1172 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1173
1174 /* Make sure we're caught up with the newly-set low water mark. */
1175 if ((pp->pr_nitems < pp->pr_minitems) &&
1176 (error = pool_catchup(pp)) != 0) {
1177 /*
1178 * XXX: Should we log a warning? Should we set up a timeout
1179 * to try again in a second or so? The latter could break
1180 * a caller's assumptions about interrupt protection, etc.
1181 */
1182 }
1183
1184 simple_unlock(&pp->pr_slock);
1185 }
1186
1187 void
1188 pool_sethiwat(struct pool *pp, int n)
1189 {
1190
1191 simple_lock(&pp->pr_slock);
1192
1193 pp->pr_maxpages = (n == 0)
1194 ? 0
1195 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1196
1197 simple_unlock(&pp->pr_slock);
1198 }
1199
1200 void
1201 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1202 {
1203
1204 simple_lock(&pp->pr_slock);
1205
1206 pp->pr_hardlimit = n;
1207 pp->pr_hardlimit_warning = warnmess;
1208 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1209 pp->pr_hardlimit_warning_last.tv_sec = 0;
1210 pp->pr_hardlimit_warning_last.tv_usec = 0;
1211
1212 /*
1213 * In-line version of pool_sethiwat(), because we don't want to
1214 * release the lock.
1215 */
1216 pp->pr_maxpages = (n == 0)
1217 ? 0
1218 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1219
1220 simple_unlock(&pp->pr_slock);
1221 }
1222
1223 /*
1224 * Default page allocator.
1225 */
1226 static void *
1227 pool_page_alloc(unsigned long sz, int flags, int mtype)
1228 {
1229 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1230
1231 return ((void *)uvm_km_alloc_poolpage(waitok));
1232 }
1233
1234 static void
1235 pool_page_free(void *v, unsigned long sz, int mtype)
1236 {
1237
1238 uvm_km_free_poolpage((vaddr_t)v);
1239 }
1240
1241 /*
1242 * Alternate pool page allocator for pools that know they will
1243 * never be accessed in interrupt context.
1244 */
1245 void *
1246 pool_page_alloc_nointr(unsigned long sz, int flags, int mtype)
1247 {
1248 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1249
1250 return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object,
1251 waitok));
1252 }
1253
1254 void
1255 pool_page_free_nointr(void *v, unsigned long sz, int mtype)
1256 {
1257
1258 uvm_km_free_poolpage1(kernel_map, (vaddr_t)v);
1259 }
1260
1261
1262 /*
1263 * Release all complete pages that have not been used recently.
1264 */
1265 void
1266 _pool_reclaim(struct pool *pp, const char *file, long line)
1267 {
1268 struct pool_item_header *ph, *phnext;
1269 struct pool_cache *pc;
1270 struct timeval curtime;
1271 int s;
1272
1273 if (pp->pr_roflags & PR_STATIC)
1274 return;
1275
1276 if (simple_lock_try(&pp->pr_slock) == 0)
1277 return;
1278 pr_enter(pp, file, line);
1279
1280 /*
1281 * Reclaim items from the pool's caches.
1282 */
1283 for (pc = TAILQ_FIRST(&pp->pr_cachelist); pc != NULL;
1284 pc = TAILQ_NEXT(pc, pc_poollist))
1285 pool_cache_reclaim(pc);
1286
1287 s = splclock();
1288 curtime = mono_time;
1289 splx(s);
1290
1291 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) {
1292 phnext = TAILQ_NEXT(ph, ph_pagelist);
1293
1294 /* Check our minimum page claim */
1295 if (pp->pr_npages <= pp->pr_minpages)
1296 break;
1297
1298 if (ph->ph_nmissing == 0) {
1299 struct timeval diff;
1300 timersub(&curtime, &ph->ph_time, &diff);
1301 if (diff.tv_sec < pool_inactive_time)
1302 continue;
1303
1304 /*
1305 * If freeing this page would put us below
1306 * the low water mark, stop now.
1307 */
1308 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1309 pp->pr_minitems)
1310 break;
1311
1312 pr_rmpage(pp, ph);
1313 }
1314 }
1315
1316 pr_leave(pp);
1317 simple_unlock(&pp->pr_slock);
1318 }
1319
1320
1321 /*
1322 * Drain pools, one at a time.
1323 *
1324 * Note, we must never be called from an interrupt context.
1325 */
1326 void
1327 pool_drain(void *arg)
1328 {
1329 struct pool *pp;
1330 int s;
1331
1332 s = splvm();
1333 simple_lock(&pool_head_slock);
1334
1335 if (drainpp == NULL && (drainpp = TAILQ_FIRST(&pool_head)) == NULL)
1336 goto out;
1337
1338 pp = drainpp;
1339 drainpp = TAILQ_NEXT(pp, pr_poollist);
1340
1341 pool_reclaim(pp);
1342
1343 out:
1344 simple_unlock(&pool_head_slock);
1345 splx(s);
1346 }
1347
1348
1349 /*
1350 * Diagnostic helpers.
1351 */
1352 void
1353 pool_print(struct pool *pp, const char *modif)
1354 {
1355 int s;
1356
1357 s = splvm();
1358 if (simple_lock_try(&pp->pr_slock) == 0) {
1359 printf("pool %s is locked; try again later\n",
1360 pp->pr_wchan);
1361 splx(s);
1362 return;
1363 }
1364 pool_print1(pp, modif, printf);
1365 simple_unlock(&pp->pr_slock);
1366 splx(s);
1367 }
1368
1369 void
1370 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1371 {
1372 int didlock = 0;
1373
1374 if (pp == NULL) {
1375 (*pr)("Must specify a pool to print.\n");
1376 return;
1377 }
1378
1379 /*
1380 * Called from DDB; interrupts should be blocked, and all
1381 * other processors should be paused. We can skip locking
1382 * the pool in this case.
1383 *
1384 * We do a simple_lock_try() just to print the lock
1385 * status, however.
1386 */
1387
1388 if (simple_lock_try(&pp->pr_slock) == 0)
1389 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1390 else
1391 didlock = 1;
1392
1393 pool_print1(pp, modif, pr);
1394
1395 if (didlock)
1396 simple_unlock(&pp->pr_slock);
1397 }
1398
1399 static void
1400 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1401 {
1402 struct pool_item_header *ph;
1403 struct pool_cache *pc;
1404 struct pool_cache_group *pcg;
1405 #ifdef DIAGNOSTIC
1406 struct pool_item *pi;
1407 #endif
1408 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1409 char c;
1410
1411 while ((c = *modif++) != '\0') {
1412 if (c == 'l')
1413 print_log = 1;
1414 if (c == 'p')
1415 print_pagelist = 1;
1416 if (c == 'c')
1417 print_cache = 1;
1418 modif++;
1419 }
1420
1421 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1422 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1423 pp->pr_roflags);
1424 (*pr)("\tpagesz %u, mtype %d\n", pp->pr_pagesz, pp->pr_mtype);
1425 (*pr)("\talloc %p, release %p\n", pp->pr_alloc, pp->pr_free);
1426 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1427 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1428 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1429 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1430
1431 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1432 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1433 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1434 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1435
1436 if (print_pagelist == 0)
1437 goto skip_pagelist;
1438
1439 if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
1440 (*pr)("\n\tpage list:\n");
1441 for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) {
1442 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1443 ph->ph_page, ph->ph_nmissing,
1444 (u_long)ph->ph_time.tv_sec,
1445 (u_long)ph->ph_time.tv_usec);
1446 #ifdef DIAGNOSTIC
1447 for (pi = TAILQ_FIRST(&ph->ph_itemlist); pi != NULL;
1448 pi = TAILQ_NEXT(pi, pi_list)) {
1449 if (pi->pi_magic != PI_MAGIC) {
1450 (*pr)("\t\t\titem %p, magic 0x%x\n",
1451 pi, pi->pi_magic);
1452 }
1453 }
1454 #endif
1455 }
1456 if (pp->pr_curpage == NULL)
1457 (*pr)("\tno current page\n");
1458 else
1459 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1460
1461 skip_pagelist:
1462
1463 if (print_log == 0)
1464 goto skip_log;
1465
1466 (*pr)("\n");
1467 if ((pp->pr_roflags & PR_LOGGING) == 0)
1468 (*pr)("\tno log\n");
1469 else
1470 pr_printlog(pp, NULL, pr);
1471
1472 skip_log:
1473
1474 if (print_cache == 0)
1475 goto skip_cache;
1476
1477 for (pc = TAILQ_FIRST(&pp->pr_cachelist); pc != NULL;
1478 pc = TAILQ_NEXT(pc, pc_poollist)) {
1479 (*pr)("\tcache %p: allocfrom %p freeto %p\n", pc,
1480 pc->pc_allocfrom, pc->pc_freeto);
1481 (*pr)("\t hits %lu misses %lu ngroups %lu nitems %lu\n",
1482 pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
1483 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1484 pcg = TAILQ_NEXT(pcg, pcg_list)) {
1485 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);
1486 for (i = 0; i < PCG_NOBJECTS; i++)
1487 (*pr)("\t\t\t%p\n", pcg->pcg_objects[i]);
1488 }
1489 }
1490
1491 skip_cache:
1492
1493 pr_enter_check(pp, pr);
1494 }
1495
1496 int
1497 pool_chk(struct pool *pp, const char *label)
1498 {
1499 struct pool_item_header *ph;
1500 int r = 0;
1501
1502 simple_lock(&pp->pr_slock);
1503
1504 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
1505 ph = TAILQ_NEXT(ph, ph_pagelist)) {
1506
1507 struct pool_item *pi;
1508 int n;
1509 caddr_t page;
1510
1511 page = (caddr_t)((u_long)ph & pp->pr_pagemask);
1512 if (page != ph->ph_page &&
1513 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1514 if (label != NULL)
1515 printf("%s: ", label);
1516 printf("pool(%p:%s): page inconsistency: page %p;"
1517 " at page head addr %p (p %p)\n", pp,
1518 pp->pr_wchan, ph->ph_page,
1519 ph, page);
1520 r++;
1521 goto out;
1522 }
1523
1524 for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
1525 pi != NULL;
1526 pi = TAILQ_NEXT(pi,pi_list), n++) {
1527
1528 #ifdef DIAGNOSTIC
1529 if (pi->pi_magic != PI_MAGIC) {
1530 if (label != NULL)
1531 printf("%s: ", label);
1532 printf("pool(%s): free list modified: magic=%x;"
1533 " page %p; item ordinal %d;"
1534 " addr %p (p %p)\n",
1535 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1536 n, pi, page);
1537 panic("pool");
1538 }
1539 #endif
1540 page = (caddr_t)((u_long)pi & pp->pr_pagemask);
1541 if (page == ph->ph_page)
1542 continue;
1543
1544 if (label != NULL)
1545 printf("%s: ", label);
1546 printf("pool(%p:%s): page inconsistency: page %p;"
1547 " item ordinal %d; addr %p (p %p)\n", pp,
1548 pp->pr_wchan, ph->ph_page,
1549 n, pi, page);
1550 r++;
1551 goto out;
1552 }
1553 }
1554 out:
1555 simple_unlock(&pp->pr_slock);
1556 return (r);
1557 }
1558
1559 /*
1560 * pool_cache_init:
1561 *
1562 * Initialize a pool cache.
1563 *
1564 * NOTE: If the pool must be protected from interrupts, we expect
1565 * to be called at the appropriate interrupt priority level.
1566 */
1567 void
1568 pool_cache_init(struct pool_cache *pc, struct pool *pp,
1569 int (*ctor)(void *, void *, int),
1570 void (*dtor)(void *, void *),
1571 void *arg)
1572 {
1573
1574 TAILQ_INIT(&pc->pc_grouplist);
1575 simple_lock_init(&pc->pc_slock);
1576
1577 pc->pc_allocfrom = NULL;
1578 pc->pc_freeto = NULL;
1579 pc->pc_pool = pp;
1580
1581 pc->pc_ctor = ctor;
1582 pc->pc_dtor = dtor;
1583 pc->pc_arg = arg;
1584
1585 pc->pc_hits = 0;
1586 pc->pc_misses = 0;
1587
1588 pc->pc_ngroups = 0;
1589
1590 pc->pc_nitems = 0;
1591
1592 simple_lock(&pp->pr_slock);
1593 TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist);
1594 simple_unlock(&pp->pr_slock);
1595 }
1596
1597 /*
1598 * pool_cache_destroy:
1599 *
1600 * Destroy a pool cache.
1601 */
1602 void
1603 pool_cache_destroy(struct pool_cache *pc)
1604 {
1605 struct pool *pp = pc->pc_pool;
1606
1607 /* First, invalidate the entire cache. */
1608 pool_cache_invalidate(pc);
1609
1610 /* ...and remove it from the pool's cache list. */
1611 simple_lock(&pp->pr_slock);
1612 TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist);
1613 simple_unlock(&pp->pr_slock);
1614 }
1615
1616 static __inline void *
1617 pcg_get(struct pool_cache_group *pcg)
1618 {
1619 void *object;
1620 u_int idx;
1621
1622 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
1623 KASSERT(pcg->pcg_avail != 0);
1624 idx = --pcg->pcg_avail;
1625
1626 KASSERT(pcg->pcg_objects[idx] != NULL);
1627 object = pcg->pcg_objects[idx];
1628 pcg->pcg_objects[idx] = NULL;
1629
1630 return (object);
1631 }
1632
1633 static __inline void
1634 pcg_put(struct pool_cache_group *pcg, void *object)
1635 {
1636 u_int idx;
1637
1638 KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
1639 idx = pcg->pcg_avail++;
1640
1641 KASSERT(pcg->pcg_objects[idx] == NULL);
1642 pcg->pcg_objects[idx] = object;
1643 }
1644
1645 /*
1646 * pool_cache_get:
1647 *
1648 * Get an object from a pool cache.
1649 */
1650 void *
1651 pool_cache_get(struct pool_cache *pc, int flags)
1652 {
1653 struct pool_cache_group *pcg;
1654 void *object;
1655
1656 simple_lock(&pc->pc_slock);
1657
1658 if ((pcg = pc->pc_allocfrom) == NULL) {
1659 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1660 pcg = TAILQ_NEXT(pcg, pcg_list)) {
1661 if (pcg->pcg_avail != 0) {
1662 pc->pc_allocfrom = pcg;
1663 goto have_group;
1664 }
1665 }
1666
1667 /*
1668 * No groups with any available objects. Allocate
1669 * a new object, construct it, and return it to
1670 * the caller. We will allocate a group, if necessary,
1671 * when the object is freed back to the cache.
1672 */
1673 pc->pc_misses++;
1674 simple_unlock(&pc->pc_slock);
1675 object = pool_get(pc->pc_pool, flags);
1676 if (object != NULL && pc->pc_ctor != NULL) {
1677 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
1678 pool_put(pc->pc_pool, object);
1679 return (NULL);
1680 }
1681 }
1682 return (object);
1683 }
1684
1685 have_group:
1686 pc->pc_hits++;
1687 pc->pc_nitems--;
1688 object = pcg_get(pcg);
1689
1690 if (pcg->pcg_avail == 0)
1691 pc->pc_allocfrom = NULL;
1692
1693 simple_unlock(&pc->pc_slock);
1694
1695 return (object);
1696 }
1697
1698 /*
1699 * pool_cache_put:
1700 *
1701 * Put an object back to the pool cache.
1702 */
1703 void
1704 pool_cache_put(struct pool_cache *pc, void *object)
1705 {
1706 struct pool_cache_group *pcg;
1707
1708 simple_lock(&pc->pc_slock);
1709
1710 if ((pcg = pc->pc_freeto) == NULL) {
1711 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1712 pcg = TAILQ_NEXT(pcg, pcg_list)) {
1713 if (pcg->pcg_avail != PCG_NOBJECTS) {
1714 pc->pc_freeto = pcg;
1715 goto have_group;
1716 }
1717 }
1718
1719 /*
1720 * No empty groups to free the object to. Attempt to
1721 * allocate one.
1722 */
1723 simple_unlock(&pc->pc_slock);
1724 pcg = pool_get(&pcgpool, PR_NOWAIT);
1725 if (pcg != NULL) {
1726 memset(pcg, 0, sizeof(*pcg));
1727 simple_lock(&pc->pc_slock);
1728 pc->pc_ngroups++;
1729 TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list);
1730 if (pc->pc_freeto == NULL)
1731 pc->pc_freeto = pcg;
1732 goto have_group;
1733 }
1734
1735 /*
1736 * Unable to allocate a cache group; destruct the object
1737 * and free it back to the pool.
1738 */
1739 if (pc->pc_dtor != NULL)
1740 (*pc->pc_dtor)(pc->pc_arg, object);
1741 pool_put(pc->pc_pool, object);
1742 return;
1743 }
1744
1745 have_group:
1746 pc->pc_nitems++;
1747 pcg_put(pcg, object);
1748
1749 if (pcg->pcg_avail == PCG_NOBJECTS)
1750 pc->pc_freeto = NULL;
1751
1752 simple_unlock(&pc->pc_slock);
1753 }
1754
1755 /*
1756 * pool_cache_do_invalidate:
1757 *
1758 * This internal function implements pool_cache_invalidate() and
1759 * pool_cache_reclaim().
1760 */
1761 static void
1762 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups,
1763 void (*putit)(struct pool *, void *, const char *, long))
1764 {
1765 struct pool_cache_group *pcg, *npcg;
1766 void *object;
1767
1768 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1769 pcg = npcg) {
1770 npcg = TAILQ_NEXT(pcg, pcg_list);
1771 while (pcg->pcg_avail != 0) {
1772 pc->pc_nitems--;
1773 object = pcg_get(pcg);
1774 if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg)
1775 pc->pc_allocfrom = NULL;
1776 if (pc->pc_dtor != NULL)
1777 (*pc->pc_dtor)(pc->pc_arg, object);
1778 (*putit)(pc->pc_pool, object, __FILE__, __LINE__);
1779 }
1780 if (free_groups) {
1781 pc->pc_ngroups--;
1782 TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list);
1783 if (pc->pc_freeto == pcg)
1784 pc->pc_freeto = NULL;
1785 pool_put(&pcgpool, pcg);
1786 }
1787 }
1788 }
1789
1790 /*
1791 * pool_cache_invalidate:
1792 *
1793 * Invalidate a pool cache (destruct and release all of the
1794 * cached objects).
1795 */
1796 void
1797 pool_cache_invalidate(struct pool_cache *pc)
1798 {
1799
1800 simple_lock(&pc->pc_slock);
1801 pool_cache_do_invalidate(pc, 0, _pool_put);
1802 simple_unlock(&pc->pc_slock);
1803 }
1804
1805 /*
1806 * pool_cache_reclaim:
1807 *
1808 * Reclaim a pool cache for pool_reclaim().
1809 */
1810 static void
1811 pool_cache_reclaim(struct pool_cache *pc)
1812 {
1813
1814 simple_lock(&pc->pc_slock);
1815 pool_cache_do_invalidate(pc, 1, pool_do_put);
1816 simple_unlock(&pc->pc_slock);
1817 }
1818