Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.58
      1 /*	$NetBSD: subr_pool.c,v 1.58 2001/06/05 04:40:39 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9  * Simulation Facility, NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 #include "opt_pool.h"
     41 #include "opt_poollog.h"
     42 #include "opt_lockdebug.h"
     43 
     44 #include <sys/param.h>
     45 #include <sys/systm.h>
     46 #include <sys/proc.h>
     47 #include <sys/errno.h>
     48 #include <sys/kernel.h>
     49 #include <sys/malloc.h>
     50 #include <sys/lock.h>
     51 #include <sys/pool.h>
     52 #include <sys/syslog.h>
     53 
     54 #include <uvm/uvm.h>
     55 
     56 /*
     57  * Pool resource management utility.
     58  *
     59  * Memory is allocated in pages which are split into pieces according
     60  * to the pool item size. Each page is kept on a list headed by `pr_pagelist'
     61  * in the pool structure and the individual pool items are on a linked list
     62  * headed by `ph_itemlist' in each page header. The memory for building
     63  * the page list is either taken from the allocated pages themselves (for
     64  * small pool items) or taken from an internal pool of page headers (`phpool').
     65  */
     66 
     67 /* List of all pools */
     68 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     69 
     70 /* Private pool for page header structures */
     71 static struct pool phpool;
     72 
     73 /* # of seconds to retain page after last use */
     74 int pool_inactive_time = 10;
     75 
     76 /* Next candidate for drainage (see pool_drain()) */
     77 static struct pool	*drainpp;
     78 
     79 /* This spin lock protects both pool_head and drainpp. */
     80 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
     81 
     82 struct pool_item_header {
     83 	/* Page headers */
     84 	TAILQ_ENTRY(pool_item_header)
     85 				ph_pagelist;	/* pool page list */
     86 	TAILQ_HEAD(,pool_item)	ph_itemlist;	/* chunk list for this page */
     87 	LIST_ENTRY(pool_item_header)
     88 				ph_hashlist;	/* Off-page page headers */
     89 	int			ph_nmissing;	/* # of chunks in use */
     90 	caddr_t			ph_page;	/* this page's address */
     91 	struct timeval		ph_time;	/* last referenced */
     92 };
     93 
     94 struct pool_item {
     95 #ifdef DIAGNOSTIC
     96 	int pi_magic;
     97 #endif
     98 #define	PI_MAGIC 0xdeadbeef
     99 	/* Other entries use only this list entry */
    100 	TAILQ_ENTRY(pool_item)	pi_list;
    101 };
    102 
    103 #define	PR_HASH_INDEX(pp,addr) \
    104 	(((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1))
    105 
    106 #define	POOL_NEEDS_CATCHUP(pp)						\
    107 	((pp)->pr_nitems < (pp)->pr_minitems)
    108 
    109 /*
    110  * Pool cache management.
    111  *
    112  * Pool caches provide a way for constructed objects to be cached by the
    113  * pool subsystem.  This can lead to performance improvements by avoiding
    114  * needless object construction/destruction; it is deferred until absolutely
    115  * necessary.
    116  *
    117  * Caches are grouped into cache groups.  Each cache group references
    118  * up to 16 constructed objects.  When a cache allocates an object
    119  * from the pool, it calls the object's constructor and places it into
    120  * a cache group.  When a cache group frees an object back to the pool,
    121  * it first calls the object's destructor.  This allows the object to
    122  * persist in constructed form while freed to the cache.
    123  *
    124  * Multiple caches may exist for each pool.  This allows a single
    125  * object type to have multiple constructed forms.  The pool references
    126  * each cache, so that when a pool is drained by the pagedaemon, it can
    127  * drain each individual cache as well.  Each time a cache is drained,
    128  * the most idle cache group is freed to the pool in its entirety.
    129  *
    130  * Pool caches are layed on top of pools.  By layering them, we can avoid
    131  * the complexity of cache management for pools which would not benefit
    132  * from it.
    133  */
    134 
    135 /* The cache group pool. */
    136 static struct pool pcgpool;
    137 
    138 /* The pool cache group. */
    139 #define	PCG_NOBJECTS		16
    140 struct pool_cache_group {
    141 	TAILQ_ENTRY(pool_cache_group)
    142 		pcg_list;	/* link in the pool cache's group list */
    143 	u_int	pcg_avail;	/* # available objects */
    144 				/* pointers to the objects */
    145 	void	*pcg_objects[PCG_NOBJECTS];
    146 };
    147 
    148 static void	pool_cache_reclaim(struct pool_cache *);
    149 
    150 static int	pool_catchup(struct pool *);
    151 static void	pool_prime_page(struct pool *, caddr_t,
    152 		    struct pool_item_header *);
    153 static void	*pool_page_alloc(unsigned long, int, int);
    154 static void	pool_page_free(void *, unsigned long, int);
    155 
    156 static void pool_print1(struct pool *, const char *,
    157 	void (*)(const char *, ...));
    158 
    159 /*
    160  * Pool log entry. An array of these is allocated in pool_init().
    161  */
    162 struct pool_log {
    163 	const char	*pl_file;
    164 	long		pl_line;
    165 	int		pl_action;
    166 #define	PRLOG_GET	1
    167 #define	PRLOG_PUT	2
    168 	void		*pl_addr;
    169 };
    170 
    171 /* Number of entries in pool log buffers */
    172 #ifndef POOL_LOGSIZE
    173 #define	POOL_LOGSIZE	10
    174 #endif
    175 
    176 int pool_logsize = POOL_LOGSIZE;
    177 
    178 #ifdef DIAGNOSTIC
    179 static __inline void
    180 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    181 {
    182 	int n = pp->pr_curlogentry;
    183 	struct pool_log *pl;
    184 
    185 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    186 		return;
    187 
    188 	/*
    189 	 * Fill in the current entry. Wrap around and overwrite
    190 	 * the oldest entry if necessary.
    191 	 */
    192 	pl = &pp->pr_log[n];
    193 	pl->pl_file = file;
    194 	pl->pl_line = line;
    195 	pl->pl_action = action;
    196 	pl->pl_addr = v;
    197 	if (++n >= pp->pr_logsize)
    198 		n = 0;
    199 	pp->pr_curlogentry = n;
    200 }
    201 
    202 static void
    203 pr_printlog(struct pool *pp, struct pool_item *pi,
    204     void (*pr)(const char *, ...))
    205 {
    206 	int i = pp->pr_logsize;
    207 	int n = pp->pr_curlogentry;
    208 
    209 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    210 		return;
    211 
    212 	/*
    213 	 * Print all entries in this pool's log.
    214 	 */
    215 	while (i-- > 0) {
    216 		struct pool_log *pl = &pp->pr_log[n];
    217 		if (pl->pl_action != 0) {
    218 			if (pi == NULL || pi == pl->pl_addr) {
    219 				(*pr)("\tlog entry %d:\n", i);
    220 				(*pr)("\t\taction = %s, addr = %p\n",
    221 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    222 				    pl->pl_addr);
    223 				(*pr)("\t\tfile: %s at line %lu\n",
    224 				    pl->pl_file, pl->pl_line);
    225 			}
    226 		}
    227 		if (++n >= pp->pr_logsize)
    228 			n = 0;
    229 	}
    230 }
    231 
    232 static __inline void
    233 pr_enter(struct pool *pp, const char *file, long line)
    234 {
    235 
    236 	if (__predict_false(pp->pr_entered_file != NULL)) {
    237 		printf("pool %s: reentrancy at file %s line %ld\n",
    238 		    pp->pr_wchan, file, line);
    239 		printf("         previous entry at file %s line %ld\n",
    240 		    pp->pr_entered_file, pp->pr_entered_line);
    241 		panic("pr_enter");
    242 	}
    243 
    244 	pp->pr_entered_file = file;
    245 	pp->pr_entered_line = line;
    246 }
    247 
    248 static __inline void
    249 pr_leave(struct pool *pp)
    250 {
    251 
    252 	if (__predict_false(pp->pr_entered_file == NULL)) {
    253 		printf("pool %s not entered?\n", pp->pr_wchan);
    254 		panic("pr_leave");
    255 	}
    256 
    257 	pp->pr_entered_file = NULL;
    258 	pp->pr_entered_line = 0;
    259 }
    260 
    261 static __inline void
    262 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    263 {
    264 
    265 	if (pp->pr_entered_file != NULL)
    266 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    267 		    pp->pr_entered_file, pp->pr_entered_line);
    268 }
    269 #else
    270 #define	pr_log(pp, v, action, file, line)
    271 #define	pr_printlog(pp, pi, pr)
    272 #define	pr_enter(pp, file, line)
    273 #define	pr_leave(pp)
    274 #define	pr_enter_check(pp, pr)
    275 #endif /* DIAGNOSTIC */
    276 
    277 /*
    278  * Return the pool page header based on page address.
    279  */
    280 static __inline struct pool_item_header *
    281 pr_find_pagehead(struct pool *pp, caddr_t page)
    282 {
    283 	struct pool_item_header *ph;
    284 
    285 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    286 		return ((struct pool_item_header *)(page + pp->pr_phoffset));
    287 
    288 	for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]);
    289 	     ph != NULL;
    290 	     ph = LIST_NEXT(ph, ph_hashlist)) {
    291 		if (ph->ph_page == page)
    292 			return (ph);
    293 	}
    294 	return (NULL);
    295 }
    296 
    297 /*
    298  * Remove a page from the pool.
    299  */
    300 static __inline void
    301 pr_rmpage(struct pool *pp, struct pool_item_header *ph)
    302 {
    303 
    304 	/*
    305 	 * If the page was idle, decrement the idle page count.
    306 	 */
    307 	if (ph->ph_nmissing == 0) {
    308 #ifdef DIAGNOSTIC
    309 		if (pp->pr_nidle == 0)
    310 			panic("pr_rmpage: nidle inconsistent");
    311 		if (pp->pr_nitems < pp->pr_itemsperpage)
    312 			panic("pr_rmpage: nitems inconsistent");
    313 #endif
    314 		pp->pr_nidle--;
    315 	}
    316 
    317 	pp->pr_nitems -= pp->pr_itemsperpage;
    318 
    319 	/*
    320 	 * Unlink a page from the pool and release it.
    321 	 */
    322 	TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    323 	(*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype);
    324 	pp->pr_npages--;
    325 	pp->pr_npagefree++;
    326 
    327 	if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    328 		int s;
    329 		LIST_REMOVE(ph, ph_hashlist);
    330 		s = splhigh();
    331 		pool_put(&phpool, ph);
    332 		splx(s);
    333 	}
    334 
    335 	if (pp->pr_curpage == ph) {
    336 		/*
    337 		 * Find a new non-empty page header, if any.
    338 		 * Start search from the page head, to increase the
    339 		 * chance for "high water" pages to be freed.
    340 		 */
    341 		for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
    342 		     ph = TAILQ_NEXT(ph, ph_pagelist))
    343 			if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    344 				break;
    345 
    346 		pp->pr_curpage = ph;
    347 	}
    348 }
    349 
    350 /*
    351  * Initialize the given pool resource structure.
    352  *
    353  * We export this routine to allow other kernel parts to declare
    354  * static pools that must be initialized before malloc() is available.
    355  */
    356 void
    357 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    358     const char *wchan, size_t pagesz,
    359     void *(*alloc)(unsigned long, int, int),
    360     void (*release)(void *, unsigned long, int),
    361     int mtype)
    362 {
    363 	int off, slack, i;
    364 
    365 #ifdef POOL_DIAGNOSTIC
    366 	/*
    367 	 * Always log if POOL_DIAGNOSTIC is defined.
    368 	 */
    369 	if (pool_logsize != 0)
    370 		flags |= PR_LOGGING;
    371 #endif
    372 
    373 	/*
    374 	 * Check arguments and construct default values.
    375 	 */
    376 	if (!powerof2(pagesz))
    377 		panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz);
    378 
    379 	if (alloc == NULL && release == NULL) {
    380 		alloc = pool_page_alloc;
    381 		release = pool_page_free;
    382 		pagesz = PAGE_SIZE;	/* Rounds to PAGE_SIZE anyhow. */
    383 	} else if ((alloc != NULL && release != NULL) == 0) {
    384 		/* If you specifiy one, must specify both. */
    385 		panic("pool_init: must specify alloc and release together");
    386 	}
    387 
    388 	if (pagesz == 0)
    389 		pagesz = PAGE_SIZE;
    390 
    391 	if (align == 0)
    392 		align = ALIGN(1);
    393 
    394 	if (size < sizeof(struct pool_item))
    395 		size = sizeof(struct pool_item);
    396 
    397 	size = ALIGN(size);
    398 	if (size > pagesz)
    399 		panic("pool_init: pool item size (%lu) too large",
    400 		      (u_long)size);
    401 
    402 	/*
    403 	 * Initialize the pool structure.
    404 	 */
    405 	TAILQ_INIT(&pp->pr_pagelist);
    406 	TAILQ_INIT(&pp->pr_cachelist);
    407 	pp->pr_curpage = NULL;
    408 	pp->pr_npages = 0;
    409 	pp->pr_minitems = 0;
    410 	pp->pr_minpages = 0;
    411 	pp->pr_maxpages = UINT_MAX;
    412 	pp->pr_roflags = flags;
    413 	pp->pr_flags = 0;
    414 	pp->pr_size = size;
    415 	pp->pr_align = align;
    416 	pp->pr_wchan = wchan;
    417 	pp->pr_mtype = mtype;
    418 	pp->pr_alloc = alloc;
    419 	pp->pr_free = release;
    420 	pp->pr_pagesz = pagesz;
    421 	pp->pr_pagemask = ~(pagesz - 1);
    422 	pp->pr_pageshift = ffs(pagesz) - 1;
    423 	pp->pr_nitems = 0;
    424 	pp->pr_nout = 0;
    425 	pp->pr_hardlimit = UINT_MAX;
    426 	pp->pr_hardlimit_warning = NULL;
    427 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    428 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    429 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    430 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    431 
    432 	/*
    433 	 * Decide whether to put the page header off page to avoid
    434 	 * wasting too large a part of the page. Off-page page headers
    435 	 * go on a hash table, so we can match a returned item
    436 	 * with its header based on the page address.
    437 	 * We use 1/16 of the page size as the threshold (XXX: tune)
    438 	 */
    439 	if (pp->pr_size < pagesz/16) {
    440 		/* Use the end of the page for the page header */
    441 		pp->pr_roflags |= PR_PHINPAGE;
    442 		pp->pr_phoffset = off =
    443 			pagesz - ALIGN(sizeof(struct pool_item_header));
    444 	} else {
    445 		/* The page header will be taken from our page header pool */
    446 		pp->pr_phoffset = 0;
    447 		off = pagesz;
    448 		for (i = 0; i < PR_HASHTABSIZE; i++) {
    449 			LIST_INIT(&pp->pr_hashtab[i]);
    450 		}
    451 	}
    452 
    453 	/*
    454 	 * Alignment is to take place at `ioff' within the item. This means
    455 	 * we must reserve up to `align - 1' bytes on the page to allow
    456 	 * appropriate positioning of each item.
    457 	 *
    458 	 * Silently enforce `0 <= ioff < align'.
    459 	 */
    460 	pp->pr_itemoffset = ioff = ioff % align;
    461 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    462 	KASSERT(pp->pr_itemsperpage != 0);
    463 
    464 	/*
    465 	 * Use the slack between the chunks and the page header
    466 	 * for "cache coloring".
    467 	 */
    468 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    469 	pp->pr_maxcolor = (slack / align) * align;
    470 	pp->pr_curcolor = 0;
    471 
    472 	pp->pr_nget = 0;
    473 	pp->pr_nfail = 0;
    474 	pp->pr_nput = 0;
    475 	pp->pr_npagealloc = 0;
    476 	pp->pr_npagefree = 0;
    477 	pp->pr_hiwat = 0;
    478 	pp->pr_nidle = 0;
    479 
    480 	if (flags & PR_LOGGING) {
    481 		if (kmem_map == NULL ||
    482 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    483 		     M_TEMP, M_NOWAIT)) == NULL)
    484 			pp->pr_roflags &= ~PR_LOGGING;
    485 		pp->pr_curlogentry = 0;
    486 		pp->pr_logsize = pool_logsize;
    487 	}
    488 
    489 	pp->pr_entered_file = NULL;
    490 	pp->pr_entered_line = 0;
    491 
    492 	simple_lock_init(&pp->pr_slock);
    493 
    494 	/*
    495 	 * Initialize private page header pool and cache magazine pool if we
    496 	 * haven't done so yet.
    497 	 * XXX LOCKING.
    498 	 */
    499 	if (phpool.pr_size == 0) {
    500 		pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
    501 		    0, "phpool", 0, 0, 0, 0);
    502 		pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
    503 		    0, "pcgpool", 0, 0, 0, 0);
    504 	}
    505 
    506 	/* Insert into the list of all pools. */
    507 	simple_lock(&pool_head_slock);
    508 	TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    509 	simple_unlock(&pool_head_slock);
    510 }
    511 
    512 /*
    513  * De-commision a pool resource.
    514  */
    515 void
    516 pool_destroy(struct pool *pp)
    517 {
    518 	struct pool_item_header *ph;
    519 	struct pool_cache *pc;
    520 
    521 	/* Destroy all caches for this pool. */
    522 	while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL)
    523 		pool_cache_destroy(pc);
    524 
    525 #ifdef DIAGNOSTIC
    526 	if (pp->pr_nout != 0) {
    527 		pr_printlog(pp, NULL, printf);
    528 		panic("pool_destroy: pool busy: still out: %u\n",
    529 		    pp->pr_nout);
    530 	}
    531 #endif
    532 
    533 	/* Remove all pages */
    534 	if ((pp->pr_roflags & PR_STATIC) == 0)
    535 		while ((ph = pp->pr_pagelist.tqh_first) != NULL)
    536 			pr_rmpage(pp, ph);
    537 
    538 	/* Remove from global pool list */
    539 	simple_lock(&pool_head_slock);
    540 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    541 	/* XXX Only clear this if we were drainpp? */
    542 	drainpp = NULL;
    543 	simple_unlock(&pool_head_slock);
    544 
    545 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    546 		free(pp->pr_log, M_TEMP);
    547 
    548 	if (pp->pr_roflags & PR_FREEHEADER)
    549 		free(pp, M_POOL);
    550 }
    551 
    552 static __inline struct pool_item_header *
    553 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
    554 {
    555 	struct pool_item_header *ph;
    556 	int s;
    557 
    558 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
    559 
    560 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    561 		ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
    562 	else {
    563 		s = splhigh();
    564 		ph = pool_get(&phpool, flags);
    565 		splx(s);
    566 	}
    567 
    568 	return (ph);
    569 }
    570 
    571 /*
    572  * Grab an item from the pool; must be called at appropriate spl level
    573  */
    574 void *
    575 #ifdef DIAGNOSTIC
    576 _pool_get(struct pool *pp, int flags, const char *file, long line)
    577 #else
    578 pool_get(struct pool *pp, int flags)
    579 #endif
    580 {
    581 	struct pool_item *pi;
    582 	struct pool_item_header *ph;
    583 	void *v;
    584 
    585 #ifdef DIAGNOSTIC
    586 	if (__predict_false((pp->pr_roflags & PR_STATIC) &&
    587 			    (flags & PR_MALLOCOK))) {
    588 		pr_printlog(pp, NULL, printf);
    589 		panic("pool_get: static");
    590 	}
    591 
    592 	if (__predict_false(curproc == NULL && doing_shutdown == 0 &&
    593 			    (flags & PR_WAITOK) != 0))
    594 		panic("pool_get: must have NOWAIT");
    595 
    596 #ifdef LOCKDEBUG
    597 	if (flags & PR_WAITOK)
    598 		simple_lock_only_held(NULL, "pool_get(PR_WAITOK)");
    599 #endif
    600 #endif /* DIAGNOSTIC */
    601 
    602 	simple_lock(&pp->pr_slock);
    603 	pr_enter(pp, file, line);
    604 
    605  startover:
    606 	/*
    607 	 * Check to see if we've reached the hard limit.  If we have,
    608 	 * and we can wait, then wait until an item has been returned to
    609 	 * the pool.
    610 	 */
    611 #ifdef DIAGNOSTIC
    612 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
    613 		pr_leave(pp);
    614 		simple_unlock(&pp->pr_slock);
    615 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
    616 	}
    617 #endif
    618 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    619 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    620 			/*
    621 			 * XXX: A warning isn't logged in this case.  Should
    622 			 * it be?
    623 			 */
    624 			pp->pr_flags |= PR_WANTED;
    625 			pr_leave(pp);
    626 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
    627 			pr_enter(pp, file, line);
    628 			goto startover;
    629 		}
    630 
    631 		/*
    632 		 * Log a message that the hard limit has been hit.
    633 		 */
    634 		if (pp->pr_hardlimit_warning != NULL &&
    635 		    ratecheck(&pp->pr_hardlimit_warning_last,
    636 			      &pp->pr_hardlimit_ratecap))
    637 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    638 
    639 		if (flags & PR_URGENT)
    640 			panic("pool_get: urgent");
    641 
    642 		pp->pr_nfail++;
    643 
    644 		pr_leave(pp);
    645 		simple_unlock(&pp->pr_slock);
    646 		return (NULL);
    647 	}
    648 
    649 	/*
    650 	 * The convention we use is that if `curpage' is not NULL, then
    651 	 * it points at a non-empty bucket. In particular, `curpage'
    652 	 * never points at a page header which has PR_PHINPAGE set and
    653 	 * has no items in its bucket.
    654 	 */
    655 	if ((ph = pp->pr_curpage) == NULL) {
    656 #ifdef DIAGNOSTIC
    657 		if (pp->pr_nitems != 0) {
    658 			simple_unlock(&pp->pr_slock);
    659 			printf("pool_get: %s: curpage NULL, nitems %u\n",
    660 			    pp->pr_wchan, pp->pr_nitems);
    661 			panic("pool_get: nitems inconsistent\n");
    662 		}
    663 #endif
    664 
    665 		/*
    666 		 * Call the back-end page allocator for more memory.
    667 		 * Release the pool lock, as the back-end page allocator
    668 		 * may block.
    669 		 */
    670 		pr_leave(pp);
    671 		simple_unlock(&pp->pr_slock);
    672 		v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype);
    673 		if (__predict_true(v != NULL))
    674 			ph = pool_alloc_item_header(pp, v, flags);
    675 		simple_lock(&pp->pr_slock);
    676 		pr_enter(pp, file, line);
    677 
    678 		if (__predict_false(v == NULL || ph == NULL)) {
    679 			if (v != NULL)
    680 				(*pp->pr_free)(v, pp->pr_pagesz, pp->pr_mtype);
    681 
    682 			/*
    683 			 * We were unable to allocate a page or item
    684 			 * header, but we released the lock during
    685 			 * allocation, so perhaps items were freed
    686 			 * back to the pool.  Check for this case.
    687 			 */
    688 			if (pp->pr_curpage != NULL)
    689 				goto startover;
    690 
    691 			if (flags & PR_URGENT)
    692 				panic("pool_get: urgent");
    693 
    694 			if ((flags & PR_WAITOK) == 0) {
    695 				pp->pr_nfail++;
    696 				pr_leave(pp);
    697 				simple_unlock(&pp->pr_slock);
    698 				return (NULL);
    699 			}
    700 
    701 			/*
    702 			 * Wait for items to be returned to this pool.
    703 			 *
    704 			 * XXX: we actually want to wait just until
    705 			 * the page allocator has memory again. Depending
    706 			 * on this pool's usage, we might get stuck here
    707 			 * for a long time.
    708 			 *
    709 			 * XXX: maybe we should wake up once a second and
    710 			 * try again?
    711 			 */
    712 			pp->pr_flags |= PR_WANTED;
    713 			pr_leave(pp);
    714 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
    715 			pr_enter(pp, file, line);
    716 			goto startover;
    717 		}
    718 
    719 		/* We have more memory; add it to the pool */
    720 		pool_prime_page(pp, v, ph);
    721 		pp->pr_npagealloc++;
    722 
    723 		/* Start the allocation process over. */
    724 		goto startover;
    725 	}
    726 
    727 	if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
    728 		pr_leave(pp);
    729 		simple_unlock(&pp->pr_slock);
    730 		panic("pool_get: %s: page empty", pp->pr_wchan);
    731 	}
    732 #ifdef DIAGNOSTIC
    733 	if (__predict_false(pp->pr_nitems == 0)) {
    734 		pr_leave(pp);
    735 		simple_unlock(&pp->pr_slock);
    736 		printf("pool_get: %s: items on itemlist, nitems %u\n",
    737 		    pp->pr_wchan, pp->pr_nitems);
    738 		panic("pool_get: nitems inconsistent\n");
    739 	}
    740 
    741 	pr_log(pp, v, PRLOG_GET, file, line);
    742 
    743 	if (__predict_false(pi->pi_magic != PI_MAGIC)) {
    744 		pr_printlog(pp, pi, printf);
    745 		panic("pool_get(%s): free list modified: magic=%x; page %p;"
    746 		       " item addr %p\n",
    747 			pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    748 	}
    749 #endif
    750 
    751 	/*
    752 	 * Remove from item list.
    753 	 */
    754 	TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
    755 	pp->pr_nitems--;
    756 	pp->pr_nout++;
    757 	if (ph->ph_nmissing == 0) {
    758 #ifdef DIAGNOSTIC
    759 		if (__predict_false(pp->pr_nidle == 0))
    760 			panic("pool_get: nidle inconsistent");
    761 #endif
    762 		pp->pr_nidle--;
    763 	}
    764 	ph->ph_nmissing++;
    765 	if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) {
    766 #ifdef DIAGNOSTIC
    767 		if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
    768 			pr_leave(pp);
    769 			simple_unlock(&pp->pr_slock);
    770 			panic("pool_get: %s: nmissing inconsistent",
    771 			    pp->pr_wchan);
    772 		}
    773 #endif
    774 		/*
    775 		 * Find a new non-empty page header, if any.
    776 		 * Start search from the page head, to increase
    777 		 * the chance for "high water" pages to be freed.
    778 		 *
    779 		 * Migrate empty pages to the end of the list.  This
    780 		 * will speed the update of curpage as pages become
    781 		 * idle.  Empty pages intermingled with idle pages
    782 		 * is no big deal.  As soon as a page becomes un-empty,
    783 		 * it will move back to the head of the list.
    784 		 */
    785 		TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    786 		TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
    787 		for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
    788 		     ph = TAILQ_NEXT(ph, ph_pagelist))
    789 			if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    790 				break;
    791 
    792 		pp->pr_curpage = ph;
    793 	}
    794 
    795 	pp->pr_nget++;
    796 
    797 	/*
    798 	 * If we have a low water mark and we are now below that low
    799 	 * water mark, add more items to the pool.
    800 	 */
    801 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
    802 		/*
    803 		 * XXX: Should we log a warning?  Should we set up a timeout
    804 		 * to try again in a second or so?  The latter could break
    805 		 * a caller's assumptions about interrupt protection, etc.
    806 		 */
    807 	}
    808 
    809 	pr_leave(pp);
    810 	simple_unlock(&pp->pr_slock);
    811 	return (v);
    812 }
    813 
    814 /*
    815  * Internal version of pool_put().  Pool is already locked/entered.
    816  */
    817 static void
    818 pool_do_put(struct pool *pp, void *v)
    819 {
    820 	struct pool_item *pi = v;
    821 	struct pool_item_header *ph;
    822 	caddr_t page;
    823 	int s;
    824 
    825 	page = (caddr_t)((u_long)v & pp->pr_pagemask);
    826 
    827 #ifdef DIAGNOSTIC
    828 	if (__predict_false(pp->pr_nout == 0)) {
    829 		printf("pool %s: putting with none out\n",
    830 		    pp->pr_wchan);
    831 		panic("pool_put");
    832 	}
    833 #endif
    834 
    835 	if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
    836 		pr_printlog(pp, NULL, printf);
    837 		panic("pool_put: %s: page header missing", pp->pr_wchan);
    838 	}
    839 
    840 #ifdef LOCKDEBUG
    841 	/*
    842 	 * Check if we're freeing a locked simple lock.
    843 	 */
    844 	simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
    845 #endif
    846 
    847 	/*
    848 	 * Return to item list.
    849 	 */
    850 #ifdef DIAGNOSTIC
    851 	pi->pi_magic = PI_MAGIC;
    852 #endif
    853 #ifdef DEBUG
    854 	{
    855 		int i, *ip = v;
    856 
    857 		for (i = 0; i < pp->pr_size / sizeof(int); i++) {
    858 			*ip++ = PI_MAGIC;
    859 		}
    860 	}
    861 #endif
    862 
    863 	TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    864 	ph->ph_nmissing--;
    865 	pp->pr_nput++;
    866 	pp->pr_nitems++;
    867 	pp->pr_nout--;
    868 
    869 	/* Cancel "pool empty" condition if it exists */
    870 	if (pp->pr_curpage == NULL)
    871 		pp->pr_curpage = ph;
    872 
    873 	if (pp->pr_flags & PR_WANTED) {
    874 		pp->pr_flags &= ~PR_WANTED;
    875 		if (ph->ph_nmissing == 0)
    876 			pp->pr_nidle++;
    877 		wakeup((caddr_t)pp);
    878 		return;
    879 	}
    880 
    881 	/*
    882 	 * If this page is now complete, do one of two things:
    883 	 *
    884 	 *	(1) If we have more pages than the page high water
    885 	 *	    mark, free the page back to the system.
    886 	 *
    887 	 *	(2) Move it to the end of the page list, so that
    888 	 *	    we minimize our chances of fragmenting the
    889 	 *	    pool.  Idle pages migrate to the end (along with
    890 	 *	    completely empty pages, so that we find un-empty
    891 	 *	    pages more quickly when we update curpage) of the
    892 	 *	    list so they can be more easily swept up by
    893 	 *	    the pagedaemon when pages are scarce.
    894 	 */
    895 	if (ph->ph_nmissing == 0) {
    896 		pp->pr_nidle++;
    897 		if (pp->pr_npages > pp->pr_maxpages) {
    898 			pr_rmpage(pp, ph);
    899 		} else {
    900 			TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    901 			TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
    902 
    903 			/*
    904 			 * Update the timestamp on the page.  A page must
    905 			 * be idle for some period of time before it can
    906 			 * be reclaimed by the pagedaemon.  This minimizes
    907 			 * ping-pong'ing for memory.
    908 			 */
    909 			s = splclock();
    910 			ph->ph_time = mono_time;
    911 			splx(s);
    912 
    913 			/*
    914 			 * Update the current page pointer.  Just look for
    915 			 * the first page with any free items.
    916 			 *
    917 			 * XXX: Maybe we want an option to look for the
    918 			 * page with the fewest available items, to minimize
    919 			 * fragmentation?
    920 			 */
    921 			for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
    922 			     ph = TAILQ_NEXT(ph, ph_pagelist))
    923 				if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    924 					break;
    925 
    926 			pp->pr_curpage = ph;
    927 		}
    928 	}
    929 	/*
    930 	 * If the page has just become un-empty, move it to the head of
    931 	 * the list, and make it the current page.  The next allocation
    932 	 * will get the item from this page, instead of further fragmenting
    933 	 * the pool.
    934 	 */
    935 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
    936 		TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    937 		TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
    938 		pp->pr_curpage = ph;
    939 	}
    940 }
    941 
    942 /*
    943  * Return resource to the pool; must be called at appropriate spl level
    944  */
    945 #ifdef DIAGNOSTIC
    946 void
    947 _pool_put(struct pool *pp, void *v, const char *file, long line)
    948 {
    949 
    950 	simple_lock(&pp->pr_slock);
    951 	pr_enter(pp, file, line);
    952 
    953 	pr_log(pp, v, PRLOG_PUT, file, line);
    954 
    955 	pool_do_put(pp, v);
    956 
    957 	pr_leave(pp);
    958 	simple_unlock(&pp->pr_slock);
    959 }
    960 #undef pool_put
    961 #endif /* DIAGNOSTIC */
    962 
    963 void
    964 pool_put(struct pool *pp, void *v)
    965 {
    966 
    967 	simple_lock(&pp->pr_slock);
    968 
    969 	pool_do_put(pp, v);
    970 
    971 	simple_unlock(&pp->pr_slock);
    972 }
    973 
    974 #ifdef DIAGNOSTIC
    975 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
    976 #endif
    977 
    978 /*
    979  * Add N items to the pool.
    980  */
    981 int
    982 pool_prime(struct pool *pp, int n)
    983 {
    984 	struct pool_item_header *ph;
    985 	caddr_t cp;
    986 	int newpages, error = 0;
    987 
    988 	simple_lock(&pp->pr_slock);
    989 
    990 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
    991 
    992 	while (newpages-- > 0) {
    993 		simple_unlock(&pp->pr_slock);
    994 		cp = (*pp->pr_alloc)(pp->pr_pagesz, PR_NOWAIT, pp->pr_mtype);
    995 		if (__predict_true(cp != NULL))
    996 			ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
    997 		simple_lock(&pp->pr_slock);
    998 
    999 		if (__predict_false(cp == NULL || ph == NULL)) {
   1000 			error = ENOMEM;
   1001 			if (cp != NULL)
   1002 				(*pp->pr_free)(cp, pp->pr_pagesz, pp->pr_mtype);
   1003 			break;
   1004 		}
   1005 
   1006 		pool_prime_page(pp, cp, ph);
   1007 		pp->pr_npagealloc++;
   1008 		pp->pr_minpages++;
   1009 	}
   1010 
   1011 	if (pp->pr_minpages >= pp->pr_maxpages)
   1012 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1013 
   1014 	simple_unlock(&pp->pr_slock);
   1015 	return (0);
   1016 }
   1017 
   1018 /*
   1019  * Add a page worth of items to the pool.
   1020  *
   1021  * Note, we must be called with the pool descriptor LOCKED.
   1022  */
   1023 static void
   1024 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
   1025 {
   1026 	struct pool_item *pi;
   1027 	caddr_t cp = storage;
   1028 	unsigned int align = pp->pr_align;
   1029 	unsigned int ioff = pp->pr_itemoffset;
   1030 	int n;
   1031 
   1032 	if (((u_long)cp & (pp->pr_pagesz - 1)) != 0)
   1033 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1034 
   1035 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1036 		LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)],
   1037 		    ph, ph_hashlist);
   1038 
   1039 	/*
   1040 	 * Insert page header.
   1041 	 */
   1042 	TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
   1043 	TAILQ_INIT(&ph->ph_itemlist);
   1044 	ph->ph_page = storage;
   1045 	ph->ph_nmissing = 0;
   1046 	memset(&ph->ph_time, 0, sizeof(ph->ph_time));
   1047 
   1048 	pp->pr_nidle++;
   1049 
   1050 	/*
   1051 	 * Color this page.
   1052 	 */
   1053 	cp = (caddr_t)(cp + pp->pr_curcolor);
   1054 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1055 		pp->pr_curcolor = 0;
   1056 
   1057 	/*
   1058 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1059 	 */
   1060 	if (ioff != 0)
   1061 		cp = (caddr_t)(cp + (align - ioff));
   1062 
   1063 	/*
   1064 	 * Insert remaining chunks on the bucket list.
   1065 	 */
   1066 	n = pp->pr_itemsperpage;
   1067 	pp->pr_nitems += n;
   1068 
   1069 	while (n--) {
   1070 		pi = (struct pool_item *)cp;
   1071 
   1072 		/* Insert on page list */
   1073 		TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
   1074 #ifdef DIAGNOSTIC
   1075 		pi->pi_magic = PI_MAGIC;
   1076 #endif
   1077 		cp = (caddr_t)(cp + pp->pr_size);
   1078 	}
   1079 
   1080 	/*
   1081 	 * If the pool was depleted, point at the new page.
   1082 	 */
   1083 	if (pp->pr_curpage == NULL)
   1084 		pp->pr_curpage = ph;
   1085 
   1086 	if (++pp->pr_npages > pp->pr_hiwat)
   1087 		pp->pr_hiwat = pp->pr_npages;
   1088 }
   1089 
   1090 /*
   1091  * Used by pool_get() when nitems drops below the low water mark.  This
   1092  * is used to catch up nitmes with the low water mark.
   1093  *
   1094  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1095  *
   1096  * Note 2, this doesn't work with static pools.
   1097  *
   1098  * Note 3, we must be called with the pool already locked, and we return
   1099  * with it locked.
   1100  */
   1101 static int
   1102 pool_catchup(struct pool *pp)
   1103 {
   1104 	struct pool_item_header *ph;
   1105 	caddr_t cp;
   1106 	int error = 0;
   1107 
   1108 	if (pp->pr_roflags & PR_STATIC) {
   1109 		/*
   1110 		 * We dropped below the low water mark, and this is not a
   1111 		 * good thing.  Log a warning.
   1112 		 *
   1113 		 * XXX: rate-limit this?
   1114 		 */
   1115 		printf("WARNING: static pool `%s' dropped below low water "
   1116 		    "mark\n", pp->pr_wchan);
   1117 		return (0);
   1118 	}
   1119 
   1120 	while (POOL_NEEDS_CATCHUP(pp)) {
   1121 		/*
   1122 		 * Call the page back-end allocator for more memory.
   1123 		 *
   1124 		 * XXX: We never wait, so should we bother unlocking
   1125 		 * the pool descriptor?
   1126 		 */
   1127 		simple_unlock(&pp->pr_slock);
   1128 		cp = (*pp->pr_alloc)(pp->pr_pagesz, PR_NOWAIT, pp->pr_mtype);
   1129 		if (__predict_true(cp != NULL))
   1130 			ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
   1131 		simple_lock(&pp->pr_slock);
   1132 		if (__predict_false(cp == NULL || ph == NULL)) {
   1133 			if (cp != NULL)
   1134 				(*pp->pr_free)(cp, pp->pr_pagesz, pp->pr_mtype);
   1135 			error = ENOMEM;
   1136 			break;
   1137 		}
   1138 		pool_prime_page(pp, cp, ph);
   1139 		pp->pr_npagealloc++;
   1140 	}
   1141 
   1142 	return (error);
   1143 }
   1144 
   1145 void
   1146 pool_setlowat(struct pool *pp, int n)
   1147 {
   1148 	int error;
   1149 
   1150 	simple_lock(&pp->pr_slock);
   1151 
   1152 	pp->pr_minitems = n;
   1153 	pp->pr_minpages = (n == 0)
   1154 		? 0
   1155 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1156 
   1157 	/* Make sure we're caught up with the newly-set low water mark. */
   1158 	if (POOL_NEEDS_CATCHUP(pp) && (error = pool_catchup(pp) != 0)) {
   1159 		/*
   1160 		 * XXX: Should we log a warning?  Should we set up a timeout
   1161 		 * to try again in a second or so?  The latter could break
   1162 		 * a caller's assumptions about interrupt protection, etc.
   1163 		 */
   1164 	}
   1165 
   1166 	simple_unlock(&pp->pr_slock);
   1167 }
   1168 
   1169 void
   1170 pool_sethiwat(struct pool *pp, int n)
   1171 {
   1172 
   1173 	simple_lock(&pp->pr_slock);
   1174 
   1175 	pp->pr_maxpages = (n == 0)
   1176 		? 0
   1177 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1178 
   1179 	simple_unlock(&pp->pr_slock);
   1180 }
   1181 
   1182 void
   1183 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1184 {
   1185 
   1186 	simple_lock(&pp->pr_slock);
   1187 
   1188 	pp->pr_hardlimit = n;
   1189 	pp->pr_hardlimit_warning = warnmess;
   1190 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1191 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1192 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1193 
   1194 	/*
   1195 	 * In-line version of pool_sethiwat(), because we don't want to
   1196 	 * release the lock.
   1197 	 */
   1198 	pp->pr_maxpages = (n == 0)
   1199 		? 0
   1200 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1201 
   1202 	simple_unlock(&pp->pr_slock);
   1203 }
   1204 
   1205 /*
   1206  * Default page allocator.
   1207  */
   1208 static void *
   1209 pool_page_alloc(unsigned long sz, int flags, int mtype)
   1210 {
   1211 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   1212 
   1213 	return ((void *)uvm_km_alloc_poolpage(waitok));
   1214 }
   1215 
   1216 static void
   1217 pool_page_free(void *v, unsigned long sz, int mtype)
   1218 {
   1219 
   1220 	uvm_km_free_poolpage((vaddr_t)v);
   1221 }
   1222 
   1223 /*
   1224  * Alternate pool page allocator for pools that know they will
   1225  * never be accessed in interrupt context.
   1226  */
   1227 void *
   1228 pool_page_alloc_nointr(unsigned long sz, int flags, int mtype)
   1229 {
   1230 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   1231 
   1232 	return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object,
   1233 	    waitok));
   1234 }
   1235 
   1236 void
   1237 pool_page_free_nointr(void *v, unsigned long sz, int mtype)
   1238 {
   1239 
   1240 	uvm_km_free_poolpage1(kernel_map, (vaddr_t)v);
   1241 }
   1242 
   1243 
   1244 /*
   1245  * Release all complete pages that have not been used recently.
   1246  */
   1247 void
   1248 #ifdef DIAGNOSTIC
   1249 _pool_reclaim(struct pool *pp, const char *file, long line)
   1250 #else
   1251 pool_reclaim(struct pool *pp)
   1252 #endif
   1253 {
   1254 	struct pool_item_header *ph, *phnext;
   1255 	struct pool_cache *pc;
   1256 	struct timeval curtime;
   1257 	int s;
   1258 
   1259 	if (pp->pr_roflags & PR_STATIC)
   1260 		return;
   1261 
   1262 	if (simple_lock_try(&pp->pr_slock) == 0)
   1263 		return;
   1264 	pr_enter(pp, file, line);
   1265 
   1266 	/*
   1267 	 * Reclaim items from the pool's caches.
   1268 	 */
   1269 	for (pc = TAILQ_FIRST(&pp->pr_cachelist); pc != NULL;
   1270 	     pc = TAILQ_NEXT(pc, pc_poollist))
   1271 		pool_cache_reclaim(pc);
   1272 
   1273 	s = splclock();
   1274 	curtime = mono_time;
   1275 	splx(s);
   1276 
   1277 	for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) {
   1278 		phnext = TAILQ_NEXT(ph, ph_pagelist);
   1279 
   1280 		/* Check our minimum page claim */
   1281 		if (pp->pr_npages <= pp->pr_minpages)
   1282 			break;
   1283 
   1284 		if (ph->ph_nmissing == 0) {
   1285 			struct timeval diff;
   1286 			timersub(&curtime, &ph->ph_time, &diff);
   1287 			if (diff.tv_sec < pool_inactive_time)
   1288 				continue;
   1289 
   1290 			/*
   1291 			 * If freeing this page would put us below
   1292 			 * the low water mark, stop now.
   1293 			 */
   1294 			if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1295 			    pp->pr_minitems)
   1296 				break;
   1297 
   1298 			pr_rmpage(pp, ph);
   1299 		}
   1300 	}
   1301 
   1302 	pr_leave(pp);
   1303 	simple_unlock(&pp->pr_slock);
   1304 }
   1305 
   1306 
   1307 /*
   1308  * Drain pools, one at a time.
   1309  *
   1310  * Note, we must never be called from an interrupt context.
   1311  */
   1312 void
   1313 pool_drain(void *arg)
   1314 {
   1315 	struct pool *pp;
   1316 	int s;
   1317 
   1318 	s = splvm();
   1319 	simple_lock(&pool_head_slock);
   1320 
   1321 	if (drainpp == NULL && (drainpp = TAILQ_FIRST(&pool_head)) == NULL)
   1322 		goto out;
   1323 
   1324 	pp = drainpp;
   1325 	drainpp = TAILQ_NEXT(pp, pr_poollist);
   1326 
   1327 	pool_reclaim(pp);
   1328 
   1329  out:
   1330 	simple_unlock(&pool_head_slock);
   1331 	splx(s);
   1332 }
   1333 
   1334 
   1335 /*
   1336  * Diagnostic helpers.
   1337  */
   1338 void
   1339 pool_print(struct pool *pp, const char *modif)
   1340 {
   1341 	int s;
   1342 
   1343 	s = splvm();
   1344 	if (simple_lock_try(&pp->pr_slock) == 0) {
   1345 		printf("pool %s is locked; try again later\n",
   1346 		    pp->pr_wchan);
   1347 		splx(s);
   1348 		return;
   1349 	}
   1350 	pool_print1(pp, modif, printf);
   1351 	simple_unlock(&pp->pr_slock);
   1352 	splx(s);
   1353 }
   1354 
   1355 void
   1356 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1357 {
   1358 	int didlock = 0;
   1359 
   1360 	if (pp == NULL) {
   1361 		(*pr)("Must specify a pool to print.\n");
   1362 		return;
   1363 	}
   1364 
   1365 	/*
   1366 	 * Called from DDB; interrupts should be blocked, and all
   1367 	 * other processors should be paused.  We can skip locking
   1368 	 * the pool in this case.
   1369 	 *
   1370 	 * We do a simple_lock_try() just to print the lock
   1371 	 * status, however.
   1372 	 */
   1373 
   1374 	if (simple_lock_try(&pp->pr_slock) == 0)
   1375 		(*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
   1376 	else
   1377 		didlock = 1;
   1378 
   1379 	pool_print1(pp, modif, pr);
   1380 
   1381 	if (didlock)
   1382 		simple_unlock(&pp->pr_slock);
   1383 }
   1384 
   1385 static void
   1386 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1387 {
   1388 	struct pool_item_header *ph;
   1389 	struct pool_cache *pc;
   1390 	struct pool_cache_group *pcg;
   1391 #ifdef DIAGNOSTIC
   1392 	struct pool_item *pi;
   1393 #endif
   1394 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1395 	char c;
   1396 
   1397 	while ((c = *modif++) != '\0') {
   1398 		if (c == 'l')
   1399 			print_log = 1;
   1400 		if (c == 'p')
   1401 			print_pagelist = 1;
   1402 		if (c == 'c')
   1403 			print_cache = 1;
   1404 		modif++;
   1405 	}
   1406 
   1407 	(*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1408 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1409 	    pp->pr_roflags);
   1410 	(*pr)("\tpagesz %u, mtype %d\n", pp->pr_pagesz, pp->pr_mtype);
   1411 	(*pr)("\talloc %p, release %p\n", pp->pr_alloc, pp->pr_free);
   1412 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1413 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1414 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1415 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1416 
   1417 	(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
   1418 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1419 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1420 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1421 
   1422 	if (print_pagelist == 0)
   1423 		goto skip_pagelist;
   1424 
   1425 	if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
   1426 		(*pr)("\n\tpage list:\n");
   1427 	for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) {
   1428 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
   1429 		    ph->ph_page, ph->ph_nmissing,
   1430 		    (u_long)ph->ph_time.tv_sec,
   1431 		    (u_long)ph->ph_time.tv_usec);
   1432 #ifdef DIAGNOSTIC
   1433 		for (pi = TAILQ_FIRST(&ph->ph_itemlist); pi != NULL;
   1434 		     pi = TAILQ_NEXT(pi, pi_list)) {
   1435 			if (pi->pi_magic != PI_MAGIC) {
   1436 				(*pr)("\t\t\titem %p, magic 0x%x\n",
   1437 				    pi, pi->pi_magic);
   1438 			}
   1439 		}
   1440 #endif
   1441 	}
   1442 	if (pp->pr_curpage == NULL)
   1443 		(*pr)("\tno current page\n");
   1444 	else
   1445 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1446 
   1447  skip_pagelist:
   1448 
   1449 	if (print_log == 0)
   1450 		goto skip_log;
   1451 
   1452 	(*pr)("\n");
   1453 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1454 		(*pr)("\tno log\n");
   1455 	else
   1456 		pr_printlog(pp, NULL, pr);
   1457 
   1458  skip_log:
   1459 
   1460 	if (print_cache == 0)
   1461 		goto skip_cache;
   1462 
   1463 	for (pc = TAILQ_FIRST(&pp->pr_cachelist); pc != NULL;
   1464 	     pc = TAILQ_NEXT(pc, pc_poollist)) {
   1465 		(*pr)("\tcache %p: allocfrom %p freeto %p\n", pc,
   1466 		    pc->pc_allocfrom, pc->pc_freeto);
   1467 		(*pr)("\t    hits %lu misses %lu ngroups %lu nitems %lu\n",
   1468 		    pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
   1469 		for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
   1470 		     pcg = TAILQ_NEXT(pcg, pcg_list)) {
   1471 			(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);
   1472 			for (i = 0; i < PCG_NOBJECTS; i++)
   1473 				(*pr)("\t\t\t%p\n", pcg->pcg_objects[i]);
   1474 		}
   1475 	}
   1476 
   1477  skip_cache:
   1478 
   1479 	pr_enter_check(pp, pr);
   1480 }
   1481 
   1482 int
   1483 pool_chk(struct pool *pp, const char *label)
   1484 {
   1485 	struct pool_item_header *ph;
   1486 	int r = 0;
   1487 
   1488 	simple_lock(&pp->pr_slock);
   1489 
   1490 	for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
   1491 	     ph = TAILQ_NEXT(ph, ph_pagelist)) {
   1492 
   1493 		struct pool_item *pi;
   1494 		int n;
   1495 		caddr_t page;
   1496 
   1497 		page = (caddr_t)((u_long)ph & pp->pr_pagemask);
   1498 		if (page != ph->ph_page &&
   1499 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1500 			if (label != NULL)
   1501 				printf("%s: ", label);
   1502 			printf("pool(%p:%s): page inconsistency: page %p;"
   1503 			       " at page head addr %p (p %p)\n", pp,
   1504 				pp->pr_wchan, ph->ph_page,
   1505 				ph, page);
   1506 			r++;
   1507 			goto out;
   1508 		}
   1509 
   1510 		for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
   1511 		     pi != NULL;
   1512 		     pi = TAILQ_NEXT(pi,pi_list), n++) {
   1513 
   1514 #ifdef DIAGNOSTIC
   1515 			if (pi->pi_magic != PI_MAGIC) {
   1516 				if (label != NULL)
   1517 					printf("%s: ", label);
   1518 				printf("pool(%s): free list modified: magic=%x;"
   1519 				       " page %p; item ordinal %d;"
   1520 				       " addr %p (p %p)\n",
   1521 					pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1522 					n, pi, page);
   1523 				panic("pool");
   1524 			}
   1525 #endif
   1526 			page = (caddr_t)((u_long)pi & pp->pr_pagemask);
   1527 			if (page == ph->ph_page)
   1528 				continue;
   1529 
   1530 			if (label != NULL)
   1531 				printf("%s: ", label);
   1532 			printf("pool(%p:%s): page inconsistency: page %p;"
   1533 			       " item ordinal %d; addr %p (p %p)\n", pp,
   1534 				pp->pr_wchan, ph->ph_page,
   1535 				n, pi, page);
   1536 			r++;
   1537 			goto out;
   1538 		}
   1539 	}
   1540 out:
   1541 	simple_unlock(&pp->pr_slock);
   1542 	return (r);
   1543 }
   1544 
   1545 /*
   1546  * pool_cache_init:
   1547  *
   1548  *	Initialize a pool cache.
   1549  *
   1550  *	NOTE: If the pool must be protected from interrupts, we expect
   1551  *	to be called at the appropriate interrupt priority level.
   1552  */
   1553 void
   1554 pool_cache_init(struct pool_cache *pc, struct pool *pp,
   1555     int (*ctor)(void *, void *, int),
   1556     void (*dtor)(void *, void *),
   1557     void *arg)
   1558 {
   1559 
   1560 	TAILQ_INIT(&pc->pc_grouplist);
   1561 	simple_lock_init(&pc->pc_slock);
   1562 
   1563 	pc->pc_allocfrom = NULL;
   1564 	pc->pc_freeto = NULL;
   1565 	pc->pc_pool = pp;
   1566 
   1567 	pc->pc_ctor = ctor;
   1568 	pc->pc_dtor = dtor;
   1569 	pc->pc_arg  = arg;
   1570 
   1571 	pc->pc_hits   = 0;
   1572 	pc->pc_misses = 0;
   1573 
   1574 	pc->pc_ngroups = 0;
   1575 
   1576 	pc->pc_nitems = 0;
   1577 
   1578 	simple_lock(&pp->pr_slock);
   1579 	TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist);
   1580 	simple_unlock(&pp->pr_slock);
   1581 }
   1582 
   1583 /*
   1584  * pool_cache_destroy:
   1585  *
   1586  *	Destroy a pool cache.
   1587  */
   1588 void
   1589 pool_cache_destroy(struct pool_cache *pc)
   1590 {
   1591 	struct pool *pp = pc->pc_pool;
   1592 
   1593 	/* First, invalidate the entire cache. */
   1594 	pool_cache_invalidate(pc);
   1595 
   1596 	/* ...and remove it from the pool's cache list. */
   1597 	simple_lock(&pp->pr_slock);
   1598 	TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist);
   1599 	simple_unlock(&pp->pr_slock);
   1600 }
   1601 
   1602 static __inline void *
   1603 pcg_get(struct pool_cache_group *pcg)
   1604 {
   1605 	void *object;
   1606 	u_int idx;
   1607 
   1608 	KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
   1609 	KASSERT(pcg->pcg_avail != 0);
   1610 	idx = --pcg->pcg_avail;
   1611 
   1612 	KASSERT(pcg->pcg_objects[idx] != NULL);
   1613 	object = pcg->pcg_objects[idx];
   1614 	pcg->pcg_objects[idx] = NULL;
   1615 
   1616 	return (object);
   1617 }
   1618 
   1619 static __inline void
   1620 pcg_put(struct pool_cache_group *pcg, void *object)
   1621 {
   1622 	u_int idx;
   1623 
   1624 	KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
   1625 	idx = pcg->pcg_avail++;
   1626 
   1627 	KASSERT(pcg->pcg_objects[idx] == NULL);
   1628 	pcg->pcg_objects[idx] = object;
   1629 }
   1630 
   1631 /*
   1632  * pool_cache_get:
   1633  *
   1634  *	Get an object from a pool cache.
   1635  */
   1636 void *
   1637 pool_cache_get(struct pool_cache *pc, int flags)
   1638 {
   1639 	struct pool_cache_group *pcg;
   1640 	void *object;
   1641 
   1642 #ifdef LOCKDEBUG
   1643 	if (flags & PR_WAITOK)
   1644 		simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)");
   1645 #endif
   1646 
   1647 	simple_lock(&pc->pc_slock);
   1648 
   1649 	if ((pcg = pc->pc_allocfrom) == NULL) {
   1650 		for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
   1651 		     pcg = TAILQ_NEXT(pcg, pcg_list)) {
   1652 			if (pcg->pcg_avail != 0) {
   1653 				pc->pc_allocfrom = pcg;
   1654 				goto have_group;
   1655 			}
   1656 		}
   1657 
   1658 		/*
   1659 		 * No groups with any available objects.  Allocate
   1660 		 * a new object, construct it, and return it to
   1661 		 * the caller.  We will allocate a group, if necessary,
   1662 		 * when the object is freed back to the cache.
   1663 		 */
   1664 		pc->pc_misses++;
   1665 		simple_unlock(&pc->pc_slock);
   1666 		object = pool_get(pc->pc_pool, flags);
   1667 		if (object != NULL && pc->pc_ctor != NULL) {
   1668 			if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
   1669 				pool_put(pc->pc_pool, object);
   1670 				return (NULL);
   1671 			}
   1672 		}
   1673 		return (object);
   1674 	}
   1675 
   1676  have_group:
   1677 	pc->pc_hits++;
   1678 	pc->pc_nitems--;
   1679 	object = pcg_get(pcg);
   1680 
   1681 	if (pcg->pcg_avail == 0)
   1682 		pc->pc_allocfrom = NULL;
   1683 
   1684 	simple_unlock(&pc->pc_slock);
   1685 
   1686 	return (object);
   1687 }
   1688 
   1689 /*
   1690  * pool_cache_put:
   1691  *
   1692  *	Put an object back to the pool cache.
   1693  */
   1694 void
   1695 pool_cache_put(struct pool_cache *pc, void *object)
   1696 {
   1697 	struct pool_cache_group *pcg;
   1698 
   1699 	simple_lock(&pc->pc_slock);
   1700 
   1701 	if ((pcg = pc->pc_freeto) == NULL) {
   1702 		for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
   1703 		     pcg = TAILQ_NEXT(pcg, pcg_list)) {
   1704 			if (pcg->pcg_avail != PCG_NOBJECTS) {
   1705 				pc->pc_freeto = pcg;
   1706 				goto have_group;
   1707 			}
   1708 		}
   1709 
   1710 		/*
   1711 		 * No empty groups to free the object to.  Attempt to
   1712 		 * allocate one.
   1713 		 */
   1714 		simple_unlock(&pc->pc_slock);
   1715 		pcg = pool_get(&pcgpool, PR_NOWAIT);
   1716 		if (pcg != NULL) {
   1717 			memset(pcg, 0, sizeof(*pcg));
   1718 			simple_lock(&pc->pc_slock);
   1719 			pc->pc_ngroups++;
   1720 			TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list);
   1721 			if (pc->pc_freeto == NULL)
   1722 				pc->pc_freeto = pcg;
   1723 			goto have_group;
   1724 		}
   1725 
   1726 		/*
   1727 		 * Unable to allocate a cache group; destruct the object
   1728 		 * and free it back to the pool.
   1729 		 */
   1730 		pool_cache_destruct_object(pc, object);
   1731 		return;
   1732 	}
   1733 
   1734  have_group:
   1735 	pc->pc_nitems++;
   1736 	pcg_put(pcg, object);
   1737 
   1738 	if (pcg->pcg_avail == PCG_NOBJECTS)
   1739 		pc->pc_freeto = NULL;
   1740 
   1741 	simple_unlock(&pc->pc_slock);
   1742 }
   1743 
   1744 /*
   1745  * pool_cache_destruct_object:
   1746  *
   1747  *	Force destruction of an object and its release back into
   1748  *	the pool.
   1749  */
   1750 void
   1751 pool_cache_destruct_object(struct pool_cache *pc, void *object)
   1752 {
   1753 
   1754 	if (pc->pc_dtor != NULL)
   1755 		(*pc->pc_dtor)(pc->pc_arg, object);
   1756 	pool_put(pc->pc_pool, object);
   1757 }
   1758 
   1759 /*
   1760  * pool_cache_do_invalidate:
   1761  *
   1762  *	This internal function implements pool_cache_invalidate() and
   1763  *	pool_cache_reclaim().
   1764  */
   1765 static void
   1766 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups,
   1767     void (*putit)(struct pool *, void *))
   1768 {
   1769 	struct pool_cache_group *pcg, *npcg;
   1770 	void *object;
   1771 
   1772 	for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
   1773 	     pcg = npcg) {
   1774 		npcg = TAILQ_NEXT(pcg, pcg_list);
   1775 		while (pcg->pcg_avail != 0) {
   1776 			pc->pc_nitems--;
   1777 			object = pcg_get(pcg);
   1778 			if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg)
   1779 				pc->pc_allocfrom = NULL;
   1780 			if (pc->pc_dtor != NULL)
   1781 				(*pc->pc_dtor)(pc->pc_arg, object);
   1782 			(*putit)(pc->pc_pool, object);
   1783 		}
   1784 		if (free_groups) {
   1785 			pc->pc_ngroups--;
   1786 			TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list);
   1787 			if (pc->pc_freeto == pcg)
   1788 				pc->pc_freeto = NULL;
   1789 			pool_put(&pcgpool, pcg);
   1790 		}
   1791 	}
   1792 }
   1793 
   1794 /*
   1795  * pool_cache_invalidate:
   1796  *
   1797  *	Invalidate a pool cache (destruct and release all of the
   1798  *	cached objects).
   1799  */
   1800 void
   1801 pool_cache_invalidate(struct pool_cache *pc)
   1802 {
   1803 
   1804 	simple_lock(&pc->pc_slock);
   1805 	pool_cache_do_invalidate(pc, 0, pool_put);
   1806 	simple_unlock(&pc->pc_slock);
   1807 }
   1808 
   1809 /*
   1810  * pool_cache_reclaim:
   1811  *
   1812  *	Reclaim a pool cache for pool_reclaim().
   1813  */
   1814 static void
   1815 pool_cache_reclaim(struct pool_cache *pc)
   1816 {
   1817 
   1818 	simple_lock(&pc->pc_slock);
   1819 	pool_cache_do_invalidate(pc, 1, pool_do_put);
   1820 	simple_unlock(&pc->pc_slock);
   1821 }
   1822