subr_pool.c revision 1.58 1 /* $NetBSD: subr_pool.c,v 1.58 2001/06/05 04:40:39 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include "opt_pool.h"
41 #include "opt_poollog.h"
42 #include "opt_lockdebug.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/proc.h>
47 #include <sys/errno.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/lock.h>
51 #include <sys/pool.h>
52 #include <sys/syslog.h>
53
54 #include <uvm/uvm.h>
55
56 /*
57 * Pool resource management utility.
58 *
59 * Memory is allocated in pages which are split into pieces according
60 * to the pool item size. Each page is kept on a list headed by `pr_pagelist'
61 * in the pool structure and the individual pool items are on a linked list
62 * headed by `ph_itemlist' in each page header. The memory for building
63 * the page list is either taken from the allocated pages themselves (for
64 * small pool items) or taken from an internal pool of page headers (`phpool').
65 */
66
67 /* List of all pools */
68 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
69
70 /* Private pool for page header structures */
71 static struct pool phpool;
72
73 /* # of seconds to retain page after last use */
74 int pool_inactive_time = 10;
75
76 /* Next candidate for drainage (see pool_drain()) */
77 static struct pool *drainpp;
78
79 /* This spin lock protects both pool_head and drainpp. */
80 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
81
82 struct pool_item_header {
83 /* Page headers */
84 TAILQ_ENTRY(pool_item_header)
85 ph_pagelist; /* pool page list */
86 TAILQ_HEAD(,pool_item) ph_itemlist; /* chunk list for this page */
87 LIST_ENTRY(pool_item_header)
88 ph_hashlist; /* Off-page page headers */
89 int ph_nmissing; /* # of chunks in use */
90 caddr_t ph_page; /* this page's address */
91 struct timeval ph_time; /* last referenced */
92 };
93
94 struct pool_item {
95 #ifdef DIAGNOSTIC
96 int pi_magic;
97 #endif
98 #define PI_MAGIC 0xdeadbeef
99 /* Other entries use only this list entry */
100 TAILQ_ENTRY(pool_item) pi_list;
101 };
102
103 #define PR_HASH_INDEX(pp,addr) \
104 (((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1))
105
106 #define POOL_NEEDS_CATCHUP(pp) \
107 ((pp)->pr_nitems < (pp)->pr_minitems)
108
109 /*
110 * Pool cache management.
111 *
112 * Pool caches provide a way for constructed objects to be cached by the
113 * pool subsystem. This can lead to performance improvements by avoiding
114 * needless object construction/destruction; it is deferred until absolutely
115 * necessary.
116 *
117 * Caches are grouped into cache groups. Each cache group references
118 * up to 16 constructed objects. When a cache allocates an object
119 * from the pool, it calls the object's constructor and places it into
120 * a cache group. When a cache group frees an object back to the pool,
121 * it first calls the object's destructor. This allows the object to
122 * persist in constructed form while freed to the cache.
123 *
124 * Multiple caches may exist for each pool. This allows a single
125 * object type to have multiple constructed forms. The pool references
126 * each cache, so that when a pool is drained by the pagedaemon, it can
127 * drain each individual cache as well. Each time a cache is drained,
128 * the most idle cache group is freed to the pool in its entirety.
129 *
130 * Pool caches are layed on top of pools. By layering them, we can avoid
131 * the complexity of cache management for pools which would not benefit
132 * from it.
133 */
134
135 /* The cache group pool. */
136 static struct pool pcgpool;
137
138 /* The pool cache group. */
139 #define PCG_NOBJECTS 16
140 struct pool_cache_group {
141 TAILQ_ENTRY(pool_cache_group)
142 pcg_list; /* link in the pool cache's group list */
143 u_int pcg_avail; /* # available objects */
144 /* pointers to the objects */
145 void *pcg_objects[PCG_NOBJECTS];
146 };
147
148 static void pool_cache_reclaim(struct pool_cache *);
149
150 static int pool_catchup(struct pool *);
151 static void pool_prime_page(struct pool *, caddr_t,
152 struct pool_item_header *);
153 static void *pool_page_alloc(unsigned long, int, int);
154 static void pool_page_free(void *, unsigned long, int);
155
156 static void pool_print1(struct pool *, const char *,
157 void (*)(const char *, ...));
158
159 /*
160 * Pool log entry. An array of these is allocated in pool_init().
161 */
162 struct pool_log {
163 const char *pl_file;
164 long pl_line;
165 int pl_action;
166 #define PRLOG_GET 1
167 #define PRLOG_PUT 2
168 void *pl_addr;
169 };
170
171 /* Number of entries in pool log buffers */
172 #ifndef POOL_LOGSIZE
173 #define POOL_LOGSIZE 10
174 #endif
175
176 int pool_logsize = POOL_LOGSIZE;
177
178 #ifdef DIAGNOSTIC
179 static __inline void
180 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
181 {
182 int n = pp->pr_curlogentry;
183 struct pool_log *pl;
184
185 if ((pp->pr_roflags & PR_LOGGING) == 0)
186 return;
187
188 /*
189 * Fill in the current entry. Wrap around and overwrite
190 * the oldest entry if necessary.
191 */
192 pl = &pp->pr_log[n];
193 pl->pl_file = file;
194 pl->pl_line = line;
195 pl->pl_action = action;
196 pl->pl_addr = v;
197 if (++n >= pp->pr_logsize)
198 n = 0;
199 pp->pr_curlogentry = n;
200 }
201
202 static void
203 pr_printlog(struct pool *pp, struct pool_item *pi,
204 void (*pr)(const char *, ...))
205 {
206 int i = pp->pr_logsize;
207 int n = pp->pr_curlogentry;
208
209 if ((pp->pr_roflags & PR_LOGGING) == 0)
210 return;
211
212 /*
213 * Print all entries in this pool's log.
214 */
215 while (i-- > 0) {
216 struct pool_log *pl = &pp->pr_log[n];
217 if (pl->pl_action != 0) {
218 if (pi == NULL || pi == pl->pl_addr) {
219 (*pr)("\tlog entry %d:\n", i);
220 (*pr)("\t\taction = %s, addr = %p\n",
221 pl->pl_action == PRLOG_GET ? "get" : "put",
222 pl->pl_addr);
223 (*pr)("\t\tfile: %s at line %lu\n",
224 pl->pl_file, pl->pl_line);
225 }
226 }
227 if (++n >= pp->pr_logsize)
228 n = 0;
229 }
230 }
231
232 static __inline void
233 pr_enter(struct pool *pp, const char *file, long line)
234 {
235
236 if (__predict_false(pp->pr_entered_file != NULL)) {
237 printf("pool %s: reentrancy at file %s line %ld\n",
238 pp->pr_wchan, file, line);
239 printf(" previous entry at file %s line %ld\n",
240 pp->pr_entered_file, pp->pr_entered_line);
241 panic("pr_enter");
242 }
243
244 pp->pr_entered_file = file;
245 pp->pr_entered_line = line;
246 }
247
248 static __inline void
249 pr_leave(struct pool *pp)
250 {
251
252 if (__predict_false(pp->pr_entered_file == NULL)) {
253 printf("pool %s not entered?\n", pp->pr_wchan);
254 panic("pr_leave");
255 }
256
257 pp->pr_entered_file = NULL;
258 pp->pr_entered_line = 0;
259 }
260
261 static __inline void
262 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
263 {
264
265 if (pp->pr_entered_file != NULL)
266 (*pr)("\n\tcurrently entered from file %s line %ld\n",
267 pp->pr_entered_file, pp->pr_entered_line);
268 }
269 #else
270 #define pr_log(pp, v, action, file, line)
271 #define pr_printlog(pp, pi, pr)
272 #define pr_enter(pp, file, line)
273 #define pr_leave(pp)
274 #define pr_enter_check(pp, pr)
275 #endif /* DIAGNOSTIC */
276
277 /*
278 * Return the pool page header based on page address.
279 */
280 static __inline struct pool_item_header *
281 pr_find_pagehead(struct pool *pp, caddr_t page)
282 {
283 struct pool_item_header *ph;
284
285 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
286 return ((struct pool_item_header *)(page + pp->pr_phoffset));
287
288 for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]);
289 ph != NULL;
290 ph = LIST_NEXT(ph, ph_hashlist)) {
291 if (ph->ph_page == page)
292 return (ph);
293 }
294 return (NULL);
295 }
296
297 /*
298 * Remove a page from the pool.
299 */
300 static __inline void
301 pr_rmpage(struct pool *pp, struct pool_item_header *ph)
302 {
303
304 /*
305 * If the page was idle, decrement the idle page count.
306 */
307 if (ph->ph_nmissing == 0) {
308 #ifdef DIAGNOSTIC
309 if (pp->pr_nidle == 0)
310 panic("pr_rmpage: nidle inconsistent");
311 if (pp->pr_nitems < pp->pr_itemsperpage)
312 panic("pr_rmpage: nitems inconsistent");
313 #endif
314 pp->pr_nidle--;
315 }
316
317 pp->pr_nitems -= pp->pr_itemsperpage;
318
319 /*
320 * Unlink a page from the pool and release it.
321 */
322 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
323 (*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype);
324 pp->pr_npages--;
325 pp->pr_npagefree++;
326
327 if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
328 int s;
329 LIST_REMOVE(ph, ph_hashlist);
330 s = splhigh();
331 pool_put(&phpool, ph);
332 splx(s);
333 }
334
335 if (pp->pr_curpage == ph) {
336 /*
337 * Find a new non-empty page header, if any.
338 * Start search from the page head, to increase the
339 * chance for "high water" pages to be freed.
340 */
341 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
342 ph = TAILQ_NEXT(ph, ph_pagelist))
343 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
344 break;
345
346 pp->pr_curpage = ph;
347 }
348 }
349
350 /*
351 * Initialize the given pool resource structure.
352 *
353 * We export this routine to allow other kernel parts to declare
354 * static pools that must be initialized before malloc() is available.
355 */
356 void
357 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
358 const char *wchan, size_t pagesz,
359 void *(*alloc)(unsigned long, int, int),
360 void (*release)(void *, unsigned long, int),
361 int mtype)
362 {
363 int off, slack, i;
364
365 #ifdef POOL_DIAGNOSTIC
366 /*
367 * Always log if POOL_DIAGNOSTIC is defined.
368 */
369 if (pool_logsize != 0)
370 flags |= PR_LOGGING;
371 #endif
372
373 /*
374 * Check arguments and construct default values.
375 */
376 if (!powerof2(pagesz))
377 panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz);
378
379 if (alloc == NULL && release == NULL) {
380 alloc = pool_page_alloc;
381 release = pool_page_free;
382 pagesz = PAGE_SIZE; /* Rounds to PAGE_SIZE anyhow. */
383 } else if ((alloc != NULL && release != NULL) == 0) {
384 /* If you specifiy one, must specify both. */
385 panic("pool_init: must specify alloc and release together");
386 }
387
388 if (pagesz == 0)
389 pagesz = PAGE_SIZE;
390
391 if (align == 0)
392 align = ALIGN(1);
393
394 if (size < sizeof(struct pool_item))
395 size = sizeof(struct pool_item);
396
397 size = ALIGN(size);
398 if (size > pagesz)
399 panic("pool_init: pool item size (%lu) too large",
400 (u_long)size);
401
402 /*
403 * Initialize the pool structure.
404 */
405 TAILQ_INIT(&pp->pr_pagelist);
406 TAILQ_INIT(&pp->pr_cachelist);
407 pp->pr_curpage = NULL;
408 pp->pr_npages = 0;
409 pp->pr_minitems = 0;
410 pp->pr_minpages = 0;
411 pp->pr_maxpages = UINT_MAX;
412 pp->pr_roflags = flags;
413 pp->pr_flags = 0;
414 pp->pr_size = size;
415 pp->pr_align = align;
416 pp->pr_wchan = wchan;
417 pp->pr_mtype = mtype;
418 pp->pr_alloc = alloc;
419 pp->pr_free = release;
420 pp->pr_pagesz = pagesz;
421 pp->pr_pagemask = ~(pagesz - 1);
422 pp->pr_pageshift = ffs(pagesz) - 1;
423 pp->pr_nitems = 0;
424 pp->pr_nout = 0;
425 pp->pr_hardlimit = UINT_MAX;
426 pp->pr_hardlimit_warning = NULL;
427 pp->pr_hardlimit_ratecap.tv_sec = 0;
428 pp->pr_hardlimit_ratecap.tv_usec = 0;
429 pp->pr_hardlimit_warning_last.tv_sec = 0;
430 pp->pr_hardlimit_warning_last.tv_usec = 0;
431
432 /*
433 * Decide whether to put the page header off page to avoid
434 * wasting too large a part of the page. Off-page page headers
435 * go on a hash table, so we can match a returned item
436 * with its header based on the page address.
437 * We use 1/16 of the page size as the threshold (XXX: tune)
438 */
439 if (pp->pr_size < pagesz/16) {
440 /* Use the end of the page for the page header */
441 pp->pr_roflags |= PR_PHINPAGE;
442 pp->pr_phoffset = off =
443 pagesz - ALIGN(sizeof(struct pool_item_header));
444 } else {
445 /* The page header will be taken from our page header pool */
446 pp->pr_phoffset = 0;
447 off = pagesz;
448 for (i = 0; i < PR_HASHTABSIZE; i++) {
449 LIST_INIT(&pp->pr_hashtab[i]);
450 }
451 }
452
453 /*
454 * Alignment is to take place at `ioff' within the item. This means
455 * we must reserve up to `align - 1' bytes on the page to allow
456 * appropriate positioning of each item.
457 *
458 * Silently enforce `0 <= ioff < align'.
459 */
460 pp->pr_itemoffset = ioff = ioff % align;
461 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
462 KASSERT(pp->pr_itemsperpage != 0);
463
464 /*
465 * Use the slack between the chunks and the page header
466 * for "cache coloring".
467 */
468 slack = off - pp->pr_itemsperpage * pp->pr_size;
469 pp->pr_maxcolor = (slack / align) * align;
470 pp->pr_curcolor = 0;
471
472 pp->pr_nget = 0;
473 pp->pr_nfail = 0;
474 pp->pr_nput = 0;
475 pp->pr_npagealloc = 0;
476 pp->pr_npagefree = 0;
477 pp->pr_hiwat = 0;
478 pp->pr_nidle = 0;
479
480 if (flags & PR_LOGGING) {
481 if (kmem_map == NULL ||
482 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
483 M_TEMP, M_NOWAIT)) == NULL)
484 pp->pr_roflags &= ~PR_LOGGING;
485 pp->pr_curlogentry = 0;
486 pp->pr_logsize = pool_logsize;
487 }
488
489 pp->pr_entered_file = NULL;
490 pp->pr_entered_line = 0;
491
492 simple_lock_init(&pp->pr_slock);
493
494 /*
495 * Initialize private page header pool and cache magazine pool if we
496 * haven't done so yet.
497 * XXX LOCKING.
498 */
499 if (phpool.pr_size == 0) {
500 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
501 0, "phpool", 0, 0, 0, 0);
502 pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
503 0, "pcgpool", 0, 0, 0, 0);
504 }
505
506 /* Insert into the list of all pools. */
507 simple_lock(&pool_head_slock);
508 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
509 simple_unlock(&pool_head_slock);
510 }
511
512 /*
513 * De-commision a pool resource.
514 */
515 void
516 pool_destroy(struct pool *pp)
517 {
518 struct pool_item_header *ph;
519 struct pool_cache *pc;
520
521 /* Destroy all caches for this pool. */
522 while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL)
523 pool_cache_destroy(pc);
524
525 #ifdef DIAGNOSTIC
526 if (pp->pr_nout != 0) {
527 pr_printlog(pp, NULL, printf);
528 panic("pool_destroy: pool busy: still out: %u\n",
529 pp->pr_nout);
530 }
531 #endif
532
533 /* Remove all pages */
534 if ((pp->pr_roflags & PR_STATIC) == 0)
535 while ((ph = pp->pr_pagelist.tqh_first) != NULL)
536 pr_rmpage(pp, ph);
537
538 /* Remove from global pool list */
539 simple_lock(&pool_head_slock);
540 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
541 /* XXX Only clear this if we were drainpp? */
542 drainpp = NULL;
543 simple_unlock(&pool_head_slock);
544
545 if ((pp->pr_roflags & PR_LOGGING) != 0)
546 free(pp->pr_log, M_TEMP);
547
548 if (pp->pr_roflags & PR_FREEHEADER)
549 free(pp, M_POOL);
550 }
551
552 static __inline struct pool_item_header *
553 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
554 {
555 struct pool_item_header *ph;
556 int s;
557
558 LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
559
560 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
561 ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
562 else {
563 s = splhigh();
564 ph = pool_get(&phpool, flags);
565 splx(s);
566 }
567
568 return (ph);
569 }
570
571 /*
572 * Grab an item from the pool; must be called at appropriate spl level
573 */
574 void *
575 #ifdef DIAGNOSTIC
576 _pool_get(struct pool *pp, int flags, const char *file, long line)
577 #else
578 pool_get(struct pool *pp, int flags)
579 #endif
580 {
581 struct pool_item *pi;
582 struct pool_item_header *ph;
583 void *v;
584
585 #ifdef DIAGNOSTIC
586 if (__predict_false((pp->pr_roflags & PR_STATIC) &&
587 (flags & PR_MALLOCOK))) {
588 pr_printlog(pp, NULL, printf);
589 panic("pool_get: static");
590 }
591
592 if (__predict_false(curproc == NULL && doing_shutdown == 0 &&
593 (flags & PR_WAITOK) != 0))
594 panic("pool_get: must have NOWAIT");
595
596 #ifdef LOCKDEBUG
597 if (flags & PR_WAITOK)
598 simple_lock_only_held(NULL, "pool_get(PR_WAITOK)");
599 #endif
600 #endif /* DIAGNOSTIC */
601
602 simple_lock(&pp->pr_slock);
603 pr_enter(pp, file, line);
604
605 startover:
606 /*
607 * Check to see if we've reached the hard limit. If we have,
608 * and we can wait, then wait until an item has been returned to
609 * the pool.
610 */
611 #ifdef DIAGNOSTIC
612 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
613 pr_leave(pp);
614 simple_unlock(&pp->pr_slock);
615 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
616 }
617 #endif
618 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
619 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
620 /*
621 * XXX: A warning isn't logged in this case. Should
622 * it be?
623 */
624 pp->pr_flags |= PR_WANTED;
625 pr_leave(pp);
626 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
627 pr_enter(pp, file, line);
628 goto startover;
629 }
630
631 /*
632 * Log a message that the hard limit has been hit.
633 */
634 if (pp->pr_hardlimit_warning != NULL &&
635 ratecheck(&pp->pr_hardlimit_warning_last,
636 &pp->pr_hardlimit_ratecap))
637 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
638
639 if (flags & PR_URGENT)
640 panic("pool_get: urgent");
641
642 pp->pr_nfail++;
643
644 pr_leave(pp);
645 simple_unlock(&pp->pr_slock);
646 return (NULL);
647 }
648
649 /*
650 * The convention we use is that if `curpage' is not NULL, then
651 * it points at a non-empty bucket. In particular, `curpage'
652 * never points at a page header which has PR_PHINPAGE set and
653 * has no items in its bucket.
654 */
655 if ((ph = pp->pr_curpage) == NULL) {
656 #ifdef DIAGNOSTIC
657 if (pp->pr_nitems != 0) {
658 simple_unlock(&pp->pr_slock);
659 printf("pool_get: %s: curpage NULL, nitems %u\n",
660 pp->pr_wchan, pp->pr_nitems);
661 panic("pool_get: nitems inconsistent\n");
662 }
663 #endif
664
665 /*
666 * Call the back-end page allocator for more memory.
667 * Release the pool lock, as the back-end page allocator
668 * may block.
669 */
670 pr_leave(pp);
671 simple_unlock(&pp->pr_slock);
672 v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype);
673 if (__predict_true(v != NULL))
674 ph = pool_alloc_item_header(pp, v, flags);
675 simple_lock(&pp->pr_slock);
676 pr_enter(pp, file, line);
677
678 if (__predict_false(v == NULL || ph == NULL)) {
679 if (v != NULL)
680 (*pp->pr_free)(v, pp->pr_pagesz, pp->pr_mtype);
681
682 /*
683 * We were unable to allocate a page or item
684 * header, but we released the lock during
685 * allocation, so perhaps items were freed
686 * back to the pool. Check for this case.
687 */
688 if (pp->pr_curpage != NULL)
689 goto startover;
690
691 if (flags & PR_URGENT)
692 panic("pool_get: urgent");
693
694 if ((flags & PR_WAITOK) == 0) {
695 pp->pr_nfail++;
696 pr_leave(pp);
697 simple_unlock(&pp->pr_slock);
698 return (NULL);
699 }
700
701 /*
702 * Wait for items to be returned to this pool.
703 *
704 * XXX: we actually want to wait just until
705 * the page allocator has memory again. Depending
706 * on this pool's usage, we might get stuck here
707 * for a long time.
708 *
709 * XXX: maybe we should wake up once a second and
710 * try again?
711 */
712 pp->pr_flags |= PR_WANTED;
713 pr_leave(pp);
714 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
715 pr_enter(pp, file, line);
716 goto startover;
717 }
718
719 /* We have more memory; add it to the pool */
720 pool_prime_page(pp, v, ph);
721 pp->pr_npagealloc++;
722
723 /* Start the allocation process over. */
724 goto startover;
725 }
726
727 if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
728 pr_leave(pp);
729 simple_unlock(&pp->pr_slock);
730 panic("pool_get: %s: page empty", pp->pr_wchan);
731 }
732 #ifdef DIAGNOSTIC
733 if (__predict_false(pp->pr_nitems == 0)) {
734 pr_leave(pp);
735 simple_unlock(&pp->pr_slock);
736 printf("pool_get: %s: items on itemlist, nitems %u\n",
737 pp->pr_wchan, pp->pr_nitems);
738 panic("pool_get: nitems inconsistent\n");
739 }
740
741 pr_log(pp, v, PRLOG_GET, file, line);
742
743 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
744 pr_printlog(pp, pi, printf);
745 panic("pool_get(%s): free list modified: magic=%x; page %p;"
746 " item addr %p\n",
747 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
748 }
749 #endif
750
751 /*
752 * Remove from item list.
753 */
754 TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
755 pp->pr_nitems--;
756 pp->pr_nout++;
757 if (ph->ph_nmissing == 0) {
758 #ifdef DIAGNOSTIC
759 if (__predict_false(pp->pr_nidle == 0))
760 panic("pool_get: nidle inconsistent");
761 #endif
762 pp->pr_nidle--;
763 }
764 ph->ph_nmissing++;
765 if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) {
766 #ifdef DIAGNOSTIC
767 if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
768 pr_leave(pp);
769 simple_unlock(&pp->pr_slock);
770 panic("pool_get: %s: nmissing inconsistent",
771 pp->pr_wchan);
772 }
773 #endif
774 /*
775 * Find a new non-empty page header, if any.
776 * Start search from the page head, to increase
777 * the chance for "high water" pages to be freed.
778 *
779 * Migrate empty pages to the end of the list. This
780 * will speed the update of curpage as pages become
781 * idle. Empty pages intermingled with idle pages
782 * is no big deal. As soon as a page becomes un-empty,
783 * it will move back to the head of the list.
784 */
785 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
786 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
787 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
788 ph = TAILQ_NEXT(ph, ph_pagelist))
789 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
790 break;
791
792 pp->pr_curpage = ph;
793 }
794
795 pp->pr_nget++;
796
797 /*
798 * If we have a low water mark and we are now below that low
799 * water mark, add more items to the pool.
800 */
801 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
802 /*
803 * XXX: Should we log a warning? Should we set up a timeout
804 * to try again in a second or so? The latter could break
805 * a caller's assumptions about interrupt protection, etc.
806 */
807 }
808
809 pr_leave(pp);
810 simple_unlock(&pp->pr_slock);
811 return (v);
812 }
813
814 /*
815 * Internal version of pool_put(). Pool is already locked/entered.
816 */
817 static void
818 pool_do_put(struct pool *pp, void *v)
819 {
820 struct pool_item *pi = v;
821 struct pool_item_header *ph;
822 caddr_t page;
823 int s;
824
825 page = (caddr_t)((u_long)v & pp->pr_pagemask);
826
827 #ifdef DIAGNOSTIC
828 if (__predict_false(pp->pr_nout == 0)) {
829 printf("pool %s: putting with none out\n",
830 pp->pr_wchan);
831 panic("pool_put");
832 }
833 #endif
834
835 if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
836 pr_printlog(pp, NULL, printf);
837 panic("pool_put: %s: page header missing", pp->pr_wchan);
838 }
839
840 #ifdef LOCKDEBUG
841 /*
842 * Check if we're freeing a locked simple lock.
843 */
844 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
845 #endif
846
847 /*
848 * Return to item list.
849 */
850 #ifdef DIAGNOSTIC
851 pi->pi_magic = PI_MAGIC;
852 #endif
853 #ifdef DEBUG
854 {
855 int i, *ip = v;
856
857 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
858 *ip++ = PI_MAGIC;
859 }
860 }
861 #endif
862
863 TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
864 ph->ph_nmissing--;
865 pp->pr_nput++;
866 pp->pr_nitems++;
867 pp->pr_nout--;
868
869 /* Cancel "pool empty" condition if it exists */
870 if (pp->pr_curpage == NULL)
871 pp->pr_curpage = ph;
872
873 if (pp->pr_flags & PR_WANTED) {
874 pp->pr_flags &= ~PR_WANTED;
875 if (ph->ph_nmissing == 0)
876 pp->pr_nidle++;
877 wakeup((caddr_t)pp);
878 return;
879 }
880
881 /*
882 * If this page is now complete, do one of two things:
883 *
884 * (1) If we have more pages than the page high water
885 * mark, free the page back to the system.
886 *
887 * (2) Move it to the end of the page list, so that
888 * we minimize our chances of fragmenting the
889 * pool. Idle pages migrate to the end (along with
890 * completely empty pages, so that we find un-empty
891 * pages more quickly when we update curpage) of the
892 * list so they can be more easily swept up by
893 * the pagedaemon when pages are scarce.
894 */
895 if (ph->ph_nmissing == 0) {
896 pp->pr_nidle++;
897 if (pp->pr_npages > pp->pr_maxpages) {
898 pr_rmpage(pp, ph);
899 } else {
900 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
901 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
902
903 /*
904 * Update the timestamp on the page. A page must
905 * be idle for some period of time before it can
906 * be reclaimed by the pagedaemon. This minimizes
907 * ping-pong'ing for memory.
908 */
909 s = splclock();
910 ph->ph_time = mono_time;
911 splx(s);
912
913 /*
914 * Update the current page pointer. Just look for
915 * the first page with any free items.
916 *
917 * XXX: Maybe we want an option to look for the
918 * page with the fewest available items, to minimize
919 * fragmentation?
920 */
921 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
922 ph = TAILQ_NEXT(ph, ph_pagelist))
923 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
924 break;
925
926 pp->pr_curpage = ph;
927 }
928 }
929 /*
930 * If the page has just become un-empty, move it to the head of
931 * the list, and make it the current page. The next allocation
932 * will get the item from this page, instead of further fragmenting
933 * the pool.
934 */
935 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
936 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
937 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
938 pp->pr_curpage = ph;
939 }
940 }
941
942 /*
943 * Return resource to the pool; must be called at appropriate spl level
944 */
945 #ifdef DIAGNOSTIC
946 void
947 _pool_put(struct pool *pp, void *v, const char *file, long line)
948 {
949
950 simple_lock(&pp->pr_slock);
951 pr_enter(pp, file, line);
952
953 pr_log(pp, v, PRLOG_PUT, file, line);
954
955 pool_do_put(pp, v);
956
957 pr_leave(pp);
958 simple_unlock(&pp->pr_slock);
959 }
960 #undef pool_put
961 #endif /* DIAGNOSTIC */
962
963 void
964 pool_put(struct pool *pp, void *v)
965 {
966
967 simple_lock(&pp->pr_slock);
968
969 pool_do_put(pp, v);
970
971 simple_unlock(&pp->pr_slock);
972 }
973
974 #ifdef DIAGNOSTIC
975 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
976 #endif
977
978 /*
979 * Add N items to the pool.
980 */
981 int
982 pool_prime(struct pool *pp, int n)
983 {
984 struct pool_item_header *ph;
985 caddr_t cp;
986 int newpages, error = 0;
987
988 simple_lock(&pp->pr_slock);
989
990 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
991
992 while (newpages-- > 0) {
993 simple_unlock(&pp->pr_slock);
994 cp = (*pp->pr_alloc)(pp->pr_pagesz, PR_NOWAIT, pp->pr_mtype);
995 if (__predict_true(cp != NULL))
996 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
997 simple_lock(&pp->pr_slock);
998
999 if (__predict_false(cp == NULL || ph == NULL)) {
1000 error = ENOMEM;
1001 if (cp != NULL)
1002 (*pp->pr_free)(cp, pp->pr_pagesz, pp->pr_mtype);
1003 break;
1004 }
1005
1006 pool_prime_page(pp, cp, ph);
1007 pp->pr_npagealloc++;
1008 pp->pr_minpages++;
1009 }
1010
1011 if (pp->pr_minpages >= pp->pr_maxpages)
1012 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1013
1014 simple_unlock(&pp->pr_slock);
1015 return (0);
1016 }
1017
1018 /*
1019 * Add a page worth of items to the pool.
1020 *
1021 * Note, we must be called with the pool descriptor LOCKED.
1022 */
1023 static void
1024 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
1025 {
1026 struct pool_item *pi;
1027 caddr_t cp = storage;
1028 unsigned int align = pp->pr_align;
1029 unsigned int ioff = pp->pr_itemoffset;
1030 int n;
1031
1032 if (((u_long)cp & (pp->pr_pagesz - 1)) != 0)
1033 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1034
1035 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1036 LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)],
1037 ph, ph_hashlist);
1038
1039 /*
1040 * Insert page header.
1041 */
1042 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
1043 TAILQ_INIT(&ph->ph_itemlist);
1044 ph->ph_page = storage;
1045 ph->ph_nmissing = 0;
1046 memset(&ph->ph_time, 0, sizeof(ph->ph_time));
1047
1048 pp->pr_nidle++;
1049
1050 /*
1051 * Color this page.
1052 */
1053 cp = (caddr_t)(cp + pp->pr_curcolor);
1054 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1055 pp->pr_curcolor = 0;
1056
1057 /*
1058 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1059 */
1060 if (ioff != 0)
1061 cp = (caddr_t)(cp + (align - ioff));
1062
1063 /*
1064 * Insert remaining chunks on the bucket list.
1065 */
1066 n = pp->pr_itemsperpage;
1067 pp->pr_nitems += n;
1068
1069 while (n--) {
1070 pi = (struct pool_item *)cp;
1071
1072 /* Insert on page list */
1073 TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
1074 #ifdef DIAGNOSTIC
1075 pi->pi_magic = PI_MAGIC;
1076 #endif
1077 cp = (caddr_t)(cp + pp->pr_size);
1078 }
1079
1080 /*
1081 * If the pool was depleted, point at the new page.
1082 */
1083 if (pp->pr_curpage == NULL)
1084 pp->pr_curpage = ph;
1085
1086 if (++pp->pr_npages > pp->pr_hiwat)
1087 pp->pr_hiwat = pp->pr_npages;
1088 }
1089
1090 /*
1091 * Used by pool_get() when nitems drops below the low water mark. This
1092 * is used to catch up nitmes with the low water mark.
1093 *
1094 * Note 1, we never wait for memory here, we let the caller decide what to do.
1095 *
1096 * Note 2, this doesn't work with static pools.
1097 *
1098 * Note 3, we must be called with the pool already locked, and we return
1099 * with it locked.
1100 */
1101 static int
1102 pool_catchup(struct pool *pp)
1103 {
1104 struct pool_item_header *ph;
1105 caddr_t cp;
1106 int error = 0;
1107
1108 if (pp->pr_roflags & PR_STATIC) {
1109 /*
1110 * We dropped below the low water mark, and this is not a
1111 * good thing. Log a warning.
1112 *
1113 * XXX: rate-limit this?
1114 */
1115 printf("WARNING: static pool `%s' dropped below low water "
1116 "mark\n", pp->pr_wchan);
1117 return (0);
1118 }
1119
1120 while (POOL_NEEDS_CATCHUP(pp)) {
1121 /*
1122 * Call the page back-end allocator for more memory.
1123 *
1124 * XXX: We never wait, so should we bother unlocking
1125 * the pool descriptor?
1126 */
1127 simple_unlock(&pp->pr_slock);
1128 cp = (*pp->pr_alloc)(pp->pr_pagesz, PR_NOWAIT, pp->pr_mtype);
1129 if (__predict_true(cp != NULL))
1130 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1131 simple_lock(&pp->pr_slock);
1132 if (__predict_false(cp == NULL || ph == NULL)) {
1133 if (cp != NULL)
1134 (*pp->pr_free)(cp, pp->pr_pagesz, pp->pr_mtype);
1135 error = ENOMEM;
1136 break;
1137 }
1138 pool_prime_page(pp, cp, ph);
1139 pp->pr_npagealloc++;
1140 }
1141
1142 return (error);
1143 }
1144
1145 void
1146 pool_setlowat(struct pool *pp, int n)
1147 {
1148 int error;
1149
1150 simple_lock(&pp->pr_slock);
1151
1152 pp->pr_minitems = n;
1153 pp->pr_minpages = (n == 0)
1154 ? 0
1155 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1156
1157 /* Make sure we're caught up with the newly-set low water mark. */
1158 if (POOL_NEEDS_CATCHUP(pp) && (error = pool_catchup(pp) != 0)) {
1159 /*
1160 * XXX: Should we log a warning? Should we set up a timeout
1161 * to try again in a second or so? The latter could break
1162 * a caller's assumptions about interrupt protection, etc.
1163 */
1164 }
1165
1166 simple_unlock(&pp->pr_slock);
1167 }
1168
1169 void
1170 pool_sethiwat(struct pool *pp, int n)
1171 {
1172
1173 simple_lock(&pp->pr_slock);
1174
1175 pp->pr_maxpages = (n == 0)
1176 ? 0
1177 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1178
1179 simple_unlock(&pp->pr_slock);
1180 }
1181
1182 void
1183 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1184 {
1185
1186 simple_lock(&pp->pr_slock);
1187
1188 pp->pr_hardlimit = n;
1189 pp->pr_hardlimit_warning = warnmess;
1190 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1191 pp->pr_hardlimit_warning_last.tv_sec = 0;
1192 pp->pr_hardlimit_warning_last.tv_usec = 0;
1193
1194 /*
1195 * In-line version of pool_sethiwat(), because we don't want to
1196 * release the lock.
1197 */
1198 pp->pr_maxpages = (n == 0)
1199 ? 0
1200 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1201
1202 simple_unlock(&pp->pr_slock);
1203 }
1204
1205 /*
1206 * Default page allocator.
1207 */
1208 static void *
1209 pool_page_alloc(unsigned long sz, int flags, int mtype)
1210 {
1211 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1212
1213 return ((void *)uvm_km_alloc_poolpage(waitok));
1214 }
1215
1216 static void
1217 pool_page_free(void *v, unsigned long sz, int mtype)
1218 {
1219
1220 uvm_km_free_poolpage((vaddr_t)v);
1221 }
1222
1223 /*
1224 * Alternate pool page allocator for pools that know they will
1225 * never be accessed in interrupt context.
1226 */
1227 void *
1228 pool_page_alloc_nointr(unsigned long sz, int flags, int mtype)
1229 {
1230 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1231
1232 return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object,
1233 waitok));
1234 }
1235
1236 void
1237 pool_page_free_nointr(void *v, unsigned long sz, int mtype)
1238 {
1239
1240 uvm_km_free_poolpage1(kernel_map, (vaddr_t)v);
1241 }
1242
1243
1244 /*
1245 * Release all complete pages that have not been used recently.
1246 */
1247 void
1248 #ifdef DIAGNOSTIC
1249 _pool_reclaim(struct pool *pp, const char *file, long line)
1250 #else
1251 pool_reclaim(struct pool *pp)
1252 #endif
1253 {
1254 struct pool_item_header *ph, *phnext;
1255 struct pool_cache *pc;
1256 struct timeval curtime;
1257 int s;
1258
1259 if (pp->pr_roflags & PR_STATIC)
1260 return;
1261
1262 if (simple_lock_try(&pp->pr_slock) == 0)
1263 return;
1264 pr_enter(pp, file, line);
1265
1266 /*
1267 * Reclaim items from the pool's caches.
1268 */
1269 for (pc = TAILQ_FIRST(&pp->pr_cachelist); pc != NULL;
1270 pc = TAILQ_NEXT(pc, pc_poollist))
1271 pool_cache_reclaim(pc);
1272
1273 s = splclock();
1274 curtime = mono_time;
1275 splx(s);
1276
1277 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) {
1278 phnext = TAILQ_NEXT(ph, ph_pagelist);
1279
1280 /* Check our minimum page claim */
1281 if (pp->pr_npages <= pp->pr_minpages)
1282 break;
1283
1284 if (ph->ph_nmissing == 0) {
1285 struct timeval diff;
1286 timersub(&curtime, &ph->ph_time, &diff);
1287 if (diff.tv_sec < pool_inactive_time)
1288 continue;
1289
1290 /*
1291 * If freeing this page would put us below
1292 * the low water mark, stop now.
1293 */
1294 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1295 pp->pr_minitems)
1296 break;
1297
1298 pr_rmpage(pp, ph);
1299 }
1300 }
1301
1302 pr_leave(pp);
1303 simple_unlock(&pp->pr_slock);
1304 }
1305
1306
1307 /*
1308 * Drain pools, one at a time.
1309 *
1310 * Note, we must never be called from an interrupt context.
1311 */
1312 void
1313 pool_drain(void *arg)
1314 {
1315 struct pool *pp;
1316 int s;
1317
1318 s = splvm();
1319 simple_lock(&pool_head_slock);
1320
1321 if (drainpp == NULL && (drainpp = TAILQ_FIRST(&pool_head)) == NULL)
1322 goto out;
1323
1324 pp = drainpp;
1325 drainpp = TAILQ_NEXT(pp, pr_poollist);
1326
1327 pool_reclaim(pp);
1328
1329 out:
1330 simple_unlock(&pool_head_slock);
1331 splx(s);
1332 }
1333
1334
1335 /*
1336 * Diagnostic helpers.
1337 */
1338 void
1339 pool_print(struct pool *pp, const char *modif)
1340 {
1341 int s;
1342
1343 s = splvm();
1344 if (simple_lock_try(&pp->pr_slock) == 0) {
1345 printf("pool %s is locked; try again later\n",
1346 pp->pr_wchan);
1347 splx(s);
1348 return;
1349 }
1350 pool_print1(pp, modif, printf);
1351 simple_unlock(&pp->pr_slock);
1352 splx(s);
1353 }
1354
1355 void
1356 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1357 {
1358 int didlock = 0;
1359
1360 if (pp == NULL) {
1361 (*pr)("Must specify a pool to print.\n");
1362 return;
1363 }
1364
1365 /*
1366 * Called from DDB; interrupts should be blocked, and all
1367 * other processors should be paused. We can skip locking
1368 * the pool in this case.
1369 *
1370 * We do a simple_lock_try() just to print the lock
1371 * status, however.
1372 */
1373
1374 if (simple_lock_try(&pp->pr_slock) == 0)
1375 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1376 else
1377 didlock = 1;
1378
1379 pool_print1(pp, modif, pr);
1380
1381 if (didlock)
1382 simple_unlock(&pp->pr_slock);
1383 }
1384
1385 static void
1386 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1387 {
1388 struct pool_item_header *ph;
1389 struct pool_cache *pc;
1390 struct pool_cache_group *pcg;
1391 #ifdef DIAGNOSTIC
1392 struct pool_item *pi;
1393 #endif
1394 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1395 char c;
1396
1397 while ((c = *modif++) != '\0') {
1398 if (c == 'l')
1399 print_log = 1;
1400 if (c == 'p')
1401 print_pagelist = 1;
1402 if (c == 'c')
1403 print_cache = 1;
1404 modif++;
1405 }
1406
1407 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1408 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1409 pp->pr_roflags);
1410 (*pr)("\tpagesz %u, mtype %d\n", pp->pr_pagesz, pp->pr_mtype);
1411 (*pr)("\talloc %p, release %p\n", pp->pr_alloc, pp->pr_free);
1412 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1413 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1414 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1415 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1416
1417 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1418 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1419 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1420 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1421
1422 if (print_pagelist == 0)
1423 goto skip_pagelist;
1424
1425 if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
1426 (*pr)("\n\tpage list:\n");
1427 for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) {
1428 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1429 ph->ph_page, ph->ph_nmissing,
1430 (u_long)ph->ph_time.tv_sec,
1431 (u_long)ph->ph_time.tv_usec);
1432 #ifdef DIAGNOSTIC
1433 for (pi = TAILQ_FIRST(&ph->ph_itemlist); pi != NULL;
1434 pi = TAILQ_NEXT(pi, pi_list)) {
1435 if (pi->pi_magic != PI_MAGIC) {
1436 (*pr)("\t\t\titem %p, magic 0x%x\n",
1437 pi, pi->pi_magic);
1438 }
1439 }
1440 #endif
1441 }
1442 if (pp->pr_curpage == NULL)
1443 (*pr)("\tno current page\n");
1444 else
1445 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1446
1447 skip_pagelist:
1448
1449 if (print_log == 0)
1450 goto skip_log;
1451
1452 (*pr)("\n");
1453 if ((pp->pr_roflags & PR_LOGGING) == 0)
1454 (*pr)("\tno log\n");
1455 else
1456 pr_printlog(pp, NULL, pr);
1457
1458 skip_log:
1459
1460 if (print_cache == 0)
1461 goto skip_cache;
1462
1463 for (pc = TAILQ_FIRST(&pp->pr_cachelist); pc != NULL;
1464 pc = TAILQ_NEXT(pc, pc_poollist)) {
1465 (*pr)("\tcache %p: allocfrom %p freeto %p\n", pc,
1466 pc->pc_allocfrom, pc->pc_freeto);
1467 (*pr)("\t hits %lu misses %lu ngroups %lu nitems %lu\n",
1468 pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
1469 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1470 pcg = TAILQ_NEXT(pcg, pcg_list)) {
1471 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);
1472 for (i = 0; i < PCG_NOBJECTS; i++)
1473 (*pr)("\t\t\t%p\n", pcg->pcg_objects[i]);
1474 }
1475 }
1476
1477 skip_cache:
1478
1479 pr_enter_check(pp, pr);
1480 }
1481
1482 int
1483 pool_chk(struct pool *pp, const char *label)
1484 {
1485 struct pool_item_header *ph;
1486 int r = 0;
1487
1488 simple_lock(&pp->pr_slock);
1489
1490 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
1491 ph = TAILQ_NEXT(ph, ph_pagelist)) {
1492
1493 struct pool_item *pi;
1494 int n;
1495 caddr_t page;
1496
1497 page = (caddr_t)((u_long)ph & pp->pr_pagemask);
1498 if (page != ph->ph_page &&
1499 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1500 if (label != NULL)
1501 printf("%s: ", label);
1502 printf("pool(%p:%s): page inconsistency: page %p;"
1503 " at page head addr %p (p %p)\n", pp,
1504 pp->pr_wchan, ph->ph_page,
1505 ph, page);
1506 r++;
1507 goto out;
1508 }
1509
1510 for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
1511 pi != NULL;
1512 pi = TAILQ_NEXT(pi,pi_list), n++) {
1513
1514 #ifdef DIAGNOSTIC
1515 if (pi->pi_magic != PI_MAGIC) {
1516 if (label != NULL)
1517 printf("%s: ", label);
1518 printf("pool(%s): free list modified: magic=%x;"
1519 " page %p; item ordinal %d;"
1520 " addr %p (p %p)\n",
1521 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1522 n, pi, page);
1523 panic("pool");
1524 }
1525 #endif
1526 page = (caddr_t)((u_long)pi & pp->pr_pagemask);
1527 if (page == ph->ph_page)
1528 continue;
1529
1530 if (label != NULL)
1531 printf("%s: ", label);
1532 printf("pool(%p:%s): page inconsistency: page %p;"
1533 " item ordinal %d; addr %p (p %p)\n", pp,
1534 pp->pr_wchan, ph->ph_page,
1535 n, pi, page);
1536 r++;
1537 goto out;
1538 }
1539 }
1540 out:
1541 simple_unlock(&pp->pr_slock);
1542 return (r);
1543 }
1544
1545 /*
1546 * pool_cache_init:
1547 *
1548 * Initialize a pool cache.
1549 *
1550 * NOTE: If the pool must be protected from interrupts, we expect
1551 * to be called at the appropriate interrupt priority level.
1552 */
1553 void
1554 pool_cache_init(struct pool_cache *pc, struct pool *pp,
1555 int (*ctor)(void *, void *, int),
1556 void (*dtor)(void *, void *),
1557 void *arg)
1558 {
1559
1560 TAILQ_INIT(&pc->pc_grouplist);
1561 simple_lock_init(&pc->pc_slock);
1562
1563 pc->pc_allocfrom = NULL;
1564 pc->pc_freeto = NULL;
1565 pc->pc_pool = pp;
1566
1567 pc->pc_ctor = ctor;
1568 pc->pc_dtor = dtor;
1569 pc->pc_arg = arg;
1570
1571 pc->pc_hits = 0;
1572 pc->pc_misses = 0;
1573
1574 pc->pc_ngroups = 0;
1575
1576 pc->pc_nitems = 0;
1577
1578 simple_lock(&pp->pr_slock);
1579 TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist);
1580 simple_unlock(&pp->pr_slock);
1581 }
1582
1583 /*
1584 * pool_cache_destroy:
1585 *
1586 * Destroy a pool cache.
1587 */
1588 void
1589 pool_cache_destroy(struct pool_cache *pc)
1590 {
1591 struct pool *pp = pc->pc_pool;
1592
1593 /* First, invalidate the entire cache. */
1594 pool_cache_invalidate(pc);
1595
1596 /* ...and remove it from the pool's cache list. */
1597 simple_lock(&pp->pr_slock);
1598 TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist);
1599 simple_unlock(&pp->pr_slock);
1600 }
1601
1602 static __inline void *
1603 pcg_get(struct pool_cache_group *pcg)
1604 {
1605 void *object;
1606 u_int idx;
1607
1608 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
1609 KASSERT(pcg->pcg_avail != 0);
1610 idx = --pcg->pcg_avail;
1611
1612 KASSERT(pcg->pcg_objects[idx] != NULL);
1613 object = pcg->pcg_objects[idx];
1614 pcg->pcg_objects[idx] = NULL;
1615
1616 return (object);
1617 }
1618
1619 static __inline void
1620 pcg_put(struct pool_cache_group *pcg, void *object)
1621 {
1622 u_int idx;
1623
1624 KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
1625 idx = pcg->pcg_avail++;
1626
1627 KASSERT(pcg->pcg_objects[idx] == NULL);
1628 pcg->pcg_objects[idx] = object;
1629 }
1630
1631 /*
1632 * pool_cache_get:
1633 *
1634 * Get an object from a pool cache.
1635 */
1636 void *
1637 pool_cache_get(struct pool_cache *pc, int flags)
1638 {
1639 struct pool_cache_group *pcg;
1640 void *object;
1641
1642 #ifdef LOCKDEBUG
1643 if (flags & PR_WAITOK)
1644 simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)");
1645 #endif
1646
1647 simple_lock(&pc->pc_slock);
1648
1649 if ((pcg = pc->pc_allocfrom) == NULL) {
1650 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1651 pcg = TAILQ_NEXT(pcg, pcg_list)) {
1652 if (pcg->pcg_avail != 0) {
1653 pc->pc_allocfrom = pcg;
1654 goto have_group;
1655 }
1656 }
1657
1658 /*
1659 * No groups with any available objects. Allocate
1660 * a new object, construct it, and return it to
1661 * the caller. We will allocate a group, if necessary,
1662 * when the object is freed back to the cache.
1663 */
1664 pc->pc_misses++;
1665 simple_unlock(&pc->pc_slock);
1666 object = pool_get(pc->pc_pool, flags);
1667 if (object != NULL && pc->pc_ctor != NULL) {
1668 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
1669 pool_put(pc->pc_pool, object);
1670 return (NULL);
1671 }
1672 }
1673 return (object);
1674 }
1675
1676 have_group:
1677 pc->pc_hits++;
1678 pc->pc_nitems--;
1679 object = pcg_get(pcg);
1680
1681 if (pcg->pcg_avail == 0)
1682 pc->pc_allocfrom = NULL;
1683
1684 simple_unlock(&pc->pc_slock);
1685
1686 return (object);
1687 }
1688
1689 /*
1690 * pool_cache_put:
1691 *
1692 * Put an object back to the pool cache.
1693 */
1694 void
1695 pool_cache_put(struct pool_cache *pc, void *object)
1696 {
1697 struct pool_cache_group *pcg;
1698
1699 simple_lock(&pc->pc_slock);
1700
1701 if ((pcg = pc->pc_freeto) == NULL) {
1702 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1703 pcg = TAILQ_NEXT(pcg, pcg_list)) {
1704 if (pcg->pcg_avail != PCG_NOBJECTS) {
1705 pc->pc_freeto = pcg;
1706 goto have_group;
1707 }
1708 }
1709
1710 /*
1711 * No empty groups to free the object to. Attempt to
1712 * allocate one.
1713 */
1714 simple_unlock(&pc->pc_slock);
1715 pcg = pool_get(&pcgpool, PR_NOWAIT);
1716 if (pcg != NULL) {
1717 memset(pcg, 0, sizeof(*pcg));
1718 simple_lock(&pc->pc_slock);
1719 pc->pc_ngroups++;
1720 TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list);
1721 if (pc->pc_freeto == NULL)
1722 pc->pc_freeto = pcg;
1723 goto have_group;
1724 }
1725
1726 /*
1727 * Unable to allocate a cache group; destruct the object
1728 * and free it back to the pool.
1729 */
1730 pool_cache_destruct_object(pc, object);
1731 return;
1732 }
1733
1734 have_group:
1735 pc->pc_nitems++;
1736 pcg_put(pcg, object);
1737
1738 if (pcg->pcg_avail == PCG_NOBJECTS)
1739 pc->pc_freeto = NULL;
1740
1741 simple_unlock(&pc->pc_slock);
1742 }
1743
1744 /*
1745 * pool_cache_destruct_object:
1746 *
1747 * Force destruction of an object and its release back into
1748 * the pool.
1749 */
1750 void
1751 pool_cache_destruct_object(struct pool_cache *pc, void *object)
1752 {
1753
1754 if (pc->pc_dtor != NULL)
1755 (*pc->pc_dtor)(pc->pc_arg, object);
1756 pool_put(pc->pc_pool, object);
1757 }
1758
1759 /*
1760 * pool_cache_do_invalidate:
1761 *
1762 * This internal function implements pool_cache_invalidate() and
1763 * pool_cache_reclaim().
1764 */
1765 static void
1766 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups,
1767 void (*putit)(struct pool *, void *))
1768 {
1769 struct pool_cache_group *pcg, *npcg;
1770 void *object;
1771
1772 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1773 pcg = npcg) {
1774 npcg = TAILQ_NEXT(pcg, pcg_list);
1775 while (pcg->pcg_avail != 0) {
1776 pc->pc_nitems--;
1777 object = pcg_get(pcg);
1778 if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg)
1779 pc->pc_allocfrom = NULL;
1780 if (pc->pc_dtor != NULL)
1781 (*pc->pc_dtor)(pc->pc_arg, object);
1782 (*putit)(pc->pc_pool, object);
1783 }
1784 if (free_groups) {
1785 pc->pc_ngroups--;
1786 TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list);
1787 if (pc->pc_freeto == pcg)
1788 pc->pc_freeto = NULL;
1789 pool_put(&pcgpool, pcg);
1790 }
1791 }
1792 }
1793
1794 /*
1795 * pool_cache_invalidate:
1796 *
1797 * Invalidate a pool cache (destruct and release all of the
1798 * cached objects).
1799 */
1800 void
1801 pool_cache_invalidate(struct pool_cache *pc)
1802 {
1803
1804 simple_lock(&pc->pc_slock);
1805 pool_cache_do_invalidate(pc, 0, pool_put);
1806 simple_unlock(&pc->pc_slock);
1807 }
1808
1809 /*
1810 * pool_cache_reclaim:
1811 *
1812 * Reclaim a pool cache for pool_reclaim().
1813 */
1814 static void
1815 pool_cache_reclaim(struct pool_cache *pc)
1816 {
1817
1818 simple_lock(&pc->pc_slock);
1819 pool_cache_do_invalidate(pc, 1, pool_do_put);
1820 simple_unlock(&pc->pc_slock);
1821 }
1822