Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.50.2.7
      1 /*	$NetBSD: subr_pool.c,v 1.50.2.7 2002/04/01 07:47:56 nathanw Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9  * Simulation Facility, NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 #include <sys/cdefs.h>
     41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.50.2.7 2002/04/01 07:47:56 nathanw Exp $");
     42 
     43 #include "opt_pool.h"
     44 #include "opt_poollog.h"
     45 #include "opt_lockdebug.h"
     46 
     47 #include <sys/param.h>
     48 #include <sys/systm.h>
     49 #include <sys/proc.h>
     50 #include <sys/errno.h>
     51 #include <sys/kernel.h>
     52 #include <sys/malloc.h>
     53 #include <sys/lock.h>
     54 #include <sys/pool.h>
     55 #include <sys/syslog.h>
     56 
     57 #include <uvm/uvm.h>
     58 
     59 /*
     60  * Pool resource management utility.
     61  *
     62  * Memory is allocated in pages which are split into pieces according
     63  * to the pool item size. Each page is kept on a list headed by `pr_pagelist'
     64  * in the pool structure and the individual pool items are on a linked list
     65  * headed by `ph_itemlist' in each page header. The memory for building
     66  * the page list is either taken from the allocated pages themselves (for
     67  * small pool items) or taken from an internal pool of page headers (`phpool').
     68  */
     69 
     70 /* List of all pools */
     71 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     72 
     73 /* Private pool for page header structures */
     74 static struct pool phpool;
     75 
     76 #ifdef POOL_SUBPAGE
     77 /* Pool of subpages for use by normal pools. */
     78 static struct pool psppool;
     79 #endif
     80 
     81 /* # of seconds to retain page after last use */
     82 int pool_inactive_time = 10;
     83 
     84 /* Next candidate for drainage (see pool_drain()) */
     85 static struct pool	*drainpp;
     86 
     87 /* This spin lock protects both pool_head and drainpp. */
     88 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
     89 
     90 struct pool_item_header {
     91 	/* Page headers */
     92 	TAILQ_ENTRY(pool_item_header)
     93 				ph_pagelist;	/* pool page list */
     94 	TAILQ_HEAD(,pool_item)	ph_itemlist;	/* chunk list for this page */
     95 	LIST_ENTRY(pool_item_header)
     96 				ph_hashlist;	/* Off-page page headers */
     97 	int			ph_nmissing;	/* # of chunks in use */
     98 	caddr_t			ph_page;	/* this page's address */
     99 	struct timeval		ph_time;	/* last referenced */
    100 };
    101 TAILQ_HEAD(pool_pagelist,pool_item_header);
    102 
    103 struct pool_item {
    104 #ifdef DIAGNOSTIC
    105 	int pi_magic;
    106 #endif
    107 #define	PI_MAGIC 0xdeadbeef
    108 	/* Other entries use only this list entry */
    109 	TAILQ_ENTRY(pool_item)	pi_list;
    110 };
    111 
    112 #define	PR_HASH_INDEX(pp,addr) \
    113 	(((u_long)(addr) >> (pp)->pr_alloc->pa_pageshift) & \
    114 	 (PR_HASHTABSIZE - 1))
    115 
    116 #define	POOL_NEEDS_CATCHUP(pp)						\
    117 	((pp)->pr_nitems < (pp)->pr_minitems)
    118 
    119 /*
    120  * Pool cache management.
    121  *
    122  * Pool caches provide a way for constructed objects to be cached by the
    123  * pool subsystem.  This can lead to performance improvements by avoiding
    124  * needless object construction/destruction; it is deferred until absolutely
    125  * necessary.
    126  *
    127  * Caches are grouped into cache groups.  Each cache group references
    128  * up to 16 constructed objects.  When a cache allocates an object
    129  * from the pool, it calls the object's constructor and places it into
    130  * a cache group.  When a cache group frees an object back to the pool,
    131  * it first calls the object's destructor.  This allows the object to
    132  * persist in constructed form while freed to the cache.
    133  *
    134  * Multiple caches may exist for each pool.  This allows a single
    135  * object type to have multiple constructed forms.  The pool references
    136  * each cache, so that when a pool is drained by the pagedaemon, it can
    137  * drain each individual cache as well.  Each time a cache is drained,
    138  * the most idle cache group is freed to the pool in its entirety.
    139  *
    140  * Pool caches are layed on top of pools.  By layering them, we can avoid
    141  * the complexity of cache management for pools which would not benefit
    142  * from it.
    143  */
    144 
    145 /* The cache group pool. */
    146 static struct pool pcgpool;
    147 
    148 static void	pool_cache_reclaim(struct pool_cache *);
    149 
    150 static int	pool_catchup(struct pool *);
    151 static void	pool_prime_page(struct pool *, caddr_t,
    152 		    struct pool_item_header *);
    153 
    154 void		*pool_allocator_alloc(struct pool *, int);
    155 void		pool_allocator_free(struct pool *, void *);
    156 
    157 static void pool_print1(struct pool *, const char *,
    158 	void (*)(const char *, ...));
    159 
    160 /*
    161  * Pool log entry. An array of these is allocated in pool_init().
    162  */
    163 struct pool_log {
    164 	const char	*pl_file;
    165 	long		pl_line;
    166 	int		pl_action;
    167 #define	PRLOG_GET	1
    168 #define	PRLOG_PUT	2
    169 	void		*pl_addr;
    170 };
    171 
    172 /* Number of entries in pool log buffers */
    173 #ifndef POOL_LOGSIZE
    174 #define	POOL_LOGSIZE	10
    175 #endif
    176 
    177 int pool_logsize = POOL_LOGSIZE;
    178 
    179 #ifdef POOL_DIAGNOSTIC
    180 static __inline void
    181 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    182 {
    183 	int n = pp->pr_curlogentry;
    184 	struct pool_log *pl;
    185 
    186 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    187 		return;
    188 
    189 	/*
    190 	 * Fill in the current entry. Wrap around and overwrite
    191 	 * the oldest entry if necessary.
    192 	 */
    193 	pl = &pp->pr_log[n];
    194 	pl->pl_file = file;
    195 	pl->pl_line = line;
    196 	pl->pl_action = action;
    197 	pl->pl_addr = v;
    198 	if (++n >= pp->pr_logsize)
    199 		n = 0;
    200 	pp->pr_curlogentry = n;
    201 }
    202 
    203 static void
    204 pr_printlog(struct pool *pp, struct pool_item *pi,
    205     void (*pr)(const char *, ...))
    206 {
    207 	int i = pp->pr_logsize;
    208 	int n = pp->pr_curlogentry;
    209 
    210 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    211 		return;
    212 
    213 	/*
    214 	 * Print all entries in this pool's log.
    215 	 */
    216 	while (i-- > 0) {
    217 		struct pool_log *pl = &pp->pr_log[n];
    218 		if (pl->pl_action != 0) {
    219 			if (pi == NULL || pi == pl->pl_addr) {
    220 				(*pr)("\tlog entry %d:\n", i);
    221 				(*pr)("\t\taction = %s, addr = %p\n",
    222 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    223 				    pl->pl_addr);
    224 				(*pr)("\t\tfile: %s at line %lu\n",
    225 				    pl->pl_file, pl->pl_line);
    226 			}
    227 		}
    228 		if (++n >= pp->pr_logsize)
    229 			n = 0;
    230 	}
    231 }
    232 
    233 static __inline void
    234 pr_enter(struct pool *pp, const char *file, long line)
    235 {
    236 
    237 	if (__predict_false(pp->pr_entered_file != NULL)) {
    238 		printf("pool %s: reentrancy at file %s line %ld\n",
    239 		    pp->pr_wchan, file, line);
    240 		printf("         previous entry at file %s line %ld\n",
    241 		    pp->pr_entered_file, pp->pr_entered_line);
    242 		panic("pr_enter");
    243 	}
    244 
    245 	pp->pr_entered_file = file;
    246 	pp->pr_entered_line = line;
    247 }
    248 
    249 static __inline void
    250 pr_leave(struct pool *pp)
    251 {
    252 
    253 	if (__predict_false(pp->pr_entered_file == NULL)) {
    254 		printf("pool %s not entered?\n", pp->pr_wchan);
    255 		panic("pr_leave");
    256 	}
    257 
    258 	pp->pr_entered_file = NULL;
    259 	pp->pr_entered_line = 0;
    260 }
    261 
    262 static __inline void
    263 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    264 {
    265 
    266 	if (pp->pr_entered_file != NULL)
    267 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    268 		    pp->pr_entered_file, pp->pr_entered_line);
    269 }
    270 #else
    271 #define	pr_log(pp, v, action, file, line)
    272 #define	pr_printlog(pp, pi, pr)
    273 #define	pr_enter(pp, file, line)
    274 #define	pr_leave(pp)
    275 #define	pr_enter_check(pp, pr)
    276 #endif /* POOL_DIAGNOSTIC */
    277 
    278 /*
    279  * Return the pool page header based on page address.
    280  */
    281 static __inline struct pool_item_header *
    282 pr_find_pagehead(struct pool *pp, caddr_t page)
    283 {
    284 	struct pool_item_header *ph;
    285 
    286 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    287 		return ((struct pool_item_header *)(page + pp->pr_phoffset));
    288 
    289 	for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]);
    290 	     ph != NULL;
    291 	     ph = LIST_NEXT(ph, ph_hashlist)) {
    292 		if (ph->ph_page == page)
    293 			return (ph);
    294 	}
    295 	return (NULL);
    296 }
    297 
    298 /*
    299  * Remove a page from the pool.
    300  */
    301 static __inline void
    302 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    303      struct pool_pagelist *pq)
    304 {
    305 	int s;
    306 
    307 	/*
    308 	 * If the page was idle, decrement the idle page count.
    309 	 */
    310 	if (ph->ph_nmissing == 0) {
    311 #ifdef DIAGNOSTIC
    312 		if (pp->pr_nidle == 0)
    313 			panic("pr_rmpage: nidle inconsistent");
    314 		if (pp->pr_nitems < pp->pr_itemsperpage)
    315 			panic("pr_rmpage: nitems inconsistent");
    316 #endif
    317 		pp->pr_nidle--;
    318 	}
    319 
    320 	pp->pr_nitems -= pp->pr_itemsperpage;
    321 
    322 	/*
    323 	 * Unlink a page from the pool and release it (or queue it for release).
    324 	 */
    325 	TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    326 	if (pq) {
    327 		TAILQ_INSERT_HEAD(pq, ph, ph_pagelist);
    328 	} else {
    329 		pool_allocator_free(pp, ph->ph_page);
    330 		if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    331 			LIST_REMOVE(ph, ph_hashlist);
    332 			s = splhigh();
    333 			pool_put(&phpool, ph);
    334 			splx(s);
    335 		}
    336 	}
    337 	pp->pr_npages--;
    338 	pp->pr_npagefree++;
    339 
    340 	if (pp->pr_curpage == ph) {
    341 		/*
    342 		 * Find a new non-empty page header, if any.
    343 		 * Start search from the page head, to increase the
    344 		 * chance for "high water" pages to be freed.
    345 		 */
    346 		TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist)
    347 			if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    348 				break;
    349 
    350 		pp->pr_curpage = ph;
    351 	}
    352 }
    353 
    354 /*
    355  * Initialize the given pool resource structure.
    356  *
    357  * We export this routine to allow other kernel parts to declare
    358  * static pools that must be initialized before malloc() is available.
    359  */
    360 void
    361 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    362     const char *wchan, struct pool_allocator *palloc)
    363 {
    364 	int off, slack, i;
    365 
    366 #ifdef POOL_DIAGNOSTIC
    367 	/*
    368 	 * Always log if POOL_DIAGNOSTIC is defined.
    369 	 */
    370 	if (pool_logsize != 0)
    371 		flags |= PR_LOGGING;
    372 #endif
    373 
    374 #ifdef POOL_SUBPAGE
    375 	/*
    376 	 * XXX We don't provide a real `nointr' back-end
    377 	 * yet; all sub-pages come from a kmem back-end.
    378 	 * maybe some day...
    379 	 */
    380 	if (palloc == NULL) {
    381 		extern struct pool_allocator pool_allocator_kmem_subpage;
    382 		palloc = &pool_allocator_kmem_subpage;
    383 	}
    384 	/*
    385 	 * We'll assume any user-specified back-end allocator
    386 	 * will deal with sub-pages, or simply don't care.
    387 	 */
    388 #else
    389 	if (palloc == NULL)
    390 		palloc = &pool_allocator_kmem;
    391 #endif /* POOL_SUBPAGE */
    392 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
    393 		if (palloc->pa_pagesz == 0) {
    394 #ifdef POOL_SUBPAGE
    395 			if (palloc == &pool_allocator_kmem)
    396 				palloc->pa_pagesz = PAGE_SIZE;
    397 			else
    398 				palloc->pa_pagesz = POOL_SUBPAGE;
    399 #else
    400 			palloc->pa_pagesz = PAGE_SIZE;
    401 #endif /* POOL_SUBPAGE */
    402 		}
    403 
    404 		TAILQ_INIT(&palloc->pa_list);
    405 
    406 		simple_lock_init(&palloc->pa_slock);
    407 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    408 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    409 		palloc->pa_flags |= PA_INITIALIZED;
    410 	}
    411 
    412 	if (align == 0)
    413 		align = ALIGN(1);
    414 
    415 	if (size < sizeof(struct pool_item))
    416 		size = sizeof(struct pool_item);
    417 
    418 	size = ALIGN(size);
    419 #ifdef DIAGNOSTIC
    420 	if (size > palloc->pa_pagesz)
    421 		panic("pool_init: pool item size (%lu) too large",
    422 		      (u_long)size);
    423 #endif
    424 
    425 	/*
    426 	 * Initialize the pool structure.
    427 	 */
    428 	TAILQ_INIT(&pp->pr_pagelist);
    429 	TAILQ_INIT(&pp->pr_cachelist);
    430 	pp->pr_curpage = NULL;
    431 	pp->pr_npages = 0;
    432 	pp->pr_minitems = 0;
    433 	pp->pr_minpages = 0;
    434 	pp->pr_maxpages = UINT_MAX;
    435 	pp->pr_roflags = flags;
    436 	pp->pr_flags = 0;
    437 	pp->pr_size = size;
    438 	pp->pr_align = align;
    439 	pp->pr_wchan = wchan;
    440 	pp->pr_alloc = palloc;
    441 	pp->pr_nitems = 0;
    442 	pp->pr_nout = 0;
    443 	pp->pr_hardlimit = UINT_MAX;
    444 	pp->pr_hardlimit_warning = NULL;
    445 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    446 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    447 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    448 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    449 	pp->pr_drain_hook = NULL;
    450 	pp->pr_drain_hook_arg = NULL;
    451 
    452 	/*
    453 	 * Decide whether to put the page header off page to avoid
    454 	 * wasting too large a part of the page. Off-page page headers
    455 	 * go on a hash table, so we can match a returned item
    456 	 * with its header based on the page address.
    457 	 * We use 1/16 of the page size as the threshold (XXX: tune)
    458 	 */
    459 	if (pp->pr_size < palloc->pa_pagesz/16) {
    460 		/* Use the end of the page for the page header */
    461 		pp->pr_roflags |= PR_PHINPAGE;
    462 		pp->pr_phoffset = off = palloc->pa_pagesz -
    463 		    ALIGN(sizeof(struct pool_item_header));
    464 	} else {
    465 		/* The page header will be taken from our page header pool */
    466 		pp->pr_phoffset = 0;
    467 		off = palloc->pa_pagesz;
    468 		for (i = 0; i < PR_HASHTABSIZE; i++) {
    469 			LIST_INIT(&pp->pr_hashtab[i]);
    470 		}
    471 	}
    472 
    473 	/*
    474 	 * Alignment is to take place at `ioff' within the item. This means
    475 	 * we must reserve up to `align - 1' bytes on the page to allow
    476 	 * appropriate positioning of each item.
    477 	 *
    478 	 * Silently enforce `0 <= ioff < align'.
    479 	 */
    480 	pp->pr_itemoffset = ioff = ioff % align;
    481 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    482 	KASSERT(pp->pr_itemsperpage != 0);
    483 
    484 	/*
    485 	 * Use the slack between the chunks and the page header
    486 	 * for "cache coloring".
    487 	 */
    488 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    489 	pp->pr_maxcolor = (slack / align) * align;
    490 	pp->pr_curcolor = 0;
    491 
    492 	pp->pr_nget = 0;
    493 	pp->pr_nfail = 0;
    494 	pp->pr_nput = 0;
    495 	pp->pr_npagealloc = 0;
    496 	pp->pr_npagefree = 0;
    497 	pp->pr_hiwat = 0;
    498 	pp->pr_nidle = 0;
    499 
    500 #ifdef POOL_DIAGNOSTIC
    501 	if (flags & PR_LOGGING) {
    502 		if (kmem_map == NULL ||
    503 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    504 		     M_TEMP, M_NOWAIT)) == NULL)
    505 			pp->pr_roflags &= ~PR_LOGGING;
    506 		pp->pr_curlogentry = 0;
    507 		pp->pr_logsize = pool_logsize;
    508 	}
    509 #endif
    510 
    511 	pp->pr_entered_file = NULL;
    512 	pp->pr_entered_line = 0;
    513 
    514 	simple_lock_init(&pp->pr_slock);
    515 
    516 	/*
    517 	 * Initialize private page header pool and cache magazine pool if we
    518 	 * haven't done so yet.
    519 	 * XXX LOCKING.
    520 	 */
    521 	if (phpool.pr_size == 0) {
    522 #ifdef POOL_SUBPAGE
    523 		pool_init(&phpool, sizeof(struct pool_item_header), 0, 0, 0,
    524 		    "phpool", &pool_allocator_kmem);
    525 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    526 		    PR_RECURSIVE, "psppool", &pool_allocator_kmem);
    527 #else
    528 		pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
    529 		    0, "phpool", NULL);
    530 #endif
    531 		pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
    532 		    0, "pcgpool", NULL);
    533 	}
    534 
    535 	/* Insert into the list of all pools. */
    536 	simple_lock(&pool_head_slock);
    537 	TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    538 	simple_unlock(&pool_head_slock);
    539 
    540 	/* Insert this into the list of pools using this allocator. */
    541 	simple_lock(&palloc->pa_slock);
    542 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    543 	simple_unlock(&palloc->pa_slock);
    544 }
    545 
    546 /*
    547  * De-commision a pool resource.
    548  */
    549 void
    550 pool_destroy(struct pool *pp)
    551 {
    552 	struct pool_item_header *ph;
    553 	struct pool_cache *pc;
    554 
    555 	/* Locking order: pool_allocator -> pool */
    556 	simple_lock(&pp->pr_alloc->pa_slock);
    557 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    558 	simple_unlock(&pp->pr_alloc->pa_slock);
    559 
    560 	/* Destroy all caches for this pool. */
    561 	while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL)
    562 		pool_cache_destroy(pc);
    563 
    564 #ifdef DIAGNOSTIC
    565 	if (pp->pr_nout != 0) {
    566 		pr_printlog(pp, NULL, printf);
    567 		panic("pool_destroy: pool busy: still out: %u\n",
    568 		    pp->pr_nout);
    569 	}
    570 #endif
    571 
    572 	/* Remove all pages */
    573 	while ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
    574 		pr_rmpage(pp, ph, NULL);
    575 
    576 	/* Remove from global pool list */
    577 	simple_lock(&pool_head_slock);
    578 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    579 	if (drainpp == pp) {
    580 		drainpp = NULL;
    581 	}
    582 	simple_unlock(&pool_head_slock);
    583 
    584 #ifdef POOL_DIAGNOSTIC
    585 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    586 		free(pp->pr_log, M_TEMP);
    587 #endif
    588 }
    589 
    590 void
    591 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    592 {
    593 
    594 	/* XXX no locking -- must be used just after pool_init() */
    595 #ifdef DIAGNOSTIC
    596 	if (pp->pr_drain_hook != NULL)
    597 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    598 #endif
    599 	pp->pr_drain_hook = fn;
    600 	pp->pr_drain_hook_arg = arg;
    601 }
    602 
    603 static __inline struct pool_item_header *
    604 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
    605 {
    606 	struct pool_item_header *ph;
    607 	int s;
    608 
    609 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
    610 
    611 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    612 		ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
    613 	else {
    614 		s = splhigh();
    615 		ph = pool_get(&phpool, flags);
    616 		splx(s);
    617 	}
    618 
    619 	return (ph);
    620 }
    621 
    622 /*
    623  * Grab an item from the pool; must be called at appropriate spl level
    624  */
    625 void *
    626 #ifdef POOL_DIAGNOSTIC
    627 _pool_get(struct pool *pp, int flags, const char *file, long line)
    628 #else
    629 pool_get(struct pool *pp, int flags)
    630 #endif
    631 {
    632 	struct pool_item *pi;
    633 	struct pool_item_header *ph;
    634 	void *v;
    635 
    636 #ifdef DIAGNOSTIC
    637 	if (__predict_false(curproc == NULL && doing_shutdown == 0 &&
    638 			    (flags & PR_WAITOK) != 0))
    639 		panic("pool_get: must have NOWAIT");
    640 
    641 #ifdef LOCKDEBUG
    642 	if (flags & PR_WAITOK)
    643 		simple_lock_only_held(NULL, "pool_get(PR_WAITOK)");
    644 #endif
    645 #endif /* DIAGNOSTIC */
    646 
    647 	simple_lock(&pp->pr_slock);
    648 	pr_enter(pp, file, line);
    649 
    650  startover:
    651 	/*
    652 	 * Check to see if we've reached the hard limit.  If we have,
    653 	 * and we can wait, then wait until an item has been returned to
    654 	 * the pool.
    655 	 */
    656 #ifdef DIAGNOSTIC
    657 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
    658 		pr_leave(pp);
    659 		simple_unlock(&pp->pr_slock);
    660 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
    661 	}
    662 #endif
    663 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    664 		if (pp->pr_drain_hook != NULL) {
    665 			/*
    666 			 * Since the drain hook is going to free things
    667 			 * back to the pool, unlock, call the hook, re-lock,
    668 			 * and check the hardlimit condition again.
    669 			 */
    670 			pr_leave(pp);
    671 			simple_unlock(&pp->pr_slock);
    672 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    673 			simple_lock(&pp->pr_slock);
    674 			pr_enter(pp, file, line);
    675 			if (pp->pr_nout < pp->pr_hardlimit)
    676 				goto startover;
    677 		}
    678 
    679 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    680 			/*
    681 			 * XXX: A warning isn't logged in this case.  Should
    682 			 * it be?
    683 			 */
    684 			pp->pr_flags |= PR_WANTED;
    685 			pr_leave(pp);
    686 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
    687 			pr_enter(pp, file, line);
    688 			goto startover;
    689 		}
    690 
    691 		/*
    692 		 * Log a message that the hard limit has been hit.
    693 		 */
    694 		if (pp->pr_hardlimit_warning != NULL &&
    695 		    ratecheck(&pp->pr_hardlimit_warning_last,
    696 			      &pp->pr_hardlimit_ratecap))
    697 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    698 
    699 		pp->pr_nfail++;
    700 
    701 		pr_leave(pp);
    702 		simple_unlock(&pp->pr_slock);
    703 		return (NULL);
    704 	}
    705 
    706 	/*
    707 	 * The convention we use is that if `curpage' is not NULL, then
    708 	 * it points at a non-empty bucket. In particular, `curpage'
    709 	 * never points at a page header which has PR_PHINPAGE set and
    710 	 * has no items in its bucket.
    711 	 */
    712 	if ((ph = pp->pr_curpage) == NULL) {
    713 #ifdef DIAGNOSTIC
    714 		if (pp->pr_nitems != 0) {
    715 			simple_unlock(&pp->pr_slock);
    716 			printf("pool_get: %s: curpage NULL, nitems %u\n",
    717 			    pp->pr_wchan, pp->pr_nitems);
    718 			panic("pool_get: nitems inconsistent\n");
    719 		}
    720 #endif
    721 
    722 		/*
    723 		 * Call the back-end page allocator for more memory.
    724 		 * Release the pool lock, as the back-end page allocator
    725 		 * may block.
    726 		 */
    727 		pr_leave(pp);
    728 		simple_unlock(&pp->pr_slock);
    729 		v = pool_allocator_alloc(pp, flags);
    730 		if (__predict_true(v != NULL))
    731 			ph = pool_alloc_item_header(pp, v, flags);
    732 		simple_lock(&pp->pr_slock);
    733 		pr_enter(pp, file, line);
    734 
    735 		if (__predict_false(v == NULL || ph == NULL)) {
    736 			if (v != NULL)
    737 				pool_allocator_free(pp, v);
    738 
    739 			/*
    740 			 * We were unable to allocate a page or item
    741 			 * header, but we released the lock during
    742 			 * allocation, so perhaps items were freed
    743 			 * back to the pool.  Check for this case.
    744 			 */
    745 			if (pp->pr_curpage != NULL)
    746 				goto startover;
    747 
    748 			if ((flags & PR_WAITOK) == 0) {
    749 				pp->pr_nfail++;
    750 				pr_leave(pp);
    751 				simple_unlock(&pp->pr_slock);
    752 				return (NULL);
    753 			}
    754 
    755 			/*
    756 			 * Wait for items to be returned to this pool.
    757 			 *
    758 			 * XXX: maybe we should wake up once a second and
    759 			 * try again?
    760 			 */
    761 			pp->pr_flags |= PR_WANTED;
    762 			/* PA_WANTED is already set on the allocator. */
    763 			pr_leave(pp);
    764 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
    765 			pr_enter(pp, file, line);
    766 			goto startover;
    767 		}
    768 
    769 		/* We have more memory; add it to the pool */
    770 		pool_prime_page(pp, v, ph);
    771 		pp->pr_npagealloc++;
    772 
    773 		/* Start the allocation process over. */
    774 		goto startover;
    775 	}
    776 
    777 	if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
    778 		pr_leave(pp);
    779 		simple_unlock(&pp->pr_slock);
    780 		panic("pool_get: %s: page empty", pp->pr_wchan);
    781 	}
    782 #ifdef DIAGNOSTIC
    783 	if (__predict_false(pp->pr_nitems == 0)) {
    784 		pr_leave(pp);
    785 		simple_unlock(&pp->pr_slock);
    786 		printf("pool_get: %s: items on itemlist, nitems %u\n",
    787 		    pp->pr_wchan, pp->pr_nitems);
    788 		panic("pool_get: nitems inconsistent\n");
    789 	}
    790 #endif
    791 
    792 #ifdef POOL_DIAGNOSTIC
    793 	pr_log(pp, v, PRLOG_GET, file, line);
    794 #endif
    795 
    796 #ifdef DIAGNOSTIC
    797 	if (__predict_false(pi->pi_magic != PI_MAGIC)) {
    798 		pr_printlog(pp, pi, printf);
    799 		panic("pool_get(%s): free list modified: magic=%x; page %p;"
    800 		       " item addr %p\n",
    801 			pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    802 	}
    803 #endif
    804 
    805 	/*
    806 	 * Remove from item list.
    807 	 */
    808 	TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
    809 	pp->pr_nitems--;
    810 	pp->pr_nout++;
    811 	if (ph->ph_nmissing == 0) {
    812 #ifdef DIAGNOSTIC
    813 		if (__predict_false(pp->pr_nidle == 0))
    814 			panic("pool_get: nidle inconsistent");
    815 #endif
    816 		pp->pr_nidle--;
    817 	}
    818 	ph->ph_nmissing++;
    819 	if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) {
    820 #ifdef DIAGNOSTIC
    821 		if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
    822 			pr_leave(pp);
    823 			simple_unlock(&pp->pr_slock);
    824 			panic("pool_get: %s: nmissing inconsistent",
    825 			    pp->pr_wchan);
    826 		}
    827 #endif
    828 		/*
    829 		 * Find a new non-empty page header, if any.
    830 		 * Start search from the page head, to increase
    831 		 * the chance for "high water" pages to be freed.
    832 		 *
    833 		 * Migrate empty pages to the end of the list.  This
    834 		 * will speed the update of curpage as pages become
    835 		 * idle.  Empty pages intermingled with idle pages
    836 		 * is no big deal.  As soon as a page becomes un-empty,
    837 		 * it will move back to the head of the list.
    838 		 */
    839 		TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    840 		TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
    841 		TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist)
    842 			if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    843 				break;
    844 
    845 		pp->pr_curpage = ph;
    846 	}
    847 
    848 	pp->pr_nget++;
    849 
    850 	/*
    851 	 * If we have a low water mark and we are now below that low
    852 	 * water mark, add more items to the pool.
    853 	 */
    854 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
    855 		/*
    856 		 * XXX: Should we log a warning?  Should we set up a timeout
    857 		 * to try again in a second or so?  The latter could break
    858 		 * a caller's assumptions about interrupt protection, etc.
    859 		 */
    860 	}
    861 
    862 	pr_leave(pp);
    863 	simple_unlock(&pp->pr_slock);
    864 	return (v);
    865 }
    866 
    867 /*
    868  * Internal version of pool_put().  Pool is already locked/entered.
    869  */
    870 static void
    871 pool_do_put(struct pool *pp, void *v)
    872 {
    873 	struct pool_item *pi = v;
    874 	struct pool_item_header *ph;
    875 	caddr_t page;
    876 	int s;
    877 
    878 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
    879 
    880 	page = (caddr_t)((u_long)v & pp->pr_alloc->pa_pagemask);
    881 
    882 #ifdef DIAGNOSTIC
    883 	if (__predict_false(pp->pr_nout == 0)) {
    884 		printf("pool %s: putting with none out\n",
    885 		    pp->pr_wchan);
    886 		panic("pool_put");
    887 	}
    888 #endif
    889 
    890 	if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
    891 		pr_printlog(pp, NULL, printf);
    892 		panic("pool_put: %s: page header missing", pp->pr_wchan);
    893 	}
    894 
    895 #ifdef LOCKDEBUG
    896 	/*
    897 	 * Check if we're freeing a locked simple lock.
    898 	 */
    899 	simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
    900 #endif
    901 
    902 	/*
    903 	 * Return to item list.
    904 	 */
    905 #ifdef DIAGNOSTIC
    906 	pi->pi_magic = PI_MAGIC;
    907 #endif
    908 #ifdef DEBUG
    909 	{
    910 		int i, *ip = v;
    911 
    912 		for (i = 0; i < pp->pr_size / sizeof(int); i++) {
    913 			*ip++ = PI_MAGIC;
    914 		}
    915 	}
    916 #endif
    917 
    918 	TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    919 	ph->ph_nmissing--;
    920 	pp->pr_nput++;
    921 	pp->pr_nitems++;
    922 	pp->pr_nout--;
    923 
    924 	/* Cancel "pool empty" condition if it exists */
    925 	if (pp->pr_curpage == NULL)
    926 		pp->pr_curpage = ph;
    927 
    928 	if (pp->pr_flags & PR_WANTED) {
    929 		pp->pr_flags &= ~PR_WANTED;
    930 		if (ph->ph_nmissing == 0)
    931 			pp->pr_nidle++;
    932 		wakeup((caddr_t)pp);
    933 		return;
    934 	}
    935 
    936 	/*
    937 	 * If this page is now complete, do one of two things:
    938 	 *
    939 	 *	(1) If we have more pages than the page high water
    940 	 *	    mark, free the page back to the system.
    941 	 *
    942 	 *	(2) Move it to the end of the page list, so that
    943 	 *	    we minimize our chances of fragmenting the
    944 	 *	    pool.  Idle pages migrate to the end (along with
    945 	 *	    completely empty pages, so that we find un-empty
    946 	 *	    pages more quickly when we update curpage) of the
    947 	 *	    list so they can be more easily swept up by
    948 	 *	    the pagedaemon when pages are scarce.
    949 	 */
    950 	if (ph->ph_nmissing == 0) {
    951 		pp->pr_nidle++;
    952 		if (pp->pr_npages > pp->pr_maxpages ||
    953 		    (pp->pr_alloc->pa_flags & PA_WANT) != 0) {
    954 			pr_rmpage(pp, ph, NULL);
    955 		} else {
    956 			TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    957 			TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
    958 
    959 			/*
    960 			 * Update the timestamp on the page.  A page must
    961 			 * be idle for some period of time before it can
    962 			 * be reclaimed by the pagedaemon.  This minimizes
    963 			 * ping-pong'ing for memory.
    964 			 */
    965 			s = splclock();
    966 			ph->ph_time = mono_time;
    967 			splx(s);
    968 
    969 			/*
    970 			 * Update the current page pointer.  Just look for
    971 			 * the first page with any free items.
    972 			 *
    973 			 * XXX: Maybe we want an option to look for the
    974 			 * page with the fewest available items, to minimize
    975 			 * fragmentation?
    976 			 */
    977 			TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist)
    978 				if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    979 					break;
    980 
    981 			pp->pr_curpage = ph;
    982 		}
    983 	}
    984 	/*
    985 	 * If the page has just become un-empty, move it to the head of
    986 	 * the list, and make it the current page.  The next allocation
    987 	 * will get the item from this page, instead of further fragmenting
    988 	 * the pool.
    989 	 */
    990 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
    991 		TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    992 		TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
    993 		pp->pr_curpage = ph;
    994 	}
    995 }
    996 
    997 /*
    998  * Return resource to the pool; must be called at appropriate spl level
    999  */
   1000 #ifdef POOL_DIAGNOSTIC
   1001 void
   1002 _pool_put(struct pool *pp, void *v, const char *file, long line)
   1003 {
   1004 
   1005 	simple_lock(&pp->pr_slock);
   1006 	pr_enter(pp, file, line);
   1007 
   1008 	pr_log(pp, v, PRLOG_PUT, file, line);
   1009 
   1010 	pool_do_put(pp, v);
   1011 
   1012 	pr_leave(pp);
   1013 	simple_unlock(&pp->pr_slock);
   1014 }
   1015 #undef pool_put
   1016 #endif /* POOL_DIAGNOSTIC */
   1017 
   1018 void
   1019 pool_put(struct pool *pp, void *v)
   1020 {
   1021 
   1022 	simple_lock(&pp->pr_slock);
   1023 
   1024 	pool_do_put(pp, v);
   1025 
   1026 	simple_unlock(&pp->pr_slock);
   1027 }
   1028 
   1029 #ifdef POOL_DIAGNOSTIC
   1030 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1031 #endif
   1032 
   1033 /*
   1034  * Add N items to the pool.
   1035  */
   1036 int
   1037 pool_prime(struct pool *pp, int n)
   1038 {
   1039 	struct pool_item_header *ph;
   1040 	caddr_t cp;
   1041 	int newpages;
   1042 
   1043 	simple_lock(&pp->pr_slock);
   1044 
   1045 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1046 
   1047 	while (newpages-- > 0) {
   1048 		simple_unlock(&pp->pr_slock);
   1049 		cp = pool_allocator_alloc(pp, PR_NOWAIT);
   1050 		if (__predict_true(cp != NULL))
   1051 			ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
   1052 		simple_lock(&pp->pr_slock);
   1053 
   1054 		if (__predict_false(cp == NULL || ph == NULL)) {
   1055 			if (cp != NULL)
   1056 				pool_allocator_free(pp, cp);
   1057 			break;
   1058 		}
   1059 
   1060 		pool_prime_page(pp, cp, ph);
   1061 		pp->pr_npagealloc++;
   1062 		pp->pr_minpages++;
   1063 	}
   1064 
   1065 	if (pp->pr_minpages >= pp->pr_maxpages)
   1066 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1067 
   1068 	simple_unlock(&pp->pr_slock);
   1069 	return (0);
   1070 }
   1071 
   1072 /*
   1073  * Add a page worth of items to the pool.
   1074  *
   1075  * Note, we must be called with the pool descriptor LOCKED.
   1076  */
   1077 static void
   1078 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
   1079 {
   1080 	struct pool_item *pi;
   1081 	caddr_t cp = storage;
   1082 	unsigned int align = pp->pr_align;
   1083 	unsigned int ioff = pp->pr_itemoffset;
   1084 	int n;
   1085 
   1086 #ifdef DIAGNOSTIC
   1087 	if (((u_long)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1088 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1089 #endif
   1090 
   1091 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1092 		LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)],
   1093 		    ph, ph_hashlist);
   1094 
   1095 	/*
   1096 	 * Insert page header.
   1097 	 */
   1098 	TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
   1099 	TAILQ_INIT(&ph->ph_itemlist);
   1100 	ph->ph_page = storage;
   1101 	ph->ph_nmissing = 0;
   1102 	memset(&ph->ph_time, 0, sizeof(ph->ph_time));
   1103 
   1104 	pp->pr_nidle++;
   1105 
   1106 	/*
   1107 	 * Color this page.
   1108 	 */
   1109 	cp = (caddr_t)(cp + pp->pr_curcolor);
   1110 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1111 		pp->pr_curcolor = 0;
   1112 
   1113 	/*
   1114 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1115 	 */
   1116 	if (ioff != 0)
   1117 		cp = (caddr_t)(cp + (align - ioff));
   1118 
   1119 	/*
   1120 	 * Insert remaining chunks on the bucket list.
   1121 	 */
   1122 	n = pp->pr_itemsperpage;
   1123 	pp->pr_nitems += n;
   1124 
   1125 	while (n--) {
   1126 		pi = (struct pool_item *)cp;
   1127 
   1128 		/* Insert on page list */
   1129 		TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
   1130 #ifdef DIAGNOSTIC
   1131 		pi->pi_magic = PI_MAGIC;
   1132 #endif
   1133 		cp = (caddr_t)(cp + pp->pr_size);
   1134 	}
   1135 
   1136 	/*
   1137 	 * If the pool was depleted, point at the new page.
   1138 	 */
   1139 	if (pp->pr_curpage == NULL)
   1140 		pp->pr_curpage = ph;
   1141 
   1142 	if (++pp->pr_npages > pp->pr_hiwat)
   1143 		pp->pr_hiwat = pp->pr_npages;
   1144 }
   1145 
   1146 /*
   1147  * Used by pool_get() when nitems drops below the low water mark.  This
   1148  * is used to catch up nitmes with the low water mark.
   1149  *
   1150  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1151  *
   1152  * Note 2, we must be called with the pool already locked, and we return
   1153  * with it locked.
   1154  */
   1155 static int
   1156 pool_catchup(struct pool *pp)
   1157 {
   1158 	struct pool_item_header *ph;
   1159 	caddr_t cp;
   1160 	int error = 0;
   1161 
   1162 	while (POOL_NEEDS_CATCHUP(pp)) {
   1163 		/*
   1164 		 * Call the page back-end allocator for more memory.
   1165 		 *
   1166 		 * XXX: We never wait, so should we bother unlocking
   1167 		 * the pool descriptor?
   1168 		 */
   1169 		simple_unlock(&pp->pr_slock);
   1170 		cp = pool_allocator_alloc(pp, PR_NOWAIT);
   1171 		if (__predict_true(cp != NULL))
   1172 			ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
   1173 		simple_lock(&pp->pr_slock);
   1174 		if (__predict_false(cp == NULL || ph == NULL)) {
   1175 			if (cp != NULL)
   1176 				pool_allocator_free(pp, cp);
   1177 			error = ENOMEM;
   1178 			break;
   1179 		}
   1180 		pool_prime_page(pp, cp, ph);
   1181 		pp->pr_npagealloc++;
   1182 	}
   1183 
   1184 	return (error);
   1185 }
   1186 
   1187 void
   1188 pool_setlowat(struct pool *pp, int n)
   1189 {
   1190 
   1191 	simple_lock(&pp->pr_slock);
   1192 
   1193 	pp->pr_minitems = n;
   1194 	pp->pr_minpages = (n == 0)
   1195 		? 0
   1196 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1197 
   1198 	/* Make sure we're caught up with the newly-set low water mark. */
   1199 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1200 		/*
   1201 		 * XXX: Should we log a warning?  Should we set up a timeout
   1202 		 * to try again in a second or so?  The latter could break
   1203 		 * a caller's assumptions about interrupt protection, etc.
   1204 		 */
   1205 	}
   1206 
   1207 	simple_unlock(&pp->pr_slock);
   1208 }
   1209 
   1210 void
   1211 pool_sethiwat(struct pool *pp, int n)
   1212 {
   1213 
   1214 	simple_lock(&pp->pr_slock);
   1215 
   1216 	pp->pr_maxpages = (n == 0)
   1217 		? 0
   1218 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1219 
   1220 	simple_unlock(&pp->pr_slock);
   1221 }
   1222 
   1223 void
   1224 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1225 {
   1226 
   1227 	simple_lock(&pp->pr_slock);
   1228 
   1229 	pp->pr_hardlimit = n;
   1230 	pp->pr_hardlimit_warning = warnmess;
   1231 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1232 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1233 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1234 
   1235 	/*
   1236 	 * In-line version of pool_sethiwat(), because we don't want to
   1237 	 * release the lock.
   1238 	 */
   1239 	pp->pr_maxpages = (n == 0)
   1240 		? 0
   1241 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1242 
   1243 	simple_unlock(&pp->pr_slock);
   1244 }
   1245 
   1246 /*
   1247  * Release all complete pages that have not been used recently.
   1248  */
   1249 int
   1250 #ifdef POOL_DIAGNOSTIC
   1251 _pool_reclaim(struct pool *pp, const char *file, long line)
   1252 #else
   1253 pool_reclaim(struct pool *pp)
   1254 #endif
   1255 {
   1256 	struct pool_item_header *ph, *phnext;
   1257 	struct pool_cache *pc;
   1258 	struct timeval curtime;
   1259 	struct pool_pagelist pq;
   1260 	int s;
   1261 
   1262 	if (pp->pr_drain_hook != NULL) {
   1263 		/*
   1264 		 * The drain hook must be called with the pool unlocked.
   1265 		 */
   1266 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1267 	}
   1268 
   1269 	if (simple_lock_try(&pp->pr_slock) == 0)
   1270 		return (0);
   1271 	pr_enter(pp, file, line);
   1272 
   1273 	TAILQ_INIT(&pq);
   1274 
   1275 	/*
   1276 	 * Reclaim items from the pool's caches.
   1277 	 */
   1278 	TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
   1279 		pool_cache_reclaim(pc);
   1280 
   1281 	s = splclock();
   1282 	curtime = mono_time;
   1283 	splx(s);
   1284 
   1285 	for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) {
   1286 		phnext = TAILQ_NEXT(ph, ph_pagelist);
   1287 
   1288 		/* Check our minimum page claim */
   1289 		if (pp->pr_npages <= pp->pr_minpages)
   1290 			break;
   1291 
   1292 		if (ph->ph_nmissing == 0) {
   1293 			struct timeval diff;
   1294 			timersub(&curtime, &ph->ph_time, &diff);
   1295 			if (diff.tv_sec < pool_inactive_time)
   1296 				continue;
   1297 
   1298 			/*
   1299 			 * If freeing this page would put us below
   1300 			 * the low water mark, stop now.
   1301 			 */
   1302 			if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1303 			    pp->pr_minitems)
   1304 				break;
   1305 
   1306 			pr_rmpage(pp, ph, &pq);
   1307 		}
   1308 	}
   1309 
   1310 	pr_leave(pp);
   1311 	simple_unlock(&pp->pr_slock);
   1312 	if (TAILQ_EMPTY(&pq))
   1313 		return (0);
   1314 
   1315 	while ((ph = TAILQ_FIRST(&pq)) != NULL) {
   1316 		TAILQ_REMOVE(&pq, ph, ph_pagelist);
   1317 		pool_allocator_free(pp, ph->ph_page);
   1318 		if (pp->pr_roflags & PR_PHINPAGE) {
   1319 			continue;
   1320 		}
   1321 		LIST_REMOVE(ph, ph_hashlist);
   1322 		s = splhigh();
   1323 		pool_put(&phpool, ph);
   1324 		splx(s);
   1325 	}
   1326 
   1327 	return (1);
   1328 }
   1329 
   1330 /*
   1331  * Drain pools, one at a time.
   1332  *
   1333  * Note, we must never be called from an interrupt context.
   1334  */
   1335 void
   1336 pool_drain(void *arg)
   1337 {
   1338 	struct pool *pp;
   1339 	int s;
   1340 
   1341 	pp = NULL;
   1342 	s = splvm();
   1343 	simple_lock(&pool_head_slock);
   1344 	if (drainpp == NULL) {
   1345 		drainpp = TAILQ_FIRST(&pool_head);
   1346 	}
   1347 	if (drainpp) {
   1348 		pp = drainpp;
   1349 		drainpp = TAILQ_NEXT(pp, pr_poollist);
   1350 	}
   1351 	simple_unlock(&pool_head_slock);
   1352 	pool_reclaim(pp);
   1353 	splx(s);
   1354 }
   1355 
   1356 /*
   1357  * Diagnostic helpers.
   1358  */
   1359 void
   1360 pool_print(struct pool *pp, const char *modif)
   1361 {
   1362 	int s;
   1363 
   1364 	s = splvm();
   1365 	if (simple_lock_try(&pp->pr_slock) == 0) {
   1366 		printf("pool %s is locked; try again later\n",
   1367 		    pp->pr_wchan);
   1368 		splx(s);
   1369 		return;
   1370 	}
   1371 	pool_print1(pp, modif, printf);
   1372 	simple_unlock(&pp->pr_slock);
   1373 	splx(s);
   1374 }
   1375 
   1376 void
   1377 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1378 {
   1379 	int didlock = 0;
   1380 
   1381 	if (pp == NULL) {
   1382 		(*pr)("Must specify a pool to print.\n");
   1383 		return;
   1384 	}
   1385 
   1386 	/*
   1387 	 * Called from DDB; interrupts should be blocked, and all
   1388 	 * other processors should be paused.  We can skip locking
   1389 	 * the pool in this case.
   1390 	 *
   1391 	 * We do a simple_lock_try() just to print the lock
   1392 	 * status, however.
   1393 	 */
   1394 
   1395 	if (simple_lock_try(&pp->pr_slock) == 0)
   1396 		(*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
   1397 	else
   1398 		didlock = 1;
   1399 
   1400 	pool_print1(pp, modif, pr);
   1401 
   1402 	if (didlock)
   1403 		simple_unlock(&pp->pr_slock);
   1404 }
   1405 
   1406 static void
   1407 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1408 {
   1409 	struct pool_item_header *ph;
   1410 	struct pool_cache *pc;
   1411 	struct pool_cache_group *pcg;
   1412 #ifdef DIAGNOSTIC
   1413 	struct pool_item *pi;
   1414 #endif
   1415 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1416 	char c;
   1417 
   1418 	while ((c = *modif++) != '\0') {
   1419 		if (c == 'l')
   1420 			print_log = 1;
   1421 		if (c == 'p')
   1422 			print_pagelist = 1;
   1423 		if (c == 'c')
   1424 			print_cache = 1;
   1425 		modif++;
   1426 	}
   1427 
   1428 	(*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1429 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1430 	    pp->pr_roflags);
   1431 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1432 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1433 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1434 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1435 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1436 
   1437 	(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
   1438 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1439 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1440 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1441 
   1442 	if (print_pagelist == 0)
   1443 		goto skip_pagelist;
   1444 
   1445 	if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
   1446 		(*pr)("\n\tpage list:\n");
   1447 	for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) {
   1448 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
   1449 		    ph->ph_page, ph->ph_nmissing,
   1450 		    (u_long)ph->ph_time.tv_sec,
   1451 		    (u_long)ph->ph_time.tv_usec);
   1452 #ifdef DIAGNOSTIC
   1453 		TAILQ_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1454 			if (pi->pi_magic != PI_MAGIC) {
   1455 				(*pr)("\t\t\titem %p, magic 0x%x\n",
   1456 				    pi, pi->pi_magic);
   1457 			}
   1458 		}
   1459 #endif
   1460 	}
   1461 	if (pp->pr_curpage == NULL)
   1462 		(*pr)("\tno current page\n");
   1463 	else
   1464 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1465 
   1466  skip_pagelist:
   1467 
   1468 	if (print_log == 0)
   1469 		goto skip_log;
   1470 
   1471 	(*pr)("\n");
   1472 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1473 		(*pr)("\tno log\n");
   1474 	else
   1475 		pr_printlog(pp, NULL, pr);
   1476 
   1477  skip_log:
   1478 
   1479 	if (print_cache == 0)
   1480 		goto skip_cache;
   1481 
   1482 	TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
   1483 		(*pr)("\tcache %p: allocfrom %p freeto %p\n", pc,
   1484 		    pc->pc_allocfrom, pc->pc_freeto);
   1485 		(*pr)("\t    hits %lu misses %lu ngroups %lu nitems %lu\n",
   1486 		    pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
   1487 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
   1488 			(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);
   1489 			for (i = 0; i < PCG_NOBJECTS; i++)
   1490 				(*pr)("\t\t\t%p\n", pcg->pcg_objects[i]);
   1491 		}
   1492 	}
   1493 
   1494  skip_cache:
   1495 
   1496 	pr_enter_check(pp, pr);
   1497 }
   1498 
   1499 int
   1500 pool_chk(struct pool *pp, const char *label)
   1501 {
   1502 	struct pool_item_header *ph;
   1503 	int r = 0;
   1504 
   1505 	simple_lock(&pp->pr_slock);
   1506 
   1507 	TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist) {
   1508 		struct pool_item *pi;
   1509 		int n;
   1510 		caddr_t page;
   1511 
   1512 		page = (caddr_t)((u_long)ph & pp->pr_alloc->pa_pagemask);
   1513 		if (page != ph->ph_page &&
   1514 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1515 			if (label != NULL)
   1516 				printf("%s: ", label);
   1517 			printf("pool(%p:%s): page inconsistency: page %p;"
   1518 			       " at page head addr %p (p %p)\n", pp,
   1519 				pp->pr_wchan, ph->ph_page,
   1520 				ph, page);
   1521 			r++;
   1522 			goto out;
   1523 		}
   1524 
   1525 		for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
   1526 		     pi != NULL;
   1527 		     pi = TAILQ_NEXT(pi,pi_list), n++) {
   1528 
   1529 #ifdef DIAGNOSTIC
   1530 			if (pi->pi_magic != PI_MAGIC) {
   1531 				if (label != NULL)
   1532 					printf("%s: ", label);
   1533 				printf("pool(%s): free list modified: magic=%x;"
   1534 				       " page %p; item ordinal %d;"
   1535 				       " addr %p (p %p)\n",
   1536 					pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1537 					n, pi, page);
   1538 				panic("pool");
   1539 			}
   1540 #endif
   1541 			page =
   1542 			    (caddr_t)((u_long)pi & pp->pr_alloc->pa_pagemask);
   1543 			if (page == ph->ph_page)
   1544 				continue;
   1545 
   1546 			if (label != NULL)
   1547 				printf("%s: ", label);
   1548 			printf("pool(%p:%s): page inconsistency: page %p;"
   1549 			       " item ordinal %d; addr %p (p %p)\n", pp,
   1550 				pp->pr_wchan, ph->ph_page,
   1551 				n, pi, page);
   1552 			r++;
   1553 			goto out;
   1554 		}
   1555 	}
   1556 out:
   1557 	simple_unlock(&pp->pr_slock);
   1558 	return (r);
   1559 }
   1560 
   1561 /*
   1562  * pool_cache_init:
   1563  *
   1564  *	Initialize a pool cache.
   1565  *
   1566  *	NOTE: If the pool must be protected from interrupts, we expect
   1567  *	to be called at the appropriate interrupt priority level.
   1568  */
   1569 void
   1570 pool_cache_init(struct pool_cache *pc, struct pool *pp,
   1571     int (*ctor)(void *, void *, int),
   1572     void (*dtor)(void *, void *),
   1573     void *arg)
   1574 {
   1575 
   1576 	TAILQ_INIT(&pc->pc_grouplist);
   1577 	simple_lock_init(&pc->pc_slock);
   1578 
   1579 	pc->pc_allocfrom = NULL;
   1580 	pc->pc_freeto = NULL;
   1581 	pc->pc_pool = pp;
   1582 
   1583 	pc->pc_ctor = ctor;
   1584 	pc->pc_dtor = dtor;
   1585 	pc->pc_arg  = arg;
   1586 
   1587 	pc->pc_hits   = 0;
   1588 	pc->pc_misses = 0;
   1589 
   1590 	pc->pc_ngroups = 0;
   1591 
   1592 	pc->pc_nitems = 0;
   1593 
   1594 	simple_lock(&pp->pr_slock);
   1595 	TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist);
   1596 	simple_unlock(&pp->pr_slock);
   1597 }
   1598 
   1599 /*
   1600  * pool_cache_destroy:
   1601  *
   1602  *	Destroy a pool cache.
   1603  */
   1604 void
   1605 pool_cache_destroy(struct pool_cache *pc)
   1606 {
   1607 	struct pool *pp = pc->pc_pool;
   1608 
   1609 	/* First, invalidate the entire cache. */
   1610 	pool_cache_invalidate(pc);
   1611 
   1612 	/* ...and remove it from the pool's cache list. */
   1613 	simple_lock(&pp->pr_slock);
   1614 	TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist);
   1615 	simple_unlock(&pp->pr_slock);
   1616 }
   1617 
   1618 static __inline void *
   1619 pcg_get(struct pool_cache_group *pcg)
   1620 {
   1621 	void *object;
   1622 	u_int idx;
   1623 
   1624 	KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
   1625 	KASSERT(pcg->pcg_avail != 0);
   1626 	idx = --pcg->pcg_avail;
   1627 
   1628 	KASSERT(pcg->pcg_objects[idx] != NULL);
   1629 	object = pcg->pcg_objects[idx];
   1630 	pcg->pcg_objects[idx] = NULL;
   1631 
   1632 	return (object);
   1633 }
   1634 
   1635 static __inline void
   1636 pcg_put(struct pool_cache_group *pcg, void *object)
   1637 {
   1638 	u_int idx;
   1639 
   1640 	KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
   1641 	idx = pcg->pcg_avail++;
   1642 
   1643 	KASSERT(pcg->pcg_objects[idx] == NULL);
   1644 	pcg->pcg_objects[idx] = object;
   1645 }
   1646 
   1647 /*
   1648  * pool_cache_get:
   1649  *
   1650  *	Get an object from a pool cache.
   1651  */
   1652 void *
   1653 pool_cache_get(struct pool_cache *pc, int flags)
   1654 {
   1655 	struct pool_cache_group *pcg;
   1656 	void *object;
   1657 
   1658 #ifdef LOCKDEBUG
   1659 	if (flags & PR_WAITOK)
   1660 		simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)");
   1661 #endif
   1662 
   1663 	simple_lock(&pc->pc_slock);
   1664 
   1665 	if ((pcg = pc->pc_allocfrom) == NULL) {
   1666 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
   1667 			if (pcg->pcg_avail != 0) {
   1668 				pc->pc_allocfrom = pcg;
   1669 				goto have_group;
   1670 			}
   1671 		}
   1672 
   1673 		/*
   1674 		 * No groups with any available objects.  Allocate
   1675 		 * a new object, construct it, and return it to
   1676 		 * the caller.  We will allocate a group, if necessary,
   1677 		 * when the object is freed back to the cache.
   1678 		 */
   1679 		pc->pc_misses++;
   1680 		simple_unlock(&pc->pc_slock);
   1681 		object = pool_get(pc->pc_pool, flags);
   1682 		if (object != NULL && pc->pc_ctor != NULL) {
   1683 			if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
   1684 				pool_put(pc->pc_pool, object);
   1685 				return (NULL);
   1686 			}
   1687 		}
   1688 		return (object);
   1689 	}
   1690 
   1691  have_group:
   1692 	pc->pc_hits++;
   1693 	pc->pc_nitems--;
   1694 	object = pcg_get(pcg);
   1695 
   1696 	if (pcg->pcg_avail == 0)
   1697 		pc->pc_allocfrom = NULL;
   1698 
   1699 	simple_unlock(&pc->pc_slock);
   1700 
   1701 	return (object);
   1702 }
   1703 
   1704 /*
   1705  * pool_cache_put:
   1706  *
   1707  *	Put an object back to the pool cache.
   1708  */
   1709 void
   1710 pool_cache_put(struct pool_cache *pc, void *object)
   1711 {
   1712 	struct pool_cache_group *pcg;
   1713 	int s;
   1714 
   1715 	simple_lock(&pc->pc_slock);
   1716 
   1717 	if ((pcg = pc->pc_freeto) == NULL) {
   1718 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
   1719 			if (pcg->pcg_avail != PCG_NOBJECTS) {
   1720 				pc->pc_freeto = pcg;
   1721 				goto have_group;
   1722 			}
   1723 		}
   1724 
   1725 		/*
   1726 		 * No empty groups to free the object to.  Attempt to
   1727 		 * allocate one.
   1728 		 */
   1729 		simple_unlock(&pc->pc_slock);
   1730 		s = splvm();
   1731 		pcg = pool_get(&pcgpool, PR_NOWAIT);
   1732 		splx(s);
   1733 		if (pcg != NULL) {
   1734 			memset(pcg, 0, sizeof(*pcg));
   1735 			simple_lock(&pc->pc_slock);
   1736 			pc->pc_ngroups++;
   1737 			TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list);
   1738 			if (pc->pc_freeto == NULL)
   1739 				pc->pc_freeto = pcg;
   1740 			goto have_group;
   1741 		}
   1742 
   1743 		/*
   1744 		 * Unable to allocate a cache group; destruct the object
   1745 		 * and free it back to the pool.
   1746 		 */
   1747 		pool_cache_destruct_object(pc, object);
   1748 		return;
   1749 	}
   1750 
   1751  have_group:
   1752 	pc->pc_nitems++;
   1753 	pcg_put(pcg, object);
   1754 
   1755 	if (pcg->pcg_avail == PCG_NOBJECTS)
   1756 		pc->pc_freeto = NULL;
   1757 
   1758 	simple_unlock(&pc->pc_slock);
   1759 }
   1760 
   1761 /*
   1762  * pool_cache_destruct_object:
   1763  *
   1764  *	Force destruction of an object and its release back into
   1765  *	the pool.
   1766  */
   1767 void
   1768 pool_cache_destruct_object(struct pool_cache *pc, void *object)
   1769 {
   1770 
   1771 	if (pc->pc_dtor != NULL)
   1772 		(*pc->pc_dtor)(pc->pc_arg, object);
   1773 	pool_put(pc->pc_pool, object);
   1774 }
   1775 
   1776 /*
   1777  * pool_cache_do_invalidate:
   1778  *
   1779  *	This internal function implements pool_cache_invalidate() and
   1780  *	pool_cache_reclaim().
   1781  */
   1782 static void
   1783 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups,
   1784     void (*putit)(struct pool *, void *))
   1785 {
   1786 	struct pool_cache_group *pcg, *npcg;
   1787 	void *object;
   1788 	int s;
   1789 
   1790 	for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
   1791 	     pcg = npcg) {
   1792 		npcg = TAILQ_NEXT(pcg, pcg_list);
   1793 		while (pcg->pcg_avail != 0) {
   1794 			pc->pc_nitems--;
   1795 			object = pcg_get(pcg);
   1796 			if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg)
   1797 				pc->pc_allocfrom = NULL;
   1798 			if (pc->pc_dtor != NULL)
   1799 				(*pc->pc_dtor)(pc->pc_arg, object);
   1800 			(*putit)(pc->pc_pool, object);
   1801 		}
   1802 		if (free_groups) {
   1803 			pc->pc_ngroups--;
   1804 			TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list);
   1805 			if (pc->pc_freeto == pcg)
   1806 				pc->pc_freeto = NULL;
   1807 			s = splvm();
   1808 			pool_put(&pcgpool, pcg);
   1809 			splx(s);
   1810 		}
   1811 	}
   1812 }
   1813 
   1814 /*
   1815  * pool_cache_invalidate:
   1816  *
   1817  *	Invalidate a pool cache (destruct and release all of the
   1818  *	cached objects).
   1819  */
   1820 void
   1821 pool_cache_invalidate(struct pool_cache *pc)
   1822 {
   1823 
   1824 	simple_lock(&pc->pc_slock);
   1825 	pool_cache_do_invalidate(pc, 0, pool_put);
   1826 	simple_unlock(&pc->pc_slock);
   1827 }
   1828 
   1829 /*
   1830  * pool_cache_reclaim:
   1831  *
   1832  *	Reclaim a pool cache for pool_reclaim().
   1833  */
   1834 static void
   1835 pool_cache_reclaim(struct pool_cache *pc)
   1836 {
   1837 
   1838 	simple_lock(&pc->pc_slock);
   1839 	pool_cache_do_invalidate(pc, 1, pool_do_put);
   1840 	simple_unlock(&pc->pc_slock);
   1841 }
   1842 
   1843 /*
   1844  * Pool backend allocators.
   1845  *
   1846  * Each pool has a backend allocator that handles allocation, deallocation,
   1847  * and any additional draining that might be needed.
   1848  *
   1849  * We provide two standard allocators:
   1850  *
   1851  *	pool_allocator_kmem - the default when no allocator is specified
   1852  *
   1853  *	pool_allocator_nointr - used for pools that will not be accessed
   1854  *	in interrupt context.
   1855  */
   1856 void	*pool_page_alloc(struct pool *, int);
   1857 void	pool_page_free(struct pool *, void *);
   1858 
   1859 struct pool_allocator pool_allocator_kmem = {
   1860 	pool_page_alloc, pool_page_free, 0,
   1861 };
   1862 
   1863 void	*pool_page_alloc_nointr(struct pool *, int);
   1864 void	pool_page_free_nointr(struct pool *, void *);
   1865 
   1866 struct pool_allocator pool_allocator_nointr = {
   1867 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   1868 };
   1869 
   1870 #ifdef POOL_SUBPAGE
   1871 void	*pool_subpage_alloc(struct pool *, int);
   1872 void	pool_subpage_free(struct pool *, void *);
   1873 
   1874 struct pool_allocator pool_allocator_kmem_subpage = {
   1875 	pool_subpage_alloc, pool_subpage_free, 0,
   1876 };
   1877 #endif /* POOL_SUBPAGE */
   1878 
   1879 /*
   1880  * We have at least three different resources for the same allocation and
   1881  * each resource can be depleted.  First, we have the ready elements in the
   1882  * pool.  Then we have the resource (typically a vm_map) for this allocator.
   1883  * Finally, we have physical memory.  Waiting for any of these can be
   1884  * unnecessary when any other is freed, but the kernel doesn't support
   1885  * sleeping on multiple wait channels, so we have to employ another strategy.
   1886  *
   1887  * The caller sleeps on the pool (so that it can be awakened when an item
   1888  * is returned to the pool), but we set PA_WANT on the allocator.  When a
   1889  * page is returned to the allocator and PA_WANT is set, pool_allocator_free
   1890  * will wake up all sleeping pools belonging to this allocator.
   1891  *
   1892  * XXX Thundering herd.
   1893  */
   1894 void *
   1895 pool_allocator_alloc(struct pool *org, int flags)
   1896 {
   1897 	struct pool_allocator *pa = org->pr_alloc;
   1898 	struct pool *pp, *start;
   1899 	int s, freed;
   1900 	void *res;
   1901 
   1902 	do {
   1903 		if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
   1904 			return (res);
   1905 		if ((flags & PR_WAITOK) == 0) {
   1906 			/*
   1907 			 * We only run the drain hookhere if PR_NOWAIT.
   1908 			 * In other cases, the hook will be run in
   1909 			 * pool_reclaim().
   1910 			 */
   1911 			if (org->pr_drain_hook != NULL) {
   1912 				(*org->pr_drain_hook)(org->pr_drain_hook_arg,
   1913 				    flags);
   1914 				if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
   1915 					return (res);
   1916 			}
   1917 			break;
   1918 		}
   1919 
   1920 		/*
   1921 		 * Drain all pools, except "org", that use this
   1922 		 * allocator.  We do this to reclaim VA space.
   1923 		 * pa_alloc is responsible for waiting for
   1924 		 * physical memory.
   1925 		 *
   1926 		 * XXX We risk looping forever if start if someone
   1927 		 * calls pool_destroy on "start".  But there is no
   1928 		 * other way to have potentially sleeping pool_reclaim,
   1929 		 * non-sleeping locks on pool_allocator, and some
   1930 		 * stirring of drained pools in the allocator.
   1931 		 *
   1932 		 * XXX Maybe we should use pool_head_slock for locking
   1933 		 * the allocators?
   1934 		 */
   1935 		freed = 0;
   1936 
   1937 		s = splvm();
   1938 		simple_lock(&pa->pa_slock);
   1939 		pp = start = TAILQ_FIRST(&pa->pa_list);
   1940 		do {
   1941 			TAILQ_REMOVE(&pa->pa_list, pp, pr_alloc_list);
   1942 			TAILQ_INSERT_TAIL(&pa->pa_list, pp, pr_alloc_list);
   1943 			if (pp == org)
   1944 				continue;
   1945 			simple_unlock(&pa->pa_slock);
   1946 			freed = pool_reclaim(pp);
   1947 			simple_lock(&pa->pa_slock);
   1948 		} while ((pp = TAILQ_FIRST(&pa->pa_list)) != start &&
   1949 			 freed == 0);
   1950 
   1951 		if (freed == 0) {
   1952 			/*
   1953 			 * We set PA_WANT here, the caller will most likely
   1954 			 * sleep waiting for pages (if not, this won't hurt
   1955 			 * that much), and there is no way to set this in
   1956 			 * the caller without violating locking order.
   1957 			 */
   1958 			pa->pa_flags |= PA_WANT;
   1959 		}
   1960 		simple_unlock(&pa->pa_slock);
   1961 		splx(s);
   1962 	} while (freed);
   1963 	return (NULL);
   1964 }
   1965 
   1966 void
   1967 pool_allocator_free(struct pool *pp, void *v)
   1968 {
   1969 	struct pool_allocator *pa = pp->pr_alloc;
   1970 	int s;
   1971 
   1972 	(*pa->pa_free)(pp, v);
   1973 
   1974 	s = splvm();
   1975 	simple_lock(&pa->pa_slock);
   1976 	if ((pa->pa_flags & PA_WANT) == 0) {
   1977 		simple_unlock(&pa->pa_slock);
   1978 		splx(s);
   1979 		return;
   1980 	}
   1981 
   1982 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
   1983 		simple_lock(&pp->pr_slock);
   1984 		if ((pp->pr_flags & PR_WANTED) != 0) {
   1985 			pp->pr_flags &= ~PR_WANTED;
   1986 			wakeup(pp);
   1987 		}
   1988 		simple_unlock(&pp->pr_slock);
   1989 	}
   1990 	pa->pa_flags &= ~PA_WANT;
   1991 	simple_unlock(&pa->pa_slock);
   1992 	splx(s);
   1993 }
   1994 
   1995 void *
   1996 pool_page_alloc(struct pool *pp, int flags)
   1997 {
   1998 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   1999 
   2000 	return ((void *) uvm_km_alloc_poolpage(waitok));
   2001 }
   2002 
   2003 void
   2004 pool_page_free(struct pool *pp, void *v)
   2005 {
   2006 
   2007 	uvm_km_free_poolpage((vaddr_t) v);
   2008 }
   2009 
   2010 #ifdef POOL_SUBPAGE
   2011 /* Sub-page allocator, for machines with large hardware pages. */
   2012 void *
   2013 pool_subpage_alloc(struct pool *pp, int flags)
   2014 {
   2015 
   2016 	return (pool_get(&psppool, flags));
   2017 }
   2018 
   2019 void
   2020 pool_subpage_free(struct pool *pp, void *v)
   2021 {
   2022 
   2023 	pool_put(&psppool, v);
   2024 }
   2025 
   2026 /* We don't provide a real nointr allocator.  Maybe later. */
   2027 void *
   2028 pool_page_alloc_nointr(struct pool *pp, int flags)
   2029 {
   2030 
   2031 	return (pool_subpage_alloc(pp, flags));
   2032 }
   2033 
   2034 void
   2035 pool_page_free_nointr(struct pool *pp, void *v)
   2036 {
   2037 
   2038 	pool_subpage_free(pp, v);
   2039 }
   2040 #else
   2041 void *
   2042 pool_page_alloc_nointr(struct pool *pp, int flags)
   2043 {
   2044 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   2045 
   2046 	return ((void *) uvm_km_alloc_poolpage1(kernel_map,
   2047 	    uvm.kernel_object, waitok));
   2048 }
   2049 
   2050 void
   2051 pool_page_free_nointr(struct pool *pp, void *v)
   2052 {
   2053 
   2054 	uvm_km_free_poolpage1(kernel_map, (vaddr_t) v);
   2055 }
   2056 #endif /* POOL_SUBPAGE */
   2057