subr_pool.c revision 1.56 1 /* $NetBSD: subr_pool.c,v 1.56 2001/05/13 17:06:59 sommerfeld Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include "opt_pool.h"
41 #include "opt_poollog.h"
42 #include "opt_lockdebug.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/proc.h>
47 #include <sys/errno.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/lock.h>
51 #include <sys/pool.h>
52 #include <sys/syslog.h>
53
54 #include <uvm/uvm.h>
55
56 /*
57 * Pool resource management utility.
58 *
59 * Memory is allocated in pages which are split into pieces according
60 * to the pool item size. Each page is kept on a list headed by `pr_pagelist'
61 * in the pool structure and the individual pool items are on a linked list
62 * headed by `ph_itemlist' in each page header. The memory for building
63 * the page list is either taken from the allocated pages themselves (for
64 * small pool items) or taken from an internal pool of page headers (`phpool').
65 */
66
67 /* List of all pools */
68 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
69
70 /* Private pool for page header structures */
71 static struct pool phpool;
72
73 /* # of seconds to retain page after last use */
74 int pool_inactive_time = 10;
75
76 /* Next candidate for drainage (see pool_drain()) */
77 static struct pool *drainpp;
78
79 /* This spin lock protects both pool_head and drainpp. */
80 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
81
82 struct pool_item_header {
83 /* Page headers */
84 TAILQ_ENTRY(pool_item_header)
85 ph_pagelist; /* pool page list */
86 TAILQ_HEAD(,pool_item) ph_itemlist; /* chunk list for this page */
87 LIST_ENTRY(pool_item_header)
88 ph_hashlist; /* Off-page page headers */
89 int ph_nmissing; /* # of chunks in use */
90 caddr_t ph_page; /* this page's address */
91 struct timeval ph_time; /* last referenced */
92 };
93
94 struct pool_item {
95 #ifdef DIAGNOSTIC
96 int pi_magic;
97 #endif
98 #define PI_MAGIC 0xdeadbeef
99 /* Other entries use only this list entry */
100 TAILQ_ENTRY(pool_item) pi_list;
101 };
102
103 #define PR_HASH_INDEX(pp,addr) \
104 (((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1))
105
106 #define POOL_NEEDS_CATCHUP(pp) \
107 ((pp)->pr_nitems < (pp)->pr_minitems)
108
109 /*
110 * Pool cache management.
111 *
112 * Pool caches provide a way for constructed objects to be cached by the
113 * pool subsystem. This can lead to performance improvements by avoiding
114 * needless object construction/destruction; it is deferred until absolutely
115 * necessary.
116 *
117 * Caches are grouped into cache groups. Each cache group references
118 * up to 16 constructed objects. When a cache allocates an object
119 * from the pool, it calls the object's constructor and places it into
120 * a cache group. When a cache group frees an object back to the pool,
121 * it first calls the object's destructor. This allows the object to
122 * persist in constructed form while freed to the cache.
123 *
124 * Multiple caches may exist for each pool. This allows a single
125 * object type to have multiple constructed forms. The pool references
126 * each cache, so that when a pool is drained by the pagedaemon, it can
127 * drain each individual cache as well. Each time a cache is drained,
128 * the most idle cache group is freed to the pool in its entirety.
129 *
130 * Pool caches are layed on top of pools. By layering them, we can avoid
131 * the complexity of cache management for pools which would not benefit
132 * from it.
133 */
134
135 /* The cache group pool. */
136 static struct pool pcgpool;
137
138 /* The pool cache group. */
139 #define PCG_NOBJECTS 16
140 struct pool_cache_group {
141 TAILQ_ENTRY(pool_cache_group)
142 pcg_list; /* link in the pool cache's group list */
143 u_int pcg_avail; /* # available objects */
144 /* pointers to the objects */
145 void *pcg_objects[PCG_NOBJECTS];
146 };
147
148 static void pool_cache_reclaim(struct pool_cache *);
149
150 static int pool_catchup(struct pool *);
151 static void pool_prime_page(struct pool *, caddr_t,
152 struct pool_item_header *);
153 static void *pool_page_alloc(unsigned long, int, int);
154 static void pool_page_free(void *, unsigned long, int);
155
156 static void pool_print1(struct pool *, const char *,
157 void (*)(const char *, ...));
158
159 /*
160 * Pool log entry. An array of these is allocated in pool_init().
161 */
162 struct pool_log {
163 const char *pl_file;
164 long pl_line;
165 int pl_action;
166 #define PRLOG_GET 1
167 #define PRLOG_PUT 2
168 void *pl_addr;
169 };
170
171 /* Number of entries in pool log buffers */
172 #ifndef POOL_LOGSIZE
173 #define POOL_LOGSIZE 10
174 #endif
175
176 int pool_logsize = POOL_LOGSIZE;
177
178 #ifdef DIAGNOSTIC
179 static __inline void
180 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
181 {
182 int n = pp->pr_curlogentry;
183 struct pool_log *pl;
184
185 if ((pp->pr_roflags & PR_LOGGING) == 0)
186 return;
187
188 /*
189 * Fill in the current entry. Wrap around and overwrite
190 * the oldest entry if necessary.
191 */
192 pl = &pp->pr_log[n];
193 pl->pl_file = file;
194 pl->pl_line = line;
195 pl->pl_action = action;
196 pl->pl_addr = v;
197 if (++n >= pp->pr_logsize)
198 n = 0;
199 pp->pr_curlogentry = n;
200 }
201
202 static void
203 pr_printlog(struct pool *pp, struct pool_item *pi,
204 void (*pr)(const char *, ...))
205 {
206 int i = pp->pr_logsize;
207 int n = pp->pr_curlogentry;
208
209 if ((pp->pr_roflags & PR_LOGGING) == 0)
210 return;
211
212 /*
213 * Print all entries in this pool's log.
214 */
215 while (i-- > 0) {
216 struct pool_log *pl = &pp->pr_log[n];
217 if (pl->pl_action != 0) {
218 if (pi == NULL || pi == pl->pl_addr) {
219 (*pr)("\tlog entry %d:\n", i);
220 (*pr)("\t\taction = %s, addr = %p\n",
221 pl->pl_action == PRLOG_GET ? "get" : "put",
222 pl->pl_addr);
223 (*pr)("\t\tfile: %s at line %lu\n",
224 pl->pl_file, pl->pl_line);
225 }
226 }
227 if (++n >= pp->pr_logsize)
228 n = 0;
229 }
230 }
231
232 static __inline void
233 pr_enter(struct pool *pp, const char *file, long line)
234 {
235
236 if (__predict_false(pp->pr_entered_file != NULL)) {
237 printf("pool %s: reentrancy at file %s line %ld\n",
238 pp->pr_wchan, file, line);
239 printf(" previous entry at file %s line %ld\n",
240 pp->pr_entered_file, pp->pr_entered_line);
241 panic("pr_enter");
242 }
243
244 pp->pr_entered_file = file;
245 pp->pr_entered_line = line;
246 }
247
248 static __inline void
249 pr_leave(struct pool *pp)
250 {
251
252 if (__predict_false(pp->pr_entered_file == NULL)) {
253 printf("pool %s not entered?\n", pp->pr_wchan);
254 panic("pr_leave");
255 }
256
257 pp->pr_entered_file = NULL;
258 pp->pr_entered_line = 0;
259 }
260
261 static __inline void
262 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
263 {
264
265 if (pp->pr_entered_file != NULL)
266 (*pr)("\n\tcurrently entered from file %s line %ld\n",
267 pp->pr_entered_file, pp->pr_entered_line);
268 }
269 #else
270 #define pr_log(pp, v, action, file, line)
271 #define pr_printlog(pp, pi, pr)
272 #define pr_enter(pp, file, line)
273 #define pr_leave(pp)
274 #define pr_enter_check(pp, pr)
275 #endif /* DIAGNOSTIC */
276
277 /*
278 * Return the pool page header based on page address.
279 */
280 static __inline struct pool_item_header *
281 pr_find_pagehead(struct pool *pp, caddr_t page)
282 {
283 struct pool_item_header *ph;
284
285 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
286 return ((struct pool_item_header *)(page + pp->pr_phoffset));
287
288 for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]);
289 ph != NULL;
290 ph = LIST_NEXT(ph, ph_hashlist)) {
291 if (ph->ph_page == page)
292 return (ph);
293 }
294 return (NULL);
295 }
296
297 /*
298 * Remove a page from the pool.
299 */
300 static __inline void
301 pr_rmpage(struct pool *pp, struct pool_item_header *ph)
302 {
303
304 /*
305 * If the page was idle, decrement the idle page count.
306 */
307 if (ph->ph_nmissing == 0) {
308 #ifdef DIAGNOSTIC
309 if (pp->pr_nidle == 0)
310 panic("pr_rmpage: nidle inconsistent");
311 if (pp->pr_nitems < pp->pr_itemsperpage)
312 panic("pr_rmpage: nitems inconsistent");
313 #endif
314 pp->pr_nidle--;
315 }
316
317 pp->pr_nitems -= pp->pr_itemsperpage;
318
319 /*
320 * Unlink a page from the pool and release it.
321 */
322 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
323 (*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype);
324 pp->pr_npages--;
325 pp->pr_npagefree++;
326
327 if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
328 int s;
329 LIST_REMOVE(ph, ph_hashlist);
330 s = splhigh();
331 pool_put(&phpool, ph);
332 splx(s);
333 }
334
335 if (pp->pr_curpage == ph) {
336 /*
337 * Find a new non-empty page header, if any.
338 * Start search from the page head, to increase the
339 * chance for "high water" pages to be freed.
340 */
341 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
342 ph = TAILQ_NEXT(ph, ph_pagelist))
343 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
344 break;
345
346 pp->pr_curpage = ph;
347 }
348 }
349
350 /*
351 * Initialize the given pool resource structure.
352 *
353 * We export this routine to allow other kernel parts to declare
354 * static pools that must be initialized before malloc() is available.
355 */
356 void
357 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
358 const char *wchan, size_t pagesz,
359 void *(*alloc)(unsigned long, int, int),
360 void (*release)(void *, unsigned long, int),
361 int mtype)
362 {
363 int off, slack, i;
364
365 #ifdef POOL_DIAGNOSTIC
366 /*
367 * Always log if POOL_DIAGNOSTIC is defined.
368 */
369 if (pool_logsize != 0)
370 flags |= PR_LOGGING;
371 #endif
372
373 /*
374 * Check arguments and construct default values.
375 */
376 if (!powerof2(pagesz))
377 panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz);
378
379 if (alloc == NULL && release == NULL) {
380 alloc = pool_page_alloc;
381 release = pool_page_free;
382 pagesz = PAGE_SIZE; /* Rounds to PAGE_SIZE anyhow. */
383 } else if ((alloc != NULL && release != NULL) == 0) {
384 /* If you specifiy one, must specify both. */
385 panic("pool_init: must specify alloc and release together");
386 }
387
388 if (pagesz == 0)
389 pagesz = PAGE_SIZE;
390
391 if (align == 0)
392 align = ALIGN(1);
393
394 if (size < sizeof(struct pool_item))
395 size = sizeof(struct pool_item);
396
397 size = ALIGN(size);
398 if (size > pagesz)
399 panic("pool_init: pool item size (%lu) too large",
400 (u_long)size);
401
402 /*
403 * Initialize the pool structure.
404 */
405 TAILQ_INIT(&pp->pr_pagelist);
406 TAILQ_INIT(&pp->pr_cachelist);
407 pp->pr_curpage = NULL;
408 pp->pr_npages = 0;
409 pp->pr_minitems = 0;
410 pp->pr_minpages = 0;
411 pp->pr_maxpages = UINT_MAX;
412 pp->pr_roflags = flags;
413 pp->pr_flags = 0;
414 pp->pr_size = size;
415 pp->pr_align = align;
416 pp->pr_wchan = wchan;
417 pp->pr_mtype = mtype;
418 pp->pr_alloc = alloc;
419 pp->pr_free = release;
420 pp->pr_pagesz = pagesz;
421 pp->pr_pagemask = ~(pagesz - 1);
422 pp->pr_pageshift = ffs(pagesz) - 1;
423 pp->pr_nitems = 0;
424 pp->pr_nout = 0;
425 pp->pr_hardlimit = UINT_MAX;
426 pp->pr_hardlimit_warning = NULL;
427 pp->pr_hardlimit_ratecap.tv_sec = 0;
428 pp->pr_hardlimit_ratecap.tv_usec = 0;
429 pp->pr_hardlimit_warning_last.tv_sec = 0;
430 pp->pr_hardlimit_warning_last.tv_usec = 0;
431
432 /*
433 * Decide whether to put the page header off page to avoid
434 * wasting too large a part of the page. Off-page page headers
435 * go on a hash table, so we can match a returned item
436 * with its header based on the page address.
437 * We use 1/16 of the page size as the threshold (XXX: tune)
438 */
439 if (pp->pr_size < pagesz/16) {
440 /* Use the end of the page for the page header */
441 pp->pr_roflags |= PR_PHINPAGE;
442 pp->pr_phoffset = off =
443 pagesz - ALIGN(sizeof(struct pool_item_header));
444 } else {
445 /* The page header will be taken from our page header pool */
446 pp->pr_phoffset = 0;
447 off = pagesz;
448 for (i = 0; i < PR_HASHTABSIZE; i++) {
449 LIST_INIT(&pp->pr_hashtab[i]);
450 }
451 }
452
453 /*
454 * Alignment is to take place at `ioff' within the item. This means
455 * we must reserve up to `align - 1' bytes on the page to allow
456 * appropriate positioning of each item.
457 *
458 * Silently enforce `0 <= ioff < align'.
459 */
460 pp->pr_itemoffset = ioff = ioff % align;
461 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
462 KASSERT(pp->pr_itemsperpage != 0);
463
464 /*
465 * Use the slack between the chunks and the page header
466 * for "cache coloring".
467 */
468 slack = off - pp->pr_itemsperpage * pp->pr_size;
469 pp->pr_maxcolor = (slack / align) * align;
470 pp->pr_curcolor = 0;
471
472 pp->pr_nget = 0;
473 pp->pr_nfail = 0;
474 pp->pr_nput = 0;
475 pp->pr_npagealloc = 0;
476 pp->pr_npagefree = 0;
477 pp->pr_hiwat = 0;
478 pp->pr_nidle = 0;
479
480 if (flags & PR_LOGGING) {
481 if (kmem_map == NULL ||
482 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
483 M_TEMP, M_NOWAIT)) == NULL)
484 pp->pr_roflags &= ~PR_LOGGING;
485 pp->pr_curlogentry = 0;
486 pp->pr_logsize = pool_logsize;
487 }
488
489 pp->pr_entered_file = NULL;
490 pp->pr_entered_line = 0;
491
492 simple_lock_init(&pp->pr_slock);
493
494 /*
495 * Initialize private page header pool and cache magazine pool if we
496 * haven't done so yet.
497 * XXX LOCKING.
498 */
499 if (phpool.pr_size == 0) {
500 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
501 0, "phpool", 0, 0, 0, 0);
502 pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
503 0, "pcgpool", 0, 0, 0, 0);
504 }
505
506 /* Insert into the list of all pools. */
507 simple_lock(&pool_head_slock);
508 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
509 simple_unlock(&pool_head_slock);
510 }
511
512 /*
513 * De-commision a pool resource.
514 */
515 void
516 pool_destroy(struct pool *pp)
517 {
518 struct pool_item_header *ph;
519 struct pool_cache *pc;
520
521 /* Destroy all caches for this pool. */
522 while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL)
523 pool_cache_destroy(pc);
524
525 #ifdef DIAGNOSTIC
526 if (pp->pr_nout != 0) {
527 pr_printlog(pp, NULL, printf);
528 panic("pool_destroy: pool busy: still out: %u\n",
529 pp->pr_nout);
530 }
531 #endif
532
533 /* Remove all pages */
534 if ((pp->pr_roflags & PR_STATIC) == 0)
535 while ((ph = pp->pr_pagelist.tqh_first) != NULL)
536 pr_rmpage(pp, ph);
537
538 /* Remove from global pool list */
539 simple_lock(&pool_head_slock);
540 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
541 /* XXX Only clear this if we were drainpp? */
542 drainpp = NULL;
543 simple_unlock(&pool_head_slock);
544
545 if ((pp->pr_roflags & PR_LOGGING) != 0)
546 free(pp->pr_log, M_TEMP);
547
548 if (pp->pr_roflags & PR_FREEHEADER)
549 free(pp, M_POOL);
550 }
551
552 static __inline struct pool_item_header *
553 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
554 {
555 struct pool_item_header *ph;
556 int s;
557
558 LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
559
560 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
561 ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
562 else {
563 s = splhigh();
564 ph = pool_get(&phpool, flags);
565 splx(s);
566 }
567
568 return (ph);
569 }
570
571 /*
572 * Grab an item from the pool; must be called at appropriate spl level
573 */
574 void *
575 #ifdef DIAGNOSTIC
576 _pool_get(struct pool *pp, int flags, const char *file, long line)
577 #else
578 pool_get(struct pool *pp, int flags)
579 #endif
580 {
581 struct pool_item *pi;
582 struct pool_item_header *ph;
583 void *v;
584
585 #ifdef DIAGNOSTIC
586 if (__predict_false((pp->pr_roflags & PR_STATIC) &&
587 (flags & PR_MALLOCOK))) {
588 pr_printlog(pp, NULL, printf);
589 panic("pool_get: static");
590 }
591
592 if (__predict_false(curproc == NULL && doing_shutdown == 0 &&
593 (flags & PR_WAITOK) != 0))
594 panic("pool_get: must have NOWAIT");
595 #endif
596
597 simple_lock(&pp->pr_slock);
598 pr_enter(pp, file, line);
599
600 startover:
601 /*
602 * Check to see if we've reached the hard limit. If we have,
603 * and we can wait, then wait until an item has been returned to
604 * the pool.
605 */
606 #ifdef DIAGNOSTIC
607 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
608 pr_leave(pp);
609 simple_unlock(&pp->pr_slock);
610 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
611 }
612 #endif
613 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
614 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
615 /*
616 * XXX: A warning isn't logged in this case. Should
617 * it be?
618 */
619 pp->pr_flags |= PR_WANTED;
620 pr_leave(pp);
621 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
622 pr_enter(pp, file, line);
623 goto startover;
624 }
625
626 /*
627 * Log a message that the hard limit has been hit.
628 */
629 if (pp->pr_hardlimit_warning != NULL &&
630 ratecheck(&pp->pr_hardlimit_warning_last,
631 &pp->pr_hardlimit_ratecap))
632 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
633
634 if (flags & PR_URGENT)
635 panic("pool_get: urgent");
636
637 pp->pr_nfail++;
638
639 pr_leave(pp);
640 simple_unlock(&pp->pr_slock);
641 return (NULL);
642 }
643
644 /*
645 * The convention we use is that if `curpage' is not NULL, then
646 * it points at a non-empty bucket. In particular, `curpage'
647 * never points at a page header which has PR_PHINPAGE set and
648 * has no items in its bucket.
649 */
650 if ((ph = pp->pr_curpage) == NULL) {
651 #ifdef DIAGNOSTIC
652 if (pp->pr_nitems != 0) {
653 simple_unlock(&pp->pr_slock);
654 printf("pool_get: %s: curpage NULL, nitems %u\n",
655 pp->pr_wchan, pp->pr_nitems);
656 panic("pool_get: nitems inconsistent\n");
657 }
658 #endif
659
660 /*
661 * Call the back-end page allocator for more memory.
662 * Release the pool lock, as the back-end page allocator
663 * may block.
664 */
665 pr_leave(pp);
666 simple_unlock(&pp->pr_slock);
667 v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype);
668 if (__predict_true(v != NULL))
669 ph = pool_alloc_item_header(pp, v, flags);
670 simple_lock(&pp->pr_slock);
671 pr_enter(pp, file, line);
672
673 if (__predict_false(v == NULL || ph == NULL)) {
674 if (v != NULL)
675 (*pp->pr_free)(v, pp->pr_pagesz, pp->pr_mtype);
676
677 /*
678 * We were unable to allocate a page or item
679 * header, but we released the lock during
680 * allocation, so perhaps items were freed
681 * back to the pool. Check for this case.
682 */
683 if (pp->pr_curpage != NULL)
684 goto startover;
685
686 if (flags & PR_URGENT)
687 panic("pool_get: urgent");
688
689 if ((flags & PR_WAITOK) == 0) {
690 pp->pr_nfail++;
691 pr_leave(pp);
692 simple_unlock(&pp->pr_slock);
693 return (NULL);
694 }
695
696 /*
697 * Wait for items to be returned to this pool.
698 *
699 * XXX: we actually want to wait just until
700 * the page allocator has memory again. Depending
701 * on this pool's usage, we might get stuck here
702 * for a long time.
703 *
704 * XXX: maybe we should wake up once a second and
705 * try again?
706 */
707 pp->pr_flags |= PR_WANTED;
708 pr_leave(pp);
709 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
710 pr_enter(pp, file, line);
711 goto startover;
712 }
713
714 /* We have more memory; add it to the pool */
715 pool_prime_page(pp, v, ph);
716 pp->pr_npagealloc++;
717
718 /* Start the allocation process over. */
719 goto startover;
720 }
721
722 if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
723 pr_leave(pp);
724 simple_unlock(&pp->pr_slock);
725 panic("pool_get: %s: page empty", pp->pr_wchan);
726 }
727 #ifdef DIAGNOSTIC
728 if (__predict_false(pp->pr_nitems == 0)) {
729 pr_leave(pp);
730 simple_unlock(&pp->pr_slock);
731 printf("pool_get: %s: items on itemlist, nitems %u\n",
732 pp->pr_wchan, pp->pr_nitems);
733 panic("pool_get: nitems inconsistent\n");
734 }
735
736 pr_log(pp, v, PRLOG_GET, file, line);
737
738 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
739 pr_printlog(pp, pi, printf);
740 panic("pool_get(%s): free list modified: magic=%x; page %p;"
741 " item addr %p\n",
742 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
743 }
744 #endif
745
746 /*
747 * Remove from item list.
748 */
749 TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
750 pp->pr_nitems--;
751 pp->pr_nout++;
752 if (ph->ph_nmissing == 0) {
753 #ifdef DIAGNOSTIC
754 if (__predict_false(pp->pr_nidle == 0))
755 panic("pool_get: nidle inconsistent");
756 #endif
757 pp->pr_nidle--;
758 }
759 ph->ph_nmissing++;
760 if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) {
761 #ifdef DIAGNOSTIC
762 if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
763 pr_leave(pp);
764 simple_unlock(&pp->pr_slock);
765 panic("pool_get: %s: nmissing inconsistent",
766 pp->pr_wchan);
767 }
768 #endif
769 /*
770 * Find a new non-empty page header, if any.
771 * Start search from the page head, to increase
772 * the chance for "high water" pages to be freed.
773 *
774 * Migrate empty pages to the end of the list. This
775 * will speed the update of curpage as pages become
776 * idle. Empty pages intermingled with idle pages
777 * is no big deal. As soon as a page becomes un-empty,
778 * it will move back to the head of the list.
779 */
780 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
781 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
782 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
783 ph = TAILQ_NEXT(ph, ph_pagelist))
784 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
785 break;
786
787 pp->pr_curpage = ph;
788 }
789
790 pp->pr_nget++;
791
792 /*
793 * If we have a low water mark and we are now below that low
794 * water mark, add more items to the pool.
795 */
796 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
797 /*
798 * XXX: Should we log a warning? Should we set up a timeout
799 * to try again in a second or so? The latter could break
800 * a caller's assumptions about interrupt protection, etc.
801 */
802 }
803
804 pr_leave(pp);
805 simple_unlock(&pp->pr_slock);
806 return (v);
807 }
808
809 /*
810 * Internal version of pool_put(). Pool is already locked/entered.
811 */
812 static void
813 pool_do_put(struct pool *pp, void *v)
814 {
815 struct pool_item *pi = v;
816 struct pool_item_header *ph;
817 caddr_t page;
818 int s;
819
820 page = (caddr_t)((u_long)v & pp->pr_pagemask);
821
822 #ifdef DIAGNOSTIC
823 if (__predict_false(pp->pr_nout == 0)) {
824 printf("pool %s: putting with none out\n",
825 pp->pr_wchan);
826 panic("pool_put");
827 }
828 #endif
829
830 if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
831 pr_printlog(pp, NULL, printf);
832 panic("pool_put: %s: page header missing", pp->pr_wchan);
833 }
834
835 #ifdef LOCKDEBUG
836 /*
837 * Check if we're freeing a locked simple lock.
838 */
839 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
840 #endif
841
842 /*
843 * Return to item list.
844 */
845 #ifdef DIAGNOSTIC
846 pi->pi_magic = PI_MAGIC;
847 #endif
848 #ifdef DEBUG
849 {
850 int i, *ip = v;
851
852 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
853 *ip++ = PI_MAGIC;
854 }
855 }
856 #endif
857
858 TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
859 ph->ph_nmissing--;
860 pp->pr_nput++;
861 pp->pr_nitems++;
862 pp->pr_nout--;
863
864 /* Cancel "pool empty" condition if it exists */
865 if (pp->pr_curpage == NULL)
866 pp->pr_curpage = ph;
867
868 if (pp->pr_flags & PR_WANTED) {
869 pp->pr_flags &= ~PR_WANTED;
870 if (ph->ph_nmissing == 0)
871 pp->pr_nidle++;
872 wakeup((caddr_t)pp);
873 return;
874 }
875
876 /*
877 * If this page is now complete, do one of two things:
878 *
879 * (1) If we have more pages than the page high water
880 * mark, free the page back to the system.
881 *
882 * (2) Move it to the end of the page list, so that
883 * we minimize our chances of fragmenting the
884 * pool. Idle pages migrate to the end (along with
885 * completely empty pages, so that we find un-empty
886 * pages more quickly when we update curpage) of the
887 * list so they can be more easily swept up by
888 * the pagedaemon when pages are scarce.
889 */
890 if (ph->ph_nmissing == 0) {
891 pp->pr_nidle++;
892 if (pp->pr_npages > pp->pr_maxpages) {
893 pr_rmpage(pp, ph);
894 } else {
895 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
896 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
897
898 /*
899 * Update the timestamp on the page. A page must
900 * be idle for some period of time before it can
901 * be reclaimed by the pagedaemon. This minimizes
902 * ping-pong'ing for memory.
903 */
904 s = splclock();
905 ph->ph_time = mono_time;
906 splx(s);
907
908 /*
909 * Update the current page pointer. Just look for
910 * the first page with any free items.
911 *
912 * XXX: Maybe we want an option to look for the
913 * page with the fewest available items, to minimize
914 * fragmentation?
915 */
916 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
917 ph = TAILQ_NEXT(ph, ph_pagelist))
918 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
919 break;
920
921 pp->pr_curpage = ph;
922 }
923 }
924 /*
925 * If the page has just become un-empty, move it to the head of
926 * the list, and make it the current page. The next allocation
927 * will get the item from this page, instead of further fragmenting
928 * the pool.
929 */
930 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
931 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
932 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
933 pp->pr_curpage = ph;
934 }
935 }
936
937 /*
938 * Return resource to the pool; must be called at appropriate spl level
939 */
940 #ifdef DIAGNOSTIC
941 void
942 _pool_put(struct pool *pp, void *v, const char *file, long line)
943 {
944
945 simple_lock(&pp->pr_slock);
946 pr_enter(pp, file, line);
947
948 pr_log(pp, v, PRLOG_PUT, file, line);
949
950 pool_do_put(pp, v);
951
952 pr_leave(pp);
953 simple_unlock(&pp->pr_slock);
954 }
955
956 #else
957 void
958 pool_put(struct pool *pp, void *v)
959 {
960
961 simple_lock(&pp->pr_slock);
962
963 pool_do_put(pp, v);
964
965 simple_unlock(&pp->pr_slock);
966 }
967 #endif
968
969 /*
970 * Add N items to the pool.
971 */
972 int
973 pool_prime(struct pool *pp, int n)
974 {
975 struct pool_item_header *ph;
976 caddr_t cp;
977 int newpages, error = 0;
978
979 simple_lock(&pp->pr_slock);
980
981 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
982
983 while (newpages-- > 0) {
984 simple_unlock(&pp->pr_slock);
985 cp = (*pp->pr_alloc)(pp->pr_pagesz, PR_NOWAIT, pp->pr_mtype);
986 if (__predict_true(cp != NULL))
987 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
988 simple_lock(&pp->pr_slock);
989
990 if (__predict_false(cp == NULL || ph == NULL)) {
991 error = ENOMEM;
992 if (cp != NULL)
993 (*pp->pr_free)(cp, pp->pr_pagesz, pp->pr_mtype);
994 break;
995 }
996
997 pool_prime_page(pp, cp, ph);
998 pp->pr_npagealloc++;
999 pp->pr_minpages++;
1000 }
1001
1002 if (pp->pr_minpages >= pp->pr_maxpages)
1003 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1004
1005 simple_unlock(&pp->pr_slock);
1006 return (0);
1007 }
1008
1009 /*
1010 * Add a page worth of items to the pool.
1011 *
1012 * Note, we must be called with the pool descriptor LOCKED.
1013 */
1014 static void
1015 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
1016 {
1017 struct pool_item *pi;
1018 caddr_t cp = storage;
1019 unsigned int align = pp->pr_align;
1020 unsigned int ioff = pp->pr_itemoffset;
1021 int n;
1022
1023 if (((u_long)cp & (pp->pr_pagesz - 1)) != 0)
1024 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1025
1026 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1027 LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)],
1028 ph, ph_hashlist);
1029
1030 /*
1031 * Insert page header.
1032 */
1033 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
1034 TAILQ_INIT(&ph->ph_itemlist);
1035 ph->ph_page = storage;
1036 ph->ph_nmissing = 0;
1037 memset(&ph->ph_time, 0, sizeof(ph->ph_time));
1038
1039 pp->pr_nidle++;
1040
1041 /*
1042 * Color this page.
1043 */
1044 cp = (caddr_t)(cp + pp->pr_curcolor);
1045 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1046 pp->pr_curcolor = 0;
1047
1048 /*
1049 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1050 */
1051 if (ioff != 0)
1052 cp = (caddr_t)(cp + (align - ioff));
1053
1054 /*
1055 * Insert remaining chunks on the bucket list.
1056 */
1057 n = pp->pr_itemsperpage;
1058 pp->pr_nitems += n;
1059
1060 while (n--) {
1061 pi = (struct pool_item *)cp;
1062
1063 /* Insert on page list */
1064 TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
1065 #ifdef DIAGNOSTIC
1066 pi->pi_magic = PI_MAGIC;
1067 #endif
1068 cp = (caddr_t)(cp + pp->pr_size);
1069 }
1070
1071 /*
1072 * If the pool was depleted, point at the new page.
1073 */
1074 if (pp->pr_curpage == NULL)
1075 pp->pr_curpage = ph;
1076
1077 if (++pp->pr_npages > pp->pr_hiwat)
1078 pp->pr_hiwat = pp->pr_npages;
1079 }
1080
1081 /*
1082 * Used by pool_get() when nitems drops below the low water mark. This
1083 * is used to catch up nitmes with the low water mark.
1084 *
1085 * Note 1, we never wait for memory here, we let the caller decide what to do.
1086 *
1087 * Note 2, this doesn't work with static pools.
1088 *
1089 * Note 3, we must be called with the pool already locked, and we return
1090 * with it locked.
1091 */
1092 static int
1093 pool_catchup(struct pool *pp)
1094 {
1095 struct pool_item_header *ph;
1096 caddr_t cp;
1097 int error = 0;
1098
1099 if (pp->pr_roflags & PR_STATIC) {
1100 /*
1101 * We dropped below the low water mark, and this is not a
1102 * good thing. Log a warning.
1103 *
1104 * XXX: rate-limit this?
1105 */
1106 printf("WARNING: static pool `%s' dropped below low water "
1107 "mark\n", pp->pr_wchan);
1108 return (0);
1109 }
1110
1111 while (POOL_NEEDS_CATCHUP(pp)) {
1112 /*
1113 * Call the page back-end allocator for more memory.
1114 *
1115 * XXX: We never wait, so should we bother unlocking
1116 * the pool descriptor?
1117 */
1118 simple_unlock(&pp->pr_slock);
1119 cp = (*pp->pr_alloc)(pp->pr_pagesz, PR_NOWAIT, pp->pr_mtype);
1120 if (__predict_true(cp != NULL))
1121 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1122 simple_lock(&pp->pr_slock);
1123 if (__predict_false(cp == NULL || ph == NULL)) {
1124 if (cp != NULL)
1125 (*pp->pr_free)(cp, pp->pr_pagesz, pp->pr_mtype);
1126 error = ENOMEM;
1127 break;
1128 }
1129 pool_prime_page(pp, cp, ph);
1130 pp->pr_npagealloc++;
1131 }
1132
1133 return (error);
1134 }
1135
1136 void
1137 pool_setlowat(struct pool *pp, int n)
1138 {
1139 int error;
1140
1141 simple_lock(&pp->pr_slock);
1142
1143 pp->pr_minitems = n;
1144 pp->pr_minpages = (n == 0)
1145 ? 0
1146 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1147
1148 /* Make sure we're caught up with the newly-set low water mark. */
1149 if (POOL_NEEDS_CATCHUP(pp) && (error = pool_catchup(pp) != 0)) {
1150 /*
1151 * XXX: Should we log a warning? Should we set up a timeout
1152 * to try again in a second or so? The latter could break
1153 * a caller's assumptions about interrupt protection, etc.
1154 */
1155 }
1156
1157 simple_unlock(&pp->pr_slock);
1158 }
1159
1160 void
1161 pool_sethiwat(struct pool *pp, int n)
1162 {
1163
1164 simple_lock(&pp->pr_slock);
1165
1166 pp->pr_maxpages = (n == 0)
1167 ? 0
1168 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1169
1170 simple_unlock(&pp->pr_slock);
1171 }
1172
1173 void
1174 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1175 {
1176
1177 simple_lock(&pp->pr_slock);
1178
1179 pp->pr_hardlimit = n;
1180 pp->pr_hardlimit_warning = warnmess;
1181 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1182 pp->pr_hardlimit_warning_last.tv_sec = 0;
1183 pp->pr_hardlimit_warning_last.tv_usec = 0;
1184
1185 /*
1186 * In-line version of pool_sethiwat(), because we don't want to
1187 * release the lock.
1188 */
1189 pp->pr_maxpages = (n == 0)
1190 ? 0
1191 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1192
1193 simple_unlock(&pp->pr_slock);
1194 }
1195
1196 /*
1197 * Default page allocator.
1198 */
1199 static void *
1200 pool_page_alloc(unsigned long sz, int flags, int mtype)
1201 {
1202 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1203
1204 return ((void *)uvm_km_alloc_poolpage(waitok));
1205 }
1206
1207 static void
1208 pool_page_free(void *v, unsigned long sz, int mtype)
1209 {
1210
1211 uvm_km_free_poolpage((vaddr_t)v);
1212 }
1213
1214 /*
1215 * Alternate pool page allocator for pools that know they will
1216 * never be accessed in interrupt context.
1217 */
1218 void *
1219 pool_page_alloc_nointr(unsigned long sz, int flags, int mtype)
1220 {
1221 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1222
1223 return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object,
1224 waitok));
1225 }
1226
1227 void
1228 pool_page_free_nointr(void *v, unsigned long sz, int mtype)
1229 {
1230
1231 uvm_km_free_poolpage1(kernel_map, (vaddr_t)v);
1232 }
1233
1234
1235 /*
1236 * Release all complete pages that have not been used recently.
1237 */
1238 void
1239 #ifdef DIAGNOSTIC
1240 _pool_reclaim(struct pool *pp, const char *file, long line)
1241 #else
1242 pool_reclaim(struct pool *pp)
1243 #endif
1244 {
1245 struct pool_item_header *ph, *phnext;
1246 struct pool_cache *pc;
1247 struct timeval curtime;
1248 int s;
1249
1250 if (pp->pr_roflags & PR_STATIC)
1251 return;
1252
1253 if (simple_lock_try(&pp->pr_slock) == 0)
1254 return;
1255 pr_enter(pp, file, line);
1256
1257 /*
1258 * Reclaim items from the pool's caches.
1259 */
1260 for (pc = TAILQ_FIRST(&pp->pr_cachelist); pc != NULL;
1261 pc = TAILQ_NEXT(pc, pc_poollist))
1262 pool_cache_reclaim(pc);
1263
1264 s = splclock();
1265 curtime = mono_time;
1266 splx(s);
1267
1268 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) {
1269 phnext = TAILQ_NEXT(ph, ph_pagelist);
1270
1271 /* Check our minimum page claim */
1272 if (pp->pr_npages <= pp->pr_minpages)
1273 break;
1274
1275 if (ph->ph_nmissing == 0) {
1276 struct timeval diff;
1277 timersub(&curtime, &ph->ph_time, &diff);
1278 if (diff.tv_sec < pool_inactive_time)
1279 continue;
1280
1281 /*
1282 * If freeing this page would put us below
1283 * the low water mark, stop now.
1284 */
1285 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1286 pp->pr_minitems)
1287 break;
1288
1289 pr_rmpage(pp, ph);
1290 }
1291 }
1292
1293 pr_leave(pp);
1294 simple_unlock(&pp->pr_slock);
1295 }
1296
1297
1298 /*
1299 * Drain pools, one at a time.
1300 *
1301 * Note, we must never be called from an interrupt context.
1302 */
1303 void
1304 pool_drain(void *arg)
1305 {
1306 struct pool *pp;
1307 int s;
1308
1309 s = splvm();
1310 simple_lock(&pool_head_slock);
1311
1312 if (drainpp == NULL && (drainpp = TAILQ_FIRST(&pool_head)) == NULL)
1313 goto out;
1314
1315 pp = drainpp;
1316 drainpp = TAILQ_NEXT(pp, pr_poollist);
1317
1318 pool_reclaim(pp);
1319
1320 out:
1321 simple_unlock(&pool_head_slock);
1322 splx(s);
1323 }
1324
1325
1326 /*
1327 * Diagnostic helpers.
1328 */
1329 void
1330 pool_print(struct pool *pp, const char *modif)
1331 {
1332 int s;
1333
1334 s = splvm();
1335 if (simple_lock_try(&pp->pr_slock) == 0) {
1336 printf("pool %s is locked; try again later\n",
1337 pp->pr_wchan);
1338 splx(s);
1339 return;
1340 }
1341 pool_print1(pp, modif, printf);
1342 simple_unlock(&pp->pr_slock);
1343 splx(s);
1344 }
1345
1346 void
1347 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1348 {
1349 int didlock = 0;
1350
1351 if (pp == NULL) {
1352 (*pr)("Must specify a pool to print.\n");
1353 return;
1354 }
1355
1356 /*
1357 * Called from DDB; interrupts should be blocked, and all
1358 * other processors should be paused. We can skip locking
1359 * the pool in this case.
1360 *
1361 * We do a simple_lock_try() just to print the lock
1362 * status, however.
1363 */
1364
1365 if (simple_lock_try(&pp->pr_slock) == 0)
1366 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1367 else
1368 didlock = 1;
1369
1370 pool_print1(pp, modif, pr);
1371
1372 if (didlock)
1373 simple_unlock(&pp->pr_slock);
1374 }
1375
1376 static void
1377 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1378 {
1379 struct pool_item_header *ph;
1380 struct pool_cache *pc;
1381 struct pool_cache_group *pcg;
1382 #ifdef DIAGNOSTIC
1383 struct pool_item *pi;
1384 #endif
1385 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1386 char c;
1387
1388 while ((c = *modif++) != '\0') {
1389 if (c == 'l')
1390 print_log = 1;
1391 if (c == 'p')
1392 print_pagelist = 1;
1393 if (c == 'c')
1394 print_cache = 1;
1395 modif++;
1396 }
1397
1398 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1399 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1400 pp->pr_roflags);
1401 (*pr)("\tpagesz %u, mtype %d\n", pp->pr_pagesz, pp->pr_mtype);
1402 (*pr)("\talloc %p, release %p\n", pp->pr_alloc, pp->pr_free);
1403 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1404 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1405 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1406 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1407
1408 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1409 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1410 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1411 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1412
1413 if (print_pagelist == 0)
1414 goto skip_pagelist;
1415
1416 if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
1417 (*pr)("\n\tpage list:\n");
1418 for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) {
1419 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1420 ph->ph_page, ph->ph_nmissing,
1421 (u_long)ph->ph_time.tv_sec,
1422 (u_long)ph->ph_time.tv_usec);
1423 #ifdef DIAGNOSTIC
1424 for (pi = TAILQ_FIRST(&ph->ph_itemlist); pi != NULL;
1425 pi = TAILQ_NEXT(pi, pi_list)) {
1426 if (pi->pi_magic != PI_MAGIC) {
1427 (*pr)("\t\t\titem %p, magic 0x%x\n",
1428 pi, pi->pi_magic);
1429 }
1430 }
1431 #endif
1432 }
1433 if (pp->pr_curpage == NULL)
1434 (*pr)("\tno current page\n");
1435 else
1436 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1437
1438 skip_pagelist:
1439
1440 if (print_log == 0)
1441 goto skip_log;
1442
1443 (*pr)("\n");
1444 if ((pp->pr_roflags & PR_LOGGING) == 0)
1445 (*pr)("\tno log\n");
1446 else
1447 pr_printlog(pp, NULL, pr);
1448
1449 skip_log:
1450
1451 if (print_cache == 0)
1452 goto skip_cache;
1453
1454 for (pc = TAILQ_FIRST(&pp->pr_cachelist); pc != NULL;
1455 pc = TAILQ_NEXT(pc, pc_poollist)) {
1456 (*pr)("\tcache %p: allocfrom %p freeto %p\n", pc,
1457 pc->pc_allocfrom, pc->pc_freeto);
1458 (*pr)("\t hits %lu misses %lu ngroups %lu nitems %lu\n",
1459 pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
1460 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1461 pcg = TAILQ_NEXT(pcg, pcg_list)) {
1462 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);
1463 for (i = 0; i < PCG_NOBJECTS; i++)
1464 (*pr)("\t\t\t%p\n", pcg->pcg_objects[i]);
1465 }
1466 }
1467
1468 skip_cache:
1469
1470 pr_enter_check(pp, pr);
1471 }
1472
1473 int
1474 pool_chk(struct pool *pp, const char *label)
1475 {
1476 struct pool_item_header *ph;
1477 int r = 0;
1478
1479 simple_lock(&pp->pr_slock);
1480
1481 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
1482 ph = TAILQ_NEXT(ph, ph_pagelist)) {
1483
1484 struct pool_item *pi;
1485 int n;
1486 caddr_t page;
1487
1488 page = (caddr_t)((u_long)ph & pp->pr_pagemask);
1489 if (page != ph->ph_page &&
1490 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1491 if (label != NULL)
1492 printf("%s: ", label);
1493 printf("pool(%p:%s): page inconsistency: page %p;"
1494 " at page head addr %p (p %p)\n", pp,
1495 pp->pr_wchan, ph->ph_page,
1496 ph, page);
1497 r++;
1498 goto out;
1499 }
1500
1501 for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
1502 pi != NULL;
1503 pi = TAILQ_NEXT(pi,pi_list), n++) {
1504
1505 #ifdef DIAGNOSTIC
1506 if (pi->pi_magic != PI_MAGIC) {
1507 if (label != NULL)
1508 printf("%s: ", label);
1509 printf("pool(%s): free list modified: magic=%x;"
1510 " page %p; item ordinal %d;"
1511 " addr %p (p %p)\n",
1512 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1513 n, pi, page);
1514 panic("pool");
1515 }
1516 #endif
1517 page = (caddr_t)((u_long)pi & pp->pr_pagemask);
1518 if (page == ph->ph_page)
1519 continue;
1520
1521 if (label != NULL)
1522 printf("%s: ", label);
1523 printf("pool(%p:%s): page inconsistency: page %p;"
1524 " item ordinal %d; addr %p (p %p)\n", pp,
1525 pp->pr_wchan, ph->ph_page,
1526 n, pi, page);
1527 r++;
1528 goto out;
1529 }
1530 }
1531 out:
1532 simple_unlock(&pp->pr_slock);
1533 return (r);
1534 }
1535
1536 /*
1537 * pool_cache_init:
1538 *
1539 * Initialize a pool cache.
1540 *
1541 * NOTE: If the pool must be protected from interrupts, we expect
1542 * to be called at the appropriate interrupt priority level.
1543 */
1544 void
1545 pool_cache_init(struct pool_cache *pc, struct pool *pp,
1546 int (*ctor)(void *, void *, int),
1547 void (*dtor)(void *, void *),
1548 void *arg)
1549 {
1550
1551 TAILQ_INIT(&pc->pc_grouplist);
1552 simple_lock_init(&pc->pc_slock);
1553
1554 pc->pc_allocfrom = NULL;
1555 pc->pc_freeto = NULL;
1556 pc->pc_pool = pp;
1557
1558 pc->pc_ctor = ctor;
1559 pc->pc_dtor = dtor;
1560 pc->pc_arg = arg;
1561
1562 pc->pc_hits = 0;
1563 pc->pc_misses = 0;
1564
1565 pc->pc_ngroups = 0;
1566
1567 pc->pc_nitems = 0;
1568
1569 simple_lock(&pp->pr_slock);
1570 TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist);
1571 simple_unlock(&pp->pr_slock);
1572 }
1573
1574 /*
1575 * pool_cache_destroy:
1576 *
1577 * Destroy a pool cache.
1578 */
1579 void
1580 pool_cache_destroy(struct pool_cache *pc)
1581 {
1582 struct pool *pp = pc->pc_pool;
1583
1584 /* First, invalidate the entire cache. */
1585 pool_cache_invalidate(pc);
1586
1587 /* ...and remove it from the pool's cache list. */
1588 simple_lock(&pp->pr_slock);
1589 TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist);
1590 simple_unlock(&pp->pr_slock);
1591 }
1592
1593 static __inline void *
1594 pcg_get(struct pool_cache_group *pcg)
1595 {
1596 void *object;
1597 u_int idx;
1598
1599 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
1600 KASSERT(pcg->pcg_avail != 0);
1601 idx = --pcg->pcg_avail;
1602
1603 KASSERT(pcg->pcg_objects[idx] != NULL);
1604 object = pcg->pcg_objects[idx];
1605 pcg->pcg_objects[idx] = NULL;
1606
1607 return (object);
1608 }
1609
1610 static __inline void
1611 pcg_put(struct pool_cache_group *pcg, void *object)
1612 {
1613 u_int idx;
1614
1615 KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
1616 idx = pcg->pcg_avail++;
1617
1618 KASSERT(pcg->pcg_objects[idx] == NULL);
1619 pcg->pcg_objects[idx] = object;
1620 }
1621
1622 /*
1623 * pool_cache_get:
1624 *
1625 * Get an object from a pool cache.
1626 */
1627 void *
1628 pool_cache_get(struct pool_cache *pc, int flags)
1629 {
1630 struct pool_cache_group *pcg;
1631 void *object;
1632
1633 simple_lock(&pc->pc_slock);
1634
1635 if ((pcg = pc->pc_allocfrom) == NULL) {
1636 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1637 pcg = TAILQ_NEXT(pcg, pcg_list)) {
1638 if (pcg->pcg_avail != 0) {
1639 pc->pc_allocfrom = pcg;
1640 goto have_group;
1641 }
1642 }
1643
1644 /*
1645 * No groups with any available objects. Allocate
1646 * a new object, construct it, and return it to
1647 * the caller. We will allocate a group, if necessary,
1648 * when the object is freed back to the cache.
1649 */
1650 pc->pc_misses++;
1651 simple_unlock(&pc->pc_slock);
1652 object = pool_get(pc->pc_pool, flags);
1653 if (object != NULL && pc->pc_ctor != NULL) {
1654 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
1655 pool_put(pc->pc_pool, object);
1656 return (NULL);
1657 }
1658 }
1659 return (object);
1660 }
1661
1662 have_group:
1663 pc->pc_hits++;
1664 pc->pc_nitems--;
1665 object = pcg_get(pcg);
1666
1667 if (pcg->pcg_avail == 0)
1668 pc->pc_allocfrom = NULL;
1669
1670 simple_unlock(&pc->pc_slock);
1671
1672 return (object);
1673 }
1674
1675 /*
1676 * pool_cache_put:
1677 *
1678 * Put an object back to the pool cache.
1679 */
1680 void
1681 pool_cache_put(struct pool_cache *pc, void *object)
1682 {
1683 struct pool_cache_group *pcg;
1684
1685 simple_lock(&pc->pc_slock);
1686
1687 if ((pcg = pc->pc_freeto) == NULL) {
1688 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1689 pcg = TAILQ_NEXT(pcg, pcg_list)) {
1690 if (pcg->pcg_avail != PCG_NOBJECTS) {
1691 pc->pc_freeto = pcg;
1692 goto have_group;
1693 }
1694 }
1695
1696 /*
1697 * No empty groups to free the object to. Attempt to
1698 * allocate one.
1699 */
1700 simple_unlock(&pc->pc_slock);
1701 pcg = pool_get(&pcgpool, PR_NOWAIT);
1702 if (pcg != NULL) {
1703 memset(pcg, 0, sizeof(*pcg));
1704 simple_lock(&pc->pc_slock);
1705 pc->pc_ngroups++;
1706 TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list);
1707 if (pc->pc_freeto == NULL)
1708 pc->pc_freeto = pcg;
1709 goto have_group;
1710 }
1711
1712 /*
1713 * Unable to allocate a cache group; destruct the object
1714 * and free it back to the pool.
1715 */
1716 pool_cache_destruct_object(pc, object);
1717 return;
1718 }
1719
1720 have_group:
1721 pc->pc_nitems++;
1722 pcg_put(pcg, object);
1723
1724 if (pcg->pcg_avail == PCG_NOBJECTS)
1725 pc->pc_freeto = NULL;
1726
1727 simple_unlock(&pc->pc_slock);
1728 }
1729
1730 /*
1731 * pool_cache_destruct_object:
1732 *
1733 * Force destruction of an object and its release back into
1734 * the pool.
1735 */
1736 void
1737 pool_cache_destruct_object(struct pool_cache *pc, void *object)
1738 {
1739
1740 if (pc->pc_dtor != NULL)
1741 (*pc->pc_dtor)(pc->pc_arg, object);
1742 pool_put(pc->pc_pool, object);
1743 }
1744
1745 /*
1746 * pool_cache_do_invalidate:
1747 *
1748 * This internal function implements pool_cache_invalidate() and
1749 * pool_cache_reclaim().
1750 */
1751 static void
1752 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups,
1753 void (*putit)(struct pool *, void *))
1754 {
1755 struct pool_cache_group *pcg, *npcg;
1756 void *object;
1757
1758 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1759 pcg = npcg) {
1760 npcg = TAILQ_NEXT(pcg, pcg_list);
1761 while (pcg->pcg_avail != 0) {
1762 pc->pc_nitems--;
1763 object = pcg_get(pcg);
1764 if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg)
1765 pc->pc_allocfrom = NULL;
1766 if (pc->pc_dtor != NULL)
1767 (*pc->pc_dtor)(pc->pc_arg, object);
1768 (*putit)(pc->pc_pool, object);
1769 }
1770 if (free_groups) {
1771 pc->pc_ngroups--;
1772 TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list);
1773 if (pc->pc_freeto == pcg)
1774 pc->pc_freeto = NULL;
1775 pool_put(&pcgpool, pcg);
1776 }
1777 }
1778 }
1779
1780 /*
1781 * pool_cache_invalidate:
1782 *
1783 * Invalidate a pool cache (destruct and release all of the
1784 * cached objects).
1785 */
1786 void
1787 pool_cache_invalidate(struct pool_cache *pc)
1788 {
1789
1790 simple_lock(&pc->pc_slock);
1791 pool_cache_do_invalidate(pc, 0, pool_put);
1792 simple_unlock(&pc->pc_slock);
1793 }
1794
1795 /*
1796 * pool_cache_reclaim:
1797 *
1798 * Reclaim a pool cache for pool_reclaim().
1799 */
1800 static void
1801 pool_cache_reclaim(struct pool_cache *pc)
1802 {
1803
1804 simple_lock(&pc->pc_slock);
1805 pool_cache_do_invalidate(pc, 1, pool_do_put);
1806 simple_unlock(&pc->pc_slock);
1807 }
1808