Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.50.2.4
      1 /*	$NetBSD: subr_pool.c,v 1.50.2.4 2001/10/22 20:41:50 nathanw Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9  * Simulation Facility, NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 #include "opt_pool.h"
     41 #include "opt_poollog.h"
     42 #include "opt_lockdebug.h"
     43 
     44 #include <sys/param.h>
     45 #include <sys/systm.h>
     46 #include <sys/proc.h>
     47 #include <sys/errno.h>
     48 #include <sys/kernel.h>
     49 #include <sys/malloc.h>
     50 #include <sys/lock.h>
     51 #include <sys/pool.h>
     52 #include <sys/syslog.h>
     53 
     54 #include <uvm/uvm.h>
     55 
     56 /*
     57  * Pool resource management utility.
     58  *
     59  * Memory is allocated in pages which are split into pieces according
     60  * to the pool item size. Each page is kept on a list headed by `pr_pagelist'
     61  * in the pool structure and the individual pool items are on a linked list
     62  * headed by `ph_itemlist' in each page header. The memory for building
     63  * the page list is either taken from the allocated pages themselves (for
     64  * small pool items) or taken from an internal pool of page headers (`phpool').
     65  */
     66 
     67 /* List of all pools */
     68 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     69 
     70 /* Private pool for page header structures */
     71 static struct pool phpool;
     72 
     73 #ifdef POOL_SUBPAGE
     74 /* Pool of subpages for use by normal pools. */
     75 static struct pool psppool;
     76 #endif
     77 
     78 /* # of seconds to retain page after last use */
     79 int pool_inactive_time = 10;
     80 
     81 /* Next candidate for drainage (see pool_drain()) */
     82 static struct pool	*drainpp;
     83 
     84 /* This spin lock protects both pool_head and drainpp. */
     85 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
     86 
     87 struct pool_item_header {
     88 	/* Page headers */
     89 	TAILQ_ENTRY(pool_item_header)
     90 				ph_pagelist;	/* pool page list */
     91 	TAILQ_HEAD(,pool_item)	ph_itemlist;	/* chunk list for this page */
     92 	LIST_ENTRY(pool_item_header)
     93 				ph_hashlist;	/* Off-page page headers */
     94 	int			ph_nmissing;	/* # of chunks in use */
     95 	caddr_t			ph_page;	/* this page's address */
     96 	struct timeval		ph_time;	/* last referenced */
     97 };
     98 TAILQ_HEAD(pool_pagelist,pool_item_header);
     99 
    100 struct pool_item {
    101 #ifdef DIAGNOSTIC
    102 	int pi_magic;
    103 #endif
    104 #define	PI_MAGIC 0xdeadbeef
    105 	/* Other entries use only this list entry */
    106 	TAILQ_ENTRY(pool_item)	pi_list;
    107 };
    108 
    109 #define	PR_HASH_INDEX(pp,addr) \
    110 	(((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1))
    111 
    112 #define	POOL_NEEDS_CATCHUP(pp)						\
    113 	((pp)->pr_nitems < (pp)->pr_minitems)
    114 
    115 /*
    116  * Pool cache management.
    117  *
    118  * Pool caches provide a way for constructed objects to be cached by the
    119  * pool subsystem.  This can lead to performance improvements by avoiding
    120  * needless object construction/destruction; it is deferred until absolutely
    121  * necessary.
    122  *
    123  * Caches are grouped into cache groups.  Each cache group references
    124  * up to 16 constructed objects.  When a cache allocates an object
    125  * from the pool, it calls the object's constructor and places it into
    126  * a cache group.  When a cache group frees an object back to the pool,
    127  * it first calls the object's destructor.  This allows the object to
    128  * persist in constructed form while freed to the cache.
    129  *
    130  * Multiple caches may exist for each pool.  This allows a single
    131  * object type to have multiple constructed forms.  The pool references
    132  * each cache, so that when a pool is drained by the pagedaemon, it can
    133  * drain each individual cache as well.  Each time a cache is drained,
    134  * the most idle cache group is freed to the pool in its entirety.
    135  *
    136  * Pool caches are layed on top of pools.  By layering them, we can avoid
    137  * the complexity of cache management for pools which would not benefit
    138  * from it.
    139  */
    140 
    141 /* The cache group pool. */
    142 static struct pool pcgpool;
    143 
    144 /* The pool cache group. */
    145 #define	PCG_NOBJECTS		16
    146 struct pool_cache_group {
    147 	TAILQ_ENTRY(pool_cache_group)
    148 		pcg_list;	/* link in the pool cache's group list */
    149 	u_int	pcg_avail;	/* # available objects */
    150 				/* pointers to the objects */
    151 	void	*pcg_objects[PCG_NOBJECTS];
    152 };
    153 
    154 static void	pool_cache_reclaim(struct pool_cache *);
    155 
    156 static int	pool_catchup(struct pool *);
    157 static void	pool_prime_page(struct pool *, caddr_t,
    158 		    struct pool_item_header *);
    159 static void	*pool_page_alloc(unsigned long, int, int);
    160 static void	pool_page_free(void *, unsigned long, int);
    161 #ifdef POOL_SUBPAGE
    162 static void	*pool_subpage_alloc(unsigned long, int, int);
    163 static void	pool_subpage_free(void *, unsigned long, int);
    164 #endif
    165 
    166 static void pool_print1(struct pool *, const char *,
    167 	void (*)(const char *, ...));
    168 
    169 /*
    170  * Pool log entry. An array of these is allocated in pool_init().
    171  */
    172 struct pool_log {
    173 	const char	*pl_file;
    174 	long		pl_line;
    175 	int		pl_action;
    176 #define	PRLOG_GET	1
    177 #define	PRLOG_PUT	2
    178 	void		*pl_addr;
    179 };
    180 
    181 /* Number of entries in pool log buffers */
    182 #ifndef POOL_LOGSIZE
    183 #define	POOL_LOGSIZE	10
    184 #endif
    185 
    186 int pool_logsize = POOL_LOGSIZE;
    187 
    188 #ifdef POOL_DIAGNOSTIC
    189 static __inline void
    190 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    191 {
    192 	int n = pp->pr_curlogentry;
    193 	struct pool_log *pl;
    194 
    195 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    196 		return;
    197 
    198 	/*
    199 	 * Fill in the current entry. Wrap around and overwrite
    200 	 * the oldest entry if necessary.
    201 	 */
    202 	pl = &pp->pr_log[n];
    203 	pl->pl_file = file;
    204 	pl->pl_line = line;
    205 	pl->pl_action = action;
    206 	pl->pl_addr = v;
    207 	if (++n >= pp->pr_logsize)
    208 		n = 0;
    209 	pp->pr_curlogentry = n;
    210 }
    211 
    212 static void
    213 pr_printlog(struct pool *pp, struct pool_item *pi,
    214     void (*pr)(const char *, ...))
    215 {
    216 	int i = pp->pr_logsize;
    217 	int n = pp->pr_curlogentry;
    218 
    219 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    220 		return;
    221 
    222 	/*
    223 	 * Print all entries in this pool's log.
    224 	 */
    225 	while (i-- > 0) {
    226 		struct pool_log *pl = &pp->pr_log[n];
    227 		if (pl->pl_action != 0) {
    228 			if (pi == NULL || pi == pl->pl_addr) {
    229 				(*pr)("\tlog entry %d:\n", i);
    230 				(*pr)("\t\taction = %s, addr = %p\n",
    231 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    232 				    pl->pl_addr);
    233 				(*pr)("\t\tfile: %s at line %lu\n",
    234 				    pl->pl_file, pl->pl_line);
    235 			}
    236 		}
    237 		if (++n >= pp->pr_logsize)
    238 			n = 0;
    239 	}
    240 }
    241 
    242 static __inline void
    243 pr_enter(struct pool *pp, const char *file, long line)
    244 {
    245 
    246 	if (__predict_false(pp->pr_entered_file != NULL)) {
    247 		printf("pool %s: reentrancy at file %s line %ld\n",
    248 		    pp->pr_wchan, file, line);
    249 		printf("         previous entry at file %s line %ld\n",
    250 		    pp->pr_entered_file, pp->pr_entered_line);
    251 		panic("pr_enter");
    252 	}
    253 
    254 	pp->pr_entered_file = file;
    255 	pp->pr_entered_line = line;
    256 }
    257 
    258 static __inline void
    259 pr_leave(struct pool *pp)
    260 {
    261 
    262 	if (__predict_false(pp->pr_entered_file == NULL)) {
    263 		printf("pool %s not entered?\n", pp->pr_wchan);
    264 		panic("pr_leave");
    265 	}
    266 
    267 	pp->pr_entered_file = NULL;
    268 	pp->pr_entered_line = 0;
    269 }
    270 
    271 static __inline void
    272 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    273 {
    274 
    275 	if (pp->pr_entered_file != NULL)
    276 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    277 		    pp->pr_entered_file, pp->pr_entered_line);
    278 }
    279 #else
    280 #define	pr_log(pp, v, action, file, line)
    281 #define	pr_printlog(pp, pi, pr)
    282 #define	pr_enter(pp, file, line)
    283 #define	pr_leave(pp)
    284 #define	pr_enter_check(pp, pr)
    285 #endif /* POOL_DIAGNOSTIC */
    286 
    287 /*
    288  * Return the pool page header based on page address.
    289  */
    290 static __inline struct pool_item_header *
    291 pr_find_pagehead(struct pool *pp, caddr_t page)
    292 {
    293 	struct pool_item_header *ph;
    294 
    295 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    296 		return ((struct pool_item_header *)(page + pp->pr_phoffset));
    297 
    298 	for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]);
    299 	     ph != NULL;
    300 	     ph = LIST_NEXT(ph, ph_hashlist)) {
    301 		if (ph->ph_page == page)
    302 			return (ph);
    303 	}
    304 	return (NULL);
    305 }
    306 
    307 /*
    308  * Remove a page from the pool.
    309  */
    310 static __inline void
    311 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    312      struct pool_pagelist *pq)
    313 {
    314 	int s;
    315 
    316 	/*
    317 	 * If the page was idle, decrement the idle page count.
    318 	 */
    319 	if (ph->ph_nmissing == 0) {
    320 #ifdef DIAGNOSTIC
    321 		if (pp->pr_nidle == 0)
    322 			panic("pr_rmpage: nidle inconsistent");
    323 		if (pp->pr_nitems < pp->pr_itemsperpage)
    324 			panic("pr_rmpage: nitems inconsistent");
    325 #endif
    326 		pp->pr_nidle--;
    327 	}
    328 
    329 	pp->pr_nitems -= pp->pr_itemsperpage;
    330 
    331 	/*
    332 	 * Unlink a page from the pool and release it (or queue it for release).
    333 	 */
    334 	TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    335 	if (pq) {
    336 		TAILQ_INSERT_HEAD(pq, ph, ph_pagelist);
    337 	} else {
    338 		(*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype);
    339 		if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    340 			LIST_REMOVE(ph, ph_hashlist);
    341 			s = splhigh();
    342 			pool_put(&phpool, ph);
    343 			splx(s);
    344 		}
    345 	}
    346 	pp->pr_npages--;
    347 	pp->pr_npagefree++;
    348 
    349 	if (pp->pr_curpage == ph) {
    350 		/*
    351 		 * Find a new non-empty page header, if any.
    352 		 * Start search from the page head, to increase the
    353 		 * chance for "high water" pages to be freed.
    354 		 */
    355 		TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist)
    356 			if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    357 				break;
    358 
    359 		pp->pr_curpage = ph;
    360 	}
    361 }
    362 
    363 /*
    364  * Initialize the given pool resource structure.
    365  *
    366  * We export this routine to allow other kernel parts to declare
    367  * static pools that must be initialized before malloc() is available.
    368  */
    369 void
    370 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    371     const char *wchan, size_t pagesz,
    372     void *(*alloc)(unsigned long, int, int),
    373     void (*release)(void *, unsigned long, int),
    374     int mtype)
    375 {
    376 	int off, slack, i;
    377 
    378 #ifdef POOL_DIAGNOSTIC
    379 	/*
    380 	 * Always log if POOL_DIAGNOSTIC is defined.
    381 	 */
    382 	if (pool_logsize != 0)
    383 		flags |= PR_LOGGING;
    384 #endif
    385 
    386 	/*
    387 	 * Check arguments and construct default values.
    388 	 */
    389 	if (!powerof2(pagesz))
    390 		panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz);
    391 
    392 	if (alloc == NULL && release == NULL) {
    393 #ifdef POOL_SUBPAGE
    394 		alloc = pool_subpage_alloc;
    395 		release = pool_subpage_free;
    396 		pagesz = POOL_SUBPAGE;
    397 #else
    398 		alloc = pool_page_alloc;
    399 		release = pool_page_free;
    400 		pagesz = PAGE_SIZE;	/* Rounds to PAGE_SIZE anyhow. */
    401 #endif
    402 	} else if ((alloc != NULL && release != NULL) == 0) {
    403 		/* If you specifiy one, must specify both. */
    404 		panic("pool_init: must specify alloc and release together");
    405 	}
    406 #ifdef POOL_SUBPAGE
    407 	else if (alloc == pool_page_alloc_nointr &&
    408 	    release == pool_page_free_nointr)
    409 		pagesz = POOL_SUBPAGE;
    410 #endif
    411 
    412 	if (pagesz == 0)
    413 		pagesz = PAGE_SIZE;
    414 
    415 	if (align == 0)
    416 		align = ALIGN(1);
    417 
    418 	if (size < sizeof(struct pool_item))
    419 		size = sizeof(struct pool_item);
    420 
    421 	size = ALIGN(size);
    422 	if (size > pagesz)
    423 		panic("pool_init: pool item size (%lu) too large",
    424 		      (u_long)size);
    425 
    426 	/*
    427 	 * Initialize the pool structure.
    428 	 */
    429 	TAILQ_INIT(&pp->pr_pagelist);
    430 	TAILQ_INIT(&pp->pr_cachelist);
    431 	pp->pr_curpage = NULL;
    432 	pp->pr_npages = 0;
    433 	pp->pr_minitems = 0;
    434 	pp->pr_minpages = 0;
    435 	pp->pr_maxpages = UINT_MAX;
    436 	pp->pr_roflags = flags;
    437 	pp->pr_flags = 0;
    438 	pp->pr_size = size;
    439 	pp->pr_align = align;
    440 	pp->pr_wchan = wchan;
    441 	pp->pr_mtype = mtype;
    442 	pp->pr_alloc = alloc;
    443 	pp->pr_free = release;
    444 	pp->pr_pagesz = pagesz;
    445 	pp->pr_pagemask = ~(pagesz - 1);
    446 	pp->pr_pageshift = ffs(pagesz) - 1;
    447 	pp->pr_nitems = 0;
    448 	pp->pr_nout = 0;
    449 	pp->pr_hardlimit = UINT_MAX;
    450 	pp->pr_hardlimit_warning = NULL;
    451 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    452 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    453 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    454 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    455 
    456 	/*
    457 	 * Decide whether to put the page header off page to avoid
    458 	 * wasting too large a part of the page. Off-page page headers
    459 	 * go on a hash table, so we can match a returned item
    460 	 * with its header based on the page address.
    461 	 * We use 1/16 of the page size as the threshold (XXX: tune)
    462 	 */
    463 	if (pp->pr_size < pagesz/16) {
    464 		/* Use the end of the page for the page header */
    465 		pp->pr_roflags |= PR_PHINPAGE;
    466 		pp->pr_phoffset = off =
    467 			pagesz - ALIGN(sizeof(struct pool_item_header));
    468 	} else {
    469 		/* The page header will be taken from our page header pool */
    470 		pp->pr_phoffset = 0;
    471 		off = pagesz;
    472 		for (i = 0; i < PR_HASHTABSIZE; i++) {
    473 			LIST_INIT(&pp->pr_hashtab[i]);
    474 		}
    475 	}
    476 
    477 	/*
    478 	 * Alignment is to take place at `ioff' within the item. This means
    479 	 * we must reserve up to `align - 1' bytes on the page to allow
    480 	 * appropriate positioning of each item.
    481 	 *
    482 	 * Silently enforce `0 <= ioff < align'.
    483 	 */
    484 	pp->pr_itemoffset = ioff = ioff % align;
    485 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    486 	KASSERT(pp->pr_itemsperpage != 0);
    487 
    488 	/*
    489 	 * Use the slack between the chunks and the page header
    490 	 * for "cache coloring".
    491 	 */
    492 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    493 	pp->pr_maxcolor = (slack / align) * align;
    494 	pp->pr_curcolor = 0;
    495 
    496 	pp->pr_nget = 0;
    497 	pp->pr_nfail = 0;
    498 	pp->pr_nput = 0;
    499 	pp->pr_npagealloc = 0;
    500 	pp->pr_npagefree = 0;
    501 	pp->pr_hiwat = 0;
    502 	pp->pr_nidle = 0;
    503 
    504 #ifdef POOL_DIAGNOSTIC
    505 	if (flags & PR_LOGGING) {
    506 		if (kmem_map == NULL ||
    507 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    508 		     M_TEMP, M_NOWAIT)) == NULL)
    509 			pp->pr_roflags &= ~PR_LOGGING;
    510 		pp->pr_curlogentry = 0;
    511 		pp->pr_logsize = pool_logsize;
    512 	}
    513 #endif
    514 
    515 	pp->pr_entered_file = NULL;
    516 	pp->pr_entered_line = 0;
    517 
    518 	simple_lock_init(&pp->pr_slock);
    519 
    520 	/*
    521 	 * Initialize private page header pool and cache magazine pool if we
    522 	 * haven't done so yet.
    523 	 * XXX LOCKING.
    524 	 */
    525 	if (phpool.pr_size == 0) {
    526 #ifdef POOL_SUBPAGE
    527 		pool_init(&phpool, sizeof(struct pool_item_header), 0, 0, 0,
    528 		    "phpool", PAGE_SIZE, pool_page_alloc, pool_page_free, 0);
    529 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    530 		    PR_RECURSIVE, "psppool", PAGE_SIZE,
    531 		    pool_page_alloc, pool_page_free, 0);
    532 #else
    533 		pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
    534 		    0, "phpool", 0, 0, 0, 0);
    535 #endif
    536 		pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
    537 		    0, "pcgpool", 0, 0, 0, 0);
    538 	}
    539 
    540 	/* Insert into the list of all pools. */
    541 	simple_lock(&pool_head_slock);
    542 	TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    543 	simple_unlock(&pool_head_slock);
    544 }
    545 
    546 /*
    547  * De-commision a pool resource.
    548  */
    549 void
    550 pool_destroy(struct pool *pp)
    551 {
    552 	struct pool_item_header *ph;
    553 	struct pool_cache *pc;
    554 
    555 	/* Destroy all caches for this pool. */
    556 	while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL)
    557 		pool_cache_destroy(pc);
    558 
    559 #ifdef DIAGNOSTIC
    560 	if (pp->pr_nout != 0) {
    561 		pr_printlog(pp, NULL, printf);
    562 		panic("pool_destroy: pool busy: still out: %u\n",
    563 		    pp->pr_nout);
    564 	}
    565 #endif
    566 
    567 	/* Remove all pages */
    568 	if ((pp->pr_roflags & PR_STATIC) == 0)
    569 		while ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
    570 			pr_rmpage(pp, ph, NULL);
    571 
    572 	/* Remove from global pool list */
    573 	simple_lock(&pool_head_slock);
    574 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    575 	if (drainpp == pp) {
    576 		drainpp = NULL;
    577 	}
    578 	simple_unlock(&pool_head_slock);
    579 
    580 #ifdef POOL_DIAGNOSTIC
    581 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    582 		free(pp->pr_log, M_TEMP);
    583 #endif
    584 
    585 	if (pp->pr_roflags & PR_FREEHEADER)
    586 		free(pp, M_POOL);
    587 }
    588 
    589 static __inline struct pool_item_header *
    590 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
    591 {
    592 	struct pool_item_header *ph;
    593 	int s;
    594 
    595 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
    596 
    597 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    598 		ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
    599 	else {
    600 		s = splhigh();
    601 		ph = pool_get(&phpool, flags);
    602 		splx(s);
    603 	}
    604 
    605 	return (ph);
    606 }
    607 
    608 /*
    609  * Grab an item from the pool; must be called at appropriate spl level
    610  */
    611 void *
    612 #ifdef POOL_DIAGNOSTIC
    613 _pool_get(struct pool *pp, int flags, const char *file, long line)
    614 #else
    615 pool_get(struct pool *pp, int flags)
    616 #endif
    617 {
    618 	struct pool_item *pi;
    619 	struct pool_item_header *ph;
    620 	void *v;
    621 
    622 #ifdef DIAGNOSTIC
    623 	if (__predict_false((pp->pr_roflags & PR_STATIC) &&
    624 			    (flags & PR_MALLOCOK))) {
    625 		pr_printlog(pp, NULL, printf);
    626 		panic("pool_get: static");
    627 	}
    628 
    629 	if (__predict_false(curproc == NULL && doing_shutdown == 0 &&
    630 			    (flags & PR_WAITOK) != 0))
    631 		panic("pool_get: must have NOWAIT");
    632 
    633 #ifdef LOCKDEBUG
    634 	if (flags & PR_WAITOK)
    635 		simple_lock_only_held(NULL, "pool_get(PR_WAITOK)");
    636 #endif
    637 #endif /* DIAGNOSTIC */
    638 
    639 	simple_lock(&pp->pr_slock);
    640 	pr_enter(pp, file, line);
    641 
    642  startover:
    643 	/*
    644 	 * Check to see if we've reached the hard limit.  If we have,
    645 	 * and we can wait, then wait until an item has been returned to
    646 	 * the pool.
    647 	 */
    648 #ifdef DIAGNOSTIC
    649 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
    650 		pr_leave(pp);
    651 		simple_unlock(&pp->pr_slock);
    652 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
    653 	}
    654 #endif
    655 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    656 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    657 			/*
    658 			 * XXX: A warning isn't logged in this case.  Should
    659 			 * it be?
    660 			 */
    661 			pp->pr_flags |= PR_WANTED;
    662 			pr_leave(pp);
    663 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
    664 			pr_enter(pp, file, line);
    665 			goto startover;
    666 		}
    667 
    668 		/*
    669 		 * Log a message that the hard limit has been hit.
    670 		 */
    671 		if (pp->pr_hardlimit_warning != NULL &&
    672 		    ratecheck(&pp->pr_hardlimit_warning_last,
    673 			      &pp->pr_hardlimit_ratecap))
    674 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    675 
    676 		if (flags & PR_URGENT)
    677 			panic("pool_get: urgent");
    678 
    679 		pp->pr_nfail++;
    680 
    681 		pr_leave(pp);
    682 		simple_unlock(&pp->pr_slock);
    683 		return (NULL);
    684 	}
    685 
    686 	/*
    687 	 * The convention we use is that if `curpage' is not NULL, then
    688 	 * it points at a non-empty bucket. In particular, `curpage'
    689 	 * never points at a page header which has PR_PHINPAGE set and
    690 	 * has no items in its bucket.
    691 	 */
    692 	if ((ph = pp->pr_curpage) == NULL) {
    693 #ifdef DIAGNOSTIC
    694 		if (pp->pr_nitems != 0) {
    695 			simple_unlock(&pp->pr_slock);
    696 			printf("pool_get: %s: curpage NULL, nitems %u\n",
    697 			    pp->pr_wchan, pp->pr_nitems);
    698 			panic("pool_get: nitems inconsistent\n");
    699 		}
    700 #endif
    701 
    702 		/*
    703 		 * Call the back-end page allocator for more memory.
    704 		 * Release the pool lock, as the back-end page allocator
    705 		 * may block.
    706 		 */
    707 		pr_leave(pp);
    708 		simple_unlock(&pp->pr_slock);
    709 		v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype);
    710 		if (__predict_true(v != NULL))
    711 			ph = pool_alloc_item_header(pp, v, flags);
    712 		simple_lock(&pp->pr_slock);
    713 		pr_enter(pp, file, line);
    714 
    715 		if (__predict_false(v == NULL || ph == NULL)) {
    716 			if (v != NULL)
    717 				(*pp->pr_free)(v, pp->pr_pagesz, pp->pr_mtype);
    718 
    719 			/*
    720 			 * We were unable to allocate a page or item
    721 			 * header, but we released the lock during
    722 			 * allocation, so perhaps items were freed
    723 			 * back to the pool.  Check for this case.
    724 			 */
    725 			if (pp->pr_curpage != NULL)
    726 				goto startover;
    727 
    728 			if (flags & PR_URGENT)
    729 				panic("pool_get: urgent");
    730 
    731 			if ((flags & PR_WAITOK) == 0) {
    732 				pp->pr_nfail++;
    733 				pr_leave(pp);
    734 				simple_unlock(&pp->pr_slock);
    735 				return (NULL);
    736 			}
    737 
    738 			/*
    739 			 * Wait for items to be returned to this pool.
    740 			 *
    741 			 * XXX: we actually want to wait just until
    742 			 * the page allocator has memory again. Depending
    743 			 * on this pool's usage, we might get stuck here
    744 			 * for a long time.
    745 			 *
    746 			 * XXX: maybe we should wake up once a second and
    747 			 * try again?
    748 			 */
    749 			pp->pr_flags |= PR_WANTED;
    750 			pr_leave(pp);
    751 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
    752 			pr_enter(pp, file, line);
    753 			goto startover;
    754 		}
    755 
    756 		/* We have more memory; add it to the pool */
    757 		pool_prime_page(pp, v, ph);
    758 		pp->pr_npagealloc++;
    759 
    760 		/* Start the allocation process over. */
    761 		goto startover;
    762 	}
    763 
    764 	if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
    765 		pr_leave(pp);
    766 		simple_unlock(&pp->pr_slock);
    767 		panic("pool_get: %s: page empty", pp->pr_wchan);
    768 	}
    769 #ifdef DIAGNOSTIC
    770 	if (__predict_false(pp->pr_nitems == 0)) {
    771 		pr_leave(pp);
    772 		simple_unlock(&pp->pr_slock);
    773 		printf("pool_get: %s: items on itemlist, nitems %u\n",
    774 		    pp->pr_wchan, pp->pr_nitems);
    775 		panic("pool_get: nitems inconsistent\n");
    776 	}
    777 
    778 	pr_log(pp, v, PRLOG_GET, file, line);
    779 
    780 	if (__predict_false(pi->pi_magic != PI_MAGIC)) {
    781 		pr_printlog(pp, pi, printf);
    782 		panic("pool_get(%s): free list modified: magic=%x; page %p;"
    783 		       " item addr %p\n",
    784 			pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    785 	}
    786 #endif
    787 
    788 	/*
    789 	 * Remove from item list.
    790 	 */
    791 	TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
    792 	pp->pr_nitems--;
    793 	pp->pr_nout++;
    794 	if (ph->ph_nmissing == 0) {
    795 #ifdef DIAGNOSTIC
    796 		if (__predict_false(pp->pr_nidle == 0))
    797 			panic("pool_get: nidle inconsistent");
    798 #endif
    799 		pp->pr_nidle--;
    800 	}
    801 	ph->ph_nmissing++;
    802 	if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) {
    803 #ifdef DIAGNOSTIC
    804 		if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
    805 			pr_leave(pp);
    806 			simple_unlock(&pp->pr_slock);
    807 			panic("pool_get: %s: nmissing inconsistent",
    808 			    pp->pr_wchan);
    809 		}
    810 #endif
    811 		/*
    812 		 * Find a new non-empty page header, if any.
    813 		 * Start search from the page head, to increase
    814 		 * the chance for "high water" pages to be freed.
    815 		 *
    816 		 * Migrate empty pages to the end of the list.  This
    817 		 * will speed the update of curpage as pages become
    818 		 * idle.  Empty pages intermingled with idle pages
    819 		 * is no big deal.  As soon as a page becomes un-empty,
    820 		 * it will move back to the head of the list.
    821 		 */
    822 		TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    823 		TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
    824 		TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist)
    825 			if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    826 				break;
    827 
    828 		pp->pr_curpage = ph;
    829 	}
    830 
    831 	pp->pr_nget++;
    832 
    833 	/*
    834 	 * If we have a low water mark and we are now below that low
    835 	 * water mark, add more items to the pool.
    836 	 */
    837 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
    838 		/*
    839 		 * XXX: Should we log a warning?  Should we set up a timeout
    840 		 * to try again in a second or so?  The latter could break
    841 		 * a caller's assumptions about interrupt protection, etc.
    842 		 */
    843 	}
    844 
    845 	pr_leave(pp);
    846 	simple_unlock(&pp->pr_slock);
    847 	return (v);
    848 }
    849 
    850 /*
    851  * Internal version of pool_put().  Pool is already locked/entered.
    852  */
    853 static void
    854 pool_do_put(struct pool *pp, void *v)
    855 {
    856 	struct pool_item *pi = v;
    857 	struct pool_item_header *ph;
    858 	caddr_t page;
    859 	int s;
    860 
    861 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
    862 
    863 	page = (caddr_t)((u_long)v & pp->pr_pagemask);
    864 
    865 #ifdef DIAGNOSTIC
    866 	if (__predict_false(pp->pr_nout == 0)) {
    867 		printf("pool %s: putting with none out\n",
    868 		    pp->pr_wchan);
    869 		panic("pool_put");
    870 	}
    871 #endif
    872 
    873 	if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
    874 		pr_printlog(pp, NULL, printf);
    875 		panic("pool_put: %s: page header missing", pp->pr_wchan);
    876 	}
    877 
    878 #ifdef LOCKDEBUG
    879 	/*
    880 	 * Check if we're freeing a locked simple lock.
    881 	 */
    882 	simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
    883 #endif
    884 
    885 	/*
    886 	 * Return to item list.
    887 	 */
    888 #ifdef DIAGNOSTIC
    889 	pi->pi_magic = PI_MAGIC;
    890 #endif
    891 #ifdef DEBUG
    892 	{
    893 		int i, *ip = v;
    894 
    895 		for (i = 0; i < pp->pr_size / sizeof(int); i++) {
    896 			*ip++ = PI_MAGIC;
    897 		}
    898 	}
    899 #endif
    900 
    901 	TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    902 	ph->ph_nmissing--;
    903 	pp->pr_nput++;
    904 	pp->pr_nitems++;
    905 	pp->pr_nout--;
    906 
    907 	/* Cancel "pool empty" condition if it exists */
    908 	if (pp->pr_curpage == NULL)
    909 		pp->pr_curpage = ph;
    910 
    911 	if (pp->pr_flags & PR_WANTED) {
    912 		pp->pr_flags &= ~PR_WANTED;
    913 		if (ph->ph_nmissing == 0)
    914 			pp->pr_nidle++;
    915 		wakeup((caddr_t)pp);
    916 		return;
    917 	}
    918 
    919 	/*
    920 	 * If this page is now complete, do one of two things:
    921 	 *
    922 	 *	(1) If we have more pages than the page high water
    923 	 *	    mark, free the page back to the system.
    924 	 *
    925 	 *	(2) Move it to the end of the page list, so that
    926 	 *	    we minimize our chances of fragmenting the
    927 	 *	    pool.  Idle pages migrate to the end (along with
    928 	 *	    completely empty pages, so that we find un-empty
    929 	 *	    pages more quickly when we update curpage) of the
    930 	 *	    list so they can be more easily swept up by
    931 	 *	    the pagedaemon when pages are scarce.
    932 	 */
    933 	if (ph->ph_nmissing == 0) {
    934 		pp->pr_nidle++;
    935 		if (pp->pr_npages > pp->pr_maxpages) {
    936 			pr_rmpage(pp, ph, NULL);
    937 		} else {
    938 			TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    939 			TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
    940 
    941 			/*
    942 			 * Update the timestamp on the page.  A page must
    943 			 * be idle for some period of time before it can
    944 			 * be reclaimed by the pagedaemon.  This minimizes
    945 			 * ping-pong'ing for memory.
    946 			 */
    947 			s = splclock();
    948 			ph->ph_time = mono_time;
    949 			splx(s);
    950 
    951 			/*
    952 			 * Update the current page pointer.  Just look for
    953 			 * the first page with any free items.
    954 			 *
    955 			 * XXX: Maybe we want an option to look for the
    956 			 * page with the fewest available items, to minimize
    957 			 * fragmentation?
    958 			 */
    959 			TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist)
    960 				if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    961 					break;
    962 
    963 			pp->pr_curpage = ph;
    964 		}
    965 	}
    966 	/*
    967 	 * If the page has just become un-empty, move it to the head of
    968 	 * the list, and make it the current page.  The next allocation
    969 	 * will get the item from this page, instead of further fragmenting
    970 	 * the pool.
    971 	 */
    972 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
    973 		TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    974 		TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
    975 		pp->pr_curpage = ph;
    976 	}
    977 }
    978 
    979 /*
    980  * Return resource to the pool; must be called at appropriate spl level
    981  */
    982 #ifdef POOL_DIAGNOSTIC
    983 void
    984 _pool_put(struct pool *pp, void *v, const char *file, long line)
    985 {
    986 
    987 	simple_lock(&pp->pr_slock);
    988 	pr_enter(pp, file, line);
    989 
    990 	pr_log(pp, v, PRLOG_PUT, file, line);
    991 
    992 	pool_do_put(pp, v);
    993 
    994 	pr_leave(pp);
    995 	simple_unlock(&pp->pr_slock);
    996 }
    997 #undef pool_put
    998 #endif /* POOL_DIAGNOSTIC */
    999 
   1000 void
   1001 pool_put(struct pool *pp, void *v)
   1002 {
   1003 
   1004 	simple_lock(&pp->pr_slock);
   1005 
   1006 	pool_do_put(pp, v);
   1007 
   1008 	simple_unlock(&pp->pr_slock);
   1009 }
   1010 
   1011 #ifdef POOL_DIAGNOSTIC
   1012 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1013 #endif
   1014 
   1015 /*
   1016  * Add N items to the pool.
   1017  */
   1018 int
   1019 pool_prime(struct pool *pp, int n)
   1020 {
   1021 	struct pool_item_header *ph;
   1022 	caddr_t cp;
   1023 	int newpages, error = 0;
   1024 
   1025 	simple_lock(&pp->pr_slock);
   1026 
   1027 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1028 
   1029 	while (newpages-- > 0) {
   1030 		simple_unlock(&pp->pr_slock);
   1031 		cp = (*pp->pr_alloc)(pp->pr_pagesz, PR_NOWAIT, pp->pr_mtype);
   1032 		if (__predict_true(cp != NULL))
   1033 			ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
   1034 		simple_lock(&pp->pr_slock);
   1035 
   1036 		if (__predict_false(cp == NULL || ph == NULL)) {
   1037 			error = ENOMEM;
   1038 			if (cp != NULL)
   1039 				(*pp->pr_free)(cp, pp->pr_pagesz, pp->pr_mtype);
   1040 			break;
   1041 		}
   1042 
   1043 		pool_prime_page(pp, cp, ph);
   1044 		pp->pr_npagealloc++;
   1045 		pp->pr_minpages++;
   1046 	}
   1047 
   1048 	if (pp->pr_minpages >= pp->pr_maxpages)
   1049 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1050 
   1051 	simple_unlock(&pp->pr_slock);
   1052 	return (0);
   1053 }
   1054 
   1055 /*
   1056  * Add a page worth of items to the pool.
   1057  *
   1058  * Note, we must be called with the pool descriptor LOCKED.
   1059  */
   1060 static void
   1061 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
   1062 {
   1063 	struct pool_item *pi;
   1064 	caddr_t cp = storage;
   1065 	unsigned int align = pp->pr_align;
   1066 	unsigned int ioff = pp->pr_itemoffset;
   1067 	int n;
   1068 
   1069 	if (((u_long)cp & (pp->pr_pagesz - 1)) != 0)
   1070 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1071 
   1072 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1073 		LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)],
   1074 		    ph, ph_hashlist);
   1075 
   1076 	/*
   1077 	 * Insert page header.
   1078 	 */
   1079 	TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
   1080 	TAILQ_INIT(&ph->ph_itemlist);
   1081 	ph->ph_page = storage;
   1082 	ph->ph_nmissing = 0;
   1083 	memset(&ph->ph_time, 0, sizeof(ph->ph_time));
   1084 
   1085 	pp->pr_nidle++;
   1086 
   1087 	/*
   1088 	 * Color this page.
   1089 	 */
   1090 	cp = (caddr_t)(cp + pp->pr_curcolor);
   1091 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1092 		pp->pr_curcolor = 0;
   1093 
   1094 	/*
   1095 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1096 	 */
   1097 	if (ioff != 0)
   1098 		cp = (caddr_t)(cp + (align - ioff));
   1099 
   1100 	/*
   1101 	 * Insert remaining chunks on the bucket list.
   1102 	 */
   1103 	n = pp->pr_itemsperpage;
   1104 	pp->pr_nitems += n;
   1105 
   1106 	while (n--) {
   1107 		pi = (struct pool_item *)cp;
   1108 
   1109 		/* Insert on page list */
   1110 		TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
   1111 #ifdef DIAGNOSTIC
   1112 		pi->pi_magic = PI_MAGIC;
   1113 #endif
   1114 		cp = (caddr_t)(cp + pp->pr_size);
   1115 	}
   1116 
   1117 	/*
   1118 	 * If the pool was depleted, point at the new page.
   1119 	 */
   1120 	if (pp->pr_curpage == NULL)
   1121 		pp->pr_curpage = ph;
   1122 
   1123 	if (++pp->pr_npages > pp->pr_hiwat)
   1124 		pp->pr_hiwat = pp->pr_npages;
   1125 }
   1126 
   1127 /*
   1128  * Used by pool_get() when nitems drops below the low water mark.  This
   1129  * is used to catch up nitmes with the low water mark.
   1130  *
   1131  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1132  *
   1133  * Note 2, this doesn't work with static pools.
   1134  *
   1135  * Note 3, we must be called with the pool already locked, and we return
   1136  * with it locked.
   1137  */
   1138 static int
   1139 pool_catchup(struct pool *pp)
   1140 {
   1141 	struct pool_item_header *ph;
   1142 	caddr_t cp;
   1143 	int error = 0;
   1144 
   1145 	if (pp->pr_roflags & PR_STATIC) {
   1146 		/*
   1147 		 * We dropped below the low water mark, and this is not a
   1148 		 * good thing.  Log a warning.
   1149 		 *
   1150 		 * XXX: rate-limit this?
   1151 		 */
   1152 		printf("WARNING: static pool `%s' dropped below low water "
   1153 		    "mark\n", pp->pr_wchan);
   1154 		return (0);
   1155 	}
   1156 
   1157 	while (POOL_NEEDS_CATCHUP(pp)) {
   1158 		/*
   1159 		 * Call the page back-end allocator for more memory.
   1160 		 *
   1161 		 * XXX: We never wait, so should we bother unlocking
   1162 		 * the pool descriptor?
   1163 		 */
   1164 		simple_unlock(&pp->pr_slock);
   1165 		cp = (*pp->pr_alloc)(pp->pr_pagesz, PR_NOWAIT, pp->pr_mtype);
   1166 		if (__predict_true(cp != NULL))
   1167 			ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
   1168 		simple_lock(&pp->pr_slock);
   1169 		if (__predict_false(cp == NULL || ph == NULL)) {
   1170 			if (cp != NULL)
   1171 				(*pp->pr_free)(cp, pp->pr_pagesz, pp->pr_mtype);
   1172 			error = ENOMEM;
   1173 			break;
   1174 		}
   1175 		pool_prime_page(pp, cp, ph);
   1176 		pp->pr_npagealloc++;
   1177 	}
   1178 
   1179 	return (error);
   1180 }
   1181 
   1182 void
   1183 pool_setlowat(struct pool *pp, int n)
   1184 {
   1185 	int error;
   1186 
   1187 	simple_lock(&pp->pr_slock);
   1188 
   1189 	pp->pr_minitems = n;
   1190 	pp->pr_minpages = (n == 0)
   1191 		? 0
   1192 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1193 
   1194 	/* Make sure we're caught up with the newly-set low water mark. */
   1195 	if (POOL_NEEDS_CATCHUP(pp) && (error = pool_catchup(pp) != 0)) {
   1196 		/*
   1197 		 * XXX: Should we log a warning?  Should we set up a timeout
   1198 		 * to try again in a second or so?  The latter could break
   1199 		 * a caller's assumptions about interrupt protection, etc.
   1200 		 */
   1201 	}
   1202 
   1203 	simple_unlock(&pp->pr_slock);
   1204 }
   1205 
   1206 void
   1207 pool_sethiwat(struct pool *pp, int n)
   1208 {
   1209 
   1210 	simple_lock(&pp->pr_slock);
   1211 
   1212 	pp->pr_maxpages = (n == 0)
   1213 		? 0
   1214 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1215 
   1216 	simple_unlock(&pp->pr_slock);
   1217 }
   1218 
   1219 void
   1220 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1221 {
   1222 
   1223 	simple_lock(&pp->pr_slock);
   1224 
   1225 	pp->pr_hardlimit = n;
   1226 	pp->pr_hardlimit_warning = warnmess;
   1227 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1228 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1229 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1230 
   1231 	/*
   1232 	 * In-line version of pool_sethiwat(), because we don't want to
   1233 	 * release the lock.
   1234 	 */
   1235 	pp->pr_maxpages = (n == 0)
   1236 		? 0
   1237 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1238 
   1239 	simple_unlock(&pp->pr_slock);
   1240 }
   1241 
   1242 /*
   1243  * Default page allocator.
   1244  */
   1245 static void *
   1246 pool_page_alloc(unsigned long sz, int flags, int mtype)
   1247 {
   1248 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   1249 
   1250 	return ((void *)uvm_km_alloc_poolpage(waitok));
   1251 }
   1252 
   1253 static void
   1254 pool_page_free(void *v, unsigned long sz, int mtype)
   1255 {
   1256 
   1257 	uvm_km_free_poolpage((vaddr_t)v);
   1258 }
   1259 
   1260 #ifdef POOL_SUBPAGE
   1261 /*
   1262  * Sub-page allocator, for machines with large hardware pages.
   1263  */
   1264 static void *
   1265 pool_subpage_alloc(unsigned long sz, int flags, int mtype)
   1266 {
   1267 
   1268 	return pool_get(&psppool, flags);
   1269 }
   1270 
   1271 static void
   1272 pool_subpage_free(void *v, unsigned long sz, int mtype)
   1273 {
   1274 
   1275 	pool_put(&psppool, v);
   1276 }
   1277 #endif
   1278 
   1279 #ifdef POOL_SUBPAGE
   1280 /* We don't provide a real nointr allocator.  Maybe later. */
   1281 void *
   1282 pool_page_alloc_nointr(unsigned long sz, int flags, int mtype)
   1283 {
   1284 
   1285 	return pool_subpage_alloc(sz, flags, mtype);
   1286 }
   1287 
   1288 void
   1289 pool_page_free_nointr(void *v, unsigned long sz, int mtype)
   1290 {
   1291 
   1292 	pool_subpage_free(v, sz, mtype);
   1293 }
   1294 #else
   1295 /*
   1296  * Alternate pool page allocator for pools that know they will
   1297  * never be accessed in interrupt context.
   1298  */
   1299 void *
   1300 pool_page_alloc_nointr(unsigned long sz, int flags, int mtype)
   1301 {
   1302 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   1303 
   1304 	return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object,
   1305 	    waitok));
   1306 }
   1307 
   1308 void
   1309 pool_page_free_nointr(void *v, unsigned long sz, int mtype)
   1310 {
   1311 
   1312 	uvm_km_free_poolpage1(kernel_map, (vaddr_t)v);
   1313 }
   1314 #endif
   1315 
   1316 
   1317 /*
   1318  * Release all complete pages that have not been used recently.
   1319  */
   1320 void
   1321 #ifdef POOL_DIAGNOSTIC
   1322 _pool_reclaim(struct pool *pp, const char *file, long line)
   1323 #else
   1324 pool_reclaim(struct pool *pp)
   1325 #endif
   1326 {
   1327 	struct pool_item_header *ph, *phnext;
   1328 	struct pool_cache *pc;
   1329 	struct timeval curtime;
   1330 	struct pool_pagelist pq;
   1331 	int s;
   1332 
   1333 	if (pp->pr_roflags & PR_STATIC)
   1334 		return;
   1335 
   1336 	if (simple_lock_try(&pp->pr_slock) == 0)
   1337 		return;
   1338 	pr_enter(pp, file, line);
   1339 	TAILQ_INIT(&pq);
   1340 
   1341 	/*
   1342 	 * Reclaim items from the pool's caches.
   1343 	 */
   1344 	TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
   1345 		pool_cache_reclaim(pc);
   1346 
   1347 	s = splclock();
   1348 	curtime = mono_time;
   1349 	splx(s);
   1350 
   1351 	for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) {
   1352 		phnext = TAILQ_NEXT(ph, ph_pagelist);
   1353 
   1354 		/* Check our minimum page claim */
   1355 		if (pp->pr_npages <= pp->pr_minpages)
   1356 			break;
   1357 
   1358 		if (ph->ph_nmissing == 0) {
   1359 			struct timeval diff;
   1360 			timersub(&curtime, &ph->ph_time, &diff);
   1361 			if (diff.tv_sec < pool_inactive_time)
   1362 				continue;
   1363 
   1364 			/*
   1365 			 * If freeing this page would put us below
   1366 			 * the low water mark, stop now.
   1367 			 */
   1368 			if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1369 			    pp->pr_minitems)
   1370 				break;
   1371 
   1372 			pr_rmpage(pp, ph, &pq);
   1373 		}
   1374 	}
   1375 
   1376 	pr_leave(pp);
   1377 	simple_unlock(&pp->pr_slock);
   1378 	if (TAILQ_EMPTY(&pq)) {
   1379 		return;
   1380 	}
   1381 	while ((ph = TAILQ_FIRST(&pq)) != NULL) {
   1382 		TAILQ_REMOVE(&pq, ph, ph_pagelist);
   1383 		(*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype);
   1384 		if (pp->pr_roflags & PR_PHINPAGE) {
   1385 			continue;
   1386 		}
   1387 		LIST_REMOVE(ph, ph_hashlist);
   1388 		s = splhigh();
   1389 		pool_put(&phpool, ph);
   1390 		splx(s);
   1391 	}
   1392 }
   1393 
   1394 
   1395 /*
   1396  * Drain pools, one at a time.
   1397  *
   1398  * Note, we must never be called from an interrupt context.
   1399  */
   1400 void
   1401 pool_drain(void *arg)
   1402 {
   1403 	struct pool *pp;
   1404 	int s;
   1405 
   1406 	pp = NULL;
   1407 	s = splvm();
   1408 	simple_lock(&pool_head_slock);
   1409 	if (drainpp == NULL) {
   1410 		drainpp = TAILQ_FIRST(&pool_head);
   1411 	}
   1412 	if (drainpp) {
   1413 		pp = drainpp;
   1414 		drainpp = TAILQ_NEXT(pp, pr_poollist);
   1415 	}
   1416 	simple_unlock(&pool_head_slock);
   1417 	pool_reclaim(pp);
   1418 	splx(s);
   1419 }
   1420 
   1421 
   1422 /*
   1423  * Diagnostic helpers.
   1424  */
   1425 void
   1426 pool_print(struct pool *pp, const char *modif)
   1427 {
   1428 	int s;
   1429 
   1430 	s = splvm();
   1431 	if (simple_lock_try(&pp->pr_slock) == 0) {
   1432 		printf("pool %s is locked; try again later\n",
   1433 		    pp->pr_wchan);
   1434 		splx(s);
   1435 		return;
   1436 	}
   1437 	pool_print1(pp, modif, printf);
   1438 	simple_unlock(&pp->pr_slock);
   1439 	splx(s);
   1440 }
   1441 
   1442 void
   1443 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1444 {
   1445 	int didlock = 0;
   1446 
   1447 	if (pp == NULL) {
   1448 		(*pr)("Must specify a pool to print.\n");
   1449 		return;
   1450 	}
   1451 
   1452 	/*
   1453 	 * Called from DDB; interrupts should be blocked, and all
   1454 	 * other processors should be paused.  We can skip locking
   1455 	 * the pool in this case.
   1456 	 *
   1457 	 * We do a simple_lock_try() just to print the lock
   1458 	 * status, however.
   1459 	 */
   1460 
   1461 	if (simple_lock_try(&pp->pr_slock) == 0)
   1462 		(*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
   1463 	else
   1464 		didlock = 1;
   1465 
   1466 	pool_print1(pp, modif, pr);
   1467 
   1468 	if (didlock)
   1469 		simple_unlock(&pp->pr_slock);
   1470 }
   1471 
   1472 static void
   1473 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1474 {
   1475 	struct pool_item_header *ph;
   1476 	struct pool_cache *pc;
   1477 	struct pool_cache_group *pcg;
   1478 #ifdef DIAGNOSTIC
   1479 	struct pool_item *pi;
   1480 #endif
   1481 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1482 	char c;
   1483 
   1484 	while ((c = *modif++) != '\0') {
   1485 		if (c == 'l')
   1486 			print_log = 1;
   1487 		if (c == 'p')
   1488 			print_pagelist = 1;
   1489 		if (c == 'c')
   1490 			print_cache = 1;
   1491 		modif++;
   1492 	}
   1493 
   1494 	(*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1495 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1496 	    pp->pr_roflags);
   1497 	(*pr)("\tpagesz %u, mtype %d\n", pp->pr_pagesz, pp->pr_mtype);
   1498 	(*pr)("\talloc %p, release %p\n", pp->pr_alloc, pp->pr_free);
   1499 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1500 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1501 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1502 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1503 
   1504 	(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
   1505 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1506 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1507 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1508 
   1509 	if (print_pagelist == 0)
   1510 		goto skip_pagelist;
   1511 
   1512 	if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
   1513 		(*pr)("\n\tpage list:\n");
   1514 	for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) {
   1515 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
   1516 		    ph->ph_page, ph->ph_nmissing,
   1517 		    (u_long)ph->ph_time.tv_sec,
   1518 		    (u_long)ph->ph_time.tv_usec);
   1519 #ifdef DIAGNOSTIC
   1520 		TAILQ_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1521 			if (pi->pi_magic != PI_MAGIC) {
   1522 				(*pr)("\t\t\titem %p, magic 0x%x\n",
   1523 				    pi, pi->pi_magic);
   1524 			}
   1525 		}
   1526 #endif
   1527 	}
   1528 	if (pp->pr_curpage == NULL)
   1529 		(*pr)("\tno current page\n");
   1530 	else
   1531 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1532 
   1533  skip_pagelist:
   1534 
   1535 	if (print_log == 0)
   1536 		goto skip_log;
   1537 
   1538 	(*pr)("\n");
   1539 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1540 		(*pr)("\tno log\n");
   1541 	else
   1542 		pr_printlog(pp, NULL, pr);
   1543 
   1544  skip_log:
   1545 
   1546 	if (print_cache == 0)
   1547 		goto skip_cache;
   1548 
   1549 	TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
   1550 		(*pr)("\tcache %p: allocfrom %p freeto %p\n", pc,
   1551 		    pc->pc_allocfrom, pc->pc_freeto);
   1552 		(*pr)("\t    hits %lu misses %lu ngroups %lu nitems %lu\n",
   1553 		    pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
   1554 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
   1555 			(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);
   1556 			for (i = 0; i < PCG_NOBJECTS; i++)
   1557 				(*pr)("\t\t\t%p\n", pcg->pcg_objects[i]);
   1558 		}
   1559 	}
   1560 
   1561  skip_cache:
   1562 
   1563 	pr_enter_check(pp, pr);
   1564 }
   1565 
   1566 int
   1567 pool_chk(struct pool *pp, const char *label)
   1568 {
   1569 	struct pool_item_header *ph;
   1570 	int r = 0;
   1571 
   1572 	simple_lock(&pp->pr_slock);
   1573 
   1574 	TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist) {
   1575 		struct pool_item *pi;
   1576 		int n;
   1577 		caddr_t page;
   1578 
   1579 		page = (caddr_t)((u_long)ph & pp->pr_pagemask);
   1580 		if (page != ph->ph_page &&
   1581 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1582 			if (label != NULL)
   1583 				printf("%s: ", label);
   1584 			printf("pool(%p:%s): page inconsistency: page %p;"
   1585 			       " at page head addr %p (p %p)\n", pp,
   1586 				pp->pr_wchan, ph->ph_page,
   1587 				ph, page);
   1588 			r++;
   1589 			goto out;
   1590 		}
   1591 
   1592 		for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
   1593 		     pi != NULL;
   1594 		     pi = TAILQ_NEXT(pi,pi_list), n++) {
   1595 
   1596 #ifdef DIAGNOSTIC
   1597 			if (pi->pi_magic != PI_MAGIC) {
   1598 				if (label != NULL)
   1599 					printf("%s: ", label);
   1600 				printf("pool(%s): free list modified: magic=%x;"
   1601 				       " page %p; item ordinal %d;"
   1602 				       " addr %p (p %p)\n",
   1603 					pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1604 					n, pi, page);
   1605 				panic("pool");
   1606 			}
   1607 #endif
   1608 			page = (caddr_t)((u_long)pi & pp->pr_pagemask);
   1609 			if (page == ph->ph_page)
   1610 				continue;
   1611 
   1612 			if (label != NULL)
   1613 				printf("%s: ", label);
   1614 			printf("pool(%p:%s): page inconsistency: page %p;"
   1615 			       " item ordinal %d; addr %p (p %p)\n", pp,
   1616 				pp->pr_wchan, ph->ph_page,
   1617 				n, pi, page);
   1618 			r++;
   1619 			goto out;
   1620 		}
   1621 	}
   1622 out:
   1623 	simple_unlock(&pp->pr_slock);
   1624 	return (r);
   1625 }
   1626 
   1627 /*
   1628  * pool_cache_init:
   1629  *
   1630  *	Initialize a pool cache.
   1631  *
   1632  *	NOTE: If the pool must be protected from interrupts, we expect
   1633  *	to be called at the appropriate interrupt priority level.
   1634  */
   1635 void
   1636 pool_cache_init(struct pool_cache *pc, struct pool *pp,
   1637     int (*ctor)(void *, void *, int),
   1638     void (*dtor)(void *, void *),
   1639     void *arg)
   1640 {
   1641 
   1642 	TAILQ_INIT(&pc->pc_grouplist);
   1643 	simple_lock_init(&pc->pc_slock);
   1644 
   1645 	pc->pc_allocfrom = NULL;
   1646 	pc->pc_freeto = NULL;
   1647 	pc->pc_pool = pp;
   1648 
   1649 	pc->pc_ctor = ctor;
   1650 	pc->pc_dtor = dtor;
   1651 	pc->pc_arg  = arg;
   1652 
   1653 	pc->pc_hits   = 0;
   1654 	pc->pc_misses = 0;
   1655 
   1656 	pc->pc_ngroups = 0;
   1657 
   1658 	pc->pc_nitems = 0;
   1659 
   1660 	simple_lock(&pp->pr_slock);
   1661 	TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist);
   1662 	simple_unlock(&pp->pr_slock);
   1663 }
   1664 
   1665 /*
   1666  * pool_cache_destroy:
   1667  *
   1668  *	Destroy a pool cache.
   1669  */
   1670 void
   1671 pool_cache_destroy(struct pool_cache *pc)
   1672 {
   1673 	struct pool *pp = pc->pc_pool;
   1674 
   1675 	/* First, invalidate the entire cache. */
   1676 	pool_cache_invalidate(pc);
   1677 
   1678 	/* ...and remove it from the pool's cache list. */
   1679 	simple_lock(&pp->pr_slock);
   1680 	TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist);
   1681 	simple_unlock(&pp->pr_slock);
   1682 }
   1683 
   1684 static __inline void *
   1685 pcg_get(struct pool_cache_group *pcg)
   1686 {
   1687 	void *object;
   1688 	u_int idx;
   1689 
   1690 	KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
   1691 	KASSERT(pcg->pcg_avail != 0);
   1692 	idx = --pcg->pcg_avail;
   1693 
   1694 	KASSERT(pcg->pcg_objects[idx] != NULL);
   1695 	object = pcg->pcg_objects[idx];
   1696 	pcg->pcg_objects[idx] = NULL;
   1697 
   1698 	return (object);
   1699 }
   1700 
   1701 static __inline void
   1702 pcg_put(struct pool_cache_group *pcg, void *object)
   1703 {
   1704 	u_int idx;
   1705 
   1706 	KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
   1707 	idx = pcg->pcg_avail++;
   1708 
   1709 	KASSERT(pcg->pcg_objects[idx] == NULL);
   1710 	pcg->pcg_objects[idx] = object;
   1711 }
   1712 
   1713 /*
   1714  * pool_cache_get:
   1715  *
   1716  *	Get an object from a pool cache.
   1717  */
   1718 void *
   1719 pool_cache_get(struct pool_cache *pc, int flags)
   1720 {
   1721 	struct pool_cache_group *pcg;
   1722 	void *object;
   1723 
   1724 #ifdef LOCKDEBUG
   1725 	if (flags & PR_WAITOK)
   1726 		simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)");
   1727 #endif
   1728 
   1729 	simple_lock(&pc->pc_slock);
   1730 
   1731 	if ((pcg = pc->pc_allocfrom) == NULL) {
   1732 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
   1733 			if (pcg->pcg_avail != 0) {
   1734 				pc->pc_allocfrom = pcg;
   1735 				goto have_group;
   1736 			}
   1737 		}
   1738 
   1739 		/*
   1740 		 * No groups with any available objects.  Allocate
   1741 		 * a new object, construct it, and return it to
   1742 		 * the caller.  We will allocate a group, if necessary,
   1743 		 * when the object is freed back to the cache.
   1744 		 */
   1745 		pc->pc_misses++;
   1746 		simple_unlock(&pc->pc_slock);
   1747 		object = pool_get(pc->pc_pool, flags);
   1748 		if (object != NULL && pc->pc_ctor != NULL) {
   1749 			if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
   1750 				pool_put(pc->pc_pool, object);
   1751 				return (NULL);
   1752 			}
   1753 		}
   1754 		return (object);
   1755 	}
   1756 
   1757  have_group:
   1758 	pc->pc_hits++;
   1759 	pc->pc_nitems--;
   1760 	object = pcg_get(pcg);
   1761 
   1762 	if (pcg->pcg_avail == 0)
   1763 		pc->pc_allocfrom = NULL;
   1764 
   1765 	simple_unlock(&pc->pc_slock);
   1766 
   1767 	return (object);
   1768 }
   1769 
   1770 /*
   1771  * pool_cache_put:
   1772  *
   1773  *	Put an object back to the pool cache.
   1774  */
   1775 void
   1776 pool_cache_put(struct pool_cache *pc, void *object)
   1777 {
   1778 	struct pool_cache_group *pcg;
   1779 	int s;
   1780 
   1781 	simple_lock(&pc->pc_slock);
   1782 
   1783 	if ((pcg = pc->pc_freeto) == NULL) {
   1784 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
   1785 			if (pcg->pcg_avail != PCG_NOBJECTS) {
   1786 				pc->pc_freeto = pcg;
   1787 				goto have_group;
   1788 			}
   1789 		}
   1790 
   1791 		/*
   1792 		 * No empty groups to free the object to.  Attempt to
   1793 		 * allocate one.
   1794 		 */
   1795 		simple_unlock(&pc->pc_slock);
   1796 		s = splvm();
   1797 		pcg = pool_get(&pcgpool, PR_NOWAIT);
   1798 		splx(s);
   1799 		if (pcg != NULL) {
   1800 			memset(pcg, 0, sizeof(*pcg));
   1801 			simple_lock(&pc->pc_slock);
   1802 			pc->pc_ngroups++;
   1803 			TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list);
   1804 			if (pc->pc_freeto == NULL)
   1805 				pc->pc_freeto = pcg;
   1806 			goto have_group;
   1807 		}
   1808 
   1809 		/*
   1810 		 * Unable to allocate a cache group; destruct the object
   1811 		 * and free it back to the pool.
   1812 		 */
   1813 		pool_cache_destruct_object(pc, object);
   1814 		return;
   1815 	}
   1816 
   1817  have_group:
   1818 	pc->pc_nitems++;
   1819 	pcg_put(pcg, object);
   1820 
   1821 	if (pcg->pcg_avail == PCG_NOBJECTS)
   1822 		pc->pc_freeto = NULL;
   1823 
   1824 	simple_unlock(&pc->pc_slock);
   1825 }
   1826 
   1827 /*
   1828  * pool_cache_destruct_object:
   1829  *
   1830  *	Force destruction of an object and its release back into
   1831  *	the pool.
   1832  */
   1833 void
   1834 pool_cache_destruct_object(struct pool_cache *pc, void *object)
   1835 {
   1836 
   1837 	if (pc->pc_dtor != NULL)
   1838 		(*pc->pc_dtor)(pc->pc_arg, object);
   1839 	pool_put(pc->pc_pool, object);
   1840 }
   1841 
   1842 /*
   1843  * pool_cache_do_invalidate:
   1844  *
   1845  *	This internal function implements pool_cache_invalidate() and
   1846  *	pool_cache_reclaim().
   1847  */
   1848 static void
   1849 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups,
   1850     void (*putit)(struct pool *, void *))
   1851 {
   1852 	struct pool_cache_group *pcg, *npcg;
   1853 	void *object;
   1854 	int s;
   1855 
   1856 	for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
   1857 	     pcg = npcg) {
   1858 		npcg = TAILQ_NEXT(pcg, pcg_list);
   1859 		while (pcg->pcg_avail != 0) {
   1860 			pc->pc_nitems--;
   1861 			object = pcg_get(pcg);
   1862 			if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg)
   1863 				pc->pc_allocfrom = NULL;
   1864 			if (pc->pc_dtor != NULL)
   1865 				(*pc->pc_dtor)(pc->pc_arg, object);
   1866 			(*putit)(pc->pc_pool, object);
   1867 		}
   1868 		if (free_groups) {
   1869 			pc->pc_ngroups--;
   1870 			TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list);
   1871 			if (pc->pc_freeto == pcg)
   1872 				pc->pc_freeto = NULL;
   1873 			s = splvm();
   1874 			pool_put(&pcgpool, pcg);
   1875 			splx(s);
   1876 		}
   1877 	}
   1878 }
   1879 
   1880 /*
   1881  * pool_cache_invalidate:
   1882  *
   1883  *	Invalidate a pool cache (destruct and release all of the
   1884  *	cached objects).
   1885  */
   1886 void
   1887 pool_cache_invalidate(struct pool_cache *pc)
   1888 {
   1889 
   1890 	simple_lock(&pc->pc_slock);
   1891 	pool_cache_do_invalidate(pc, 0, pool_put);
   1892 	simple_unlock(&pc->pc_slock);
   1893 }
   1894 
   1895 /*
   1896  * pool_cache_reclaim:
   1897  *
   1898  *	Reclaim a pool cache for pool_reclaim().
   1899  */
   1900 static void
   1901 pool_cache_reclaim(struct pool_cache *pc)
   1902 {
   1903 
   1904 	simple_lock(&pc->pc_slock);
   1905 	pool_cache_do_invalidate(pc, 1, pool_do_put);
   1906 	simple_unlock(&pc->pc_slock);
   1907 }
   1908