subr_pool.c revision 1.50.2.6 1 /* $NetBSD: subr_pool.c,v 1.50.2.6 2002/01/08 00:32:37 nathanw Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.50.2.6 2002/01/08 00:32:37 nathanw Exp $");
42
43 #include "opt_pool.h"
44 #include "opt_poollog.h"
45 #include "opt_lockdebug.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/proc.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/lock.h>
54 #include <sys/pool.h>
55 #include <sys/syslog.h>
56
57 #include <uvm/uvm.h>
58
59 /*
60 * Pool resource management utility.
61 *
62 * Memory is allocated in pages which are split into pieces according
63 * to the pool item size. Each page is kept on a list headed by `pr_pagelist'
64 * in the pool structure and the individual pool items are on a linked list
65 * headed by `ph_itemlist' in each page header. The memory for building
66 * the page list is either taken from the allocated pages themselves (for
67 * small pool items) or taken from an internal pool of page headers (`phpool').
68 */
69
70 /* List of all pools */
71 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
72
73 /* Private pool for page header structures */
74 static struct pool phpool;
75
76 #ifdef POOL_SUBPAGE
77 /* Pool of subpages for use by normal pools. */
78 static struct pool psppool;
79 #endif
80
81 /* # of seconds to retain page after last use */
82 int pool_inactive_time = 10;
83
84 /* Next candidate for drainage (see pool_drain()) */
85 static struct pool *drainpp;
86
87 /* This spin lock protects both pool_head and drainpp. */
88 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
89
90 struct pool_item_header {
91 /* Page headers */
92 TAILQ_ENTRY(pool_item_header)
93 ph_pagelist; /* pool page list */
94 TAILQ_HEAD(,pool_item) ph_itemlist; /* chunk list for this page */
95 LIST_ENTRY(pool_item_header)
96 ph_hashlist; /* Off-page page headers */
97 int ph_nmissing; /* # of chunks in use */
98 caddr_t ph_page; /* this page's address */
99 struct timeval ph_time; /* last referenced */
100 };
101 TAILQ_HEAD(pool_pagelist,pool_item_header);
102
103 struct pool_item {
104 #ifdef DIAGNOSTIC
105 int pi_magic;
106 #endif
107 #define PI_MAGIC 0xdeadbeef
108 /* Other entries use only this list entry */
109 TAILQ_ENTRY(pool_item) pi_list;
110 };
111
112 #define PR_HASH_INDEX(pp,addr) \
113 (((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1))
114
115 #define POOL_NEEDS_CATCHUP(pp) \
116 ((pp)->pr_nitems < (pp)->pr_minitems)
117
118 /*
119 * Pool cache management.
120 *
121 * Pool caches provide a way for constructed objects to be cached by the
122 * pool subsystem. This can lead to performance improvements by avoiding
123 * needless object construction/destruction; it is deferred until absolutely
124 * necessary.
125 *
126 * Caches are grouped into cache groups. Each cache group references
127 * up to 16 constructed objects. When a cache allocates an object
128 * from the pool, it calls the object's constructor and places it into
129 * a cache group. When a cache group frees an object back to the pool,
130 * it first calls the object's destructor. This allows the object to
131 * persist in constructed form while freed to the cache.
132 *
133 * Multiple caches may exist for each pool. This allows a single
134 * object type to have multiple constructed forms. The pool references
135 * each cache, so that when a pool is drained by the pagedaemon, it can
136 * drain each individual cache as well. Each time a cache is drained,
137 * the most idle cache group is freed to the pool in its entirety.
138 *
139 * Pool caches are layed on top of pools. By layering them, we can avoid
140 * the complexity of cache management for pools which would not benefit
141 * from it.
142 */
143
144 /* The cache group pool. */
145 static struct pool pcgpool;
146
147 /* The pool cache group. */
148 #define PCG_NOBJECTS 16
149 struct pool_cache_group {
150 TAILQ_ENTRY(pool_cache_group)
151 pcg_list; /* link in the pool cache's group list */
152 u_int pcg_avail; /* # available objects */
153 /* pointers to the objects */
154 void *pcg_objects[PCG_NOBJECTS];
155 };
156
157 static void pool_cache_reclaim(struct pool_cache *);
158
159 static int pool_catchup(struct pool *);
160 static void pool_prime_page(struct pool *, caddr_t,
161 struct pool_item_header *);
162 static void *pool_page_alloc(unsigned long, int, int);
163 static void pool_page_free(void *, unsigned long, int);
164 #ifdef POOL_SUBPAGE
165 static void *pool_subpage_alloc(unsigned long, int, int);
166 static void pool_subpage_free(void *, unsigned long, int);
167 #endif
168
169 static void pool_print1(struct pool *, const char *,
170 void (*)(const char *, ...));
171
172 /*
173 * Pool log entry. An array of these is allocated in pool_init().
174 */
175 struct pool_log {
176 const char *pl_file;
177 long pl_line;
178 int pl_action;
179 #define PRLOG_GET 1
180 #define PRLOG_PUT 2
181 void *pl_addr;
182 };
183
184 /* Number of entries in pool log buffers */
185 #ifndef POOL_LOGSIZE
186 #define POOL_LOGSIZE 10
187 #endif
188
189 int pool_logsize = POOL_LOGSIZE;
190
191 #ifdef POOL_DIAGNOSTIC
192 static __inline void
193 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
194 {
195 int n = pp->pr_curlogentry;
196 struct pool_log *pl;
197
198 if ((pp->pr_roflags & PR_LOGGING) == 0)
199 return;
200
201 /*
202 * Fill in the current entry. Wrap around and overwrite
203 * the oldest entry if necessary.
204 */
205 pl = &pp->pr_log[n];
206 pl->pl_file = file;
207 pl->pl_line = line;
208 pl->pl_action = action;
209 pl->pl_addr = v;
210 if (++n >= pp->pr_logsize)
211 n = 0;
212 pp->pr_curlogentry = n;
213 }
214
215 static void
216 pr_printlog(struct pool *pp, struct pool_item *pi,
217 void (*pr)(const char *, ...))
218 {
219 int i = pp->pr_logsize;
220 int n = pp->pr_curlogentry;
221
222 if ((pp->pr_roflags & PR_LOGGING) == 0)
223 return;
224
225 /*
226 * Print all entries in this pool's log.
227 */
228 while (i-- > 0) {
229 struct pool_log *pl = &pp->pr_log[n];
230 if (pl->pl_action != 0) {
231 if (pi == NULL || pi == pl->pl_addr) {
232 (*pr)("\tlog entry %d:\n", i);
233 (*pr)("\t\taction = %s, addr = %p\n",
234 pl->pl_action == PRLOG_GET ? "get" : "put",
235 pl->pl_addr);
236 (*pr)("\t\tfile: %s at line %lu\n",
237 pl->pl_file, pl->pl_line);
238 }
239 }
240 if (++n >= pp->pr_logsize)
241 n = 0;
242 }
243 }
244
245 static __inline void
246 pr_enter(struct pool *pp, const char *file, long line)
247 {
248
249 if (__predict_false(pp->pr_entered_file != NULL)) {
250 printf("pool %s: reentrancy at file %s line %ld\n",
251 pp->pr_wchan, file, line);
252 printf(" previous entry at file %s line %ld\n",
253 pp->pr_entered_file, pp->pr_entered_line);
254 panic("pr_enter");
255 }
256
257 pp->pr_entered_file = file;
258 pp->pr_entered_line = line;
259 }
260
261 static __inline void
262 pr_leave(struct pool *pp)
263 {
264
265 if (__predict_false(pp->pr_entered_file == NULL)) {
266 printf("pool %s not entered?\n", pp->pr_wchan);
267 panic("pr_leave");
268 }
269
270 pp->pr_entered_file = NULL;
271 pp->pr_entered_line = 0;
272 }
273
274 static __inline void
275 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
276 {
277
278 if (pp->pr_entered_file != NULL)
279 (*pr)("\n\tcurrently entered from file %s line %ld\n",
280 pp->pr_entered_file, pp->pr_entered_line);
281 }
282 #else
283 #define pr_log(pp, v, action, file, line)
284 #define pr_printlog(pp, pi, pr)
285 #define pr_enter(pp, file, line)
286 #define pr_leave(pp)
287 #define pr_enter_check(pp, pr)
288 #endif /* POOL_DIAGNOSTIC */
289
290 /*
291 * Return the pool page header based on page address.
292 */
293 static __inline struct pool_item_header *
294 pr_find_pagehead(struct pool *pp, caddr_t page)
295 {
296 struct pool_item_header *ph;
297
298 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
299 return ((struct pool_item_header *)(page + pp->pr_phoffset));
300
301 for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]);
302 ph != NULL;
303 ph = LIST_NEXT(ph, ph_hashlist)) {
304 if (ph->ph_page == page)
305 return (ph);
306 }
307 return (NULL);
308 }
309
310 /*
311 * Remove a page from the pool.
312 */
313 static __inline void
314 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
315 struct pool_pagelist *pq)
316 {
317 int s;
318
319 /*
320 * If the page was idle, decrement the idle page count.
321 */
322 if (ph->ph_nmissing == 0) {
323 #ifdef DIAGNOSTIC
324 if (pp->pr_nidle == 0)
325 panic("pr_rmpage: nidle inconsistent");
326 if (pp->pr_nitems < pp->pr_itemsperpage)
327 panic("pr_rmpage: nitems inconsistent");
328 #endif
329 pp->pr_nidle--;
330 }
331
332 pp->pr_nitems -= pp->pr_itemsperpage;
333
334 /*
335 * Unlink a page from the pool and release it (or queue it for release).
336 */
337 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
338 if (pq) {
339 TAILQ_INSERT_HEAD(pq, ph, ph_pagelist);
340 } else {
341 (*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype);
342 if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
343 LIST_REMOVE(ph, ph_hashlist);
344 s = splhigh();
345 pool_put(&phpool, ph);
346 splx(s);
347 }
348 }
349 pp->pr_npages--;
350 pp->pr_npagefree++;
351
352 if (pp->pr_curpage == ph) {
353 /*
354 * Find a new non-empty page header, if any.
355 * Start search from the page head, to increase the
356 * chance for "high water" pages to be freed.
357 */
358 TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist)
359 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
360 break;
361
362 pp->pr_curpage = ph;
363 }
364 }
365
366 /*
367 * Initialize the given pool resource structure.
368 *
369 * We export this routine to allow other kernel parts to declare
370 * static pools that must be initialized before malloc() is available.
371 */
372 void
373 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
374 const char *wchan, size_t pagesz,
375 void *(*alloc)(unsigned long, int, int),
376 void (*release)(void *, unsigned long, int),
377 int mtype)
378 {
379 int off, slack, i;
380
381 #ifdef POOL_DIAGNOSTIC
382 /*
383 * Always log if POOL_DIAGNOSTIC is defined.
384 */
385 if (pool_logsize != 0)
386 flags |= PR_LOGGING;
387 #endif
388
389 /*
390 * Check arguments and construct default values.
391 */
392 if (!powerof2(pagesz))
393 panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz);
394
395 if (alloc == NULL && release == NULL) {
396 #ifdef POOL_SUBPAGE
397 alloc = pool_subpage_alloc;
398 release = pool_subpage_free;
399 pagesz = POOL_SUBPAGE;
400 #else
401 alloc = pool_page_alloc;
402 release = pool_page_free;
403 pagesz = PAGE_SIZE; /* Rounds to PAGE_SIZE anyhow. */
404 #endif
405 } else if ((alloc != NULL && release != NULL) == 0) {
406 /* If you specifiy one, must specify both. */
407 panic("pool_init: must specify alloc and release together");
408 }
409 #ifdef POOL_SUBPAGE
410 else if (alloc == pool_page_alloc_nointr &&
411 release == pool_page_free_nointr)
412 pagesz = POOL_SUBPAGE;
413 #endif
414
415 if (pagesz == 0)
416 pagesz = PAGE_SIZE;
417
418 if (align == 0)
419 align = ALIGN(1);
420
421 if (size < sizeof(struct pool_item))
422 size = sizeof(struct pool_item);
423
424 size = ALIGN(size);
425 if (size > pagesz)
426 panic("pool_init: pool item size (%lu) too large",
427 (u_long)size);
428
429 /*
430 * Initialize the pool structure.
431 */
432 TAILQ_INIT(&pp->pr_pagelist);
433 TAILQ_INIT(&pp->pr_cachelist);
434 pp->pr_curpage = NULL;
435 pp->pr_npages = 0;
436 pp->pr_minitems = 0;
437 pp->pr_minpages = 0;
438 pp->pr_maxpages = UINT_MAX;
439 pp->pr_roflags = flags;
440 pp->pr_flags = 0;
441 pp->pr_size = size;
442 pp->pr_align = align;
443 pp->pr_wchan = wchan;
444 pp->pr_mtype = mtype;
445 pp->pr_alloc = alloc;
446 pp->pr_free = release;
447 pp->pr_pagesz = pagesz;
448 pp->pr_pagemask = ~(pagesz - 1);
449 pp->pr_pageshift = ffs(pagesz) - 1;
450 pp->pr_nitems = 0;
451 pp->pr_nout = 0;
452 pp->pr_hardlimit = UINT_MAX;
453 pp->pr_hardlimit_warning = NULL;
454 pp->pr_hardlimit_ratecap.tv_sec = 0;
455 pp->pr_hardlimit_ratecap.tv_usec = 0;
456 pp->pr_hardlimit_warning_last.tv_sec = 0;
457 pp->pr_hardlimit_warning_last.tv_usec = 0;
458
459 /*
460 * Decide whether to put the page header off page to avoid
461 * wasting too large a part of the page. Off-page page headers
462 * go on a hash table, so we can match a returned item
463 * with its header based on the page address.
464 * We use 1/16 of the page size as the threshold (XXX: tune)
465 */
466 if (pp->pr_size < pagesz/16) {
467 /* Use the end of the page for the page header */
468 pp->pr_roflags |= PR_PHINPAGE;
469 pp->pr_phoffset = off =
470 pagesz - ALIGN(sizeof(struct pool_item_header));
471 } else {
472 /* The page header will be taken from our page header pool */
473 pp->pr_phoffset = 0;
474 off = pagesz;
475 for (i = 0; i < PR_HASHTABSIZE; i++) {
476 LIST_INIT(&pp->pr_hashtab[i]);
477 }
478 }
479
480 /*
481 * Alignment is to take place at `ioff' within the item. This means
482 * we must reserve up to `align - 1' bytes on the page to allow
483 * appropriate positioning of each item.
484 *
485 * Silently enforce `0 <= ioff < align'.
486 */
487 pp->pr_itemoffset = ioff = ioff % align;
488 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
489 KASSERT(pp->pr_itemsperpage != 0);
490
491 /*
492 * Use the slack between the chunks and the page header
493 * for "cache coloring".
494 */
495 slack = off - pp->pr_itemsperpage * pp->pr_size;
496 pp->pr_maxcolor = (slack / align) * align;
497 pp->pr_curcolor = 0;
498
499 pp->pr_nget = 0;
500 pp->pr_nfail = 0;
501 pp->pr_nput = 0;
502 pp->pr_npagealloc = 0;
503 pp->pr_npagefree = 0;
504 pp->pr_hiwat = 0;
505 pp->pr_nidle = 0;
506
507 #ifdef POOL_DIAGNOSTIC
508 if (flags & PR_LOGGING) {
509 if (kmem_map == NULL ||
510 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
511 M_TEMP, M_NOWAIT)) == NULL)
512 pp->pr_roflags &= ~PR_LOGGING;
513 pp->pr_curlogentry = 0;
514 pp->pr_logsize = pool_logsize;
515 }
516 #endif
517
518 pp->pr_entered_file = NULL;
519 pp->pr_entered_line = 0;
520
521 simple_lock_init(&pp->pr_slock);
522
523 /*
524 * Initialize private page header pool and cache magazine pool if we
525 * haven't done so yet.
526 * XXX LOCKING.
527 */
528 if (phpool.pr_size == 0) {
529 #ifdef POOL_SUBPAGE
530 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0, 0,
531 "phpool", PAGE_SIZE, pool_page_alloc, pool_page_free, 0);
532 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
533 PR_RECURSIVE, "psppool", PAGE_SIZE,
534 pool_page_alloc, pool_page_free, 0);
535 #else
536 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
537 0, "phpool", 0, 0, 0, 0);
538 #endif
539 pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
540 0, "pcgpool", 0, 0, 0, 0);
541 }
542
543 /* Insert into the list of all pools. */
544 simple_lock(&pool_head_slock);
545 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
546 simple_unlock(&pool_head_slock);
547 }
548
549 /*
550 * De-commision a pool resource.
551 */
552 void
553 pool_destroy(struct pool *pp)
554 {
555 struct pool_item_header *ph;
556 struct pool_cache *pc;
557
558 /* Destroy all caches for this pool. */
559 while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL)
560 pool_cache_destroy(pc);
561
562 #ifdef DIAGNOSTIC
563 if (pp->pr_nout != 0) {
564 pr_printlog(pp, NULL, printf);
565 panic("pool_destroy: pool busy: still out: %u\n",
566 pp->pr_nout);
567 }
568 #endif
569
570 /* Remove all pages */
571 if ((pp->pr_roflags & PR_STATIC) == 0)
572 while ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
573 pr_rmpage(pp, ph, NULL);
574
575 /* Remove from global pool list */
576 simple_lock(&pool_head_slock);
577 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
578 if (drainpp == pp) {
579 drainpp = NULL;
580 }
581 simple_unlock(&pool_head_slock);
582
583 #ifdef POOL_DIAGNOSTIC
584 if ((pp->pr_roflags & PR_LOGGING) != 0)
585 free(pp->pr_log, M_TEMP);
586 #endif
587
588 if (pp->pr_roflags & PR_FREEHEADER)
589 free(pp, M_POOL);
590 }
591
592 static __inline struct pool_item_header *
593 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
594 {
595 struct pool_item_header *ph;
596 int s;
597
598 LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
599
600 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
601 ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
602 else {
603 s = splhigh();
604 ph = pool_get(&phpool, flags);
605 splx(s);
606 }
607
608 return (ph);
609 }
610
611 /*
612 * Grab an item from the pool; must be called at appropriate spl level
613 */
614 void *
615 #ifdef POOL_DIAGNOSTIC
616 _pool_get(struct pool *pp, int flags, const char *file, long line)
617 #else
618 pool_get(struct pool *pp, int flags)
619 #endif
620 {
621 struct pool_item *pi;
622 struct pool_item_header *ph;
623 void *v;
624
625 #ifdef DIAGNOSTIC
626 if (__predict_false((pp->pr_roflags & PR_STATIC) &&
627 (flags & PR_MALLOCOK))) {
628 pr_printlog(pp, NULL, printf);
629 panic("pool_get: static");
630 }
631
632 if (__predict_false(curproc == NULL && doing_shutdown == 0 &&
633 (flags & PR_WAITOK) != 0))
634 panic("pool_get: must have NOWAIT");
635
636 #ifdef LOCKDEBUG
637 if (flags & PR_WAITOK)
638 simple_lock_only_held(NULL, "pool_get(PR_WAITOK)");
639 #endif
640 #endif /* DIAGNOSTIC */
641
642 simple_lock(&pp->pr_slock);
643 pr_enter(pp, file, line);
644
645 startover:
646 /*
647 * Check to see if we've reached the hard limit. If we have,
648 * and we can wait, then wait until an item has been returned to
649 * the pool.
650 */
651 #ifdef DIAGNOSTIC
652 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
653 pr_leave(pp);
654 simple_unlock(&pp->pr_slock);
655 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
656 }
657 #endif
658 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
659 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
660 /*
661 * XXX: A warning isn't logged in this case. Should
662 * it be?
663 */
664 pp->pr_flags |= PR_WANTED;
665 pr_leave(pp);
666 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
667 pr_enter(pp, file, line);
668 goto startover;
669 }
670
671 /*
672 * Log a message that the hard limit has been hit.
673 */
674 if (pp->pr_hardlimit_warning != NULL &&
675 ratecheck(&pp->pr_hardlimit_warning_last,
676 &pp->pr_hardlimit_ratecap))
677 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
678
679 if (flags & PR_URGENT)
680 panic("pool_get: urgent");
681
682 pp->pr_nfail++;
683
684 pr_leave(pp);
685 simple_unlock(&pp->pr_slock);
686 return (NULL);
687 }
688
689 /*
690 * The convention we use is that if `curpage' is not NULL, then
691 * it points at a non-empty bucket. In particular, `curpage'
692 * never points at a page header which has PR_PHINPAGE set and
693 * has no items in its bucket.
694 */
695 if ((ph = pp->pr_curpage) == NULL) {
696 #ifdef DIAGNOSTIC
697 if (pp->pr_nitems != 0) {
698 simple_unlock(&pp->pr_slock);
699 printf("pool_get: %s: curpage NULL, nitems %u\n",
700 pp->pr_wchan, pp->pr_nitems);
701 panic("pool_get: nitems inconsistent\n");
702 }
703 #endif
704
705 /*
706 * Call the back-end page allocator for more memory.
707 * Release the pool lock, as the back-end page allocator
708 * may block.
709 */
710 pr_leave(pp);
711 simple_unlock(&pp->pr_slock);
712 v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype);
713 if (__predict_true(v != NULL))
714 ph = pool_alloc_item_header(pp, v, flags);
715 simple_lock(&pp->pr_slock);
716 pr_enter(pp, file, line);
717
718 if (__predict_false(v == NULL || ph == NULL)) {
719 if (v != NULL)
720 (*pp->pr_free)(v, pp->pr_pagesz, pp->pr_mtype);
721
722 /*
723 * We were unable to allocate a page or item
724 * header, but we released the lock during
725 * allocation, so perhaps items were freed
726 * back to the pool. Check for this case.
727 */
728 if (pp->pr_curpage != NULL)
729 goto startover;
730
731 if (flags & PR_URGENT)
732 panic("pool_get: urgent");
733
734 if ((flags & PR_WAITOK) == 0) {
735 pp->pr_nfail++;
736 pr_leave(pp);
737 simple_unlock(&pp->pr_slock);
738 return (NULL);
739 }
740
741 /*
742 * Wait for items to be returned to this pool.
743 *
744 * XXX: we actually want to wait just until
745 * the page allocator has memory again. Depending
746 * on this pool's usage, we might get stuck here
747 * for a long time.
748 *
749 * XXX: maybe we should wake up once a second and
750 * try again?
751 */
752 pp->pr_flags |= PR_WANTED;
753 pr_leave(pp);
754 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
755 pr_enter(pp, file, line);
756 goto startover;
757 }
758
759 /* We have more memory; add it to the pool */
760 pool_prime_page(pp, v, ph);
761 pp->pr_npagealloc++;
762
763 /* Start the allocation process over. */
764 goto startover;
765 }
766
767 if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
768 pr_leave(pp);
769 simple_unlock(&pp->pr_slock);
770 panic("pool_get: %s: page empty", pp->pr_wchan);
771 }
772 #ifdef DIAGNOSTIC
773 if (__predict_false(pp->pr_nitems == 0)) {
774 pr_leave(pp);
775 simple_unlock(&pp->pr_slock);
776 printf("pool_get: %s: items on itemlist, nitems %u\n",
777 pp->pr_wchan, pp->pr_nitems);
778 panic("pool_get: nitems inconsistent\n");
779 }
780 #endif
781
782 #ifdef POOL_DIAGNOSTIC
783 pr_log(pp, v, PRLOG_GET, file, line);
784 #endif
785
786 #ifdef DIAGNOSTIC
787 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
788 pr_printlog(pp, pi, printf);
789 panic("pool_get(%s): free list modified: magic=%x; page %p;"
790 " item addr %p\n",
791 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
792 }
793 #endif
794
795 /*
796 * Remove from item list.
797 */
798 TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
799 pp->pr_nitems--;
800 pp->pr_nout++;
801 if (ph->ph_nmissing == 0) {
802 #ifdef DIAGNOSTIC
803 if (__predict_false(pp->pr_nidle == 0))
804 panic("pool_get: nidle inconsistent");
805 #endif
806 pp->pr_nidle--;
807 }
808 ph->ph_nmissing++;
809 if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) {
810 #ifdef DIAGNOSTIC
811 if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
812 pr_leave(pp);
813 simple_unlock(&pp->pr_slock);
814 panic("pool_get: %s: nmissing inconsistent",
815 pp->pr_wchan);
816 }
817 #endif
818 /*
819 * Find a new non-empty page header, if any.
820 * Start search from the page head, to increase
821 * the chance for "high water" pages to be freed.
822 *
823 * Migrate empty pages to the end of the list. This
824 * will speed the update of curpage as pages become
825 * idle. Empty pages intermingled with idle pages
826 * is no big deal. As soon as a page becomes un-empty,
827 * it will move back to the head of the list.
828 */
829 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
830 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
831 TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist)
832 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
833 break;
834
835 pp->pr_curpage = ph;
836 }
837
838 pp->pr_nget++;
839
840 /*
841 * If we have a low water mark and we are now below that low
842 * water mark, add more items to the pool.
843 */
844 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
845 /*
846 * XXX: Should we log a warning? Should we set up a timeout
847 * to try again in a second or so? The latter could break
848 * a caller's assumptions about interrupt protection, etc.
849 */
850 }
851
852 pr_leave(pp);
853 simple_unlock(&pp->pr_slock);
854 return (v);
855 }
856
857 /*
858 * Internal version of pool_put(). Pool is already locked/entered.
859 */
860 static void
861 pool_do_put(struct pool *pp, void *v)
862 {
863 struct pool_item *pi = v;
864 struct pool_item_header *ph;
865 caddr_t page;
866 int s;
867
868 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
869
870 page = (caddr_t)((u_long)v & pp->pr_pagemask);
871
872 #ifdef DIAGNOSTIC
873 if (__predict_false(pp->pr_nout == 0)) {
874 printf("pool %s: putting with none out\n",
875 pp->pr_wchan);
876 panic("pool_put");
877 }
878 #endif
879
880 if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
881 pr_printlog(pp, NULL, printf);
882 panic("pool_put: %s: page header missing", pp->pr_wchan);
883 }
884
885 #ifdef LOCKDEBUG
886 /*
887 * Check if we're freeing a locked simple lock.
888 */
889 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
890 #endif
891
892 /*
893 * Return to item list.
894 */
895 #ifdef DIAGNOSTIC
896 pi->pi_magic = PI_MAGIC;
897 #endif
898 #ifdef DEBUG
899 {
900 int i, *ip = v;
901
902 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
903 *ip++ = PI_MAGIC;
904 }
905 }
906 #endif
907
908 TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
909 ph->ph_nmissing--;
910 pp->pr_nput++;
911 pp->pr_nitems++;
912 pp->pr_nout--;
913
914 /* Cancel "pool empty" condition if it exists */
915 if (pp->pr_curpage == NULL)
916 pp->pr_curpage = ph;
917
918 if (pp->pr_flags & PR_WANTED) {
919 pp->pr_flags &= ~PR_WANTED;
920 if (ph->ph_nmissing == 0)
921 pp->pr_nidle++;
922 wakeup((caddr_t)pp);
923 return;
924 }
925
926 /*
927 * If this page is now complete, do one of two things:
928 *
929 * (1) If we have more pages than the page high water
930 * mark, free the page back to the system.
931 *
932 * (2) Move it to the end of the page list, so that
933 * we minimize our chances of fragmenting the
934 * pool. Idle pages migrate to the end (along with
935 * completely empty pages, so that we find un-empty
936 * pages more quickly when we update curpage) of the
937 * list so they can be more easily swept up by
938 * the pagedaemon when pages are scarce.
939 */
940 if (ph->ph_nmissing == 0) {
941 pp->pr_nidle++;
942 if (pp->pr_npages > pp->pr_maxpages) {
943 pr_rmpage(pp, ph, NULL);
944 } else {
945 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
946 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
947
948 /*
949 * Update the timestamp on the page. A page must
950 * be idle for some period of time before it can
951 * be reclaimed by the pagedaemon. This minimizes
952 * ping-pong'ing for memory.
953 */
954 s = splclock();
955 ph->ph_time = mono_time;
956 splx(s);
957
958 /*
959 * Update the current page pointer. Just look for
960 * the first page with any free items.
961 *
962 * XXX: Maybe we want an option to look for the
963 * page with the fewest available items, to minimize
964 * fragmentation?
965 */
966 TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist)
967 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
968 break;
969
970 pp->pr_curpage = ph;
971 }
972 }
973 /*
974 * If the page has just become un-empty, move it to the head of
975 * the list, and make it the current page. The next allocation
976 * will get the item from this page, instead of further fragmenting
977 * the pool.
978 */
979 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
980 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
981 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
982 pp->pr_curpage = ph;
983 }
984 }
985
986 /*
987 * Return resource to the pool; must be called at appropriate spl level
988 */
989 #ifdef POOL_DIAGNOSTIC
990 void
991 _pool_put(struct pool *pp, void *v, const char *file, long line)
992 {
993
994 simple_lock(&pp->pr_slock);
995 pr_enter(pp, file, line);
996
997 pr_log(pp, v, PRLOG_PUT, file, line);
998
999 pool_do_put(pp, v);
1000
1001 pr_leave(pp);
1002 simple_unlock(&pp->pr_slock);
1003 }
1004 #undef pool_put
1005 #endif /* POOL_DIAGNOSTIC */
1006
1007 void
1008 pool_put(struct pool *pp, void *v)
1009 {
1010
1011 simple_lock(&pp->pr_slock);
1012
1013 pool_do_put(pp, v);
1014
1015 simple_unlock(&pp->pr_slock);
1016 }
1017
1018 #ifdef POOL_DIAGNOSTIC
1019 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1020 #endif
1021
1022 /*
1023 * Add N items to the pool.
1024 */
1025 int
1026 pool_prime(struct pool *pp, int n)
1027 {
1028 struct pool_item_header *ph;
1029 caddr_t cp;
1030 int newpages, error = 0;
1031
1032 simple_lock(&pp->pr_slock);
1033
1034 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1035
1036 while (newpages-- > 0) {
1037 simple_unlock(&pp->pr_slock);
1038 cp = (*pp->pr_alloc)(pp->pr_pagesz, PR_NOWAIT, pp->pr_mtype);
1039 if (__predict_true(cp != NULL))
1040 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1041 simple_lock(&pp->pr_slock);
1042
1043 if (__predict_false(cp == NULL || ph == NULL)) {
1044 error = ENOMEM;
1045 if (cp != NULL)
1046 (*pp->pr_free)(cp, pp->pr_pagesz, pp->pr_mtype);
1047 break;
1048 }
1049
1050 pool_prime_page(pp, cp, ph);
1051 pp->pr_npagealloc++;
1052 pp->pr_minpages++;
1053 }
1054
1055 if (pp->pr_minpages >= pp->pr_maxpages)
1056 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1057
1058 simple_unlock(&pp->pr_slock);
1059 return (0);
1060 }
1061
1062 /*
1063 * Add a page worth of items to the pool.
1064 *
1065 * Note, we must be called with the pool descriptor LOCKED.
1066 */
1067 static void
1068 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
1069 {
1070 struct pool_item *pi;
1071 caddr_t cp = storage;
1072 unsigned int align = pp->pr_align;
1073 unsigned int ioff = pp->pr_itemoffset;
1074 int n;
1075
1076 if (((u_long)cp & (pp->pr_pagesz - 1)) != 0)
1077 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1078
1079 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1080 LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)],
1081 ph, ph_hashlist);
1082
1083 /*
1084 * Insert page header.
1085 */
1086 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
1087 TAILQ_INIT(&ph->ph_itemlist);
1088 ph->ph_page = storage;
1089 ph->ph_nmissing = 0;
1090 memset(&ph->ph_time, 0, sizeof(ph->ph_time));
1091
1092 pp->pr_nidle++;
1093
1094 /*
1095 * Color this page.
1096 */
1097 cp = (caddr_t)(cp + pp->pr_curcolor);
1098 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1099 pp->pr_curcolor = 0;
1100
1101 /*
1102 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1103 */
1104 if (ioff != 0)
1105 cp = (caddr_t)(cp + (align - ioff));
1106
1107 /*
1108 * Insert remaining chunks on the bucket list.
1109 */
1110 n = pp->pr_itemsperpage;
1111 pp->pr_nitems += n;
1112
1113 while (n--) {
1114 pi = (struct pool_item *)cp;
1115
1116 /* Insert on page list */
1117 TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
1118 #ifdef DIAGNOSTIC
1119 pi->pi_magic = PI_MAGIC;
1120 #endif
1121 cp = (caddr_t)(cp + pp->pr_size);
1122 }
1123
1124 /*
1125 * If the pool was depleted, point at the new page.
1126 */
1127 if (pp->pr_curpage == NULL)
1128 pp->pr_curpage = ph;
1129
1130 if (++pp->pr_npages > pp->pr_hiwat)
1131 pp->pr_hiwat = pp->pr_npages;
1132 }
1133
1134 /*
1135 * Used by pool_get() when nitems drops below the low water mark. This
1136 * is used to catch up nitmes with the low water mark.
1137 *
1138 * Note 1, we never wait for memory here, we let the caller decide what to do.
1139 *
1140 * Note 2, this doesn't work with static pools.
1141 *
1142 * Note 3, we must be called with the pool already locked, and we return
1143 * with it locked.
1144 */
1145 static int
1146 pool_catchup(struct pool *pp)
1147 {
1148 struct pool_item_header *ph;
1149 caddr_t cp;
1150 int error = 0;
1151
1152 if (pp->pr_roflags & PR_STATIC) {
1153 /*
1154 * We dropped below the low water mark, and this is not a
1155 * good thing. Log a warning.
1156 *
1157 * XXX: rate-limit this?
1158 */
1159 printf("WARNING: static pool `%s' dropped below low water "
1160 "mark\n", pp->pr_wchan);
1161 return (0);
1162 }
1163
1164 while (POOL_NEEDS_CATCHUP(pp)) {
1165 /*
1166 * Call the page back-end allocator for more memory.
1167 *
1168 * XXX: We never wait, so should we bother unlocking
1169 * the pool descriptor?
1170 */
1171 simple_unlock(&pp->pr_slock);
1172 cp = (*pp->pr_alloc)(pp->pr_pagesz, PR_NOWAIT, pp->pr_mtype);
1173 if (__predict_true(cp != NULL))
1174 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1175 simple_lock(&pp->pr_slock);
1176 if (__predict_false(cp == NULL || ph == NULL)) {
1177 if (cp != NULL)
1178 (*pp->pr_free)(cp, pp->pr_pagesz, pp->pr_mtype);
1179 error = ENOMEM;
1180 break;
1181 }
1182 pool_prime_page(pp, cp, ph);
1183 pp->pr_npagealloc++;
1184 }
1185
1186 return (error);
1187 }
1188
1189 void
1190 pool_setlowat(struct pool *pp, int n)
1191 {
1192 int error;
1193
1194 simple_lock(&pp->pr_slock);
1195
1196 pp->pr_minitems = n;
1197 pp->pr_minpages = (n == 0)
1198 ? 0
1199 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1200
1201 /* Make sure we're caught up with the newly-set low water mark. */
1202 if (POOL_NEEDS_CATCHUP(pp) && (error = pool_catchup(pp) != 0)) {
1203 /*
1204 * XXX: Should we log a warning? Should we set up a timeout
1205 * to try again in a second or so? The latter could break
1206 * a caller's assumptions about interrupt protection, etc.
1207 */
1208 }
1209
1210 simple_unlock(&pp->pr_slock);
1211 }
1212
1213 void
1214 pool_sethiwat(struct pool *pp, int n)
1215 {
1216
1217 simple_lock(&pp->pr_slock);
1218
1219 pp->pr_maxpages = (n == 0)
1220 ? 0
1221 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1222
1223 simple_unlock(&pp->pr_slock);
1224 }
1225
1226 void
1227 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1228 {
1229
1230 simple_lock(&pp->pr_slock);
1231
1232 pp->pr_hardlimit = n;
1233 pp->pr_hardlimit_warning = warnmess;
1234 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1235 pp->pr_hardlimit_warning_last.tv_sec = 0;
1236 pp->pr_hardlimit_warning_last.tv_usec = 0;
1237
1238 /*
1239 * In-line version of pool_sethiwat(), because we don't want to
1240 * release the lock.
1241 */
1242 pp->pr_maxpages = (n == 0)
1243 ? 0
1244 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1245
1246 simple_unlock(&pp->pr_slock);
1247 }
1248
1249 /*
1250 * Default page allocator.
1251 */
1252 static void *
1253 pool_page_alloc(unsigned long sz, int flags, int mtype)
1254 {
1255 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1256
1257 return ((void *)uvm_km_alloc_poolpage(waitok));
1258 }
1259
1260 static void
1261 pool_page_free(void *v, unsigned long sz, int mtype)
1262 {
1263
1264 uvm_km_free_poolpage((vaddr_t)v);
1265 }
1266
1267 #ifdef POOL_SUBPAGE
1268 /*
1269 * Sub-page allocator, for machines with large hardware pages.
1270 */
1271 static void *
1272 pool_subpage_alloc(unsigned long sz, int flags, int mtype)
1273 {
1274
1275 return pool_get(&psppool, flags);
1276 }
1277
1278 static void
1279 pool_subpage_free(void *v, unsigned long sz, int mtype)
1280 {
1281
1282 pool_put(&psppool, v);
1283 }
1284 #endif
1285
1286 #ifdef POOL_SUBPAGE
1287 /* We don't provide a real nointr allocator. Maybe later. */
1288 void *
1289 pool_page_alloc_nointr(unsigned long sz, int flags, int mtype)
1290 {
1291
1292 return pool_subpage_alloc(sz, flags, mtype);
1293 }
1294
1295 void
1296 pool_page_free_nointr(void *v, unsigned long sz, int mtype)
1297 {
1298
1299 pool_subpage_free(v, sz, mtype);
1300 }
1301 #else
1302 /*
1303 * Alternate pool page allocator for pools that know they will
1304 * never be accessed in interrupt context.
1305 */
1306 void *
1307 pool_page_alloc_nointr(unsigned long sz, int flags, int mtype)
1308 {
1309 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1310
1311 return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object,
1312 waitok));
1313 }
1314
1315 void
1316 pool_page_free_nointr(void *v, unsigned long sz, int mtype)
1317 {
1318
1319 uvm_km_free_poolpage1(kernel_map, (vaddr_t)v);
1320 }
1321 #endif
1322
1323
1324 /*
1325 * Release all complete pages that have not been used recently.
1326 */
1327 void
1328 #ifdef POOL_DIAGNOSTIC
1329 _pool_reclaim(struct pool *pp, const char *file, long line)
1330 #else
1331 pool_reclaim(struct pool *pp)
1332 #endif
1333 {
1334 struct pool_item_header *ph, *phnext;
1335 struct pool_cache *pc;
1336 struct timeval curtime;
1337 struct pool_pagelist pq;
1338 int s;
1339
1340 if (pp->pr_roflags & PR_STATIC)
1341 return;
1342
1343 if (simple_lock_try(&pp->pr_slock) == 0)
1344 return;
1345 pr_enter(pp, file, line);
1346 TAILQ_INIT(&pq);
1347
1348 /*
1349 * Reclaim items from the pool's caches.
1350 */
1351 TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
1352 pool_cache_reclaim(pc);
1353
1354 s = splclock();
1355 curtime = mono_time;
1356 splx(s);
1357
1358 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) {
1359 phnext = TAILQ_NEXT(ph, ph_pagelist);
1360
1361 /* Check our minimum page claim */
1362 if (pp->pr_npages <= pp->pr_minpages)
1363 break;
1364
1365 if (ph->ph_nmissing == 0) {
1366 struct timeval diff;
1367 timersub(&curtime, &ph->ph_time, &diff);
1368 if (diff.tv_sec < pool_inactive_time)
1369 continue;
1370
1371 /*
1372 * If freeing this page would put us below
1373 * the low water mark, stop now.
1374 */
1375 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1376 pp->pr_minitems)
1377 break;
1378
1379 pr_rmpage(pp, ph, &pq);
1380 }
1381 }
1382
1383 pr_leave(pp);
1384 simple_unlock(&pp->pr_slock);
1385 if (TAILQ_EMPTY(&pq)) {
1386 return;
1387 }
1388 while ((ph = TAILQ_FIRST(&pq)) != NULL) {
1389 TAILQ_REMOVE(&pq, ph, ph_pagelist);
1390 (*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype);
1391 if (pp->pr_roflags & PR_PHINPAGE) {
1392 continue;
1393 }
1394 LIST_REMOVE(ph, ph_hashlist);
1395 s = splhigh();
1396 pool_put(&phpool, ph);
1397 splx(s);
1398 }
1399 }
1400
1401
1402 /*
1403 * Drain pools, one at a time.
1404 *
1405 * Note, we must never be called from an interrupt context.
1406 */
1407 void
1408 pool_drain(void *arg)
1409 {
1410 struct pool *pp;
1411 int s;
1412
1413 pp = NULL;
1414 s = splvm();
1415 simple_lock(&pool_head_slock);
1416 if (drainpp == NULL) {
1417 drainpp = TAILQ_FIRST(&pool_head);
1418 }
1419 if (drainpp) {
1420 pp = drainpp;
1421 drainpp = TAILQ_NEXT(pp, pr_poollist);
1422 }
1423 simple_unlock(&pool_head_slock);
1424 pool_reclaim(pp);
1425 splx(s);
1426 }
1427
1428
1429 /*
1430 * Diagnostic helpers.
1431 */
1432 void
1433 pool_print(struct pool *pp, const char *modif)
1434 {
1435 int s;
1436
1437 s = splvm();
1438 if (simple_lock_try(&pp->pr_slock) == 0) {
1439 printf("pool %s is locked; try again later\n",
1440 pp->pr_wchan);
1441 splx(s);
1442 return;
1443 }
1444 pool_print1(pp, modif, printf);
1445 simple_unlock(&pp->pr_slock);
1446 splx(s);
1447 }
1448
1449 void
1450 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1451 {
1452 int didlock = 0;
1453
1454 if (pp == NULL) {
1455 (*pr)("Must specify a pool to print.\n");
1456 return;
1457 }
1458
1459 /*
1460 * Called from DDB; interrupts should be blocked, and all
1461 * other processors should be paused. We can skip locking
1462 * the pool in this case.
1463 *
1464 * We do a simple_lock_try() just to print the lock
1465 * status, however.
1466 */
1467
1468 if (simple_lock_try(&pp->pr_slock) == 0)
1469 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1470 else
1471 didlock = 1;
1472
1473 pool_print1(pp, modif, pr);
1474
1475 if (didlock)
1476 simple_unlock(&pp->pr_slock);
1477 }
1478
1479 static void
1480 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1481 {
1482 struct pool_item_header *ph;
1483 struct pool_cache *pc;
1484 struct pool_cache_group *pcg;
1485 #ifdef DIAGNOSTIC
1486 struct pool_item *pi;
1487 #endif
1488 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1489 char c;
1490
1491 while ((c = *modif++) != '\0') {
1492 if (c == 'l')
1493 print_log = 1;
1494 if (c == 'p')
1495 print_pagelist = 1;
1496 if (c == 'c')
1497 print_cache = 1;
1498 modif++;
1499 }
1500
1501 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1502 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1503 pp->pr_roflags);
1504 (*pr)("\tpagesz %u, mtype %d\n", pp->pr_pagesz, pp->pr_mtype);
1505 (*pr)("\talloc %p, release %p\n", pp->pr_alloc, pp->pr_free);
1506 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1507 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1508 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1509 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1510
1511 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1512 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1513 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1514 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1515
1516 if (print_pagelist == 0)
1517 goto skip_pagelist;
1518
1519 if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
1520 (*pr)("\n\tpage list:\n");
1521 for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) {
1522 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1523 ph->ph_page, ph->ph_nmissing,
1524 (u_long)ph->ph_time.tv_sec,
1525 (u_long)ph->ph_time.tv_usec);
1526 #ifdef DIAGNOSTIC
1527 TAILQ_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1528 if (pi->pi_magic != PI_MAGIC) {
1529 (*pr)("\t\t\titem %p, magic 0x%x\n",
1530 pi, pi->pi_magic);
1531 }
1532 }
1533 #endif
1534 }
1535 if (pp->pr_curpage == NULL)
1536 (*pr)("\tno current page\n");
1537 else
1538 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1539
1540 skip_pagelist:
1541
1542 if (print_log == 0)
1543 goto skip_log;
1544
1545 (*pr)("\n");
1546 if ((pp->pr_roflags & PR_LOGGING) == 0)
1547 (*pr)("\tno log\n");
1548 else
1549 pr_printlog(pp, NULL, pr);
1550
1551 skip_log:
1552
1553 if (print_cache == 0)
1554 goto skip_cache;
1555
1556 TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
1557 (*pr)("\tcache %p: allocfrom %p freeto %p\n", pc,
1558 pc->pc_allocfrom, pc->pc_freeto);
1559 (*pr)("\t hits %lu misses %lu ngroups %lu nitems %lu\n",
1560 pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
1561 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1562 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);
1563 for (i = 0; i < PCG_NOBJECTS; i++)
1564 (*pr)("\t\t\t%p\n", pcg->pcg_objects[i]);
1565 }
1566 }
1567
1568 skip_cache:
1569
1570 pr_enter_check(pp, pr);
1571 }
1572
1573 int
1574 pool_chk(struct pool *pp, const char *label)
1575 {
1576 struct pool_item_header *ph;
1577 int r = 0;
1578
1579 simple_lock(&pp->pr_slock);
1580
1581 TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist) {
1582 struct pool_item *pi;
1583 int n;
1584 caddr_t page;
1585
1586 page = (caddr_t)((u_long)ph & pp->pr_pagemask);
1587 if (page != ph->ph_page &&
1588 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1589 if (label != NULL)
1590 printf("%s: ", label);
1591 printf("pool(%p:%s): page inconsistency: page %p;"
1592 " at page head addr %p (p %p)\n", pp,
1593 pp->pr_wchan, ph->ph_page,
1594 ph, page);
1595 r++;
1596 goto out;
1597 }
1598
1599 for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
1600 pi != NULL;
1601 pi = TAILQ_NEXT(pi,pi_list), n++) {
1602
1603 #ifdef DIAGNOSTIC
1604 if (pi->pi_magic != PI_MAGIC) {
1605 if (label != NULL)
1606 printf("%s: ", label);
1607 printf("pool(%s): free list modified: magic=%x;"
1608 " page %p; item ordinal %d;"
1609 " addr %p (p %p)\n",
1610 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1611 n, pi, page);
1612 panic("pool");
1613 }
1614 #endif
1615 page = (caddr_t)((u_long)pi & pp->pr_pagemask);
1616 if (page == ph->ph_page)
1617 continue;
1618
1619 if (label != NULL)
1620 printf("%s: ", label);
1621 printf("pool(%p:%s): page inconsistency: page %p;"
1622 " item ordinal %d; addr %p (p %p)\n", pp,
1623 pp->pr_wchan, ph->ph_page,
1624 n, pi, page);
1625 r++;
1626 goto out;
1627 }
1628 }
1629 out:
1630 simple_unlock(&pp->pr_slock);
1631 return (r);
1632 }
1633
1634 /*
1635 * pool_cache_init:
1636 *
1637 * Initialize a pool cache.
1638 *
1639 * NOTE: If the pool must be protected from interrupts, we expect
1640 * to be called at the appropriate interrupt priority level.
1641 */
1642 void
1643 pool_cache_init(struct pool_cache *pc, struct pool *pp,
1644 int (*ctor)(void *, void *, int),
1645 void (*dtor)(void *, void *),
1646 void *arg)
1647 {
1648
1649 TAILQ_INIT(&pc->pc_grouplist);
1650 simple_lock_init(&pc->pc_slock);
1651
1652 pc->pc_allocfrom = NULL;
1653 pc->pc_freeto = NULL;
1654 pc->pc_pool = pp;
1655
1656 pc->pc_ctor = ctor;
1657 pc->pc_dtor = dtor;
1658 pc->pc_arg = arg;
1659
1660 pc->pc_hits = 0;
1661 pc->pc_misses = 0;
1662
1663 pc->pc_ngroups = 0;
1664
1665 pc->pc_nitems = 0;
1666
1667 simple_lock(&pp->pr_slock);
1668 TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist);
1669 simple_unlock(&pp->pr_slock);
1670 }
1671
1672 /*
1673 * pool_cache_destroy:
1674 *
1675 * Destroy a pool cache.
1676 */
1677 void
1678 pool_cache_destroy(struct pool_cache *pc)
1679 {
1680 struct pool *pp = pc->pc_pool;
1681
1682 /* First, invalidate the entire cache. */
1683 pool_cache_invalidate(pc);
1684
1685 /* ...and remove it from the pool's cache list. */
1686 simple_lock(&pp->pr_slock);
1687 TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist);
1688 simple_unlock(&pp->pr_slock);
1689 }
1690
1691 static __inline void *
1692 pcg_get(struct pool_cache_group *pcg)
1693 {
1694 void *object;
1695 u_int idx;
1696
1697 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
1698 KASSERT(pcg->pcg_avail != 0);
1699 idx = --pcg->pcg_avail;
1700
1701 KASSERT(pcg->pcg_objects[idx] != NULL);
1702 object = pcg->pcg_objects[idx];
1703 pcg->pcg_objects[idx] = NULL;
1704
1705 return (object);
1706 }
1707
1708 static __inline void
1709 pcg_put(struct pool_cache_group *pcg, void *object)
1710 {
1711 u_int idx;
1712
1713 KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
1714 idx = pcg->pcg_avail++;
1715
1716 KASSERT(pcg->pcg_objects[idx] == NULL);
1717 pcg->pcg_objects[idx] = object;
1718 }
1719
1720 /*
1721 * pool_cache_get:
1722 *
1723 * Get an object from a pool cache.
1724 */
1725 void *
1726 pool_cache_get(struct pool_cache *pc, int flags)
1727 {
1728 struct pool_cache_group *pcg;
1729 void *object;
1730
1731 #ifdef LOCKDEBUG
1732 if (flags & PR_WAITOK)
1733 simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)");
1734 #endif
1735
1736 simple_lock(&pc->pc_slock);
1737
1738 if ((pcg = pc->pc_allocfrom) == NULL) {
1739 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1740 if (pcg->pcg_avail != 0) {
1741 pc->pc_allocfrom = pcg;
1742 goto have_group;
1743 }
1744 }
1745
1746 /*
1747 * No groups with any available objects. Allocate
1748 * a new object, construct it, and return it to
1749 * the caller. We will allocate a group, if necessary,
1750 * when the object is freed back to the cache.
1751 */
1752 pc->pc_misses++;
1753 simple_unlock(&pc->pc_slock);
1754 object = pool_get(pc->pc_pool, flags);
1755 if (object != NULL && pc->pc_ctor != NULL) {
1756 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
1757 pool_put(pc->pc_pool, object);
1758 return (NULL);
1759 }
1760 }
1761 return (object);
1762 }
1763
1764 have_group:
1765 pc->pc_hits++;
1766 pc->pc_nitems--;
1767 object = pcg_get(pcg);
1768
1769 if (pcg->pcg_avail == 0)
1770 pc->pc_allocfrom = NULL;
1771
1772 simple_unlock(&pc->pc_slock);
1773
1774 return (object);
1775 }
1776
1777 /*
1778 * pool_cache_put:
1779 *
1780 * Put an object back to the pool cache.
1781 */
1782 void
1783 pool_cache_put(struct pool_cache *pc, void *object)
1784 {
1785 struct pool_cache_group *pcg;
1786 int s;
1787
1788 simple_lock(&pc->pc_slock);
1789
1790 if ((pcg = pc->pc_freeto) == NULL) {
1791 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1792 if (pcg->pcg_avail != PCG_NOBJECTS) {
1793 pc->pc_freeto = pcg;
1794 goto have_group;
1795 }
1796 }
1797
1798 /*
1799 * No empty groups to free the object to. Attempt to
1800 * allocate one.
1801 */
1802 simple_unlock(&pc->pc_slock);
1803 s = splvm();
1804 pcg = pool_get(&pcgpool, PR_NOWAIT);
1805 splx(s);
1806 if (pcg != NULL) {
1807 memset(pcg, 0, sizeof(*pcg));
1808 simple_lock(&pc->pc_slock);
1809 pc->pc_ngroups++;
1810 TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list);
1811 if (pc->pc_freeto == NULL)
1812 pc->pc_freeto = pcg;
1813 goto have_group;
1814 }
1815
1816 /*
1817 * Unable to allocate a cache group; destruct the object
1818 * and free it back to the pool.
1819 */
1820 pool_cache_destruct_object(pc, object);
1821 return;
1822 }
1823
1824 have_group:
1825 pc->pc_nitems++;
1826 pcg_put(pcg, object);
1827
1828 if (pcg->pcg_avail == PCG_NOBJECTS)
1829 pc->pc_freeto = NULL;
1830
1831 simple_unlock(&pc->pc_slock);
1832 }
1833
1834 /*
1835 * pool_cache_destruct_object:
1836 *
1837 * Force destruction of an object and its release back into
1838 * the pool.
1839 */
1840 void
1841 pool_cache_destruct_object(struct pool_cache *pc, void *object)
1842 {
1843
1844 if (pc->pc_dtor != NULL)
1845 (*pc->pc_dtor)(pc->pc_arg, object);
1846 pool_put(pc->pc_pool, object);
1847 }
1848
1849 /*
1850 * pool_cache_do_invalidate:
1851 *
1852 * This internal function implements pool_cache_invalidate() and
1853 * pool_cache_reclaim().
1854 */
1855 static void
1856 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups,
1857 void (*putit)(struct pool *, void *))
1858 {
1859 struct pool_cache_group *pcg, *npcg;
1860 void *object;
1861 int s;
1862
1863 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1864 pcg = npcg) {
1865 npcg = TAILQ_NEXT(pcg, pcg_list);
1866 while (pcg->pcg_avail != 0) {
1867 pc->pc_nitems--;
1868 object = pcg_get(pcg);
1869 if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg)
1870 pc->pc_allocfrom = NULL;
1871 if (pc->pc_dtor != NULL)
1872 (*pc->pc_dtor)(pc->pc_arg, object);
1873 (*putit)(pc->pc_pool, object);
1874 }
1875 if (free_groups) {
1876 pc->pc_ngroups--;
1877 TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list);
1878 if (pc->pc_freeto == pcg)
1879 pc->pc_freeto = NULL;
1880 s = splvm();
1881 pool_put(&pcgpool, pcg);
1882 splx(s);
1883 }
1884 }
1885 }
1886
1887 /*
1888 * pool_cache_invalidate:
1889 *
1890 * Invalidate a pool cache (destruct and release all of the
1891 * cached objects).
1892 */
1893 void
1894 pool_cache_invalidate(struct pool_cache *pc)
1895 {
1896
1897 simple_lock(&pc->pc_slock);
1898 pool_cache_do_invalidate(pc, 0, pool_put);
1899 simple_unlock(&pc->pc_slock);
1900 }
1901
1902 /*
1903 * pool_cache_reclaim:
1904 *
1905 * Reclaim a pool cache for pool_reclaim().
1906 */
1907 static void
1908 pool_cache_reclaim(struct pool_cache *pc)
1909 {
1910
1911 simple_lock(&pc->pc_slock);
1912 pool_cache_do_invalidate(pc, 1, pool_do_put);
1913 simple_unlock(&pc->pc_slock);
1914 }
1915