Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.50.2.5
      1 /*	$NetBSD: subr_pool.c,v 1.50.2.5 2001/11/14 19:16:40 nathanw Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9  * Simulation Facility, NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 #include <sys/cdefs.h>
     41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.50.2.5 2001/11/14 19:16:40 nathanw Exp $");
     42 
     43 #include "opt_pool.h"
     44 #include "opt_poollog.h"
     45 #include "opt_lockdebug.h"
     46 
     47 #include <sys/param.h>
     48 #include <sys/systm.h>
     49 #include <sys/proc.h>
     50 #include <sys/errno.h>
     51 #include <sys/kernel.h>
     52 #include <sys/malloc.h>
     53 #include <sys/lock.h>
     54 #include <sys/pool.h>
     55 #include <sys/syslog.h>
     56 
     57 #include <uvm/uvm.h>
     58 
     59 /*
     60  * Pool resource management utility.
     61  *
     62  * Memory is allocated in pages which are split into pieces according
     63  * to the pool item size. Each page is kept on a list headed by `pr_pagelist'
     64  * in the pool structure and the individual pool items are on a linked list
     65  * headed by `ph_itemlist' in each page header. The memory for building
     66  * the page list is either taken from the allocated pages themselves (for
     67  * small pool items) or taken from an internal pool of page headers (`phpool').
     68  */
     69 
     70 /* List of all pools */
     71 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     72 
     73 /* Private pool for page header structures */
     74 static struct pool phpool;
     75 
     76 #ifdef POOL_SUBPAGE
     77 /* Pool of subpages for use by normal pools. */
     78 static struct pool psppool;
     79 #endif
     80 
     81 /* # of seconds to retain page after last use */
     82 int pool_inactive_time = 10;
     83 
     84 /* Next candidate for drainage (see pool_drain()) */
     85 static struct pool	*drainpp;
     86 
     87 /* This spin lock protects both pool_head and drainpp. */
     88 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
     89 
     90 struct pool_item_header {
     91 	/* Page headers */
     92 	TAILQ_ENTRY(pool_item_header)
     93 				ph_pagelist;	/* pool page list */
     94 	TAILQ_HEAD(,pool_item)	ph_itemlist;	/* chunk list for this page */
     95 	LIST_ENTRY(pool_item_header)
     96 				ph_hashlist;	/* Off-page page headers */
     97 	int			ph_nmissing;	/* # of chunks in use */
     98 	caddr_t			ph_page;	/* this page's address */
     99 	struct timeval		ph_time;	/* last referenced */
    100 };
    101 TAILQ_HEAD(pool_pagelist,pool_item_header);
    102 
    103 struct pool_item {
    104 #ifdef DIAGNOSTIC
    105 	int pi_magic;
    106 #endif
    107 #define	PI_MAGIC 0xdeadbeef
    108 	/* Other entries use only this list entry */
    109 	TAILQ_ENTRY(pool_item)	pi_list;
    110 };
    111 
    112 #define	PR_HASH_INDEX(pp,addr) \
    113 	(((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1))
    114 
    115 #define	POOL_NEEDS_CATCHUP(pp)						\
    116 	((pp)->pr_nitems < (pp)->pr_minitems)
    117 
    118 /*
    119  * Pool cache management.
    120  *
    121  * Pool caches provide a way for constructed objects to be cached by the
    122  * pool subsystem.  This can lead to performance improvements by avoiding
    123  * needless object construction/destruction; it is deferred until absolutely
    124  * necessary.
    125  *
    126  * Caches are grouped into cache groups.  Each cache group references
    127  * up to 16 constructed objects.  When a cache allocates an object
    128  * from the pool, it calls the object's constructor and places it into
    129  * a cache group.  When a cache group frees an object back to the pool,
    130  * it first calls the object's destructor.  This allows the object to
    131  * persist in constructed form while freed to the cache.
    132  *
    133  * Multiple caches may exist for each pool.  This allows a single
    134  * object type to have multiple constructed forms.  The pool references
    135  * each cache, so that when a pool is drained by the pagedaemon, it can
    136  * drain each individual cache as well.  Each time a cache is drained,
    137  * the most idle cache group is freed to the pool in its entirety.
    138  *
    139  * Pool caches are layed on top of pools.  By layering them, we can avoid
    140  * the complexity of cache management for pools which would not benefit
    141  * from it.
    142  */
    143 
    144 /* The cache group pool. */
    145 static struct pool pcgpool;
    146 
    147 /* The pool cache group. */
    148 #define	PCG_NOBJECTS		16
    149 struct pool_cache_group {
    150 	TAILQ_ENTRY(pool_cache_group)
    151 		pcg_list;	/* link in the pool cache's group list */
    152 	u_int	pcg_avail;	/* # available objects */
    153 				/* pointers to the objects */
    154 	void	*pcg_objects[PCG_NOBJECTS];
    155 };
    156 
    157 static void	pool_cache_reclaim(struct pool_cache *);
    158 
    159 static int	pool_catchup(struct pool *);
    160 static void	pool_prime_page(struct pool *, caddr_t,
    161 		    struct pool_item_header *);
    162 static void	*pool_page_alloc(unsigned long, int, int);
    163 static void	pool_page_free(void *, unsigned long, int);
    164 #ifdef POOL_SUBPAGE
    165 static void	*pool_subpage_alloc(unsigned long, int, int);
    166 static void	pool_subpage_free(void *, unsigned long, int);
    167 #endif
    168 
    169 static void pool_print1(struct pool *, const char *,
    170 	void (*)(const char *, ...));
    171 
    172 /*
    173  * Pool log entry. An array of these is allocated in pool_init().
    174  */
    175 struct pool_log {
    176 	const char	*pl_file;
    177 	long		pl_line;
    178 	int		pl_action;
    179 #define	PRLOG_GET	1
    180 #define	PRLOG_PUT	2
    181 	void		*pl_addr;
    182 };
    183 
    184 /* Number of entries in pool log buffers */
    185 #ifndef POOL_LOGSIZE
    186 #define	POOL_LOGSIZE	10
    187 #endif
    188 
    189 int pool_logsize = POOL_LOGSIZE;
    190 
    191 #ifdef POOL_DIAGNOSTIC
    192 static __inline void
    193 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    194 {
    195 	int n = pp->pr_curlogentry;
    196 	struct pool_log *pl;
    197 
    198 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    199 		return;
    200 
    201 	/*
    202 	 * Fill in the current entry. Wrap around and overwrite
    203 	 * the oldest entry if necessary.
    204 	 */
    205 	pl = &pp->pr_log[n];
    206 	pl->pl_file = file;
    207 	pl->pl_line = line;
    208 	pl->pl_action = action;
    209 	pl->pl_addr = v;
    210 	if (++n >= pp->pr_logsize)
    211 		n = 0;
    212 	pp->pr_curlogentry = n;
    213 }
    214 
    215 static void
    216 pr_printlog(struct pool *pp, struct pool_item *pi,
    217     void (*pr)(const char *, ...))
    218 {
    219 	int i = pp->pr_logsize;
    220 	int n = pp->pr_curlogentry;
    221 
    222 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    223 		return;
    224 
    225 	/*
    226 	 * Print all entries in this pool's log.
    227 	 */
    228 	while (i-- > 0) {
    229 		struct pool_log *pl = &pp->pr_log[n];
    230 		if (pl->pl_action != 0) {
    231 			if (pi == NULL || pi == pl->pl_addr) {
    232 				(*pr)("\tlog entry %d:\n", i);
    233 				(*pr)("\t\taction = %s, addr = %p\n",
    234 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    235 				    pl->pl_addr);
    236 				(*pr)("\t\tfile: %s at line %lu\n",
    237 				    pl->pl_file, pl->pl_line);
    238 			}
    239 		}
    240 		if (++n >= pp->pr_logsize)
    241 			n = 0;
    242 	}
    243 }
    244 
    245 static __inline void
    246 pr_enter(struct pool *pp, const char *file, long line)
    247 {
    248 
    249 	if (__predict_false(pp->pr_entered_file != NULL)) {
    250 		printf("pool %s: reentrancy at file %s line %ld\n",
    251 		    pp->pr_wchan, file, line);
    252 		printf("         previous entry at file %s line %ld\n",
    253 		    pp->pr_entered_file, pp->pr_entered_line);
    254 		panic("pr_enter");
    255 	}
    256 
    257 	pp->pr_entered_file = file;
    258 	pp->pr_entered_line = line;
    259 }
    260 
    261 static __inline void
    262 pr_leave(struct pool *pp)
    263 {
    264 
    265 	if (__predict_false(pp->pr_entered_file == NULL)) {
    266 		printf("pool %s not entered?\n", pp->pr_wchan);
    267 		panic("pr_leave");
    268 	}
    269 
    270 	pp->pr_entered_file = NULL;
    271 	pp->pr_entered_line = 0;
    272 }
    273 
    274 static __inline void
    275 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    276 {
    277 
    278 	if (pp->pr_entered_file != NULL)
    279 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    280 		    pp->pr_entered_file, pp->pr_entered_line);
    281 }
    282 #else
    283 #define	pr_log(pp, v, action, file, line)
    284 #define	pr_printlog(pp, pi, pr)
    285 #define	pr_enter(pp, file, line)
    286 #define	pr_leave(pp)
    287 #define	pr_enter_check(pp, pr)
    288 #endif /* POOL_DIAGNOSTIC */
    289 
    290 /*
    291  * Return the pool page header based on page address.
    292  */
    293 static __inline struct pool_item_header *
    294 pr_find_pagehead(struct pool *pp, caddr_t page)
    295 {
    296 	struct pool_item_header *ph;
    297 
    298 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    299 		return ((struct pool_item_header *)(page + pp->pr_phoffset));
    300 
    301 	for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]);
    302 	     ph != NULL;
    303 	     ph = LIST_NEXT(ph, ph_hashlist)) {
    304 		if (ph->ph_page == page)
    305 			return (ph);
    306 	}
    307 	return (NULL);
    308 }
    309 
    310 /*
    311  * Remove a page from the pool.
    312  */
    313 static __inline void
    314 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    315      struct pool_pagelist *pq)
    316 {
    317 	int s;
    318 
    319 	/*
    320 	 * If the page was idle, decrement the idle page count.
    321 	 */
    322 	if (ph->ph_nmissing == 0) {
    323 #ifdef DIAGNOSTIC
    324 		if (pp->pr_nidle == 0)
    325 			panic("pr_rmpage: nidle inconsistent");
    326 		if (pp->pr_nitems < pp->pr_itemsperpage)
    327 			panic("pr_rmpage: nitems inconsistent");
    328 #endif
    329 		pp->pr_nidle--;
    330 	}
    331 
    332 	pp->pr_nitems -= pp->pr_itemsperpage;
    333 
    334 	/*
    335 	 * Unlink a page from the pool and release it (or queue it for release).
    336 	 */
    337 	TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    338 	if (pq) {
    339 		TAILQ_INSERT_HEAD(pq, ph, ph_pagelist);
    340 	} else {
    341 		(*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype);
    342 		if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    343 			LIST_REMOVE(ph, ph_hashlist);
    344 			s = splhigh();
    345 			pool_put(&phpool, ph);
    346 			splx(s);
    347 		}
    348 	}
    349 	pp->pr_npages--;
    350 	pp->pr_npagefree++;
    351 
    352 	if (pp->pr_curpage == ph) {
    353 		/*
    354 		 * Find a new non-empty page header, if any.
    355 		 * Start search from the page head, to increase the
    356 		 * chance for "high water" pages to be freed.
    357 		 */
    358 		TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist)
    359 			if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    360 				break;
    361 
    362 		pp->pr_curpage = ph;
    363 	}
    364 }
    365 
    366 /*
    367  * Initialize the given pool resource structure.
    368  *
    369  * We export this routine to allow other kernel parts to declare
    370  * static pools that must be initialized before malloc() is available.
    371  */
    372 void
    373 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    374     const char *wchan, size_t pagesz,
    375     void *(*alloc)(unsigned long, int, int),
    376     void (*release)(void *, unsigned long, int),
    377     int mtype)
    378 {
    379 	int off, slack, i;
    380 
    381 #ifdef POOL_DIAGNOSTIC
    382 	/*
    383 	 * Always log if POOL_DIAGNOSTIC is defined.
    384 	 */
    385 	if (pool_logsize != 0)
    386 		flags |= PR_LOGGING;
    387 #endif
    388 
    389 	/*
    390 	 * Check arguments and construct default values.
    391 	 */
    392 	if (!powerof2(pagesz))
    393 		panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz);
    394 
    395 	if (alloc == NULL && release == NULL) {
    396 #ifdef POOL_SUBPAGE
    397 		alloc = pool_subpage_alloc;
    398 		release = pool_subpage_free;
    399 		pagesz = POOL_SUBPAGE;
    400 #else
    401 		alloc = pool_page_alloc;
    402 		release = pool_page_free;
    403 		pagesz = PAGE_SIZE;	/* Rounds to PAGE_SIZE anyhow. */
    404 #endif
    405 	} else if ((alloc != NULL && release != NULL) == 0) {
    406 		/* If you specifiy one, must specify both. */
    407 		panic("pool_init: must specify alloc and release together");
    408 	}
    409 #ifdef POOL_SUBPAGE
    410 	else if (alloc == pool_page_alloc_nointr &&
    411 	    release == pool_page_free_nointr)
    412 		pagesz = POOL_SUBPAGE;
    413 #endif
    414 
    415 	if (pagesz == 0)
    416 		pagesz = PAGE_SIZE;
    417 
    418 	if (align == 0)
    419 		align = ALIGN(1);
    420 
    421 	if (size < sizeof(struct pool_item))
    422 		size = sizeof(struct pool_item);
    423 
    424 	size = ALIGN(size);
    425 	if (size > pagesz)
    426 		panic("pool_init: pool item size (%lu) too large",
    427 		      (u_long)size);
    428 
    429 	/*
    430 	 * Initialize the pool structure.
    431 	 */
    432 	TAILQ_INIT(&pp->pr_pagelist);
    433 	TAILQ_INIT(&pp->pr_cachelist);
    434 	pp->pr_curpage = NULL;
    435 	pp->pr_npages = 0;
    436 	pp->pr_minitems = 0;
    437 	pp->pr_minpages = 0;
    438 	pp->pr_maxpages = UINT_MAX;
    439 	pp->pr_roflags = flags;
    440 	pp->pr_flags = 0;
    441 	pp->pr_size = size;
    442 	pp->pr_align = align;
    443 	pp->pr_wchan = wchan;
    444 	pp->pr_mtype = mtype;
    445 	pp->pr_alloc = alloc;
    446 	pp->pr_free = release;
    447 	pp->pr_pagesz = pagesz;
    448 	pp->pr_pagemask = ~(pagesz - 1);
    449 	pp->pr_pageshift = ffs(pagesz) - 1;
    450 	pp->pr_nitems = 0;
    451 	pp->pr_nout = 0;
    452 	pp->pr_hardlimit = UINT_MAX;
    453 	pp->pr_hardlimit_warning = NULL;
    454 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    455 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    456 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    457 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    458 
    459 	/*
    460 	 * Decide whether to put the page header off page to avoid
    461 	 * wasting too large a part of the page. Off-page page headers
    462 	 * go on a hash table, so we can match a returned item
    463 	 * with its header based on the page address.
    464 	 * We use 1/16 of the page size as the threshold (XXX: tune)
    465 	 */
    466 	if (pp->pr_size < pagesz/16) {
    467 		/* Use the end of the page for the page header */
    468 		pp->pr_roflags |= PR_PHINPAGE;
    469 		pp->pr_phoffset = off =
    470 			pagesz - ALIGN(sizeof(struct pool_item_header));
    471 	} else {
    472 		/* The page header will be taken from our page header pool */
    473 		pp->pr_phoffset = 0;
    474 		off = pagesz;
    475 		for (i = 0; i < PR_HASHTABSIZE; i++) {
    476 			LIST_INIT(&pp->pr_hashtab[i]);
    477 		}
    478 	}
    479 
    480 	/*
    481 	 * Alignment is to take place at `ioff' within the item. This means
    482 	 * we must reserve up to `align - 1' bytes on the page to allow
    483 	 * appropriate positioning of each item.
    484 	 *
    485 	 * Silently enforce `0 <= ioff < align'.
    486 	 */
    487 	pp->pr_itemoffset = ioff = ioff % align;
    488 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    489 	KASSERT(pp->pr_itemsperpage != 0);
    490 
    491 	/*
    492 	 * Use the slack between the chunks and the page header
    493 	 * for "cache coloring".
    494 	 */
    495 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    496 	pp->pr_maxcolor = (slack / align) * align;
    497 	pp->pr_curcolor = 0;
    498 
    499 	pp->pr_nget = 0;
    500 	pp->pr_nfail = 0;
    501 	pp->pr_nput = 0;
    502 	pp->pr_npagealloc = 0;
    503 	pp->pr_npagefree = 0;
    504 	pp->pr_hiwat = 0;
    505 	pp->pr_nidle = 0;
    506 
    507 #ifdef POOL_DIAGNOSTIC
    508 	if (flags & PR_LOGGING) {
    509 		if (kmem_map == NULL ||
    510 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    511 		     M_TEMP, M_NOWAIT)) == NULL)
    512 			pp->pr_roflags &= ~PR_LOGGING;
    513 		pp->pr_curlogentry = 0;
    514 		pp->pr_logsize = pool_logsize;
    515 	}
    516 #endif
    517 
    518 	pp->pr_entered_file = NULL;
    519 	pp->pr_entered_line = 0;
    520 
    521 	simple_lock_init(&pp->pr_slock);
    522 
    523 	/*
    524 	 * Initialize private page header pool and cache magazine pool if we
    525 	 * haven't done so yet.
    526 	 * XXX LOCKING.
    527 	 */
    528 	if (phpool.pr_size == 0) {
    529 #ifdef POOL_SUBPAGE
    530 		pool_init(&phpool, sizeof(struct pool_item_header), 0, 0, 0,
    531 		    "phpool", PAGE_SIZE, pool_page_alloc, pool_page_free, 0);
    532 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    533 		    PR_RECURSIVE, "psppool", PAGE_SIZE,
    534 		    pool_page_alloc, pool_page_free, 0);
    535 #else
    536 		pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
    537 		    0, "phpool", 0, 0, 0, 0);
    538 #endif
    539 		pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
    540 		    0, "pcgpool", 0, 0, 0, 0);
    541 	}
    542 
    543 	/* Insert into the list of all pools. */
    544 	simple_lock(&pool_head_slock);
    545 	TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    546 	simple_unlock(&pool_head_slock);
    547 }
    548 
    549 /*
    550  * De-commision a pool resource.
    551  */
    552 void
    553 pool_destroy(struct pool *pp)
    554 {
    555 	struct pool_item_header *ph;
    556 	struct pool_cache *pc;
    557 
    558 	/* Destroy all caches for this pool. */
    559 	while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL)
    560 		pool_cache_destroy(pc);
    561 
    562 #ifdef DIAGNOSTIC
    563 	if (pp->pr_nout != 0) {
    564 		pr_printlog(pp, NULL, printf);
    565 		panic("pool_destroy: pool busy: still out: %u\n",
    566 		    pp->pr_nout);
    567 	}
    568 #endif
    569 
    570 	/* Remove all pages */
    571 	if ((pp->pr_roflags & PR_STATIC) == 0)
    572 		while ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
    573 			pr_rmpage(pp, ph, NULL);
    574 
    575 	/* Remove from global pool list */
    576 	simple_lock(&pool_head_slock);
    577 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    578 	if (drainpp == pp) {
    579 		drainpp = NULL;
    580 	}
    581 	simple_unlock(&pool_head_slock);
    582 
    583 #ifdef POOL_DIAGNOSTIC
    584 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    585 		free(pp->pr_log, M_TEMP);
    586 #endif
    587 
    588 	if (pp->pr_roflags & PR_FREEHEADER)
    589 		free(pp, M_POOL);
    590 }
    591 
    592 static __inline struct pool_item_header *
    593 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
    594 {
    595 	struct pool_item_header *ph;
    596 	int s;
    597 
    598 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
    599 
    600 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    601 		ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
    602 	else {
    603 		s = splhigh();
    604 		ph = pool_get(&phpool, flags);
    605 		splx(s);
    606 	}
    607 
    608 	return (ph);
    609 }
    610 
    611 /*
    612  * Grab an item from the pool; must be called at appropriate spl level
    613  */
    614 void *
    615 #ifdef POOL_DIAGNOSTIC
    616 _pool_get(struct pool *pp, int flags, const char *file, long line)
    617 #else
    618 pool_get(struct pool *pp, int flags)
    619 #endif
    620 {
    621 	struct pool_item *pi;
    622 	struct pool_item_header *ph;
    623 	void *v;
    624 
    625 #ifdef DIAGNOSTIC
    626 	if (__predict_false((pp->pr_roflags & PR_STATIC) &&
    627 			    (flags & PR_MALLOCOK))) {
    628 		pr_printlog(pp, NULL, printf);
    629 		panic("pool_get: static");
    630 	}
    631 
    632 	if (__predict_false(curproc == NULL && doing_shutdown == 0 &&
    633 			    (flags & PR_WAITOK) != 0))
    634 		panic("pool_get: must have NOWAIT");
    635 
    636 #ifdef LOCKDEBUG
    637 	if (flags & PR_WAITOK)
    638 		simple_lock_only_held(NULL, "pool_get(PR_WAITOK)");
    639 #endif
    640 #endif /* DIAGNOSTIC */
    641 
    642 	simple_lock(&pp->pr_slock);
    643 	pr_enter(pp, file, line);
    644 
    645  startover:
    646 	/*
    647 	 * Check to see if we've reached the hard limit.  If we have,
    648 	 * and we can wait, then wait until an item has been returned to
    649 	 * the pool.
    650 	 */
    651 #ifdef DIAGNOSTIC
    652 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
    653 		pr_leave(pp);
    654 		simple_unlock(&pp->pr_slock);
    655 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
    656 	}
    657 #endif
    658 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    659 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    660 			/*
    661 			 * XXX: A warning isn't logged in this case.  Should
    662 			 * it be?
    663 			 */
    664 			pp->pr_flags |= PR_WANTED;
    665 			pr_leave(pp);
    666 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
    667 			pr_enter(pp, file, line);
    668 			goto startover;
    669 		}
    670 
    671 		/*
    672 		 * Log a message that the hard limit has been hit.
    673 		 */
    674 		if (pp->pr_hardlimit_warning != NULL &&
    675 		    ratecheck(&pp->pr_hardlimit_warning_last,
    676 			      &pp->pr_hardlimit_ratecap))
    677 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    678 
    679 		if (flags & PR_URGENT)
    680 			panic("pool_get: urgent");
    681 
    682 		pp->pr_nfail++;
    683 
    684 		pr_leave(pp);
    685 		simple_unlock(&pp->pr_slock);
    686 		return (NULL);
    687 	}
    688 
    689 	/*
    690 	 * The convention we use is that if `curpage' is not NULL, then
    691 	 * it points at a non-empty bucket. In particular, `curpage'
    692 	 * never points at a page header which has PR_PHINPAGE set and
    693 	 * has no items in its bucket.
    694 	 */
    695 	if ((ph = pp->pr_curpage) == NULL) {
    696 #ifdef DIAGNOSTIC
    697 		if (pp->pr_nitems != 0) {
    698 			simple_unlock(&pp->pr_slock);
    699 			printf("pool_get: %s: curpage NULL, nitems %u\n",
    700 			    pp->pr_wchan, pp->pr_nitems);
    701 			panic("pool_get: nitems inconsistent\n");
    702 		}
    703 #endif
    704 
    705 		/*
    706 		 * Call the back-end page allocator for more memory.
    707 		 * Release the pool lock, as the back-end page allocator
    708 		 * may block.
    709 		 */
    710 		pr_leave(pp);
    711 		simple_unlock(&pp->pr_slock);
    712 		v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype);
    713 		if (__predict_true(v != NULL))
    714 			ph = pool_alloc_item_header(pp, v, flags);
    715 		simple_lock(&pp->pr_slock);
    716 		pr_enter(pp, file, line);
    717 
    718 		if (__predict_false(v == NULL || ph == NULL)) {
    719 			if (v != NULL)
    720 				(*pp->pr_free)(v, pp->pr_pagesz, pp->pr_mtype);
    721 
    722 			/*
    723 			 * We were unable to allocate a page or item
    724 			 * header, but we released the lock during
    725 			 * allocation, so perhaps items were freed
    726 			 * back to the pool.  Check for this case.
    727 			 */
    728 			if (pp->pr_curpage != NULL)
    729 				goto startover;
    730 
    731 			if (flags & PR_URGENT)
    732 				panic("pool_get: urgent");
    733 
    734 			if ((flags & PR_WAITOK) == 0) {
    735 				pp->pr_nfail++;
    736 				pr_leave(pp);
    737 				simple_unlock(&pp->pr_slock);
    738 				return (NULL);
    739 			}
    740 
    741 			/*
    742 			 * Wait for items to be returned to this pool.
    743 			 *
    744 			 * XXX: we actually want to wait just until
    745 			 * the page allocator has memory again. Depending
    746 			 * on this pool's usage, we might get stuck here
    747 			 * for a long time.
    748 			 *
    749 			 * XXX: maybe we should wake up once a second and
    750 			 * try again?
    751 			 */
    752 			pp->pr_flags |= PR_WANTED;
    753 			pr_leave(pp);
    754 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
    755 			pr_enter(pp, file, line);
    756 			goto startover;
    757 		}
    758 
    759 		/* We have more memory; add it to the pool */
    760 		pool_prime_page(pp, v, ph);
    761 		pp->pr_npagealloc++;
    762 
    763 		/* Start the allocation process over. */
    764 		goto startover;
    765 	}
    766 
    767 	if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
    768 		pr_leave(pp);
    769 		simple_unlock(&pp->pr_slock);
    770 		panic("pool_get: %s: page empty", pp->pr_wchan);
    771 	}
    772 #ifdef DIAGNOSTIC
    773 	if (__predict_false(pp->pr_nitems == 0)) {
    774 		pr_leave(pp);
    775 		simple_unlock(&pp->pr_slock);
    776 		printf("pool_get: %s: items on itemlist, nitems %u\n",
    777 		    pp->pr_wchan, pp->pr_nitems);
    778 		panic("pool_get: nitems inconsistent\n");
    779 	}
    780 
    781 	pr_log(pp, v, PRLOG_GET, file, line);
    782 
    783 	if (__predict_false(pi->pi_magic != PI_MAGIC)) {
    784 		pr_printlog(pp, pi, printf);
    785 		panic("pool_get(%s): free list modified: magic=%x; page %p;"
    786 		       " item addr %p\n",
    787 			pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    788 	}
    789 #endif
    790 
    791 	/*
    792 	 * Remove from item list.
    793 	 */
    794 	TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
    795 	pp->pr_nitems--;
    796 	pp->pr_nout++;
    797 	if (ph->ph_nmissing == 0) {
    798 #ifdef DIAGNOSTIC
    799 		if (__predict_false(pp->pr_nidle == 0))
    800 			panic("pool_get: nidle inconsistent");
    801 #endif
    802 		pp->pr_nidle--;
    803 	}
    804 	ph->ph_nmissing++;
    805 	if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) {
    806 #ifdef DIAGNOSTIC
    807 		if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
    808 			pr_leave(pp);
    809 			simple_unlock(&pp->pr_slock);
    810 			panic("pool_get: %s: nmissing inconsistent",
    811 			    pp->pr_wchan);
    812 		}
    813 #endif
    814 		/*
    815 		 * Find a new non-empty page header, if any.
    816 		 * Start search from the page head, to increase
    817 		 * the chance for "high water" pages to be freed.
    818 		 *
    819 		 * Migrate empty pages to the end of the list.  This
    820 		 * will speed the update of curpage as pages become
    821 		 * idle.  Empty pages intermingled with idle pages
    822 		 * is no big deal.  As soon as a page becomes un-empty,
    823 		 * it will move back to the head of the list.
    824 		 */
    825 		TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    826 		TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
    827 		TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist)
    828 			if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    829 				break;
    830 
    831 		pp->pr_curpage = ph;
    832 	}
    833 
    834 	pp->pr_nget++;
    835 
    836 	/*
    837 	 * If we have a low water mark and we are now below that low
    838 	 * water mark, add more items to the pool.
    839 	 */
    840 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
    841 		/*
    842 		 * XXX: Should we log a warning?  Should we set up a timeout
    843 		 * to try again in a second or so?  The latter could break
    844 		 * a caller's assumptions about interrupt protection, etc.
    845 		 */
    846 	}
    847 
    848 	pr_leave(pp);
    849 	simple_unlock(&pp->pr_slock);
    850 	return (v);
    851 }
    852 
    853 /*
    854  * Internal version of pool_put().  Pool is already locked/entered.
    855  */
    856 static void
    857 pool_do_put(struct pool *pp, void *v)
    858 {
    859 	struct pool_item *pi = v;
    860 	struct pool_item_header *ph;
    861 	caddr_t page;
    862 	int s;
    863 
    864 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
    865 
    866 	page = (caddr_t)((u_long)v & pp->pr_pagemask);
    867 
    868 #ifdef DIAGNOSTIC
    869 	if (__predict_false(pp->pr_nout == 0)) {
    870 		printf("pool %s: putting with none out\n",
    871 		    pp->pr_wchan);
    872 		panic("pool_put");
    873 	}
    874 #endif
    875 
    876 	if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
    877 		pr_printlog(pp, NULL, printf);
    878 		panic("pool_put: %s: page header missing", pp->pr_wchan);
    879 	}
    880 
    881 #ifdef LOCKDEBUG
    882 	/*
    883 	 * Check if we're freeing a locked simple lock.
    884 	 */
    885 	simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
    886 #endif
    887 
    888 	/*
    889 	 * Return to item list.
    890 	 */
    891 #ifdef DIAGNOSTIC
    892 	pi->pi_magic = PI_MAGIC;
    893 #endif
    894 #ifdef DEBUG
    895 	{
    896 		int i, *ip = v;
    897 
    898 		for (i = 0; i < pp->pr_size / sizeof(int); i++) {
    899 			*ip++ = PI_MAGIC;
    900 		}
    901 	}
    902 #endif
    903 
    904 	TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    905 	ph->ph_nmissing--;
    906 	pp->pr_nput++;
    907 	pp->pr_nitems++;
    908 	pp->pr_nout--;
    909 
    910 	/* Cancel "pool empty" condition if it exists */
    911 	if (pp->pr_curpage == NULL)
    912 		pp->pr_curpage = ph;
    913 
    914 	if (pp->pr_flags & PR_WANTED) {
    915 		pp->pr_flags &= ~PR_WANTED;
    916 		if (ph->ph_nmissing == 0)
    917 			pp->pr_nidle++;
    918 		wakeup((caddr_t)pp);
    919 		return;
    920 	}
    921 
    922 	/*
    923 	 * If this page is now complete, do one of two things:
    924 	 *
    925 	 *	(1) If we have more pages than the page high water
    926 	 *	    mark, free the page back to the system.
    927 	 *
    928 	 *	(2) Move it to the end of the page list, so that
    929 	 *	    we minimize our chances of fragmenting the
    930 	 *	    pool.  Idle pages migrate to the end (along with
    931 	 *	    completely empty pages, so that we find un-empty
    932 	 *	    pages more quickly when we update curpage) of the
    933 	 *	    list so they can be more easily swept up by
    934 	 *	    the pagedaemon when pages are scarce.
    935 	 */
    936 	if (ph->ph_nmissing == 0) {
    937 		pp->pr_nidle++;
    938 		if (pp->pr_npages > pp->pr_maxpages) {
    939 			pr_rmpage(pp, ph, NULL);
    940 		} else {
    941 			TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    942 			TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
    943 
    944 			/*
    945 			 * Update the timestamp on the page.  A page must
    946 			 * be idle for some period of time before it can
    947 			 * be reclaimed by the pagedaemon.  This minimizes
    948 			 * ping-pong'ing for memory.
    949 			 */
    950 			s = splclock();
    951 			ph->ph_time = mono_time;
    952 			splx(s);
    953 
    954 			/*
    955 			 * Update the current page pointer.  Just look for
    956 			 * the first page with any free items.
    957 			 *
    958 			 * XXX: Maybe we want an option to look for the
    959 			 * page with the fewest available items, to minimize
    960 			 * fragmentation?
    961 			 */
    962 			TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist)
    963 				if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    964 					break;
    965 
    966 			pp->pr_curpage = ph;
    967 		}
    968 	}
    969 	/*
    970 	 * If the page has just become un-empty, move it to the head of
    971 	 * the list, and make it the current page.  The next allocation
    972 	 * will get the item from this page, instead of further fragmenting
    973 	 * the pool.
    974 	 */
    975 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
    976 		TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    977 		TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
    978 		pp->pr_curpage = ph;
    979 	}
    980 }
    981 
    982 /*
    983  * Return resource to the pool; must be called at appropriate spl level
    984  */
    985 #ifdef POOL_DIAGNOSTIC
    986 void
    987 _pool_put(struct pool *pp, void *v, const char *file, long line)
    988 {
    989 
    990 	simple_lock(&pp->pr_slock);
    991 	pr_enter(pp, file, line);
    992 
    993 	pr_log(pp, v, PRLOG_PUT, file, line);
    994 
    995 	pool_do_put(pp, v);
    996 
    997 	pr_leave(pp);
    998 	simple_unlock(&pp->pr_slock);
    999 }
   1000 #undef pool_put
   1001 #endif /* POOL_DIAGNOSTIC */
   1002 
   1003 void
   1004 pool_put(struct pool *pp, void *v)
   1005 {
   1006 
   1007 	simple_lock(&pp->pr_slock);
   1008 
   1009 	pool_do_put(pp, v);
   1010 
   1011 	simple_unlock(&pp->pr_slock);
   1012 }
   1013 
   1014 #ifdef POOL_DIAGNOSTIC
   1015 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1016 #endif
   1017 
   1018 /*
   1019  * Add N items to the pool.
   1020  */
   1021 int
   1022 pool_prime(struct pool *pp, int n)
   1023 {
   1024 	struct pool_item_header *ph;
   1025 	caddr_t cp;
   1026 	int newpages, error = 0;
   1027 
   1028 	simple_lock(&pp->pr_slock);
   1029 
   1030 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1031 
   1032 	while (newpages-- > 0) {
   1033 		simple_unlock(&pp->pr_slock);
   1034 		cp = (*pp->pr_alloc)(pp->pr_pagesz, PR_NOWAIT, pp->pr_mtype);
   1035 		if (__predict_true(cp != NULL))
   1036 			ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
   1037 		simple_lock(&pp->pr_slock);
   1038 
   1039 		if (__predict_false(cp == NULL || ph == NULL)) {
   1040 			error = ENOMEM;
   1041 			if (cp != NULL)
   1042 				(*pp->pr_free)(cp, pp->pr_pagesz, pp->pr_mtype);
   1043 			break;
   1044 		}
   1045 
   1046 		pool_prime_page(pp, cp, ph);
   1047 		pp->pr_npagealloc++;
   1048 		pp->pr_minpages++;
   1049 	}
   1050 
   1051 	if (pp->pr_minpages >= pp->pr_maxpages)
   1052 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1053 
   1054 	simple_unlock(&pp->pr_slock);
   1055 	return (0);
   1056 }
   1057 
   1058 /*
   1059  * Add a page worth of items to the pool.
   1060  *
   1061  * Note, we must be called with the pool descriptor LOCKED.
   1062  */
   1063 static void
   1064 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
   1065 {
   1066 	struct pool_item *pi;
   1067 	caddr_t cp = storage;
   1068 	unsigned int align = pp->pr_align;
   1069 	unsigned int ioff = pp->pr_itemoffset;
   1070 	int n;
   1071 
   1072 	if (((u_long)cp & (pp->pr_pagesz - 1)) != 0)
   1073 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1074 
   1075 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1076 		LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)],
   1077 		    ph, ph_hashlist);
   1078 
   1079 	/*
   1080 	 * Insert page header.
   1081 	 */
   1082 	TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
   1083 	TAILQ_INIT(&ph->ph_itemlist);
   1084 	ph->ph_page = storage;
   1085 	ph->ph_nmissing = 0;
   1086 	memset(&ph->ph_time, 0, sizeof(ph->ph_time));
   1087 
   1088 	pp->pr_nidle++;
   1089 
   1090 	/*
   1091 	 * Color this page.
   1092 	 */
   1093 	cp = (caddr_t)(cp + pp->pr_curcolor);
   1094 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1095 		pp->pr_curcolor = 0;
   1096 
   1097 	/*
   1098 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1099 	 */
   1100 	if (ioff != 0)
   1101 		cp = (caddr_t)(cp + (align - ioff));
   1102 
   1103 	/*
   1104 	 * Insert remaining chunks on the bucket list.
   1105 	 */
   1106 	n = pp->pr_itemsperpage;
   1107 	pp->pr_nitems += n;
   1108 
   1109 	while (n--) {
   1110 		pi = (struct pool_item *)cp;
   1111 
   1112 		/* Insert on page list */
   1113 		TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
   1114 #ifdef DIAGNOSTIC
   1115 		pi->pi_magic = PI_MAGIC;
   1116 #endif
   1117 		cp = (caddr_t)(cp + pp->pr_size);
   1118 	}
   1119 
   1120 	/*
   1121 	 * If the pool was depleted, point at the new page.
   1122 	 */
   1123 	if (pp->pr_curpage == NULL)
   1124 		pp->pr_curpage = ph;
   1125 
   1126 	if (++pp->pr_npages > pp->pr_hiwat)
   1127 		pp->pr_hiwat = pp->pr_npages;
   1128 }
   1129 
   1130 /*
   1131  * Used by pool_get() when nitems drops below the low water mark.  This
   1132  * is used to catch up nitmes with the low water mark.
   1133  *
   1134  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1135  *
   1136  * Note 2, this doesn't work with static pools.
   1137  *
   1138  * Note 3, we must be called with the pool already locked, and we return
   1139  * with it locked.
   1140  */
   1141 static int
   1142 pool_catchup(struct pool *pp)
   1143 {
   1144 	struct pool_item_header *ph;
   1145 	caddr_t cp;
   1146 	int error = 0;
   1147 
   1148 	if (pp->pr_roflags & PR_STATIC) {
   1149 		/*
   1150 		 * We dropped below the low water mark, and this is not a
   1151 		 * good thing.  Log a warning.
   1152 		 *
   1153 		 * XXX: rate-limit this?
   1154 		 */
   1155 		printf("WARNING: static pool `%s' dropped below low water "
   1156 		    "mark\n", pp->pr_wchan);
   1157 		return (0);
   1158 	}
   1159 
   1160 	while (POOL_NEEDS_CATCHUP(pp)) {
   1161 		/*
   1162 		 * Call the page back-end allocator for more memory.
   1163 		 *
   1164 		 * XXX: We never wait, so should we bother unlocking
   1165 		 * the pool descriptor?
   1166 		 */
   1167 		simple_unlock(&pp->pr_slock);
   1168 		cp = (*pp->pr_alloc)(pp->pr_pagesz, PR_NOWAIT, pp->pr_mtype);
   1169 		if (__predict_true(cp != NULL))
   1170 			ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
   1171 		simple_lock(&pp->pr_slock);
   1172 		if (__predict_false(cp == NULL || ph == NULL)) {
   1173 			if (cp != NULL)
   1174 				(*pp->pr_free)(cp, pp->pr_pagesz, pp->pr_mtype);
   1175 			error = ENOMEM;
   1176 			break;
   1177 		}
   1178 		pool_prime_page(pp, cp, ph);
   1179 		pp->pr_npagealloc++;
   1180 	}
   1181 
   1182 	return (error);
   1183 }
   1184 
   1185 void
   1186 pool_setlowat(struct pool *pp, int n)
   1187 {
   1188 	int error;
   1189 
   1190 	simple_lock(&pp->pr_slock);
   1191 
   1192 	pp->pr_minitems = n;
   1193 	pp->pr_minpages = (n == 0)
   1194 		? 0
   1195 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1196 
   1197 	/* Make sure we're caught up with the newly-set low water mark. */
   1198 	if (POOL_NEEDS_CATCHUP(pp) && (error = pool_catchup(pp) != 0)) {
   1199 		/*
   1200 		 * XXX: Should we log a warning?  Should we set up a timeout
   1201 		 * to try again in a second or so?  The latter could break
   1202 		 * a caller's assumptions about interrupt protection, etc.
   1203 		 */
   1204 	}
   1205 
   1206 	simple_unlock(&pp->pr_slock);
   1207 }
   1208 
   1209 void
   1210 pool_sethiwat(struct pool *pp, int n)
   1211 {
   1212 
   1213 	simple_lock(&pp->pr_slock);
   1214 
   1215 	pp->pr_maxpages = (n == 0)
   1216 		? 0
   1217 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1218 
   1219 	simple_unlock(&pp->pr_slock);
   1220 }
   1221 
   1222 void
   1223 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1224 {
   1225 
   1226 	simple_lock(&pp->pr_slock);
   1227 
   1228 	pp->pr_hardlimit = n;
   1229 	pp->pr_hardlimit_warning = warnmess;
   1230 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1231 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1232 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1233 
   1234 	/*
   1235 	 * In-line version of pool_sethiwat(), because we don't want to
   1236 	 * release the lock.
   1237 	 */
   1238 	pp->pr_maxpages = (n == 0)
   1239 		? 0
   1240 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1241 
   1242 	simple_unlock(&pp->pr_slock);
   1243 }
   1244 
   1245 /*
   1246  * Default page allocator.
   1247  */
   1248 static void *
   1249 pool_page_alloc(unsigned long sz, int flags, int mtype)
   1250 {
   1251 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   1252 
   1253 	return ((void *)uvm_km_alloc_poolpage(waitok));
   1254 }
   1255 
   1256 static void
   1257 pool_page_free(void *v, unsigned long sz, int mtype)
   1258 {
   1259 
   1260 	uvm_km_free_poolpage((vaddr_t)v);
   1261 }
   1262 
   1263 #ifdef POOL_SUBPAGE
   1264 /*
   1265  * Sub-page allocator, for machines with large hardware pages.
   1266  */
   1267 static void *
   1268 pool_subpage_alloc(unsigned long sz, int flags, int mtype)
   1269 {
   1270 
   1271 	return pool_get(&psppool, flags);
   1272 }
   1273 
   1274 static void
   1275 pool_subpage_free(void *v, unsigned long sz, int mtype)
   1276 {
   1277 
   1278 	pool_put(&psppool, v);
   1279 }
   1280 #endif
   1281 
   1282 #ifdef POOL_SUBPAGE
   1283 /* We don't provide a real nointr allocator.  Maybe later. */
   1284 void *
   1285 pool_page_alloc_nointr(unsigned long sz, int flags, int mtype)
   1286 {
   1287 
   1288 	return pool_subpage_alloc(sz, flags, mtype);
   1289 }
   1290 
   1291 void
   1292 pool_page_free_nointr(void *v, unsigned long sz, int mtype)
   1293 {
   1294 
   1295 	pool_subpage_free(v, sz, mtype);
   1296 }
   1297 #else
   1298 /*
   1299  * Alternate pool page allocator for pools that know they will
   1300  * never be accessed in interrupt context.
   1301  */
   1302 void *
   1303 pool_page_alloc_nointr(unsigned long sz, int flags, int mtype)
   1304 {
   1305 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   1306 
   1307 	return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object,
   1308 	    waitok));
   1309 }
   1310 
   1311 void
   1312 pool_page_free_nointr(void *v, unsigned long sz, int mtype)
   1313 {
   1314 
   1315 	uvm_km_free_poolpage1(kernel_map, (vaddr_t)v);
   1316 }
   1317 #endif
   1318 
   1319 
   1320 /*
   1321  * Release all complete pages that have not been used recently.
   1322  */
   1323 void
   1324 #ifdef POOL_DIAGNOSTIC
   1325 _pool_reclaim(struct pool *pp, const char *file, long line)
   1326 #else
   1327 pool_reclaim(struct pool *pp)
   1328 #endif
   1329 {
   1330 	struct pool_item_header *ph, *phnext;
   1331 	struct pool_cache *pc;
   1332 	struct timeval curtime;
   1333 	struct pool_pagelist pq;
   1334 	int s;
   1335 
   1336 	if (pp->pr_roflags & PR_STATIC)
   1337 		return;
   1338 
   1339 	if (simple_lock_try(&pp->pr_slock) == 0)
   1340 		return;
   1341 	pr_enter(pp, file, line);
   1342 	TAILQ_INIT(&pq);
   1343 
   1344 	/*
   1345 	 * Reclaim items from the pool's caches.
   1346 	 */
   1347 	TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
   1348 		pool_cache_reclaim(pc);
   1349 
   1350 	s = splclock();
   1351 	curtime = mono_time;
   1352 	splx(s);
   1353 
   1354 	for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) {
   1355 		phnext = TAILQ_NEXT(ph, ph_pagelist);
   1356 
   1357 		/* Check our minimum page claim */
   1358 		if (pp->pr_npages <= pp->pr_minpages)
   1359 			break;
   1360 
   1361 		if (ph->ph_nmissing == 0) {
   1362 			struct timeval diff;
   1363 			timersub(&curtime, &ph->ph_time, &diff);
   1364 			if (diff.tv_sec < pool_inactive_time)
   1365 				continue;
   1366 
   1367 			/*
   1368 			 * If freeing this page would put us below
   1369 			 * the low water mark, stop now.
   1370 			 */
   1371 			if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1372 			    pp->pr_minitems)
   1373 				break;
   1374 
   1375 			pr_rmpage(pp, ph, &pq);
   1376 		}
   1377 	}
   1378 
   1379 	pr_leave(pp);
   1380 	simple_unlock(&pp->pr_slock);
   1381 	if (TAILQ_EMPTY(&pq)) {
   1382 		return;
   1383 	}
   1384 	while ((ph = TAILQ_FIRST(&pq)) != NULL) {
   1385 		TAILQ_REMOVE(&pq, ph, ph_pagelist);
   1386 		(*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype);
   1387 		if (pp->pr_roflags & PR_PHINPAGE) {
   1388 			continue;
   1389 		}
   1390 		LIST_REMOVE(ph, ph_hashlist);
   1391 		s = splhigh();
   1392 		pool_put(&phpool, ph);
   1393 		splx(s);
   1394 	}
   1395 }
   1396 
   1397 
   1398 /*
   1399  * Drain pools, one at a time.
   1400  *
   1401  * Note, we must never be called from an interrupt context.
   1402  */
   1403 void
   1404 pool_drain(void *arg)
   1405 {
   1406 	struct pool *pp;
   1407 	int s;
   1408 
   1409 	pp = NULL;
   1410 	s = splvm();
   1411 	simple_lock(&pool_head_slock);
   1412 	if (drainpp == NULL) {
   1413 		drainpp = TAILQ_FIRST(&pool_head);
   1414 	}
   1415 	if (drainpp) {
   1416 		pp = drainpp;
   1417 		drainpp = TAILQ_NEXT(pp, pr_poollist);
   1418 	}
   1419 	simple_unlock(&pool_head_slock);
   1420 	pool_reclaim(pp);
   1421 	splx(s);
   1422 }
   1423 
   1424 
   1425 /*
   1426  * Diagnostic helpers.
   1427  */
   1428 void
   1429 pool_print(struct pool *pp, const char *modif)
   1430 {
   1431 	int s;
   1432 
   1433 	s = splvm();
   1434 	if (simple_lock_try(&pp->pr_slock) == 0) {
   1435 		printf("pool %s is locked; try again later\n",
   1436 		    pp->pr_wchan);
   1437 		splx(s);
   1438 		return;
   1439 	}
   1440 	pool_print1(pp, modif, printf);
   1441 	simple_unlock(&pp->pr_slock);
   1442 	splx(s);
   1443 }
   1444 
   1445 void
   1446 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1447 {
   1448 	int didlock = 0;
   1449 
   1450 	if (pp == NULL) {
   1451 		(*pr)("Must specify a pool to print.\n");
   1452 		return;
   1453 	}
   1454 
   1455 	/*
   1456 	 * Called from DDB; interrupts should be blocked, and all
   1457 	 * other processors should be paused.  We can skip locking
   1458 	 * the pool in this case.
   1459 	 *
   1460 	 * We do a simple_lock_try() just to print the lock
   1461 	 * status, however.
   1462 	 */
   1463 
   1464 	if (simple_lock_try(&pp->pr_slock) == 0)
   1465 		(*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
   1466 	else
   1467 		didlock = 1;
   1468 
   1469 	pool_print1(pp, modif, pr);
   1470 
   1471 	if (didlock)
   1472 		simple_unlock(&pp->pr_slock);
   1473 }
   1474 
   1475 static void
   1476 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1477 {
   1478 	struct pool_item_header *ph;
   1479 	struct pool_cache *pc;
   1480 	struct pool_cache_group *pcg;
   1481 #ifdef DIAGNOSTIC
   1482 	struct pool_item *pi;
   1483 #endif
   1484 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1485 	char c;
   1486 
   1487 	while ((c = *modif++) != '\0') {
   1488 		if (c == 'l')
   1489 			print_log = 1;
   1490 		if (c == 'p')
   1491 			print_pagelist = 1;
   1492 		if (c == 'c')
   1493 			print_cache = 1;
   1494 		modif++;
   1495 	}
   1496 
   1497 	(*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1498 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1499 	    pp->pr_roflags);
   1500 	(*pr)("\tpagesz %u, mtype %d\n", pp->pr_pagesz, pp->pr_mtype);
   1501 	(*pr)("\talloc %p, release %p\n", pp->pr_alloc, pp->pr_free);
   1502 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1503 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1504 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1505 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1506 
   1507 	(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
   1508 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1509 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1510 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1511 
   1512 	if (print_pagelist == 0)
   1513 		goto skip_pagelist;
   1514 
   1515 	if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
   1516 		(*pr)("\n\tpage list:\n");
   1517 	for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) {
   1518 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
   1519 		    ph->ph_page, ph->ph_nmissing,
   1520 		    (u_long)ph->ph_time.tv_sec,
   1521 		    (u_long)ph->ph_time.tv_usec);
   1522 #ifdef DIAGNOSTIC
   1523 		TAILQ_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1524 			if (pi->pi_magic != PI_MAGIC) {
   1525 				(*pr)("\t\t\titem %p, magic 0x%x\n",
   1526 				    pi, pi->pi_magic);
   1527 			}
   1528 		}
   1529 #endif
   1530 	}
   1531 	if (pp->pr_curpage == NULL)
   1532 		(*pr)("\tno current page\n");
   1533 	else
   1534 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1535 
   1536  skip_pagelist:
   1537 
   1538 	if (print_log == 0)
   1539 		goto skip_log;
   1540 
   1541 	(*pr)("\n");
   1542 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1543 		(*pr)("\tno log\n");
   1544 	else
   1545 		pr_printlog(pp, NULL, pr);
   1546 
   1547  skip_log:
   1548 
   1549 	if (print_cache == 0)
   1550 		goto skip_cache;
   1551 
   1552 	TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
   1553 		(*pr)("\tcache %p: allocfrom %p freeto %p\n", pc,
   1554 		    pc->pc_allocfrom, pc->pc_freeto);
   1555 		(*pr)("\t    hits %lu misses %lu ngroups %lu nitems %lu\n",
   1556 		    pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
   1557 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
   1558 			(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);
   1559 			for (i = 0; i < PCG_NOBJECTS; i++)
   1560 				(*pr)("\t\t\t%p\n", pcg->pcg_objects[i]);
   1561 		}
   1562 	}
   1563 
   1564  skip_cache:
   1565 
   1566 	pr_enter_check(pp, pr);
   1567 }
   1568 
   1569 int
   1570 pool_chk(struct pool *pp, const char *label)
   1571 {
   1572 	struct pool_item_header *ph;
   1573 	int r = 0;
   1574 
   1575 	simple_lock(&pp->pr_slock);
   1576 
   1577 	TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist) {
   1578 		struct pool_item *pi;
   1579 		int n;
   1580 		caddr_t page;
   1581 
   1582 		page = (caddr_t)((u_long)ph & pp->pr_pagemask);
   1583 		if (page != ph->ph_page &&
   1584 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1585 			if (label != NULL)
   1586 				printf("%s: ", label);
   1587 			printf("pool(%p:%s): page inconsistency: page %p;"
   1588 			       " at page head addr %p (p %p)\n", pp,
   1589 				pp->pr_wchan, ph->ph_page,
   1590 				ph, page);
   1591 			r++;
   1592 			goto out;
   1593 		}
   1594 
   1595 		for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
   1596 		     pi != NULL;
   1597 		     pi = TAILQ_NEXT(pi,pi_list), n++) {
   1598 
   1599 #ifdef DIAGNOSTIC
   1600 			if (pi->pi_magic != PI_MAGIC) {
   1601 				if (label != NULL)
   1602 					printf("%s: ", label);
   1603 				printf("pool(%s): free list modified: magic=%x;"
   1604 				       " page %p; item ordinal %d;"
   1605 				       " addr %p (p %p)\n",
   1606 					pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1607 					n, pi, page);
   1608 				panic("pool");
   1609 			}
   1610 #endif
   1611 			page = (caddr_t)((u_long)pi & pp->pr_pagemask);
   1612 			if (page == ph->ph_page)
   1613 				continue;
   1614 
   1615 			if (label != NULL)
   1616 				printf("%s: ", label);
   1617 			printf("pool(%p:%s): page inconsistency: page %p;"
   1618 			       " item ordinal %d; addr %p (p %p)\n", pp,
   1619 				pp->pr_wchan, ph->ph_page,
   1620 				n, pi, page);
   1621 			r++;
   1622 			goto out;
   1623 		}
   1624 	}
   1625 out:
   1626 	simple_unlock(&pp->pr_slock);
   1627 	return (r);
   1628 }
   1629 
   1630 /*
   1631  * pool_cache_init:
   1632  *
   1633  *	Initialize a pool cache.
   1634  *
   1635  *	NOTE: If the pool must be protected from interrupts, we expect
   1636  *	to be called at the appropriate interrupt priority level.
   1637  */
   1638 void
   1639 pool_cache_init(struct pool_cache *pc, struct pool *pp,
   1640     int (*ctor)(void *, void *, int),
   1641     void (*dtor)(void *, void *),
   1642     void *arg)
   1643 {
   1644 
   1645 	TAILQ_INIT(&pc->pc_grouplist);
   1646 	simple_lock_init(&pc->pc_slock);
   1647 
   1648 	pc->pc_allocfrom = NULL;
   1649 	pc->pc_freeto = NULL;
   1650 	pc->pc_pool = pp;
   1651 
   1652 	pc->pc_ctor = ctor;
   1653 	pc->pc_dtor = dtor;
   1654 	pc->pc_arg  = arg;
   1655 
   1656 	pc->pc_hits   = 0;
   1657 	pc->pc_misses = 0;
   1658 
   1659 	pc->pc_ngroups = 0;
   1660 
   1661 	pc->pc_nitems = 0;
   1662 
   1663 	simple_lock(&pp->pr_slock);
   1664 	TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist);
   1665 	simple_unlock(&pp->pr_slock);
   1666 }
   1667 
   1668 /*
   1669  * pool_cache_destroy:
   1670  *
   1671  *	Destroy a pool cache.
   1672  */
   1673 void
   1674 pool_cache_destroy(struct pool_cache *pc)
   1675 {
   1676 	struct pool *pp = pc->pc_pool;
   1677 
   1678 	/* First, invalidate the entire cache. */
   1679 	pool_cache_invalidate(pc);
   1680 
   1681 	/* ...and remove it from the pool's cache list. */
   1682 	simple_lock(&pp->pr_slock);
   1683 	TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist);
   1684 	simple_unlock(&pp->pr_slock);
   1685 }
   1686 
   1687 static __inline void *
   1688 pcg_get(struct pool_cache_group *pcg)
   1689 {
   1690 	void *object;
   1691 	u_int idx;
   1692 
   1693 	KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
   1694 	KASSERT(pcg->pcg_avail != 0);
   1695 	idx = --pcg->pcg_avail;
   1696 
   1697 	KASSERT(pcg->pcg_objects[idx] != NULL);
   1698 	object = pcg->pcg_objects[idx];
   1699 	pcg->pcg_objects[idx] = NULL;
   1700 
   1701 	return (object);
   1702 }
   1703 
   1704 static __inline void
   1705 pcg_put(struct pool_cache_group *pcg, void *object)
   1706 {
   1707 	u_int idx;
   1708 
   1709 	KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
   1710 	idx = pcg->pcg_avail++;
   1711 
   1712 	KASSERT(pcg->pcg_objects[idx] == NULL);
   1713 	pcg->pcg_objects[idx] = object;
   1714 }
   1715 
   1716 /*
   1717  * pool_cache_get:
   1718  *
   1719  *	Get an object from a pool cache.
   1720  */
   1721 void *
   1722 pool_cache_get(struct pool_cache *pc, int flags)
   1723 {
   1724 	struct pool_cache_group *pcg;
   1725 	void *object;
   1726 
   1727 #ifdef LOCKDEBUG
   1728 	if (flags & PR_WAITOK)
   1729 		simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)");
   1730 #endif
   1731 
   1732 	simple_lock(&pc->pc_slock);
   1733 
   1734 	if ((pcg = pc->pc_allocfrom) == NULL) {
   1735 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
   1736 			if (pcg->pcg_avail != 0) {
   1737 				pc->pc_allocfrom = pcg;
   1738 				goto have_group;
   1739 			}
   1740 		}
   1741 
   1742 		/*
   1743 		 * No groups with any available objects.  Allocate
   1744 		 * a new object, construct it, and return it to
   1745 		 * the caller.  We will allocate a group, if necessary,
   1746 		 * when the object is freed back to the cache.
   1747 		 */
   1748 		pc->pc_misses++;
   1749 		simple_unlock(&pc->pc_slock);
   1750 		object = pool_get(pc->pc_pool, flags);
   1751 		if (object != NULL && pc->pc_ctor != NULL) {
   1752 			if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
   1753 				pool_put(pc->pc_pool, object);
   1754 				return (NULL);
   1755 			}
   1756 		}
   1757 		return (object);
   1758 	}
   1759 
   1760  have_group:
   1761 	pc->pc_hits++;
   1762 	pc->pc_nitems--;
   1763 	object = pcg_get(pcg);
   1764 
   1765 	if (pcg->pcg_avail == 0)
   1766 		pc->pc_allocfrom = NULL;
   1767 
   1768 	simple_unlock(&pc->pc_slock);
   1769 
   1770 	return (object);
   1771 }
   1772 
   1773 /*
   1774  * pool_cache_put:
   1775  *
   1776  *	Put an object back to the pool cache.
   1777  */
   1778 void
   1779 pool_cache_put(struct pool_cache *pc, void *object)
   1780 {
   1781 	struct pool_cache_group *pcg;
   1782 	int s;
   1783 
   1784 	simple_lock(&pc->pc_slock);
   1785 
   1786 	if ((pcg = pc->pc_freeto) == NULL) {
   1787 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
   1788 			if (pcg->pcg_avail != PCG_NOBJECTS) {
   1789 				pc->pc_freeto = pcg;
   1790 				goto have_group;
   1791 			}
   1792 		}
   1793 
   1794 		/*
   1795 		 * No empty groups to free the object to.  Attempt to
   1796 		 * allocate one.
   1797 		 */
   1798 		simple_unlock(&pc->pc_slock);
   1799 		s = splvm();
   1800 		pcg = pool_get(&pcgpool, PR_NOWAIT);
   1801 		splx(s);
   1802 		if (pcg != NULL) {
   1803 			memset(pcg, 0, sizeof(*pcg));
   1804 			simple_lock(&pc->pc_slock);
   1805 			pc->pc_ngroups++;
   1806 			TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list);
   1807 			if (pc->pc_freeto == NULL)
   1808 				pc->pc_freeto = pcg;
   1809 			goto have_group;
   1810 		}
   1811 
   1812 		/*
   1813 		 * Unable to allocate a cache group; destruct the object
   1814 		 * and free it back to the pool.
   1815 		 */
   1816 		pool_cache_destruct_object(pc, object);
   1817 		return;
   1818 	}
   1819 
   1820  have_group:
   1821 	pc->pc_nitems++;
   1822 	pcg_put(pcg, object);
   1823 
   1824 	if (pcg->pcg_avail == PCG_NOBJECTS)
   1825 		pc->pc_freeto = NULL;
   1826 
   1827 	simple_unlock(&pc->pc_slock);
   1828 }
   1829 
   1830 /*
   1831  * pool_cache_destruct_object:
   1832  *
   1833  *	Force destruction of an object and its release back into
   1834  *	the pool.
   1835  */
   1836 void
   1837 pool_cache_destruct_object(struct pool_cache *pc, void *object)
   1838 {
   1839 
   1840 	if (pc->pc_dtor != NULL)
   1841 		(*pc->pc_dtor)(pc->pc_arg, object);
   1842 	pool_put(pc->pc_pool, object);
   1843 }
   1844 
   1845 /*
   1846  * pool_cache_do_invalidate:
   1847  *
   1848  *	This internal function implements pool_cache_invalidate() and
   1849  *	pool_cache_reclaim().
   1850  */
   1851 static void
   1852 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups,
   1853     void (*putit)(struct pool *, void *))
   1854 {
   1855 	struct pool_cache_group *pcg, *npcg;
   1856 	void *object;
   1857 	int s;
   1858 
   1859 	for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
   1860 	     pcg = npcg) {
   1861 		npcg = TAILQ_NEXT(pcg, pcg_list);
   1862 		while (pcg->pcg_avail != 0) {
   1863 			pc->pc_nitems--;
   1864 			object = pcg_get(pcg);
   1865 			if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg)
   1866 				pc->pc_allocfrom = NULL;
   1867 			if (pc->pc_dtor != NULL)
   1868 				(*pc->pc_dtor)(pc->pc_arg, object);
   1869 			(*putit)(pc->pc_pool, object);
   1870 		}
   1871 		if (free_groups) {
   1872 			pc->pc_ngroups--;
   1873 			TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list);
   1874 			if (pc->pc_freeto == pcg)
   1875 				pc->pc_freeto = NULL;
   1876 			s = splvm();
   1877 			pool_put(&pcgpool, pcg);
   1878 			splx(s);
   1879 		}
   1880 	}
   1881 }
   1882 
   1883 /*
   1884  * pool_cache_invalidate:
   1885  *
   1886  *	Invalidate a pool cache (destruct and release all of the
   1887  *	cached objects).
   1888  */
   1889 void
   1890 pool_cache_invalidate(struct pool_cache *pc)
   1891 {
   1892 
   1893 	simple_lock(&pc->pc_slock);
   1894 	pool_cache_do_invalidate(pc, 0, pool_put);
   1895 	simple_unlock(&pc->pc_slock);
   1896 }
   1897 
   1898 /*
   1899  * pool_cache_reclaim:
   1900  *
   1901  *	Reclaim a pool cache for pool_reclaim().
   1902  */
   1903 static void
   1904 pool_cache_reclaim(struct pool_cache *pc)
   1905 {
   1906 
   1907 	simple_lock(&pc->pc_slock);
   1908 	pool_cache_do_invalidate(pc, 1, pool_do_put);
   1909 	simple_unlock(&pc->pc_slock);
   1910 }
   1911