subr_pool.c revision 1.57 1 /* $NetBSD: subr_pool.c,v 1.57 2001/05/13 17:17:35 sommerfeld Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include "opt_pool.h"
41 #include "opt_poollog.h"
42 #include "opt_lockdebug.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/proc.h>
47 #include <sys/errno.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/lock.h>
51 #include <sys/pool.h>
52 #include <sys/syslog.h>
53
54 #include <uvm/uvm.h>
55
56 /*
57 * Pool resource management utility.
58 *
59 * Memory is allocated in pages which are split into pieces according
60 * to the pool item size. Each page is kept on a list headed by `pr_pagelist'
61 * in the pool structure and the individual pool items are on a linked list
62 * headed by `ph_itemlist' in each page header. The memory for building
63 * the page list is either taken from the allocated pages themselves (for
64 * small pool items) or taken from an internal pool of page headers (`phpool').
65 */
66
67 /* List of all pools */
68 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
69
70 /* Private pool for page header structures */
71 static struct pool phpool;
72
73 /* # of seconds to retain page after last use */
74 int pool_inactive_time = 10;
75
76 /* Next candidate for drainage (see pool_drain()) */
77 static struct pool *drainpp;
78
79 /* This spin lock protects both pool_head and drainpp. */
80 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
81
82 struct pool_item_header {
83 /* Page headers */
84 TAILQ_ENTRY(pool_item_header)
85 ph_pagelist; /* pool page list */
86 TAILQ_HEAD(,pool_item) ph_itemlist; /* chunk list for this page */
87 LIST_ENTRY(pool_item_header)
88 ph_hashlist; /* Off-page page headers */
89 int ph_nmissing; /* # of chunks in use */
90 caddr_t ph_page; /* this page's address */
91 struct timeval ph_time; /* last referenced */
92 };
93
94 struct pool_item {
95 #ifdef DIAGNOSTIC
96 int pi_magic;
97 #endif
98 #define PI_MAGIC 0xdeadbeef
99 /* Other entries use only this list entry */
100 TAILQ_ENTRY(pool_item) pi_list;
101 };
102
103 #define PR_HASH_INDEX(pp,addr) \
104 (((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1))
105
106 #define POOL_NEEDS_CATCHUP(pp) \
107 ((pp)->pr_nitems < (pp)->pr_minitems)
108
109 /*
110 * Pool cache management.
111 *
112 * Pool caches provide a way for constructed objects to be cached by the
113 * pool subsystem. This can lead to performance improvements by avoiding
114 * needless object construction/destruction; it is deferred until absolutely
115 * necessary.
116 *
117 * Caches are grouped into cache groups. Each cache group references
118 * up to 16 constructed objects. When a cache allocates an object
119 * from the pool, it calls the object's constructor and places it into
120 * a cache group. When a cache group frees an object back to the pool,
121 * it first calls the object's destructor. This allows the object to
122 * persist in constructed form while freed to the cache.
123 *
124 * Multiple caches may exist for each pool. This allows a single
125 * object type to have multiple constructed forms. The pool references
126 * each cache, so that when a pool is drained by the pagedaemon, it can
127 * drain each individual cache as well. Each time a cache is drained,
128 * the most idle cache group is freed to the pool in its entirety.
129 *
130 * Pool caches are layed on top of pools. By layering them, we can avoid
131 * the complexity of cache management for pools which would not benefit
132 * from it.
133 */
134
135 /* The cache group pool. */
136 static struct pool pcgpool;
137
138 /* The pool cache group. */
139 #define PCG_NOBJECTS 16
140 struct pool_cache_group {
141 TAILQ_ENTRY(pool_cache_group)
142 pcg_list; /* link in the pool cache's group list */
143 u_int pcg_avail; /* # available objects */
144 /* pointers to the objects */
145 void *pcg_objects[PCG_NOBJECTS];
146 };
147
148 static void pool_cache_reclaim(struct pool_cache *);
149
150 static int pool_catchup(struct pool *);
151 static void pool_prime_page(struct pool *, caddr_t,
152 struct pool_item_header *);
153 static void *pool_page_alloc(unsigned long, int, int);
154 static void pool_page_free(void *, unsigned long, int);
155
156 static void pool_print1(struct pool *, const char *,
157 void (*)(const char *, ...));
158
159 /*
160 * Pool log entry. An array of these is allocated in pool_init().
161 */
162 struct pool_log {
163 const char *pl_file;
164 long pl_line;
165 int pl_action;
166 #define PRLOG_GET 1
167 #define PRLOG_PUT 2
168 void *pl_addr;
169 };
170
171 /* Number of entries in pool log buffers */
172 #ifndef POOL_LOGSIZE
173 #define POOL_LOGSIZE 10
174 #endif
175
176 int pool_logsize = POOL_LOGSIZE;
177
178 #ifdef DIAGNOSTIC
179 static __inline void
180 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
181 {
182 int n = pp->pr_curlogentry;
183 struct pool_log *pl;
184
185 if ((pp->pr_roflags & PR_LOGGING) == 0)
186 return;
187
188 /*
189 * Fill in the current entry. Wrap around and overwrite
190 * the oldest entry if necessary.
191 */
192 pl = &pp->pr_log[n];
193 pl->pl_file = file;
194 pl->pl_line = line;
195 pl->pl_action = action;
196 pl->pl_addr = v;
197 if (++n >= pp->pr_logsize)
198 n = 0;
199 pp->pr_curlogentry = n;
200 }
201
202 static void
203 pr_printlog(struct pool *pp, struct pool_item *pi,
204 void (*pr)(const char *, ...))
205 {
206 int i = pp->pr_logsize;
207 int n = pp->pr_curlogentry;
208
209 if ((pp->pr_roflags & PR_LOGGING) == 0)
210 return;
211
212 /*
213 * Print all entries in this pool's log.
214 */
215 while (i-- > 0) {
216 struct pool_log *pl = &pp->pr_log[n];
217 if (pl->pl_action != 0) {
218 if (pi == NULL || pi == pl->pl_addr) {
219 (*pr)("\tlog entry %d:\n", i);
220 (*pr)("\t\taction = %s, addr = %p\n",
221 pl->pl_action == PRLOG_GET ? "get" : "put",
222 pl->pl_addr);
223 (*pr)("\t\tfile: %s at line %lu\n",
224 pl->pl_file, pl->pl_line);
225 }
226 }
227 if (++n >= pp->pr_logsize)
228 n = 0;
229 }
230 }
231
232 static __inline void
233 pr_enter(struct pool *pp, const char *file, long line)
234 {
235
236 if (__predict_false(pp->pr_entered_file != NULL)) {
237 printf("pool %s: reentrancy at file %s line %ld\n",
238 pp->pr_wchan, file, line);
239 printf(" previous entry at file %s line %ld\n",
240 pp->pr_entered_file, pp->pr_entered_line);
241 panic("pr_enter");
242 }
243
244 pp->pr_entered_file = file;
245 pp->pr_entered_line = line;
246 }
247
248 static __inline void
249 pr_leave(struct pool *pp)
250 {
251
252 if (__predict_false(pp->pr_entered_file == NULL)) {
253 printf("pool %s not entered?\n", pp->pr_wchan);
254 panic("pr_leave");
255 }
256
257 pp->pr_entered_file = NULL;
258 pp->pr_entered_line = 0;
259 }
260
261 static __inline void
262 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
263 {
264
265 if (pp->pr_entered_file != NULL)
266 (*pr)("\n\tcurrently entered from file %s line %ld\n",
267 pp->pr_entered_file, pp->pr_entered_line);
268 }
269 #else
270 #define pr_log(pp, v, action, file, line)
271 #define pr_printlog(pp, pi, pr)
272 #define pr_enter(pp, file, line)
273 #define pr_leave(pp)
274 #define pr_enter_check(pp, pr)
275 #endif /* DIAGNOSTIC */
276
277 /*
278 * Return the pool page header based on page address.
279 */
280 static __inline struct pool_item_header *
281 pr_find_pagehead(struct pool *pp, caddr_t page)
282 {
283 struct pool_item_header *ph;
284
285 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
286 return ((struct pool_item_header *)(page + pp->pr_phoffset));
287
288 for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]);
289 ph != NULL;
290 ph = LIST_NEXT(ph, ph_hashlist)) {
291 if (ph->ph_page == page)
292 return (ph);
293 }
294 return (NULL);
295 }
296
297 /*
298 * Remove a page from the pool.
299 */
300 static __inline void
301 pr_rmpage(struct pool *pp, struct pool_item_header *ph)
302 {
303
304 /*
305 * If the page was idle, decrement the idle page count.
306 */
307 if (ph->ph_nmissing == 0) {
308 #ifdef DIAGNOSTIC
309 if (pp->pr_nidle == 0)
310 panic("pr_rmpage: nidle inconsistent");
311 if (pp->pr_nitems < pp->pr_itemsperpage)
312 panic("pr_rmpage: nitems inconsistent");
313 #endif
314 pp->pr_nidle--;
315 }
316
317 pp->pr_nitems -= pp->pr_itemsperpage;
318
319 /*
320 * Unlink a page from the pool and release it.
321 */
322 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
323 (*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype);
324 pp->pr_npages--;
325 pp->pr_npagefree++;
326
327 if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
328 int s;
329 LIST_REMOVE(ph, ph_hashlist);
330 s = splhigh();
331 pool_put(&phpool, ph);
332 splx(s);
333 }
334
335 if (pp->pr_curpage == ph) {
336 /*
337 * Find a new non-empty page header, if any.
338 * Start search from the page head, to increase the
339 * chance for "high water" pages to be freed.
340 */
341 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
342 ph = TAILQ_NEXT(ph, ph_pagelist))
343 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
344 break;
345
346 pp->pr_curpage = ph;
347 }
348 }
349
350 /*
351 * Initialize the given pool resource structure.
352 *
353 * We export this routine to allow other kernel parts to declare
354 * static pools that must be initialized before malloc() is available.
355 */
356 void
357 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
358 const char *wchan, size_t pagesz,
359 void *(*alloc)(unsigned long, int, int),
360 void (*release)(void *, unsigned long, int),
361 int mtype)
362 {
363 int off, slack, i;
364
365 #ifdef POOL_DIAGNOSTIC
366 /*
367 * Always log if POOL_DIAGNOSTIC is defined.
368 */
369 if (pool_logsize != 0)
370 flags |= PR_LOGGING;
371 #endif
372
373 /*
374 * Check arguments and construct default values.
375 */
376 if (!powerof2(pagesz))
377 panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz);
378
379 if (alloc == NULL && release == NULL) {
380 alloc = pool_page_alloc;
381 release = pool_page_free;
382 pagesz = PAGE_SIZE; /* Rounds to PAGE_SIZE anyhow. */
383 } else if ((alloc != NULL && release != NULL) == 0) {
384 /* If you specifiy one, must specify both. */
385 panic("pool_init: must specify alloc and release together");
386 }
387
388 if (pagesz == 0)
389 pagesz = PAGE_SIZE;
390
391 if (align == 0)
392 align = ALIGN(1);
393
394 if (size < sizeof(struct pool_item))
395 size = sizeof(struct pool_item);
396
397 size = ALIGN(size);
398 if (size > pagesz)
399 panic("pool_init: pool item size (%lu) too large",
400 (u_long)size);
401
402 /*
403 * Initialize the pool structure.
404 */
405 TAILQ_INIT(&pp->pr_pagelist);
406 TAILQ_INIT(&pp->pr_cachelist);
407 pp->pr_curpage = NULL;
408 pp->pr_npages = 0;
409 pp->pr_minitems = 0;
410 pp->pr_minpages = 0;
411 pp->pr_maxpages = UINT_MAX;
412 pp->pr_roflags = flags;
413 pp->pr_flags = 0;
414 pp->pr_size = size;
415 pp->pr_align = align;
416 pp->pr_wchan = wchan;
417 pp->pr_mtype = mtype;
418 pp->pr_alloc = alloc;
419 pp->pr_free = release;
420 pp->pr_pagesz = pagesz;
421 pp->pr_pagemask = ~(pagesz - 1);
422 pp->pr_pageshift = ffs(pagesz) - 1;
423 pp->pr_nitems = 0;
424 pp->pr_nout = 0;
425 pp->pr_hardlimit = UINT_MAX;
426 pp->pr_hardlimit_warning = NULL;
427 pp->pr_hardlimit_ratecap.tv_sec = 0;
428 pp->pr_hardlimit_ratecap.tv_usec = 0;
429 pp->pr_hardlimit_warning_last.tv_sec = 0;
430 pp->pr_hardlimit_warning_last.tv_usec = 0;
431
432 /*
433 * Decide whether to put the page header off page to avoid
434 * wasting too large a part of the page. Off-page page headers
435 * go on a hash table, so we can match a returned item
436 * with its header based on the page address.
437 * We use 1/16 of the page size as the threshold (XXX: tune)
438 */
439 if (pp->pr_size < pagesz/16) {
440 /* Use the end of the page for the page header */
441 pp->pr_roflags |= PR_PHINPAGE;
442 pp->pr_phoffset = off =
443 pagesz - ALIGN(sizeof(struct pool_item_header));
444 } else {
445 /* The page header will be taken from our page header pool */
446 pp->pr_phoffset = 0;
447 off = pagesz;
448 for (i = 0; i < PR_HASHTABSIZE; i++) {
449 LIST_INIT(&pp->pr_hashtab[i]);
450 }
451 }
452
453 /*
454 * Alignment is to take place at `ioff' within the item. This means
455 * we must reserve up to `align - 1' bytes on the page to allow
456 * appropriate positioning of each item.
457 *
458 * Silently enforce `0 <= ioff < align'.
459 */
460 pp->pr_itemoffset = ioff = ioff % align;
461 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
462 KASSERT(pp->pr_itemsperpage != 0);
463
464 /*
465 * Use the slack between the chunks and the page header
466 * for "cache coloring".
467 */
468 slack = off - pp->pr_itemsperpage * pp->pr_size;
469 pp->pr_maxcolor = (slack / align) * align;
470 pp->pr_curcolor = 0;
471
472 pp->pr_nget = 0;
473 pp->pr_nfail = 0;
474 pp->pr_nput = 0;
475 pp->pr_npagealloc = 0;
476 pp->pr_npagefree = 0;
477 pp->pr_hiwat = 0;
478 pp->pr_nidle = 0;
479
480 if (flags & PR_LOGGING) {
481 if (kmem_map == NULL ||
482 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
483 M_TEMP, M_NOWAIT)) == NULL)
484 pp->pr_roflags &= ~PR_LOGGING;
485 pp->pr_curlogentry = 0;
486 pp->pr_logsize = pool_logsize;
487 }
488
489 pp->pr_entered_file = NULL;
490 pp->pr_entered_line = 0;
491
492 simple_lock_init(&pp->pr_slock);
493
494 /*
495 * Initialize private page header pool and cache magazine pool if we
496 * haven't done so yet.
497 * XXX LOCKING.
498 */
499 if (phpool.pr_size == 0) {
500 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
501 0, "phpool", 0, 0, 0, 0);
502 pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
503 0, "pcgpool", 0, 0, 0, 0);
504 }
505
506 /* Insert into the list of all pools. */
507 simple_lock(&pool_head_slock);
508 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
509 simple_unlock(&pool_head_slock);
510 }
511
512 /*
513 * De-commision a pool resource.
514 */
515 void
516 pool_destroy(struct pool *pp)
517 {
518 struct pool_item_header *ph;
519 struct pool_cache *pc;
520
521 /* Destroy all caches for this pool. */
522 while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL)
523 pool_cache_destroy(pc);
524
525 #ifdef DIAGNOSTIC
526 if (pp->pr_nout != 0) {
527 pr_printlog(pp, NULL, printf);
528 panic("pool_destroy: pool busy: still out: %u\n",
529 pp->pr_nout);
530 }
531 #endif
532
533 /* Remove all pages */
534 if ((pp->pr_roflags & PR_STATIC) == 0)
535 while ((ph = pp->pr_pagelist.tqh_first) != NULL)
536 pr_rmpage(pp, ph);
537
538 /* Remove from global pool list */
539 simple_lock(&pool_head_slock);
540 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
541 /* XXX Only clear this if we were drainpp? */
542 drainpp = NULL;
543 simple_unlock(&pool_head_slock);
544
545 if ((pp->pr_roflags & PR_LOGGING) != 0)
546 free(pp->pr_log, M_TEMP);
547
548 if (pp->pr_roflags & PR_FREEHEADER)
549 free(pp, M_POOL);
550 }
551
552 static __inline struct pool_item_header *
553 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
554 {
555 struct pool_item_header *ph;
556 int s;
557
558 LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
559
560 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
561 ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
562 else {
563 s = splhigh();
564 ph = pool_get(&phpool, flags);
565 splx(s);
566 }
567
568 return (ph);
569 }
570
571 /*
572 * Grab an item from the pool; must be called at appropriate spl level
573 */
574 void *
575 #ifdef DIAGNOSTIC
576 _pool_get(struct pool *pp, int flags, const char *file, long line)
577 #else
578 pool_get(struct pool *pp, int flags)
579 #endif
580 {
581 struct pool_item *pi;
582 struct pool_item_header *ph;
583 void *v;
584
585 #ifdef DIAGNOSTIC
586 if (__predict_false((pp->pr_roflags & PR_STATIC) &&
587 (flags & PR_MALLOCOK))) {
588 pr_printlog(pp, NULL, printf);
589 panic("pool_get: static");
590 }
591
592 if (__predict_false(curproc == NULL && doing_shutdown == 0 &&
593 (flags & PR_WAITOK) != 0))
594 panic("pool_get: must have NOWAIT");
595 #endif
596
597 simple_lock(&pp->pr_slock);
598 pr_enter(pp, file, line);
599
600 startover:
601 /*
602 * Check to see if we've reached the hard limit. If we have,
603 * and we can wait, then wait until an item has been returned to
604 * the pool.
605 */
606 #ifdef DIAGNOSTIC
607 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
608 pr_leave(pp);
609 simple_unlock(&pp->pr_slock);
610 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
611 }
612 #endif
613 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
614 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
615 /*
616 * XXX: A warning isn't logged in this case. Should
617 * it be?
618 */
619 pp->pr_flags |= PR_WANTED;
620 pr_leave(pp);
621 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
622 pr_enter(pp, file, line);
623 goto startover;
624 }
625
626 /*
627 * Log a message that the hard limit has been hit.
628 */
629 if (pp->pr_hardlimit_warning != NULL &&
630 ratecheck(&pp->pr_hardlimit_warning_last,
631 &pp->pr_hardlimit_ratecap))
632 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
633
634 if (flags & PR_URGENT)
635 panic("pool_get: urgent");
636
637 pp->pr_nfail++;
638
639 pr_leave(pp);
640 simple_unlock(&pp->pr_slock);
641 return (NULL);
642 }
643
644 /*
645 * The convention we use is that if `curpage' is not NULL, then
646 * it points at a non-empty bucket. In particular, `curpage'
647 * never points at a page header which has PR_PHINPAGE set and
648 * has no items in its bucket.
649 */
650 if ((ph = pp->pr_curpage) == NULL) {
651 #ifdef DIAGNOSTIC
652 if (pp->pr_nitems != 0) {
653 simple_unlock(&pp->pr_slock);
654 printf("pool_get: %s: curpage NULL, nitems %u\n",
655 pp->pr_wchan, pp->pr_nitems);
656 panic("pool_get: nitems inconsistent\n");
657 }
658 #endif
659
660 /*
661 * Call the back-end page allocator for more memory.
662 * Release the pool lock, as the back-end page allocator
663 * may block.
664 */
665 pr_leave(pp);
666 simple_unlock(&pp->pr_slock);
667 v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype);
668 if (__predict_true(v != NULL))
669 ph = pool_alloc_item_header(pp, v, flags);
670 simple_lock(&pp->pr_slock);
671 pr_enter(pp, file, line);
672
673 if (__predict_false(v == NULL || ph == NULL)) {
674 if (v != NULL)
675 (*pp->pr_free)(v, pp->pr_pagesz, pp->pr_mtype);
676
677 /*
678 * We were unable to allocate a page or item
679 * header, but we released the lock during
680 * allocation, so perhaps items were freed
681 * back to the pool. Check for this case.
682 */
683 if (pp->pr_curpage != NULL)
684 goto startover;
685
686 if (flags & PR_URGENT)
687 panic("pool_get: urgent");
688
689 if ((flags & PR_WAITOK) == 0) {
690 pp->pr_nfail++;
691 pr_leave(pp);
692 simple_unlock(&pp->pr_slock);
693 return (NULL);
694 }
695
696 /*
697 * Wait for items to be returned to this pool.
698 *
699 * XXX: we actually want to wait just until
700 * the page allocator has memory again. Depending
701 * on this pool's usage, we might get stuck here
702 * for a long time.
703 *
704 * XXX: maybe we should wake up once a second and
705 * try again?
706 */
707 pp->pr_flags |= PR_WANTED;
708 pr_leave(pp);
709 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
710 pr_enter(pp, file, line);
711 goto startover;
712 }
713
714 /* We have more memory; add it to the pool */
715 pool_prime_page(pp, v, ph);
716 pp->pr_npagealloc++;
717
718 /* Start the allocation process over. */
719 goto startover;
720 }
721
722 if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
723 pr_leave(pp);
724 simple_unlock(&pp->pr_slock);
725 panic("pool_get: %s: page empty", pp->pr_wchan);
726 }
727 #ifdef DIAGNOSTIC
728 if (__predict_false(pp->pr_nitems == 0)) {
729 pr_leave(pp);
730 simple_unlock(&pp->pr_slock);
731 printf("pool_get: %s: items on itemlist, nitems %u\n",
732 pp->pr_wchan, pp->pr_nitems);
733 panic("pool_get: nitems inconsistent\n");
734 }
735
736 pr_log(pp, v, PRLOG_GET, file, line);
737
738 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
739 pr_printlog(pp, pi, printf);
740 panic("pool_get(%s): free list modified: magic=%x; page %p;"
741 " item addr %p\n",
742 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
743 }
744 #endif
745
746 /*
747 * Remove from item list.
748 */
749 TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
750 pp->pr_nitems--;
751 pp->pr_nout++;
752 if (ph->ph_nmissing == 0) {
753 #ifdef DIAGNOSTIC
754 if (__predict_false(pp->pr_nidle == 0))
755 panic("pool_get: nidle inconsistent");
756 #endif
757 pp->pr_nidle--;
758 }
759 ph->ph_nmissing++;
760 if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) {
761 #ifdef DIAGNOSTIC
762 if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
763 pr_leave(pp);
764 simple_unlock(&pp->pr_slock);
765 panic("pool_get: %s: nmissing inconsistent",
766 pp->pr_wchan);
767 }
768 #endif
769 /*
770 * Find a new non-empty page header, if any.
771 * Start search from the page head, to increase
772 * the chance for "high water" pages to be freed.
773 *
774 * Migrate empty pages to the end of the list. This
775 * will speed the update of curpage as pages become
776 * idle. Empty pages intermingled with idle pages
777 * is no big deal. As soon as a page becomes un-empty,
778 * it will move back to the head of the list.
779 */
780 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
781 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
782 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
783 ph = TAILQ_NEXT(ph, ph_pagelist))
784 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
785 break;
786
787 pp->pr_curpage = ph;
788 }
789
790 pp->pr_nget++;
791
792 /*
793 * If we have a low water mark and we are now below that low
794 * water mark, add more items to the pool.
795 */
796 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
797 /*
798 * XXX: Should we log a warning? Should we set up a timeout
799 * to try again in a second or so? The latter could break
800 * a caller's assumptions about interrupt protection, etc.
801 */
802 }
803
804 pr_leave(pp);
805 simple_unlock(&pp->pr_slock);
806 return (v);
807 }
808
809 /*
810 * Internal version of pool_put(). Pool is already locked/entered.
811 */
812 static void
813 pool_do_put(struct pool *pp, void *v)
814 {
815 struct pool_item *pi = v;
816 struct pool_item_header *ph;
817 caddr_t page;
818 int s;
819
820 page = (caddr_t)((u_long)v & pp->pr_pagemask);
821
822 #ifdef DIAGNOSTIC
823 if (__predict_false(pp->pr_nout == 0)) {
824 printf("pool %s: putting with none out\n",
825 pp->pr_wchan);
826 panic("pool_put");
827 }
828 #endif
829
830 if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
831 pr_printlog(pp, NULL, printf);
832 panic("pool_put: %s: page header missing", pp->pr_wchan);
833 }
834
835 #ifdef LOCKDEBUG
836 /*
837 * Check if we're freeing a locked simple lock.
838 */
839 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
840 #endif
841
842 /*
843 * Return to item list.
844 */
845 #ifdef DIAGNOSTIC
846 pi->pi_magic = PI_MAGIC;
847 #endif
848 #ifdef DEBUG
849 {
850 int i, *ip = v;
851
852 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
853 *ip++ = PI_MAGIC;
854 }
855 }
856 #endif
857
858 TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
859 ph->ph_nmissing--;
860 pp->pr_nput++;
861 pp->pr_nitems++;
862 pp->pr_nout--;
863
864 /* Cancel "pool empty" condition if it exists */
865 if (pp->pr_curpage == NULL)
866 pp->pr_curpage = ph;
867
868 if (pp->pr_flags & PR_WANTED) {
869 pp->pr_flags &= ~PR_WANTED;
870 if (ph->ph_nmissing == 0)
871 pp->pr_nidle++;
872 wakeup((caddr_t)pp);
873 return;
874 }
875
876 /*
877 * If this page is now complete, do one of two things:
878 *
879 * (1) If we have more pages than the page high water
880 * mark, free the page back to the system.
881 *
882 * (2) Move it to the end of the page list, so that
883 * we minimize our chances of fragmenting the
884 * pool. Idle pages migrate to the end (along with
885 * completely empty pages, so that we find un-empty
886 * pages more quickly when we update curpage) of the
887 * list so they can be more easily swept up by
888 * the pagedaemon when pages are scarce.
889 */
890 if (ph->ph_nmissing == 0) {
891 pp->pr_nidle++;
892 if (pp->pr_npages > pp->pr_maxpages) {
893 pr_rmpage(pp, ph);
894 } else {
895 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
896 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
897
898 /*
899 * Update the timestamp on the page. A page must
900 * be idle for some period of time before it can
901 * be reclaimed by the pagedaemon. This minimizes
902 * ping-pong'ing for memory.
903 */
904 s = splclock();
905 ph->ph_time = mono_time;
906 splx(s);
907
908 /*
909 * Update the current page pointer. Just look for
910 * the first page with any free items.
911 *
912 * XXX: Maybe we want an option to look for the
913 * page with the fewest available items, to minimize
914 * fragmentation?
915 */
916 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
917 ph = TAILQ_NEXT(ph, ph_pagelist))
918 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
919 break;
920
921 pp->pr_curpage = ph;
922 }
923 }
924 /*
925 * If the page has just become un-empty, move it to the head of
926 * the list, and make it the current page. The next allocation
927 * will get the item from this page, instead of further fragmenting
928 * the pool.
929 */
930 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
931 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
932 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
933 pp->pr_curpage = ph;
934 }
935 }
936
937 /*
938 * Return resource to the pool; must be called at appropriate spl level
939 */
940 #ifdef DIAGNOSTIC
941 void
942 _pool_put(struct pool *pp, void *v, const char *file, long line)
943 {
944
945 simple_lock(&pp->pr_slock);
946 pr_enter(pp, file, line);
947
948 pr_log(pp, v, PRLOG_PUT, file, line);
949
950 pool_do_put(pp, v);
951
952 pr_leave(pp);
953 simple_unlock(&pp->pr_slock);
954 }
955 #undef pool_put
956 #endif
957
958 void
959 pool_put(struct pool *pp, void *v)
960 {
961
962 simple_lock(&pp->pr_slock);
963
964 pool_do_put(pp, v);
965
966 simple_unlock(&pp->pr_slock);
967 }
968
969 #ifdef DIAGNOSTIC
970 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
971 #endif
972
973 /*
974 * Add N items to the pool.
975 */
976 int
977 pool_prime(struct pool *pp, int n)
978 {
979 struct pool_item_header *ph;
980 caddr_t cp;
981 int newpages, error = 0;
982
983 simple_lock(&pp->pr_slock);
984
985 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
986
987 while (newpages-- > 0) {
988 simple_unlock(&pp->pr_slock);
989 cp = (*pp->pr_alloc)(pp->pr_pagesz, PR_NOWAIT, pp->pr_mtype);
990 if (__predict_true(cp != NULL))
991 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
992 simple_lock(&pp->pr_slock);
993
994 if (__predict_false(cp == NULL || ph == NULL)) {
995 error = ENOMEM;
996 if (cp != NULL)
997 (*pp->pr_free)(cp, pp->pr_pagesz, pp->pr_mtype);
998 break;
999 }
1000
1001 pool_prime_page(pp, cp, ph);
1002 pp->pr_npagealloc++;
1003 pp->pr_minpages++;
1004 }
1005
1006 if (pp->pr_minpages >= pp->pr_maxpages)
1007 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1008
1009 simple_unlock(&pp->pr_slock);
1010 return (0);
1011 }
1012
1013 /*
1014 * Add a page worth of items to the pool.
1015 *
1016 * Note, we must be called with the pool descriptor LOCKED.
1017 */
1018 static void
1019 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
1020 {
1021 struct pool_item *pi;
1022 caddr_t cp = storage;
1023 unsigned int align = pp->pr_align;
1024 unsigned int ioff = pp->pr_itemoffset;
1025 int n;
1026
1027 if (((u_long)cp & (pp->pr_pagesz - 1)) != 0)
1028 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1029
1030 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1031 LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)],
1032 ph, ph_hashlist);
1033
1034 /*
1035 * Insert page header.
1036 */
1037 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
1038 TAILQ_INIT(&ph->ph_itemlist);
1039 ph->ph_page = storage;
1040 ph->ph_nmissing = 0;
1041 memset(&ph->ph_time, 0, sizeof(ph->ph_time));
1042
1043 pp->pr_nidle++;
1044
1045 /*
1046 * Color this page.
1047 */
1048 cp = (caddr_t)(cp + pp->pr_curcolor);
1049 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1050 pp->pr_curcolor = 0;
1051
1052 /*
1053 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1054 */
1055 if (ioff != 0)
1056 cp = (caddr_t)(cp + (align - ioff));
1057
1058 /*
1059 * Insert remaining chunks on the bucket list.
1060 */
1061 n = pp->pr_itemsperpage;
1062 pp->pr_nitems += n;
1063
1064 while (n--) {
1065 pi = (struct pool_item *)cp;
1066
1067 /* Insert on page list */
1068 TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
1069 #ifdef DIAGNOSTIC
1070 pi->pi_magic = PI_MAGIC;
1071 #endif
1072 cp = (caddr_t)(cp + pp->pr_size);
1073 }
1074
1075 /*
1076 * If the pool was depleted, point at the new page.
1077 */
1078 if (pp->pr_curpage == NULL)
1079 pp->pr_curpage = ph;
1080
1081 if (++pp->pr_npages > pp->pr_hiwat)
1082 pp->pr_hiwat = pp->pr_npages;
1083 }
1084
1085 /*
1086 * Used by pool_get() when nitems drops below the low water mark. This
1087 * is used to catch up nitmes with the low water mark.
1088 *
1089 * Note 1, we never wait for memory here, we let the caller decide what to do.
1090 *
1091 * Note 2, this doesn't work with static pools.
1092 *
1093 * Note 3, we must be called with the pool already locked, and we return
1094 * with it locked.
1095 */
1096 static int
1097 pool_catchup(struct pool *pp)
1098 {
1099 struct pool_item_header *ph;
1100 caddr_t cp;
1101 int error = 0;
1102
1103 if (pp->pr_roflags & PR_STATIC) {
1104 /*
1105 * We dropped below the low water mark, and this is not a
1106 * good thing. Log a warning.
1107 *
1108 * XXX: rate-limit this?
1109 */
1110 printf("WARNING: static pool `%s' dropped below low water "
1111 "mark\n", pp->pr_wchan);
1112 return (0);
1113 }
1114
1115 while (POOL_NEEDS_CATCHUP(pp)) {
1116 /*
1117 * Call the page back-end allocator for more memory.
1118 *
1119 * XXX: We never wait, so should we bother unlocking
1120 * the pool descriptor?
1121 */
1122 simple_unlock(&pp->pr_slock);
1123 cp = (*pp->pr_alloc)(pp->pr_pagesz, PR_NOWAIT, pp->pr_mtype);
1124 if (__predict_true(cp != NULL))
1125 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1126 simple_lock(&pp->pr_slock);
1127 if (__predict_false(cp == NULL || ph == NULL)) {
1128 if (cp != NULL)
1129 (*pp->pr_free)(cp, pp->pr_pagesz, pp->pr_mtype);
1130 error = ENOMEM;
1131 break;
1132 }
1133 pool_prime_page(pp, cp, ph);
1134 pp->pr_npagealloc++;
1135 }
1136
1137 return (error);
1138 }
1139
1140 void
1141 pool_setlowat(struct pool *pp, int n)
1142 {
1143 int error;
1144
1145 simple_lock(&pp->pr_slock);
1146
1147 pp->pr_minitems = n;
1148 pp->pr_minpages = (n == 0)
1149 ? 0
1150 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1151
1152 /* Make sure we're caught up with the newly-set low water mark. */
1153 if (POOL_NEEDS_CATCHUP(pp) && (error = pool_catchup(pp) != 0)) {
1154 /*
1155 * XXX: Should we log a warning? Should we set up a timeout
1156 * to try again in a second or so? The latter could break
1157 * a caller's assumptions about interrupt protection, etc.
1158 */
1159 }
1160
1161 simple_unlock(&pp->pr_slock);
1162 }
1163
1164 void
1165 pool_sethiwat(struct pool *pp, int n)
1166 {
1167
1168 simple_lock(&pp->pr_slock);
1169
1170 pp->pr_maxpages = (n == 0)
1171 ? 0
1172 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1173
1174 simple_unlock(&pp->pr_slock);
1175 }
1176
1177 void
1178 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1179 {
1180
1181 simple_lock(&pp->pr_slock);
1182
1183 pp->pr_hardlimit = n;
1184 pp->pr_hardlimit_warning = warnmess;
1185 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1186 pp->pr_hardlimit_warning_last.tv_sec = 0;
1187 pp->pr_hardlimit_warning_last.tv_usec = 0;
1188
1189 /*
1190 * In-line version of pool_sethiwat(), because we don't want to
1191 * release the lock.
1192 */
1193 pp->pr_maxpages = (n == 0)
1194 ? 0
1195 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1196
1197 simple_unlock(&pp->pr_slock);
1198 }
1199
1200 /*
1201 * Default page allocator.
1202 */
1203 static void *
1204 pool_page_alloc(unsigned long sz, int flags, int mtype)
1205 {
1206 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1207
1208 return ((void *)uvm_km_alloc_poolpage(waitok));
1209 }
1210
1211 static void
1212 pool_page_free(void *v, unsigned long sz, int mtype)
1213 {
1214
1215 uvm_km_free_poolpage((vaddr_t)v);
1216 }
1217
1218 /*
1219 * Alternate pool page allocator for pools that know they will
1220 * never be accessed in interrupt context.
1221 */
1222 void *
1223 pool_page_alloc_nointr(unsigned long sz, int flags, int mtype)
1224 {
1225 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1226
1227 return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object,
1228 waitok));
1229 }
1230
1231 void
1232 pool_page_free_nointr(void *v, unsigned long sz, int mtype)
1233 {
1234
1235 uvm_km_free_poolpage1(kernel_map, (vaddr_t)v);
1236 }
1237
1238
1239 /*
1240 * Release all complete pages that have not been used recently.
1241 */
1242 void
1243 #ifdef DIAGNOSTIC
1244 _pool_reclaim(struct pool *pp, const char *file, long line)
1245 #else
1246 pool_reclaim(struct pool *pp)
1247 #endif
1248 {
1249 struct pool_item_header *ph, *phnext;
1250 struct pool_cache *pc;
1251 struct timeval curtime;
1252 int s;
1253
1254 if (pp->pr_roflags & PR_STATIC)
1255 return;
1256
1257 if (simple_lock_try(&pp->pr_slock) == 0)
1258 return;
1259 pr_enter(pp, file, line);
1260
1261 /*
1262 * Reclaim items from the pool's caches.
1263 */
1264 for (pc = TAILQ_FIRST(&pp->pr_cachelist); pc != NULL;
1265 pc = TAILQ_NEXT(pc, pc_poollist))
1266 pool_cache_reclaim(pc);
1267
1268 s = splclock();
1269 curtime = mono_time;
1270 splx(s);
1271
1272 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) {
1273 phnext = TAILQ_NEXT(ph, ph_pagelist);
1274
1275 /* Check our minimum page claim */
1276 if (pp->pr_npages <= pp->pr_minpages)
1277 break;
1278
1279 if (ph->ph_nmissing == 0) {
1280 struct timeval diff;
1281 timersub(&curtime, &ph->ph_time, &diff);
1282 if (diff.tv_sec < pool_inactive_time)
1283 continue;
1284
1285 /*
1286 * If freeing this page would put us below
1287 * the low water mark, stop now.
1288 */
1289 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1290 pp->pr_minitems)
1291 break;
1292
1293 pr_rmpage(pp, ph);
1294 }
1295 }
1296
1297 pr_leave(pp);
1298 simple_unlock(&pp->pr_slock);
1299 }
1300
1301
1302 /*
1303 * Drain pools, one at a time.
1304 *
1305 * Note, we must never be called from an interrupt context.
1306 */
1307 void
1308 pool_drain(void *arg)
1309 {
1310 struct pool *pp;
1311 int s;
1312
1313 s = splvm();
1314 simple_lock(&pool_head_slock);
1315
1316 if (drainpp == NULL && (drainpp = TAILQ_FIRST(&pool_head)) == NULL)
1317 goto out;
1318
1319 pp = drainpp;
1320 drainpp = TAILQ_NEXT(pp, pr_poollist);
1321
1322 pool_reclaim(pp);
1323
1324 out:
1325 simple_unlock(&pool_head_slock);
1326 splx(s);
1327 }
1328
1329
1330 /*
1331 * Diagnostic helpers.
1332 */
1333 void
1334 pool_print(struct pool *pp, const char *modif)
1335 {
1336 int s;
1337
1338 s = splvm();
1339 if (simple_lock_try(&pp->pr_slock) == 0) {
1340 printf("pool %s is locked; try again later\n",
1341 pp->pr_wchan);
1342 splx(s);
1343 return;
1344 }
1345 pool_print1(pp, modif, printf);
1346 simple_unlock(&pp->pr_slock);
1347 splx(s);
1348 }
1349
1350 void
1351 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1352 {
1353 int didlock = 0;
1354
1355 if (pp == NULL) {
1356 (*pr)("Must specify a pool to print.\n");
1357 return;
1358 }
1359
1360 /*
1361 * Called from DDB; interrupts should be blocked, and all
1362 * other processors should be paused. We can skip locking
1363 * the pool in this case.
1364 *
1365 * We do a simple_lock_try() just to print the lock
1366 * status, however.
1367 */
1368
1369 if (simple_lock_try(&pp->pr_slock) == 0)
1370 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1371 else
1372 didlock = 1;
1373
1374 pool_print1(pp, modif, pr);
1375
1376 if (didlock)
1377 simple_unlock(&pp->pr_slock);
1378 }
1379
1380 static void
1381 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1382 {
1383 struct pool_item_header *ph;
1384 struct pool_cache *pc;
1385 struct pool_cache_group *pcg;
1386 #ifdef DIAGNOSTIC
1387 struct pool_item *pi;
1388 #endif
1389 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1390 char c;
1391
1392 while ((c = *modif++) != '\0') {
1393 if (c == 'l')
1394 print_log = 1;
1395 if (c == 'p')
1396 print_pagelist = 1;
1397 if (c == 'c')
1398 print_cache = 1;
1399 modif++;
1400 }
1401
1402 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1403 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1404 pp->pr_roflags);
1405 (*pr)("\tpagesz %u, mtype %d\n", pp->pr_pagesz, pp->pr_mtype);
1406 (*pr)("\talloc %p, release %p\n", pp->pr_alloc, pp->pr_free);
1407 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1408 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1409 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1410 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1411
1412 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1413 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1414 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1415 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1416
1417 if (print_pagelist == 0)
1418 goto skip_pagelist;
1419
1420 if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
1421 (*pr)("\n\tpage list:\n");
1422 for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) {
1423 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1424 ph->ph_page, ph->ph_nmissing,
1425 (u_long)ph->ph_time.tv_sec,
1426 (u_long)ph->ph_time.tv_usec);
1427 #ifdef DIAGNOSTIC
1428 for (pi = TAILQ_FIRST(&ph->ph_itemlist); pi != NULL;
1429 pi = TAILQ_NEXT(pi, pi_list)) {
1430 if (pi->pi_magic != PI_MAGIC) {
1431 (*pr)("\t\t\titem %p, magic 0x%x\n",
1432 pi, pi->pi_magic);
1433 }
1434 }
1435 #endif
1436 }
1437 if (pp->pr_curpage == NULL)
1438 (*pr)("\tno current page\n");
1439 else
1440 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1441
1442 skip_pagelist:
1443
1444 if (print_log == 0)
1445 goto skip_log;
1446
1447 (*pr)("\n");
1448 if ((pp->pr_roflags & PR_LOGGING) == 0)
1449 (*pr)("\tno log\n");
1450 else
1451 pr_printlog(pp, NULL, pr);
1452
1453 skip_log:
1454
1455 if (print_cache == 0)
1456 goto skip_cache;
1457
1458 for (pc = TAILQ_FIRST(&pp->pr_cachelist); pc != NULL;
1459 pc = TAILQ_NEXT(pc, pc_poollist)) {
1460 (*pr)("\tcache %p: allocfrom %p freeto %p\n", pc,
1461 pc->pc_allocfrom, pc->pc_freeto);
1462 (*pr)("\t hits %lu misses %lu ngroups %lu nitems %lu\n",
1463 pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
1464 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1465 pcg = TAILQ_NEXT(pcg, pcg_list)) {
1466 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);
1467 for (i = 0; i < PCG_NOBJECTS; i++)
1468 (*pr)("\t\t\t%p\n", pcg->pcg_objects[i]);
1469 }
1470 }
1471
1472 skip_cache:
1473
1474 pr_enter_check(pp, pr);
1475 }
1476
1477 int
1478 pool_chk(struct pool *pp, const char *label)
1479 {
1480 struct pool_item_header *ph;
1481 int r = 0;
1482
1483 simple_lock(&pp->pr_slock);
1484
1485 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
1486 ph = TAILQ_NEXT(ph, ph_pagelist)) {
1487
1488 struct pool_item *pi;
1489 int n;
1490 caddr_t page;
1491
1492 page = (caddr_t)((u_long)ph & pp->pr_pagemask);
1493 if (page != ph->ph_page &&
1494 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1495 if (label != NULL)
1496 printf("%s: ", label);
1497 printf("pool(%p:%s): page inconsistency: page %p;"
1498 " at page head addr %p (p %p)\n", pp,
1499 pp->pr_wchan, ph->ph_page,
1500 ph, page);
1501 r++;
1502 goto out;
1503 }
1504
1505 for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
1506 pi != NULL;
1507 pi = TAILQ_NEXT(pi,pi_list), n++) {
1508
1509 #ifdef DIAGNOSTIC
1510 if (pi->pi_magic != PI_MAGIC) {
1511 if (label != NULL)
1512 printf("%s: ", label);
1513 printf("pool(%s): free list modified: magic=%x;"
1514 " page %p; item ordinal %d;"
1515 " addr %p (p %p)\n",
1516 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1517 n, pi, page);
1518 panic("pool");
1519 }
1520 #endif
1521 page = (caddr_t)((u_long)pi & pp->pr_pagemask);
1522 if (page == ph->ph_page)
1523 continue;
1524
1525 if (label != NULL)
1526 printf("%s: ", label);
1527 printf("pool(%p:%s): page inconsistency: page %p;"
1528 " item ordinal %d; addr %p (p %p)\n", pp,
1529 pp->pr_wchan, ph->ph_page,
1530 n, pi, page);
1531 r++;
1532 goto out;
1533 }
1534 }
1535 out:
1536 simple_unlock(&pp->pr_slock);
1537 return (r);
1538 }
1539
1540 /*
1541 * pool_cache_init:
1542 *
1543 * Initialize a pool cache.
1544 *
1545 * NOTE: If the pool must be protected from interrupts, we expect
1546 * to be called at the appropriate interrupt priority level.
1547 */
1548 void
1549 pool_cache_init(struct pool_cache *pc, struct pool *pp,
1550 int (*ctor)(void *, void *, int),
1551 void (*dtor)(void *, void *),
1552 void *arg)
1553 {
1554
1555 TAILQ_INIT(&pc->pc_grouplist);
1556 simple_lock_init(&pc->pc_slock);
1557
1558 pc->pc_allocfrom = NULL;
1559 pc->pc_freeto = NULL;
1560 pc->pc_pool = pp;
1561
1562 pc->pc_ctor = ctor;
1563 pc->pc_dtor = dtor;
1564 pc->pc_arg = arg;
1565
1566 pc->pc_hits = 0;
1567 pc->pc_misses = 0;
1568
1569 pc->pc_ngroups = 0;
1570
1571 pc->pc_nitems = 0;
1572
1573 simple_lock(&pp->pr_slock);
1574 TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist);
1575 simple_unlock(&pp->pr_slock);
1576 }
1577
1578 /*
1579 * pool_cache_destroy:
1580 *
1581 * Destroy a pool cache.
1582 */
1583 void
1584 pool_cache_destroy(struct pool_cache *pc)
1585 {
1586 struct pool *pp = pc->pc_pool;
1587
1588 /* First, invalidate the entire cache. */
1589 pool_cache_invalidate(pc);
1590
1591 /* ...and remove it from the pool's cache list. */
1592 simple_lock(&pp->pr_slock);
1593 TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist);
1594 simple_unlock(&pp->pr_slock);
1595 }
1596
1597 static __inline void *
1598 pcg_get(struct pool_cache_group *pcg)
1599 {
1600 void *object;
1601 u_int idx;
1602
1603 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
1604 KASSERT(pcg->pcg_avail != 0);
1605 idx = --pcg->pcg_avail;
1606
1607 KASSERT(pcg->pcg_objects[idx] != NULL);
1608 object = pcg->pcg_objects[idx];
1609 pcg->pcg_objects[idx] = NULL;
1610
1611 return (object);
1612 }
1613
1614 static __inline void
1615 pcg_put(struct pool_cache_group *pcg, void *object)
1616 {
1617 u_int idx;
1618
1619 KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
1620 idx = pcg->pcg_avail++;
1621
1622 KASSERT(pcg->pcg_objects[idx] == NULL);
1623 pcg->pcg_objects[idx] = object;
1624 }
1625
1626 /*
1627 * pool_cache_get:
1628 *
1629 * Get an object from a pool cache.
1630 */
1631 void *
1632 pool_cache_get(struct pool_cache *pc, int flags)
1633 {
1634 struct pool_cache_group *pcg;
1635 void *object;
1636
1637 simple_lock(&pc->pc_slock);
1638
1639 if ((pcg = pc->pc_allocfrom) == NULL) {
1640 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1641 pcg = TAILQ_NEXT(pcg, pcg_list)) {
1642 if (pcg->pcg_avail != 0) {
1643 pc->pc_allocfrom = pcg;
1644 goto have_group;
1645 }
1646 }
1647
1648 /*
1649 * No groups with any available objects. Allocate
1650 * a new object, construct it, and return it to
1651 * the caller. We will allocate a group, if necessary,
1652 * when the object is freed back to the cache.
1653 */
1654 pc->pc_misses++;
1655 simple_unlock(&pc->pc_slock);
1656 object = pool_get(pc->pc_pool, flags);
1657 if (object != NULL && pc->pc_ctor != NULL) {
1658 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
1659 pool_put(pc->pc_pool, object);
1660 return (NULL);
1661 }
1662 }
1663 return (object);
1664 }
1665
1666 have_group:
1667 pc->pc_hits++;
1668 pc->pc_nitems--;
1669 object = pcg_get(pcg);
1670
1671 if (pcg->pcg_avail == 0)
1672 pc->pc_allocfrom = NULL;
1673
1674 simple_unlock(&pc->pc_slock);
1675
1676 return (object);
1677 }
1678
1679 /*
1680 * pool_cache_put:
1681 *
1682 * Put an object back to the pool cache.
1683 */
1684 void
1685 pool_cache_put(struct pool_cache *pc, void *object)
1686 {
1687 struct pool_cache_group *pcg;
1688
1689 simple_lock(&pc->pc_slock);
1690
1691 if ((pcg = pc->pc_freeto) == NULL) {
1692 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1693 pcg = TAILQ_NEXT(pcg, pcg_list)) {
1694 if (pcg->pcg_avail != PCG_NOBJECTS) {
1695 pc->pc_freeto = pcg;
1696 goto have_group;
1697 }
1698 }
1699
1700 /*
1701 * No empty groups to free the object to. Attempt to
1702 * allocate one.
1703 */
1704 simple_unlock(&pc->pc_slock);
1705 pcg = pool_get(&pcgpool, PR_NOWAIT);
1706 if (pcg != NULL) {
1707 memset(pcg, 0, sizeof(*pcg));
1708 simple_lock(&pc->pc_slock);
1709 pc->pc_ngroups++;
1710 TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list);
1711 if (pc->pc_freeto == NULL)
1712 pc->pc_freeto = pcg;
1713 goto have_group;
1714 }
1715
1716 /*
1717 * Unable to allocate a cache group; destruct the object
1718 * and free it back to the pool.
1719 */
1720 pool_cache_destruct_object(pc, object);
1721 return;
1722 }
1723
1724 have_group:
1725 pc->pc_nitems++;
1726 pcg_put(pcg, object);
1727
1728 if (pcg->pcg_avail == PCG_NOBJECTS)
1729 pc->pc_freeto = NULL;
1730
1731 simple_unlock(&pc->pc_slock);
1732 }
1733
1734 /*
1735 * pool_cache_destruct_object:
1736 *
1737 * Force destruction of an object and its release back into
1738 * the pool.
1739 */
1740 void
1741 pool_cache_destruct_object(struct pool_cache *pc, void *object)
1742 {
1743
1744 if (pc->pc_dtor != NULL)
1745 (*pc->pc_dtor)(pc->pc_arg, object);
1746 pool_put(pc->pc_pool, object);
1747 }
1748
1749 /*
1750 * pool_cache_do_invalidate:
1751 *
1752 * This internal function implements pool_cache_invalidate() and
1753 * pool_cache_reclaim().
1754 */
1755 static void
1756 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups,
1757 void (*putit)(struct pool *, void *))
1758 {
1759 struct pool_cache_group *pcg, *npcg;
1760 void *object;
1761
1762 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1763 pcg = npcg) {
1764 npcg = TAILQ_NEXT(pcg, pcg_list);
1765 while (pcg->pcg_avail != 0) {
1766 pc->pc_nitems--;
1767 object = pcg_get(pcg);
1768 if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg)
1769 pc->pc_allocfrom = NULL;
1770 if (pc->pc_dtor != NULL)
1771 (*pc->pc_dtor)(pc->pc_arg, object);
1772 (*putit)(pc->pc_pool, object);
1773 }
1774 if (free_groups) {
1775 pc->pc_ngroups--;
1776 TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list);
1777 if (pc->pc_freeto == pcg)
1778 pc->pc_freeto = NULL;
1779 pool_put(&pcgpool, pcg);
1780 }
1781 }
1782 }
1783
1784 /*
1785 * pool_cache_invalidate:
1786 *
1787 * Invalidate a pool cache (destruct and release all of the
1788 * cached objects).
1789 */
1790 void
1791 pool_cache_invalidate(struct pool_cache *pc)
1792 {
1793
1794 simple_lock(&pc->pc_slock);
1795 pool_cache_do_invalidate(pc, 0, pool_put);
1796 simple_unlock(&pc->pc_slock);
1797 }
1798
1799 /*
1800 * pool_cache_reclaim:
1801 *
1802 * Reclaim a pool cache for pool_reclaim().
1803 */
1804 static void
1805 pool_cache_reclaim(struct pool_cache *pc)
1806 {
1807
1808 simple_lock(&pc->pc_slock);
1809 pool_cache_do_invalidate(pc, 1, pool_do_put);
1810 simple_unlock(&pc->pc_slock);
1811 }
1812