Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.54
      1 /*	$NetBSD: subr_pool.c,v 1.54 2001/05/10 02:19:32 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9  * Simulation Facility, NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 #include "opt_pool.h"
     41 #include "opt_poollog.h"
     42 #include "opt_lockdebug.h"
     43 
     44 #include <sys/param.h>
     45 #include <sys/systm.h>
     46 #include <sys/proc.h>
     47 #include <sys/errno.h>
     48 #include <sys/kernel.h>
     49 #include <sys/malloc.h>
     50 #include <sys/lock.h>
     51 #include <sys/pool.h>
     52 #include <sys/syslog.h>
     53 
     54 #include <uvm/uvm.h>
     55 
     56 /*
     57  * Pool resource management utility.
     58  *
     59  * Memory is allocated in pages which are split into pieces according
     60  * to the pool item size. Each page is kept on a list headed by `pr_pagelist'
     61  * in the pool structure and the individual pool items are on a linked list
     62  * headed by `ph_itemlist' in each page header. The memory for building
     63  * the page list is either taken from the allocated pages themselves (for
     64  * small pool items) or taken from an internal pool of page headers (`phpool').
     65  */
     66 
     67 /* List of all pools */
     68 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     69 
     70 /* Private pool for page header structures */
     71 static struct pool phpool;
     72 
     73 /* # of seconds to retain page after last use */
     74 int pool_inactive_time = 10;
     75 
     76 /* Next candidate for drainage (see pool_drain()) */
     77 static struct pool	*drainpp;
     78 
     79 /* This spin lock protects both pool_head and drainpp. */
     80 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
     81 
     82 struct pool_item_header {
     83 	/* Page headers */
     84 	TAILQ_ENTRY(pool_item_header)
     85 				ph_pagelist;	/* pool page list */
     86 	TAILQ_HEAD(,pool_item)	ph_itemlist;	/* chunk list for this page */
     87 	LIST_ENTRY(pool_item_header)
     88 				ph_hashlist;	/* Off-page page headers */
     89 	int			ph_nmissing;	/* # of chunks in use */
     90 	caddr_t			ph_page;	/* this page's address */
     91 	struct timeval		ph_time;	/* last referenced */
     92 };
     93 
     94 struct pool_item {
     95 #ifdef DIAGNOSTIC
     96 	int pi_magic;
     97 #endif
     98 #define	PI_MAGIC 0xdeadbeef
     99 	/* Other entries use only this list entry */
    100 	TAILQ_ENTRY(pool_item)	pi_list;
    101 };
    102 
    103 #define	PR_HASH_INDEX(pp,addr) \
    104 	(((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1))
    105 
    106 #define	POOL_NEEDS_CATCHUP(pp)						\
    107 	((pp)->pr_nitems < (pp)->pr_minitems)
    108 
    109 /*
    110  * Pool cache management.
    111  *
    112  * Pool caches provide a way for constructed objects to be cached by the
    113  * pool subsystem.  This can lead to performance improvements by avoiding
    114  * needless object construction/destruction; it is deferred until absolutely
    115  * necessary.
    116  *
    117  * Caches are grouped into cache groups.  Each cache group references
    118  * up to 16 constructed objects.  When a cache allocates an object
    119  * from the pool, it calls the object's constructor and places it into
    120  * a cache group.  When a cache group frees an object back to the pool,
    121  * it first calls the object's destructor.  This allows the object to
    122  * persist in constructed form while freed to the cache.
    123  *
    124  * Multiple caches may exist for each pool.  This allows a single
    125  * object type to have multiple constructed forms.  The pool references
    126  * each cache, so that when a pool is drained by the pagedaemon, it can
    127  * drain each individual cache as well.  Each time a cache is drained,
    128  * the most idle cache group is freed to the pool in its entirety.
    129  *
    130  * Pool caches are layed on top of pools.  By layering them, we can avoid
    131  * the complexity of cache management for pools which would not benefit
    132  * from it.
    133  */
    134 
    135 /* The cache group pool. */
    136 static struct pool pcgpool;
    137 
    138 /* The pool cache group. */
    139 #define	PCG_NOBJECTS		16
    140 struct pool_cache_group {
    141 	TAILQ_ENTRY(pool_cache_group)
    142 		pcg_list;	/* link in the pool cache's group list */
    143 	u_int	pcg_avail;	/* # available objects */
    144 				/* pointers to the objects */
    145 	void	*pcg_objects[PCG_NOBJECTS];
    146 };
    147 
    148 static void	pool_cache_reclaim(struct pool_cache *);
    149 
    150 static int	pool_catchup(struct pool *);
    151 static int	pool_prime_page(struct pool *, caddr_t, int);
    152 static void	*pool_page_alloc(unsigned long, int, int);
    153 static void	pool_page_free(void *, unsigned long, int);
    154 
    155 static void pool_print1(struct pool *, const char *,
    156 	void (*)(const char *, ...));
    157 
    158 /*
    159  * Pool log entry. An array of these is allocated in pool_init().
    160  */
    161 struct pool_log {
    162 	const char	*pl_file;
    163 	long		pl_line;
    164 	int		pl_action;
    165 #define	PRLOG_GET	1
    166 #define	PRLOG_PUT	2
    167 	void		*pl_addr;
    168 };
    169 
    170 /* Number of entries in pool log buffers */
    171 #ifndef POOL_LOGSIZE
    172 #define	POOL_LOGSIZE	10
    173 #endif
    174 
    175 int pool_logsize = POOL_LOGSIZE;
    176 
    177 #ifdef DIAGNOSTIC
    178 static __inline void
    179 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    180 {
    181 	int n = pp->pr_curlogentry;
    182 	struct pool_log *pl;
    183 
    184 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    185 		return;
    186 
    187 	/*
    188 	 * Fill in the current entry. Wrap around and overwrite
    189 	 * the oldest entry if necessary.
    190 	 */
    191 	pl = &pp->pr_log[n];
    192 	pl->pl_file = file;
    193 	pl->pl_line = line;
    194 	pl->pl_action = action;
    195 	pl->pl_addr = v;
    196 	if (++n >= pp->pr_logsize)
    197 		n = 0;
    198 	pp->pr_curlogentry = n;
    199 }
    200 
    201 static void
    202 pr_printlog(struct pool *pp, struct pool_item *pi,
    203     void (*pr)(const char *, ...))
    204 {
    205 	int i = pp->pr_logsize;
    206 	int n = pp->pr_curlogentry;
    207 
    208 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    209 		return;
    210 
    211 	/*
    212 	 * Print all entries in this pool's log.
    213 	 */
    214 	while (i-- > 0) {
    215 		struct pool_log *pl = &pp->pr_log[n];
    216 		if (pl->pl_action != 0) {
    217 			if (pi == NULL || pi == pl->pl_addr) {
    218 				(*pr)("\tlog entry %d:\n", i);
    219 				(*pr)("\t\taction = %s, addr = %p\n",
    220 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    221 				    pl->pl_addr);
    222 				(*pr)("\t\tfile: %s at line %lu\n",
    223 				    pl->pl_file, pl->pl_line);
    224 			}
    225 		}
    226 		if (++n >= pp->pr_logsize)
    227 			n = 0;
    228 	}
    229 }
    230 
    231 static __inline void
    232 pr_enter(struct pool *pp, const char *file, long line)
    233 {
    234 
    235 	if (__predict_false(pp->pr_entered_file != NULL)) {
    236 		printf("pool %s: reentrancy at file %s line %ld\n",
    237 		    pp->pr_wchan, file, line);
    238 		printf("         previous entry at file %s line %ld\n",
    239 		    pp->pr_entered_file, pp->pr_entered_line);
    240 		panic("pr_enter");
    241 	}
    242 
    243 	pp->pr_entered_file = file;
    244 	pp->pr_entered_line = line;
    245 }
    246 
    247 static __inline void
    248 pr_leave(struct pool *pp)
    249 {
    250 
    251 	if (__predict_false(pp->pr_entered_file == NULL)) {
    252 		printf("pool %s not entered?\n", pp->pr_wchan);
    253 		panic("pr_leave");
    254 	}
    255 
    256 	pp->pr_entered_file = NULL;
    257 	pp->pr_entered_line = 0;
    258 }
    259 
    260 static __inline void
    261 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    262 {
    263 
    264 	if (pp->pr_entered_file != NULL)
    265 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    266 		    pp->pr_entered_file, pp->pr_entered_line);
    267 }
    268 #else
    269 #define	pr_log(pp, v, action, file, line)
    270 #define	pr_printlog(pp, pi, pr)
    271 #define	pr_enter(pp, file, line)
    272 #define	pr_leave(pp)
    273 #define	pr_enter_check(pp, pr)
    274 #endif /* DIAGNOSTIC */
    275 
    276 /*
    277  * Return the pool page header based on page address.
    278  */
    279 static __inline struct pool_item_header *
    280 pr_find_pagehead(struct pool *pp, caddr_t page)
    281 {
    282 	struct pool_item_header *ph;
    283 
    284 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    285 		return ((struct pool_item_header *)(page + pp->pr_phoffset));
    286 
    287 	for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]);
    288 	     ph != NULL;
    289 	     ph = LIST_NEXT(ph, ph_hashlist)) {
    290 		if (ph->ph_page == page)
    291 			return (ph);
    292 	}
    293 	return (NULL);
    294 }
    295 
    296 /*
    297  * Remove a page from the pool.
    298  */
    299 static __inline void
    300 pr_rmpage(struct pool *pp, struct pool_item_header *ph)
    301 {
    302 
    303 	/*
    304 	 * If the page was idle, decrement the idle page count.
    305 	 */
    306 	if (ph->ph_nmissing == 0) {
    307 #ifdef DIAGNOSTIC
    308 		if (pp->pr_nidle == 0)
    309 			panic("pr_rmpage: nidle inconsistent");
    310 		if (pp->pr_nitems < pp->pr_itemsperpage)
    311 			panic("pr_rmpage: nitems inconsistent");
    312 #endif
    313 		pp->pr_nidle--;
    314 	}
    315 
    316 	pp->pr_nitems -= pp->pr_itemsperpage;
    317 
    318 	/*
    319 	 * Unlink a page from the pool and release it.
    320 	 */
    321 	TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    322 	(*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype);
    323 	pp->pr_npages--;
    324 	pp->pr_npagefree++;
    325 
    326 	if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    327 		int s;
    328 		LIST_REMOVE(ph, ph_hashlist);
    329 		s = splhigh();
    330 		pool_put(&phpool, ph);
    331 		splx(s);
    332 	}
    333 
    334 	if (pp->pr_curpage == ph) {
    335 		/*
    336 		 * Find a new non-empty page header, if any.
    337 		 * Start search from the page head, to increase the
    338 		 * chance for "high water" pages to be freed.
    339 		 */
    340 		for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
    341 		     ph = TAILQ_NEXT(ph, ph_pagelist))
    342 			if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    343 				break;
    344 
    345 		pp->pr_curpage = ph;
    346 	}
    347 }
    348 
    349 /*
    350  * Initialize the given pool resource structure.
    351  *
    352  * We export this routine to allow other kernel parts to declare
    353  * static pools that must be initialized before malloc() is available.
    354  */
    355 void
    356 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    357     const char *wchan, size_t pagesz,
    358     void *(*alloc)(unsigned long, int, int),
    359     void (*release)(void *, unsigned long, int),
    360     int mtype)
    361 {
    362 	int off, slack, i;
    363 
    364 #ifdef POOL_DIAGNOSTIC
    365 	/*
    366 	 * Always log if POOL_DIAGNOSTIC is defined.
    367 	 */
    368 	if (pool_logsize != 0)
    369 		flags |= PR_LOGGING;
    370 #endif
    371 
    372 	/*
    373 	 * Check arguments and construct default values.
    374 	 */
    375 	if (!powerof2(pagesz))
    376 		panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz);
    377 
    378 	if (alloc == NULL && release == NULL) {
    379 		alloc = pool_page_alloc;
    380 		release = pool_page_free;
    381 		pagesz = PAGE_SIZE;	/* Rounds to PAGE_SIZE anyhow. */
    382 	} else if ((alloc != NULL && release != NULL) == 0) {
    383 		/* If you specifiy one, must specify both. */
    384 		panic("pool_init: must specify alloc and release together");
    385 	}
    386 
    387 	if (pagesz == 0)
    388 		pagesz = PAGE_SIZE;
    389 
    390 	if (align == 0)
    391 		align = ALIGN(1);
    392 
    393 	if (size < sizeof(struct pool_item))
    394 		size = sizeof(struct pool_item);
    395 
    396 	size = ALIGN(size);
    397 	if (size > pagesz)
    398 		panic("pool_init: pool item size (%lu) too large",
    399 		      (u_long)size);
    400 
    401 	/*
    402 	 * Initialize the pool structure.
    403 	 */
    404 	TAILQ_INIT(&pp->pr_pagelist);
    405 	TAILQ_INIT(&pp->pr_cachelist);
    406 	pp->pr_curpage = NULL;
    407 	pp->pr_npages = 0;
    408 	pp->pr_minitems = 0;
    409 	pp->pr_minpages = 0;
    410 	pp->pr_maxpages = UINT_MAX;
    411 	pp->pr_roflags = flags;
    412 	pp->pr_flags = 0;
    413 	pp->pr_size = size;
    414 	pp->pr_align = align;
    415 	pp->pr_wchan = wchan;
    416 	pp->pr_mtype = mtype;
    417 	pp->pr_alloc = alloc;
    418 	pp->pr_free = release;
    419 	pp->pr_pagesz = pagesz;
    420 	pp->pr_pagemask = ~(pagesz - 1);
    421 	pp->pr_pageshift = ffs(pagesz) - 1;
    422 	pp->pr_nitems = 0;
    423 	pp->pr_nout = 0;
    424 	pp->pr_hardlimit = UINT_MAX;
    425 	pp->pr_hardlimit_warning = NULL;
    426 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    427 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    428 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    429 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    430 
    431 	/*
    432 	 * Decide whether to put the page header off page to avoid
    433 	 * wasting too large a part of the page. Off-page page headers
    434 	 * go on a hash table, so we can match a returned item
    435 	 * with its header based on the page address.
    436 	 * We use 1/16 of the page size as the threshold (XXX: tune)
    437 	 */
    438 	if (pp->pr_size < pagesz/16) {
    439 		/* Use the end of the page for the page header */
    440 		pp->pr_roflags |= PR_PHINPAGE;
    441 		pp->pr_phoffset = off =
    442 			pagesz - ALIGN(sizeof(struct pool_item_header));
    443 	} else {
    444 		/* The page header will be taken from our page header pool */
    445 		pp->pr_phoffset = 0;
    446 		off = pagesz;
    447 		for (i = 0; i < PR_HASHTABSIZE; i++) {
    448 			LIST_INIT(&pp->pr_hashtab[i]);
    449 		}
    450 	}
    451 
    452 	/*
    453 	 * Alignment is to take place at `ioff' within the item. This means
    454 	 * we must reserve up to `align - 1' bytes on the page to allow
    455 	 * appropriate positioning of each item.
    456 	 *
    457 	 * Silently enforce `0 <= ioff < align'.
    458 	 */
    459 	pp->pr_itemoffset = ioff = ioff % align;
    460 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    461 	KASSERT(pp->pr_itemsperpage != 0);
    462 
    463 	/*
    464 	 * Use the slack between the chunks and the page header
    465 	 * for "cache coloring".
    466 	 */
    467 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    468 	pp->pr_maxcolor = (slack / align) * align;
    469 	pp->pr_curcolor = 0;
    470 
    471 	pp->pr_nget = 0;
    472 	pp->pr_nfail = 0;
    473 	pp->pr_nput = 0;
    474 	pp->pr_npagealloc = 0;
    475 	pp->pr_npagefree = 0;
    476 	pp->pr_hiwat = 0;
    477 	pp->pr_nidle = 0;
    478 
    479 	if (flags & PR_LOGGING) {
    480 		if (kmem_map == NULL ||
    481 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    482 		     M_TEMP, M_NOWAIT)) == NULL)
    483 			pp->pr_roflags &= ~PR_LOGGING;
    484 		pp->pr_curlogentry = 0;
    485 		pp->pr_logsize = pool_logsize;
    486 	}
    487 
    488 	pp->pr_entered_file = NULL;
    489 	pp->pr_entered_line = 0;
    490 
    491 	simple_lock_init(&pp->pr_slock);
    492 
    493 	/*
    494 	 * Initialize private page header pool and cache magazine pool if we
    495 	 * haven't done so yet.
    496 	 * XXX LOCKING.
    497 	 */
    498 	if (phpool.pr_size == 0) {
    499 		pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
    500 		    0, "phpool", 0, 0, 0, 0);
    501 		pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
    502 		    0, "pcgpool", 0, 0, 0, 0);
    503 	}
    504 
    505 	/* Insert into the list of all pools. */
    506 	simple_lock(&pool_head_slock);
    507 	TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    508 	simple_unlock(&pool_head_slock);
    509 }
    510 
    511 /*
    512  * De-commision a pool resource.
    513  */
    514 void
    515 pool_destroy(struct pool *pp)
    516 {
    517 	struct pool_item_header *ph;
    518 	struct pool_cache *pc;
    519 
    520 	/* Destroy all caches for this pool. */
    521 	while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL)
    522 		pool_cache_destroy(pc);
    523 
    524 #ifdef DIAGNOSTIC
    525 	if (pp->pr_nout != 0) {
    526 		pr_printlog(pp, NULL, printf);
    527 		panic("pool_destroy: pool busy: still out: %u\n",
    528 		    pp->pr_nout);
    529 	}
    530 #endif
    531 
    532 	/* Remove all pages */
    533 	if ((pp->pr_roflags & PR_STATIC) == 0)
    534 		while ((ph = pp->pr_pagelist.tqh_first) != NULL)
    535 			pr_rmpage(pp, ph);
    536 
    537 	/* Remove from global pool list */
    538 	simple_lock(&pool_head_slock);
    539 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    540 	/* XXX Only clear this if we were drainpp? */
    541 	drainpp = NULL;
    542 	simple_unlock(&pool_head_slock);
    543 
    544 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    545 		free(pp->pr_log, M_TEMP);
    546 
    547 	if (pp->pr_roflags & PR_FREEHEADER)
    548 		free(pp, M_POOL);
    549 }
    550 
    551 
    552 /*
    553  * Grab an item from the pool; must be called at appropriate spl level
    554  */
    555 void *
    556 _pool_get(struct pool *pp, int flags, const char *file, long line)
    557 {
    558 	void *v;
    559 	struct pool_item *pi;
    560 	struct pool_item_header *ph;
    561 
    562 #ifdef DIAGNOSTIC
    563 	if (__predict_false((pp->pr_roflags & PR_STATIC) &&
    564 			    (flags & PR_MALLOCOK))) {
    565 		pr_printlog(pp, NULL, printf);
    566 		panic("pool_get: static");
    567 	}
    568 #endif
    569 
    570 	if (__predict_false(curproc == NULL && doing_shutdown == 0 &&
    571 			    (flags & PR_WAITOK) != 0))
    572 		panic("pool_get: must have NOWAIT");
    573 
    574 	simple_lock(&pp->pr_slock);
    575 	pr_enter(pp, file, line);
    576 
    577  startover:
    578 	/*
    579 	 * Check to see if we've reached the hard limit.  If we have,
    580 	 * and we can wait, then wait until an item has been returned to
    581 	 * the pool.
    582 	 */
    583 #ifdef DIAGNOSTIC
    584 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
    585 		pr_leave(pp);
    586 		simple_unlock(&pp->pr_slock);
    587 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
    588 	}
    589 #endif
    590 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    591 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    592 			/*
    593 			 * XXX: A warning isn't logged in this case.  Should
    594 			 * it be?
    595 			 */
    596 			pp->pr_flags |= PR_WANTED;
    597 			pr_leave(pp);
    598 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
    599 			pr_enter(pp, file, line);
    600 			goto startover;
    601 		}
    602 
    603 		/*
    604 		 * Log a message that the hard limit has been hit.
    605 		 */
    606 		if (pp->pr_hardlimit_warning != NULL &&
    607 		    ratecheck(&pp->pr_hardlimit_warning_last,
    608 			      &pp->pr_hardlimit_ratecap))
    609 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    610 
    611 		if (flags & PR_URGENT)
    612 			panic("pool_get: urgent");
    613 
    614 		pp->pr_nfail++;
    615 
    616 		pr_leave(pp);
    617 		simple_unlock(&pp->pr_slock);
    618 		return (NULL);
    619 	}
    620 
    621 	/*
    622 	 * The convention we use is that if `curpage' is not NULL, then
    623 	 * it points at a non-empty bucket. In particular, `curpage'
    624 	 * never points at a page header which has PR_PHINPAGE set and
    625 	 * has no items in its bucket.
    626 	 */
    627 	if ((ph = pp->pr_curpage) == NULL) {
    628 		void *v;
    629 
    630 #ifdef DIAGNOSTIC
    631 		if (pp->pr_nitems != 0) {
    632 			simple_unlock(&pp->pr_slock);
    633 			printf("pool_get: %s: curpage NULL, nitems %u\n",
    634 			    pp->pr_wchan, pp->pr_nitems);
    635 			panic("pool_get: nitems inconsistent\n");
    636 		}
    637 #endif
    638 
    639 		/*
    640 		 * Call the back-end page allocator for more memory.
    641 		 * Release the pool lock, as the back-end page allocator
    642 		 * may block.
    643 		 */
    644 		pr_leave(pp);
    645 		simple_unlock(&pp->pr_slock);
    646 		v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype);
    647 		simple_lock(&pp->pr_slock);
    648 		pr_enter(pp, file, line);
    649 
    650 		if (v == NULL) {
    651 			/*
    652 			 * We were unable to allocate a page, but
    653 			 * we released the lock during allocation,
    654 			 * so perhaps items were freed back to the
    655 			 * pool.  Check for this case.
    656 			 */
    657 			if (pp->pr_curpage != NULL)
    658 				goto startover;
    659 
    660 			if (flags & PR_URGENT)
    661 				panic("pool_get: urgent");
    662 
    663 			if ((flags & PR_WAITOK) == 0) {
    664 				pp->pr_nfail++;
    665 				pr_leave(pp);
    666 				simple_unlock(&pp->pr_slock);
    667 				return (NULL);
    668 			}
    669 
    670 			/*
    671 			 * Wait for items to be returned to this pool.
    672 			 *
    673 			 * XXX: we actually want to wait just until
    674 			 * the page allocator has memory again. Depending
    675 			 * on this pool's usage, we might get stuck here
    676 			 * for a long time.
    677 			 *
    678 			 * XXX: maybe we should wake up once a second and
    679 			 * try again?
    680 			 */
    681 			pp->pr_flags |= PR_WANTED;
    682 			pr_leave(pp);
    683 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
    684 			pr_enter(pp, file, line);
    685 			goto startover;
    686 		}
    687 
    688 		/* We have more memory; add it to the pool */
    689 		if (pool_prime_page(pp, v, flags & PR_WAITOK) != 0) {
    690 			/*
    691 			 * Probably, we don't allowed to wait and
    692 			 * couldn't allocate a page header.
    693 			 */
    694 			(*pp->pr_free)(v, pp->pr_pagesz, pp->pr_mtype);
    695 			pp->pr_nfail++;
    696 			pr_leave(pp);
    697 			simple_unlock(&pp->pr_slock);
    698 			return (NULL);
    699 		}
    700 		pp->pr_npagealloc++;
    701 
    702 		/* Start the allocation process over. */
    703 		goto startover;
    704 	}
    705 
    706 	if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
    707 		pr_leave(pp);
    708 		simple_unlock(&pp->pr_slock);
    709 		panic("pool_get: %s: page empty", pp->pr_wchan);
    710 	}
    711 #ifdef DIAGNOSTIC
    712 	if (__predict_false(pp->pr_nitems == 0)) {
    713 		pr_leave(pp);
    714 		simple_unlock(&pp->pr_slock);
    715 		printf("pool_get: %s: items on itemlist, nitems %u\n",
    716 		    pp->pr_wchan, pp->pr_nitems);
    717 		panic("pool_get: nitems inconsistent\n");
    718 	}
    719 #endif
    720 	pr_log(pp, v, PRLOG_GET, file, line);
    721 
    722 #ifdef DIAGNOSTIC
    723 	if (__predict_false(pi->pi_magic != PI_MAGIC)) {
    724 		pr_printlog(pp, pi, printf);
    725 		panic("pool_get(%s): free list modified: magic=%x; page %p;"
    726 		       " item addr %p\n",
    727 			pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    728 	}
    729 #endif
    730 
    731 	/*
    732 	 * Remove from item list.
    733 	 */
    734 	TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
    735 	pp->pr_nitems--;
    736 	pp->pr_nout++;
    737 	if (ph->ph_nmissing == 0) {
    738 #ifdef DIAGNOSTIC
    739 		if (__predict_false(pp->pr_nidle == 0))
    740 			panic("pool_get: nidle inconsistent");
    741 #endif
    742 		pp->pr_nidle--;
    743 	}
    744 	ph->ph_nmissing++;
    745 	if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) {
    746 #ifdef DIAGNOSTIC
    747 		if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
    748 			pr_leave(pp);
    749 			simple_unlock(&pp->pr_slock);
    750 			panic("pool_get: %s: nmissing inconsistent",
    751 			    pp->pr_wchan);
    752 		}
    753 #endif
    754 		/*
    755 		 * Find a new non-empty page header, if any.
    756 		 * Start search from the page head, to increase
    757 		 * the chance for "high water" pages to be freed.
    758 		 *
    759 		 * Migrate empty pages to the end of the list.  This
    760 		 * will speed the update of curpage as pages become
    761 		 * idle.  Empty pages intermingled with idle pages
    762 		 * is no big deal.  As soon as a page becomes un-empty,
    763 		 * it will move back to the head of the list.
    764 		 */
    765 		TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    766 		TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
    767 		for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
    768 		     ph = TAILQ_NEXT(ph, ph_pagelist))
    769 			if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    770 				break;
    771 
    772 		pp->pr_curpage = ph;
    773 	}
    774 
    775 	pp->pr_nget++;
    776 
    777 	/*
    778 	 * If we have a low water mark and we are now below that low
    779 	 * water mark, add more items to the pool.
    780 	 */
    781 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
    782 		/*
    783 		 * XXX: Should we log a warning?  Should we set up a timeout
    784 		 * to try again in a second or so?  The latter could break
    785 		 * a caller's assumptions about interrupt protection, etc.
    786 		 */
    787 	}
    788 
    789 	pr_leave(pp);
    790 	simple_unlock(&pp->pr_slock);
    791 	return (v);
    792 }
    793 
    794 /*
    795  * Internal version of pool_put().  Pool is already locked/entered.
    796  */
    797 static void
    798 pool_do_put(struct pool *pp, void *v, const char *file, long line)
    799 {
    800 	struct pool_item *pi = v;
    801 	struct pool_item_header *ph;
    802 	caddr_t page;
    803 	int s;
    804 
    805 	page = (caddr_t)((u_long)v & pp->pr_pagemask);
    806 
    807 #ifdef DIAGNOSTIC
    808 	if (__predict_false(pp->pr_nout == 0)) {
    809 		printf("pool %s: putting with none out\n",
    810 		    pp->pr_wchan);
    811 		panic("pool_put");
    812 	}
    813 #endif
    814 
    815 	pr_log(pp, v, PRLOG_PUT, file, line);
    816 
    817 	if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
    818 		pr_printlog(pp, NULL, printf);
    819 		panic("pool_put: %s: page header missing", pp->pr_wchan);
    820 	}
    821 
    822 #ifdef LOCKDEBUG
    823 	/*
    824 	 * Check if we're freeing a locked simple lock.
    825 	 */
    826 	simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
    827 #endif
    828 
    829 	/*
    830 	 * Return to item list.
    831 	 */
    832 #ifdef DIAGNOSTIC
    833 	pi->pi_magic = PI_MAGIC;
    834 #endif
    835 #ifdef DEBUG
    836 	{
    837 		int i, *ip = v;
    838 
    839 		for (i = 0; i < pp->pr_size / sizeof(int); i++) {
    840 			*ip++ = PI_MAGIC;
    841 		}
    842 	}
    843 #endif
    844 
    845 	TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    846 	ph->ph_nmissing--;
    847 	pp->pr_nput++;
    848 	pp->pr_nitems++;
    849 	pp->pr_nout--;
    850 
    851 	/* Cancel "pool empty" condition if it exists */
    852 	if (pp->pr_curpage == NULL)
    853 		pp->pr_curpage = ph;
    854 
    855 	if (pp->pr_flags & PR_WANTED) {
    856 		pp->pr_flags &= ~PR_WANTED;
    857 		if (ph->ph_nmissing == 0)
    858 			pp->pr_nidle++;
    859 		wakeup((caddr_t)pp);
    860 		return;
    861 	}
    862 
    863 	/*
    864 	 * If this page is now complete, do one of two things:
    865 	 *
    866 	 *	(1) If we have more pages than the page high water
    867 	 *	    mark, free the page back to the system.
    868 	 *
    869 	 *	(2) Move it to the end of the page list, so that
    870 	 *	    we minimize our chances of fragmenting the
    871 	 *	    pool.  Idle pages migrate to the end (along with
    872 	 *	    completely empty pages, so that we find un-empty
    873 	 *	    pages more quickly when we update curpage) of the
    874 	 *	    list so they can be more easily swept up by
    875 	 *	    the pagedaemon when pages are scarce.
    876 	 */
    877 	if (ph->ph_nmissing == 0) {
    878 		pp->pr_nidle++;
    879 		if (pp->pr_npages > pp->pr_maxpages) {
    880 			pr_rmpage(pp, ph);
    881 		} else {
    882 			TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    883 			TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
    884 
    885 			/*
    886 			 * Update the timestamp on the page.  A page must
    887 			 * be idle for some period of time before it can
    888 			 * be reclaimed by the pagedaemon.  This minimizes
    889 			 * ping-pong'ing for memory.
    890 			 */
    891 			s = splclock();
    892 			ph->ph_time = mono_time;
    893 			splx(s);
    894 
    895 			/*
    896 			 * Update the current page pointer.  Just look for
    897 			 * the first page with any free items.
    898 			 *
    899 			 * XXX: Maybe we want an option to look for the
    900 			 * page with the fewest available items, to minimize
    901 			 * fragmentation?
    902 			 */
    903 			for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
    904 			     ph = TAILQ_NEXT(ph, ph_pagelist))
    905 				if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    906 					break;
    907 
    908 			pp->pr_curpage = ph;
    909 		}
    910 	}
    911 	/*
    912 	 * If the page has just become un-empty, move it to the head of
    913 	 * the list, and make it the current page.  The next allocation
    914 	 * will get the item from this page, instead of further fragmenting
    915 	 * the pool.
    916 	 */
    917 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
    918 		TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    919 		TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
    920 		pp->pr_curpage = ph;
    921 	}
    922 }
    923 
    924 /*
    925  * Return resource to the pool; must be called at appropriate spl level
    926  */
    927 void
    928 _pool_put(struct pool *pp, void *v, const char *file, long line)
    929 {
    930 
    931 	simple_lock(&pp->pr_slock);
    932 	pr_enter(pp, file, line);
    933 
    934 	pool_do_put(pp, v, file, line);
    935 
    936 	pr_leave(pp);
    937 	simple_unlock(&pp->pr_slock);
    938 }
    939 
    940 /*
    941  * Add a page worth of items to the pool.
    942  *
    943  * Note, we must be called with the pool descriptor LOCKED.
    944  */
    945 static int
    946 pool_prime_page(struct pool *pp, caddr_t storage, int flags)
    947 {
    948 	struct pool_item *pi;
    949 	struct pool_item_header *ph;
    950 	caddr_t cp = storage;
    951 	unsigned int align = pp->pr_align;
    952 	unsigned int ioff = pp->pr_itemoffset;
    953 	int s, n;
    954 
    955 	if (((u_long)cp & (pp->pr_pagesz - 1)) != 0)
    956 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
    957 
    958 	if ((pp->pr_roflags & PR_PHINPAGE) != 0) {
    959 		ph = (struct pool_item_header *)(cp + pp->pr_phoffset);
    960 	} else {
    961 		s = splhigh();
    962 		ph = pool_get(&phpool, flags);
    963 		splx(s);
    964 		if (ph == NULL)
    965 			return (ENOMEM);
    966 		LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)],
    967 				 ph, ph_hashlist);
    968 	}
    969 
    970 	/*
    971 	 * Insert page header.
    972 	 */
    973 	TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
    974 	TAILQ_INIT(&ph->ph_itemlist);
    975 	ph->ph_page = storage;
    976 	ph->ph_nmissing = 0;
    977 	memset(&ph->ph_time, 0, sizeof(ph->ph_time));
    978 
    979 	pp->pr_nidle++;
    980 
    981 	/*
    982 	 * Color this page.
    983 	 */
    984 	cp = (caddr_t)(cp + pp->pr_curcolor);
    985 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
    986 		pp->pr_curcolor = 0;
    987 
    988 	/*
    989 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
    990 	 */
    991 	if (ioff != 0)
    992 		cp = (caddr_t)(cp + (align - ioff));
    993 
    994 	/*
    995 	 * Insert remaining chunks on the bucket list.
    996 	 */
    997 	n = pp->pr_itemsperpage;
    998 	pp->pr_nitems += n;
    999 
   1000 	while (n--) {
   1001 		pi = (struct pool_item *)cp;
   1002 
   1003 		/* Insert on page list */
   1004 		TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
   1005 #ifdef DIAGNOSTIC
   1006 		pi->pi_magic = PI_MAGIC;
   1007 #endif
   1008 		cp = (caddr_t)(cp + pp->pr_size);
   1009 	}
   1010 
   1011 	/*
   1012 	 * If the pool was depleted, point at the new page.
   1013 	 */
   1014 	if (pp->pr_curpage == NULL)
   1015 		pp->pr_curpage = ph;
   1016 
   1017 	if (++pp->pr_npages > pp->pr_hiwat)
   1018 		pp->pr_hiwat = pp->pr_npages;
   1019 
   1020 	return (0);
   1021 }
   1022 
   1023 /*
   1024  * Used by pool_get() when nitems drops below the low water mark.  This
   1025  * is used to catch up nitmes with the low water mark.
   1026  *
   1027  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1028  *
   1029  * Note 2, this doesn't work with static pools.
   1030  *
   1031  * Note 3, we must be called with the pool already locked, and we return
   1032  * with it locked.
   1033  */
   1034 static int
   1035 pool_catchup(struct pool *pp)
   1036 {
   1037 	caddr_t cp;
   1038 	int error = 0;
   1039 
   1040 	if (pp->pr_roflags & PR_STATIC) {
   1041 		/*
   1042 		 * We dropped below the low water mark, and this is not a
   1043 		 * good thing.  Log a warning.
   1044 		 *
   1045 		 * XXX: rate-limit this?
   1046 		 */
   1047 		printf("WARNING: static pool `%s' dropped below low water "
   1048 		    "mark\n", pp->pr_wchan);
   1049 		return (0);
   1050 	}
   1051 
   1052 	while (POOL_NEEDS_CATCHUP(pp)) {
   1053 		/*
   1054 		 * Call the page back-end allocator for more memory.
   1055 		 *
   1056 		 * XXX: We never wait, so should we bother unlocking
   1057 		 * the pool descriptor?
   1058 		 */
   1059 		simple_unlock(&pp->pr_slock);
   1060 		cp = (*pp->pr_alloc)(pp->pr_pagesz, 0, pp->pr_mtype);
   1061 		simple_lock(&pp->pr_slock);
   1062 		if (__predict_false(cp == NULL)) {
   1063 			error = ENOMEM;
   1064 			break;
   1065 		}
   1066 		if ((error = pool_prime_page(pp, cp, PR_NOWAIT)) != 0) {
   1067 			(*pp->pr_free)(cp, pp->pr_pagesz, pp->pr_mtype);
   1068 			break;
   1069 		}
   1070 		pp->pr_npagealloc++;
   1071 	}
   1072 
   1073 	return (error);
   1074 }
   1075 
   1076 void
   1077 pool_setlowat(struct pool *pp, int n)
   1078 {
   1079 	int error;
   1080 
   1081 	simple_lock(&pp->pr_slock);
   1082 
   1083 	pp->pr_minitems = n;
   1084 	pp->pr_minpages = (n == 0)
   1085 		? 0
   1086 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1087 
   1088 	/* Make sure we're caught up with the newly-set low water mark. */
   1089 	if (POOL_NEEDS_CATCHUP(pp) && (error = pool_catchup(pp) != 0)) {
   1090 		/*
   1091 		 * XXX: Should we log a warning?  Should we set up a timeout
   1092 		 * to try again in a second or so?  The latter could break
   1093 		 * a caller's assumptions about interrupt protection, etc.
   1094 		 */
   1095 	}
   1096 
   1097 	simple_unlock(&pp->pr_slock);
   1098 }
   1099 
   1100 void
   1101 pool_sethiwat(struct pool *pp, int n)
   1102 {
   1103 
   1104 	simple_lock(&pp->pr_slock);
   1105 
   1106 	pp->pr_maxpages = (n == 0)
   1107 		? 0
   1108 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1109 
   1110 	simple_unlock(&pp->pr_slock);
   1111 }
   1112 
   1113 void
   1114 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1115 {
   1116 
   1117 	simple_lock(&pp->pr_slock);
   1118 
   1119 	pp->pr_hardlimit = n;
   1120 	pp->pr_hardlimit_warning = warnmess;
   1121 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1122 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1123 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1124 
   1125 	/*
   1126 	 * In-line version of pool_sethiwat(), because we don't want to
   1127 	 * release the lock.
   1128 	 */
   1129 	pp->pr_maxpages = (n == 0)
   1130 		? 0
   1131 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1132 
   1133 	simple_unlock(&pp->pr_slock);
   1134 }
   1135 
   1136 /*
   1137  * Default page allocator.
   1138  */
   1139 static void *
   1140 pool_page_alloc(unsigned long sz, int flags, int mtype)
   1141 {
   1142 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   1143 
   1144 	return ((void *)uvm_km_alloc_poolpage(waitok));
   1145 }
   1146 
   1147 static void
   1148 pool_page_free(void *v, unsigned long sz, int mtype)
   1149 {
   1150 
   1151 	uvm_km_free_poolpage((vaddr_t)v);
   1152 }
   1153 
   1154 /*
   1155  * Alternate pool page allocator for pools that know they will
   1156  * never be accessed in interrupt context.
   1157  */
   1158 void *
   1159 pool_page_alloc_nointr(unsigned long sz, int flags, int mtype)
   1160 {
   1161 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   1162 
   1163 	return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object,
   1164 	    waitok));
   1165 }
   1166 
   1167 void
   1168 pool_page_free_nointr(void *v, unsigned long sz, int mtype)
   1169 {
   1170 
   1171 	uvm_km_free_poolpage1(kernel_map, (vaddr_t)v);
   1172 }
   1173 
   1174 
   1175 /*
   1176  * Release all complete pages that have not been used recently.
   1177  */
   1178 void
   1179 _pool_reclaim(struct pool *pp, const char *file, long line)
   1180 {
   1181 	struct pool_item_header *ph, *phnext;
   1182 	struct pool_cache *pc;
   1183 	struct timeval curtime;
   1184 	int s;
   1185 
   1186 	if (pp->pr_roflags & PR_STATIC)
   1187 		return;
   1188 
   1189 	if (simple_lock_try(&pp->pr_slock) == 0)
   1190 		return;
   1191 	pr_enter(pp, file, line);
   1192 
   1193 	/*
   1194 	 * Reclaim items from the pool's caches.
   1195 	 */
   1196 	for (pc = TAILQ_FIRST(&pp->pr_cachelist); pc != NULL;
   1197 	     pc = TAILQ_NEXT(pc, pc_poollist))
   1198 		pool_cache_reclaim(pc);
   1199 
   1200 	s = splclock();
   1201 	curtime = mono_time;
   1202 	splx(s);
   1203 
   1204 	for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) {
   1205 		phnext = TAILQ_NEXT(ph, ph_pagelist);
   1206 
   1207 		/* Check our minimum page claim */
   1208 		if (pp->pr_npages <= pp->pr_minpages)
   1209 			break;
   1210 
   1211 		if (ph->ph_nmissing == 0) {
   1212 			struct timeval diff;
   1213 			timersub(&curtime, &ph->ph_time, &diff);
   1214 			if (diff.tv_sec < pool_inactive_time)
   1215 				continue;
   1216 
   1217 			/*
   1218 			 * If freeing this page would put us below
   1219 			 * the low water mark, stop now.
   1220 			 */
   1221 			if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1222 			    pp->pr_minitems)
   1223 				break;
   1224 
   1225 			pr_rmpage(pp, ph);
   1226 		}
   1227 	}
   1228 
   1229 	pr_leave(pp);
   1230 	simple_unlock(&pp->pr_slock);
   1231 }
   1232 
   1233 
   1234 /*
   1235  * Drain pools, one at a time.
   1236  *
   1237  * Note, we must never be called from an interrupt context.
   1238  */
   1239 void
   1240 pool_drain(void *arg)
   1241 {
   1242 	struct pool *pp;
   1243 	int s;
   1244 
   1245 	s = splvm();
   1246 	simple_lock(&pool_head_slock);
   1247 
   1248 	if (drainpp == NULL && (drainpp = TAILQ_FIRST(&pool_head)) == NULL)
   1249 		goto out;
   1250 
   1251 	pp = drainpp;
   1252 	drainpp = TAILQ_NEXT(pp, pr_poollist);
   1253 
   1254 	pool_reclaim(pp);
   1255 
   1256  out:
   1257 	simple_unlock(&pool_head_slock);
   1258 	splx(s);
   1259 }
   1260 
   1261 
   1262 /*
   1263  * Diagnostic helpers.
   1264  */
   1265 void
   1266 pool_print(struct pool *pp, const char *modif)
   1267 {
   1268 	int s;
   1269 
   1270 	s = splvm();
   1271 	if (simple_lock_try(&pp->pr_slock) == 0) {
   1272 		printf("pool %s is locked; try again later\n",
   1273 		    pp->pr_wchan);
   1274 		splx(s);
   1275 		return;
   1276 	}
   1277 	pool_print1(pp, modif, printf);
   1278 	simple_unlock(&pp->pr_slock);
   1279 	splx(s);
   1280 }
   1281 
   1282 void
   1283 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1284 {
   1285 	int didlock = 0;
   1286 
   1287 	if (pp == NULL) {
   1288 		(*pr)("Must specify a pool to print.\n");
   1289 		return;
   1290 	}
   1291 
   1292 	/*
   1293 	 * Called from DDB; interrupts should be blocked, and all
   1294 	 * other processors should be paused.  We can skip locking
   1295 	 * the pool in this case.
   1296 	 *
   1297 	 * We do a simple_lock_try() just to print the lock
   1298 	 * status, however.
   1299 	 */
   1300 
   1301 	if (simple_lock_try(&pp->pr_slock) == 0)
   1302 		(*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
   1303 	else
   1304 		didlock = 1;
   1305 
   1306 	pool_print1(pp, modif, pr);
   1307 
   1308 	if (didlock)
   1309 		simple_unlock(&pp->pr_slock);
   1310 }
   1311 
   1312 static void
   1313 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1314 {
   1315 	struct pool_item_header *ph;
   1316 	struct pool_cache *pc;
   1317 	struct pool_cache_group *pcg;
   1318 #ifdef DIAGNOSTIC
   1319 	struct pool_item *pi;
   1320 #endif
   1321 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1322 	char c;
   1323 
   1324 	while ((c = *modif++) != '\0') {
   1325 		if (c == 'l')
   1326 			print_log = 1;
   1327 		if (c == 'p')
   1328 			print_pagelist = 1;
   1329 		if (c == 'c')
   1330 			print_cache = 1;
   1331 		modif++;
   1332 	}
   1333 
   1334 	(*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1335 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1336 	    pp->pr_roflags);
   1337 	(*pr)("\tpagesz %u, mtype %d\n", pp->pr_pagesz, pp->pr_mtype);
   1338 	(*pr)("\talloc %p, release %p\n", pp->pr_alloc, pp->pr_free);
   1339 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1340 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1341 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1342 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1343 
   1344 	(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
   1345 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1346 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1347 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1348 
   1349 	if (print_pagelist == 0)
   1350 		goto skip_pagelist;
   1351 
   1352 	if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
   1353 		(*pr)("\n\tpage list:\n");
   1354 	for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) {
   1355 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
   1356 		    ph->ph_page, ph->ph_nmissing,
   1357 		    (u_long)ph->ph_time.tv_sec,
   1358 		    (u_long)ph->ph_time.tv_usec);
   1359 #ifdef DIAGNOSTIC
   1360 		for (pi = TAILQ_FIRST(&ph->ph_itemlist); pi != NULL;
   1361 		     pi = TAILQ_NEXT(pi, pi_list)) {
   1362 			if (pi->pi_magic != PI_MAGIC) {
   1363 				(*pr)("\t\t\titem %p, magic 0x%x\n",
   1364 				    pi, pi->pi_magic);
   1365 			}
   1366 		}
   1367 #endif
   1368 	}
   1369 	if (pp->pr_curpage == NULL)
   1370 		(*pr)("\tno current page\n");
   1371 	else
   1372 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1373 
   1374  skip_pagelist:
   1375 
   1376 	if (print_log == 0)
   1377 		goto skip_log;
   1378 
   1379 	(*pr)("\n");
   1380 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1381 		(*pr)("\tno log\n");
   1382 	else
   1383 		pr_printlog(pp, NULL, pr);
   1384 
   1385  skip_log:
   1386 
   1387 	if (print_cache == 0)
   1388 		goto skip_cache;
   1389 
   1390 	for (pc = TAILQ_FIRST(&pp->pr_cachelist); pc != NULL;
   1391 	     pc = TAILQ_NEXT(pc, pc_poollist)) {
   1392 		(*pr)("\tcache %p: allocfrom %p freeto %p\n", pc,
   1393 		    pc->pc_allocfrom, pc->pc_freeto);
   1394 		(*pr)("\t    hits %lu misses %lu ngroups %lu nitems %lu\n",
   1395 		    pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
   1396 		for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
   1397 		     pcg = TAILQ_NEXT(pcg, pcg_list)) {
   1398 			(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);
   1399 			for (i = 0; i < PCG_NOBJECTS; i++)
   1400 				(*pr)("\t\t\t%p\n", pcg->pcg_objects[i]);
   1401 		}
   1402 	}
   1403 
   1404  skip_cache:
   1405 
   1406 	pr_enter_check(pp, pr);
   1407 }
   1408 
   1409 int
   1410 pool_chk(struct pool *pp, const char *label)
   1411 {
   1412 	struct pool_item_header *ph;
   1413 	int r = 0;
   1414 
   1415 	simple_lock(&pp->pr_slock);
   1416 
   1417 	for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
   1418 	     ph = TAILQ_NEXT(ph, ph_pagelist)) {
   1419 
   1420 		struct pool_item *pi;
   1421 		int n;
   1422 		caddr_t page;
   1423 
   1424 		page = (caddr_t)((u_long)ph & pp->pr_pagemask);
   1425 		if (page != ph->ph_page &&
   1426 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1427 			if (label != NULL)
   1428 				printf("%s: ", label);
   1429 			printf("pool(%p:%s): page inconsistency: page %p;"
   1430 			       " at page head addr %p (p %p)\n", pp,
   1431 				pp->pr_wchan, ph->ph_page,
   1432 				ph, page);
   1433 			r++;
   1434 			goto out;
   1435 		}
   1436 
   1437 		for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
   1438 		     pi != NULL;
   1439 		     pi = TAILQ_NEXT(pi,pi_list), n++) {
   1440 
   1441 #ifdef DIAGNOSTIC
   1442 			if (pi->pi_magic != PI_MAGIC) {
   1443 				if (label != NULL)
   1444 					printf("%s: ", label);
   1445 				printf("pool(%s): free list modified: magic=%x;"
   1446 				       " page %p; item ordinal %d;"
   1447 				       " addr %p (p %p)\n",
   1448 					pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1449 					n, pi, page);
   1450 				panic("pool");
   1451 			}
   1452 #endif
   1453 			page = (caddr_t)((u_long)pi & pp->pr_pagemask);
   1454 			if (page == ph->ph_page)
   1455 				continue;
   1456 
   1457 			if (label != NULL)
   1458 				printf("%s: ", label);
   1459 			printf("pool(%p:%s): page inconsistency: page %p;"
   1460 			       " item ordinal %d; addr %p (p %p)\n", pp,
   1461 				pp->pr_wchan, ph->ph_page,
   1462 				n, pi, page);
   1463 			r++;
   1464 			goto out;
   1465 		}
   1466 	}
   1467 out:
   1468 	simple_unlock(&pp->pr_slock);
   1469 	return (r);
   1470 }
   1471 
   1472 /*
   1473  * pool_cache_init:
   1474  *
   1475  *	Initialize a pool cache.
   1476  *
   1477  *	NOTE: If the pool must be protected from interrupts, we expect
   1478  *	to be called at the appropriate interrupt priority level.
   1479  */
   1480 void
   1481 pool_cache_init(struct pool_cache *pc, struct pool *pp,
   1482     int (*ctor)(void *, void *, int),
   1483     void (*dtor)(void *, void *),
   1484     void *arg)
   1485 {
   1486 
   1487 	TAILQ_INIT(&pc->pc_grouplist);
   1488 	simple_lock_init(&pc->pc_slock);
   1489 
   1490 	pc->pc_allocfrom = NULL;
   1491 	pc->pc_freeto = NULL;
   1492 	pc->pc_pool = pp;
   1493 
   1494 	pc->pc_ctor = ctor;
   1495 	pc->pc_dtor = dtor;
   1496 	pc->pc_arg  = arg;
   1497 
   1498 	pc->pc_hits   = 0;
   1499 	pc->pc_misses = 0;
   1500 
   1501 	pc->pc_ngroups = 0;
   1502 
   1503 	pc->pc_nitems = 0;
   1504 
   1505 	simple_lock(&pp->pr_slock);
   1506 	TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist);
   1507 	simple_unlock(&pp->pr_slock);
   1508 }
   1509 
   1510 /*
   1511  * pool_cache_destroy:
   1512  *
   1513  *	Destroy a pool cache.
   1514  */
   1515 void
   1516 pool_cache_destroy(struct pool_cache *pc)
   1517 {
   1518 	struct pool *pp = pc->pc_pool;
   1519 
   1520 	/* First, invalidate the entire cache. */
   1521 	pool_cache_invalidate(pc);
   1522 
   1523 	/* ...and remove it from the pool's cache list. */
   1524 	simple_lock(&pp->pr_slock);
   1525 	TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist);
   1526 	simple_unlock(&pp->pr_slock);
   1527 }
   1528 
   1529 static __inline void *
   1530 pcg_get(struct pool_cache_group *pcg)
   1531 {
   1532 	void *object;
   1533 	u_int idx;
   1534 
   1535 	KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
   1536 	KASSERT(pcg->pcg_avail != 0);
   1537 	idx = --pcg->pcg_avail;
   1538 
   1539 	KASSERT(pcg->pcg_objects[idx] != NULL);
   1540 	object = pcg->pcg_objects[idx];
   1541 	pcg->pcg_objects[idx] = NULL;
   1542 
   1543 	return (object);
   1544 }
   1545 
   1546 static __inline void
   1547 pcg_put(struct pool_cache_group *pcg, void *object)
   1548 {
   1549 	u_int idx;
   1550 
   1551 	KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
   1552 	idx = pcg->pcg_avail++;
   1553 
   1554 	KASSERT(pcg->pcg_objects[idx] == NULL);
   1555 	pcg->pcg_objects[idx] = object;
   1556 }
   1557 
   1558 /*
   1559  * pool_cache_get:
   1560  *
   1561  *	Get an object from a pool cache.
   1562  */
   1563 void *
   1564 pool_cache_get(struct pool_cache *pc, int flags)
   1565 {
   1566 	struct pool_cache_group *pcg;
   1567 	void *object;
   1568 
   1569 	simple_lock(&pc->pc_slock);
   1570 
   1571 	if ((pcg = pc->pc_allocfrom) == NULL) {
   1572 		for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
   1573 		     pcg = TAILQ_NEXT(pcg, pcg_list)) {
   1574 			if (pcg->pcg_avail != 0) {
   1575 				pc->pc_allocfrom = pcg;
   1576 				goto have_group;
   1577 			}
   1578 		}
   1579 
   1580 		/*
   1581 		 * No groups with any available objects.  Allocate
   1582 		 * a new object, construct it, and return it to
   1583 		 * the caller.  We will allocate a group, if necessary,
   1584 		 * when the object is freed back to the cache.
   1585 		 */
   1586 		pc->pc_misses++;
   1587 		simple_unlock(&pc->pc_slock);
   1588 		object = pool_get(pc->pc_pool, flags);
   1589 		if (object != NULL && pc->pc_ctor != NULL) {
   1590 			if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
   1591 				pool_put(pc->pc_pool, object);
   1592 				return (NULL);
   1593 			}
   1594 		}
   1595 		return (object);
   1596 	}
   1597 
   1598  have_group:
   1599 	pc->pc_hits++;
   1600 	pc->pc_nitems--;
   1601 	object = pcg_get(pcg);
   1602 
   1603 	if (pcg->pcg_avail == 0)
   1604 		pc->pc_allocfrom = NULL;
   1605 
   1606 	simple_unlock(&pc->pc_slock);
   1607 
   1608 	return (object);
   1609 }
   1610 
   1611 /*
   1612  * pool_cache_put:
   1613  *
   1614  *	Put an object back to the pool cache.
   1615  */
   1616 void
   1617 pool_cache_put(struct pool_cache *pc, void *object)
   1618 {
   1619 	struct pool_cache_group *pcg;
   1620 
   1621 	simple_lock(&pc->pc_slock);
   1622 
   1623 	if ((pcg = pc->pc_freeto) == NULL) {
   1624 		for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
   1625 		     pcg = TAILQ_NEXT(pcg, pcg_list)) {
   1626 			if (pcg->pcg_avail != PCG_NOBJECTS) {
   1627 				pc->pc_freeto = pcg;
   1628 				goto have_group;
   1629 			}
   1630 		}
   1631 
   1632 		/*
   1633 		 * No empty groups to free the object to.  Attempt to
   1634 		 * allocate one.
   1635 		 */
   1636 		simple_unlock(&pc->pc_slock);
   1637 		pcg = pool_get(&pcgpool, PR_NOWAIT);
   1638 		if (pcg != NULL) {
   1639 			memset(pcg, 0, sizeof(*pcg));
   1640 			simple_lock(&pc->pc_slock);
   1641 			pc->pc_ngroups++;
   1642 			TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list);
   1643 			if (pc->pc_freeto == NULL)
   1644 				pc->pc_freeto = pcg;
   1645 			goto have_group;
   1646 		}
   1647 
   1648 		/*
   1649 		 * Unable to allocate a cache group; destruct the object
   1650 		 * and free it back to the pool.
   1651 		 */
   1652 		pool_cache_destruct_object(pc, object);
   1653 		return;
   1654 	}
   1655 
   1656  have_group:
   1657 	pc->pc_nitems++;
   1658 	pcg_put(pcg, object);
   1659 
   1660 	if (pcg->pcg_avail == PCG_NOBJECTS)
   1661 		pc->pc_freeto = NULL;
   1662 
   1663 	simple_unlock(&pc->pc_slock);
   1664 }
   1665 
   1666 /*
   1667  * pool_cache_destruct_object:
   1668  *
   1669  *	Force destruction of an object and its release back into
   1670  *	the pool.
   1671  */
   1672 void
   1673 pool_cache_destruct_object(struct pool_cache *pc, void *object)
   1674 {
   1675 
   1676 	if (pc->pc_dtor != NULL)
   1677 		(*pc->pc_dtor)(pc->pc_arg, object);
   1678 	pool_put(pc->pc_pool, object);
   1679 }
   1680 
   1681 /*
   1682  * pool_cache_do_invalidate:
   1683  *
   1684  *	This internal function implements pool_cache_invalidate() and
   1685  *	pool_cache_reclaim().
   1686  */
   1687 static void
   1688 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups,
   1689     void (*putit)(struct pool *, void *, const char *, long))
   1690 {
   1691 	struct pool_cache_group *pcg, *npcg;
   1692 	void *object;
   1693 
   1694 	for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
   1695 	     pcg = npcg) {
   1696 		npcg = TAILQ_NEXT(pcg, pcg_list);
   1697 		while (pcg->pcg_avail != 0) {
   1698 			pc->pc_nitems--;
   1699 			object = pcg_get(pcg);
   1700 			if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg)
   1701 				pc->pc_allocfrom = NULL;
   1702 			if (pc->pc_dtor != NULL)
   1703 				(*pc->pc_dtor)(pc->pc_arg, object);
   1704 			(*putit)(pc->pc_pool, object, __FILE__, __LINE__);
   1705 		}
   1706 		if (free_groups) {
   1707 			pc->pc_ngroups--;
   1708 			TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list);
   1709 			if (pc->pc_freeto == pcg)
   1710 				pc->pc_freeto = NULL;
   1711 			pool_put(&pcgpool, pcg);
   1712 		}
   1713 	}
   1714 }
   1715 
   1716 /*
   1717  * pool_cache_invalidate:
   1718  *
   1719  *	Invalidate a pool cache (destruct and release all of the
   1720  *	cached objects).
   1721  */
   1722 void
   1723 pool_cache_invalidate(struct pool_cache *pc)
   1724 {
   1725 
   1726 	simple_lock(&pc->pc_slock);
   1727 	pool_cache_do_invalidate(pc, 0, _pool_put);
   1728 	simple_unlock(&pc->pc_slock);
   1729 }
   1730 
   1731 /*
   1732  * pool_cache_reclaim:
   1733  *
   1734  *	Reclaim a pool cache for pool_reclaim().
   1735  */
   1736 static void
   1737 pool_cache_reclaim(struct pool_cache *pc)
   1738 {
   1739 
   1740 	simple_lock(&pc->pc_slock);
   1741 	pool_cache_do_invalidate(pc, 1, pool_do_put);
   1742 	simple_unlock(&pc->pc_slock);
   1743 }
   1744