Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.60
      1 /*	$NetBSD: subr_pool.c,v 1.60 2001/07/01 06:12:20 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9  * Simulation Facility, NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 #include "opt_pool.h"
     41 #include "opt_poollog.h"
     42 #include "opt_lockdebug.h"
     43 
     44 #include <sys/param.h>
     45 #include <sys/systm.h>
     46 #include <sys/proc.h>
     47 #include <sys/errno.h>
     48 #include <sys/kernel.h>
     49 #include <sys/malloc.h>
     50 #include <sys/lock.h>
     51 #include <sys/pool.h>
     52 #include <sys/syslog.h>
     53 
     54 #include <uvm/uvm.h>
     55 
     56 /*
     57  * Pool resource management utility.
     58  *
     59  * Memory is allocated in pages which are split into pieces according
     60  * to the pool item size. Each page is kept on a list headed by `pr_pagelist'
     61  * in the pool structure and the individual pool items are on a linked list
     62  * headed by `ph_itemlist' in each page header. The memory for building
     63  * the page list is either taken from the allocated pages themselves (for
     64  * small pool items) or taken from an internal pool of page headers (`phpool').
     65  */
     66 
     67 /* List of all pools */
     68 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     69 
     70 /* Private pool for page header structures */
     71 static struct pool phpool;
     72 
     73 /* # of seconds to retain page after last use */
     74 int pool_inactive_time = 10;
     75 
     76 /* Next candidate for drainage (see pool_drain()) */
     77 static struct pool	*drainpp;
     78 
     79 /* This spin lock protects both pool_head and drainpp. */
     80 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
     81 
     82 struct pool_item_header {
     83 	/* Page headers */
     84 	TAILQ_ENTRY(pool_item_header)
     85 				ph_pagelist;	/* pool page list */
     86 	TAILQ_HEAD(,pool_item)	ph_itemlist;	/* chunk list for this page */
     87 	LIST_ENTRY(pool_item_header)
     88 				ph_hashlist;	/* Off-page page headers */
     89 	int			ph_nmissing;	/* # of chunks in use */
     90 	caddr_t			ph_page;	/* this page's address */
     91 	struct timeval		ph_time;	/* last referenced */
     92 };
     93 
     94 struct pool_item {
     95 #ifdef DIAGNOSTIC
     96 	int pi_magic;
     97 #endif
     98 #define	PI_MAGIC 0xdeadbeef
     99 	/* Other entries use only this list entry */
    100 	TAILQ_ENTRY(pool_item)	pi_list;
    101 };
    102 
    103 #define	PR_HASH_INDEX(pp,addr) \
    104 	(((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1))
    105 
    106 #define	POOL_NEEDS_CATCHUP(pp)						\
    107 	((pp)->pr_nitems < (pp)->pr_minitems)
    108 
    109 /*
    110  * Pool cache management.
    111  *
    112  * Pool caches provide a way for constructed objects to be cached by the
    113  * pool subsystem.  This can lead to performance improvements by avoiding
    114  * needless object construction/destruction; it is deferred until absolutely
    115  * necessary.
    116  *
    117  * Caches are grouped into cache groups.  Each cache group references
    118  * up to 16 constructed objects.  When a cache allocates an object
    119  * from the pool, it calls the object's constructor and places it into
    120  * a cache group.  When a cache group frees an object back to the pool,
    121  * it first calls the object's destructor.  This allows the object to
    122  * persist in constructed form while freed to the cache.
    123  *
    124  * Multiple caches may exist for each pool.  This allows a single
    125  * object type to have multiple constructed forms.  The pool references
    126  * each cache, so that when a pool is drained by the pagedaemon, it can
    127  * drain each individual cache as well.  Each time a cache is drained,
    128  * the most idle cache group is freed to the pool in its entirety.
    129  *
    130  * Pool caches are layed on top of pools.  By layering them, we can avoid
    131  * the complexity of cache management for pools which would not benefit
    132  * from it.
    133  */
    134 
    135 /* The cache group pool. */
    136 static struct pool pcgpool;
    137 
    138 /* The pool cache group. */
    139 #define	PCG_NOBJECTS		16
    140 struct pool_cache_group {
    141 	TAILQ_ENTRY(pool_cache_group)
    142 		pcg_list;	/* link in the pool cache's group list */
    143 	u_int	pcg_avail;	/* # available objects */
    144 				/* pointers to the objects */
    145 	void	*pcg_objects[PCG_NOBJECTS];
    146 };
    147 
    148 static void	pool_cache_reclaim(struct pool_cache *);
    149 
    150 static int	pool_catchup(struct pool *);
    151 static void	pool_prime_page(struct pool *, caddr_t,
    152 		    struct pool_item_header *);
    153 static void	*pool_page_alloc(unsigned long, int, int);
    154 static void	pool_page_free(void *, unsigned long, int);
    155 
    156 static void pool_print1(struct pool *, const char *,
    157 	void (*)(const char *, ...));
    158 
    159 /*
    160  * Pool log entry. An array of these is allocated in pool_init().
    161  */
    162 struct pool_log {
    163 	const char	*pl_file;
    164 	long		pl_line;
    165 	int		pl_action;
    166 #define	PRLOG_GET	1
    167 #define	PRLOG_PUT	2
    168 	void		*pl_addr;
    169 };
    170 
    171 /* Number of entries in pool log buffers */
    172 #ifndef POOL_LOGSIZE
    173 #define	POOL_LOGSIZE	10
    174 #endif
    175 
    176 int pool_logsize = POOL_LOGSIZE;
    177 
    178 #ifdef POOL_DIAGNOSTIC
    179 static __inline void
    180 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    181 {
    182 	int n = pp->pr_curlogentry;
    183 	struct pool_log *pl;
    184 
    185 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    186 		return;
    187 
    188 	/*
    189 	 * Fill in the current entry. Wrap around and overwrite
    190 	 * the oldest entry if necessary.
    191 	 */
    192 	pl = &pp->pr_log[n];
    193 	pl->pl_file = file;
    194 	pl->pl_line = line;
    195 	pl->pl_action = action;
    196 	pl->pl_addr = v;
    197 	if (++n >= pp->pr_logsize)
    198 		n = 0;
    199 	pp->pr_curlogentry = n;
    200 }
    201 
    202 static void
    203 pr_printlog(struct pool *pp, struct pool_item *pi,
    204     void (*pr)(const char *, ...))
    205 {
    206 	int i = pp->pr_logsize;
    207 	int n = pp->pr_curlogentry;
    208 
    209 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    210 		return;
    211 
    212 	/*
    213 	 * Print all entries in this pool's log.
    214 	 */
    215 	while (i-- > 0) {
    216 		struct pool_log *pl = &pp->pr_log[n];
    217 		if (pl->pl_action != 0) {
    218 			if (pi == NULL || pi == pl->pl_addr) {
    219 				(*pr)("\tlog entry %d:\n", i);
    220 				(*pr)("\t\taction = %s, addr = %p\n",
    221 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    222 				    pl->pl_addr);
    223 				(*pr)("\t\tfile: %s at line %lu\n",
    224 				    pl->pl_file, pl->pl_line);
    225 			}
    226 		}
    227 		if (++n >= pp->pr_logsize)
    228 			n = 0;
    229 	}
    230 }
    231 
    232 static __inline void
    233 pr_enter(struct pool *pp, const char *file, long line)
    234 {
    235 
    236 	if (__predict_false(pp->pr_entered_file != NULL)) {
    237 		printf("pool %s: reentrancy at file %s line %ld\n",
    238 		    pp->pr_wchan, file, line);
    239 		printf("         previous entry at file %s line %ld\n",
    240 		    pp->pr_entered_file, pp->pr_entered_line);
    241 		panic("pr_enter");
    242 	}
    243 
    244 	pp->pr_entered_file = file;
    245 	pp->pr_entered_line = line;
    246 }
    247 
    248 static __inline void
    249 pr_leave(struct pool *pp)
    250 {
    251 
    252 	if (__predict_false(pp->pr_entered_file == NULL)) {
    253 		printf("pool %s not entered?\n", pp->pr_wchan);
    254 		panic("pr_leave");
    255 	}
    256 
    257 	pp->pr_entered_file = NULL;
    258 	pp->pr_entered_line = 0;
    259 }
    260 
    261 static __inline void
    262 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    263 {
    264 
    265 	if (pp->pr_entered_file != NULL)
    266 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    267 		    pp->pr_entered_file, pp->pr_entered_line);
    268 }
    269 #else
    270 #define	pr_log(pp, v, action, file, line)
    271 #define	pr_printlog(pp, pi, pr)
    272 #define	pr_enter(pp, file, line)
    273 #define	pr_leave(pp)
    274 #define	pr_enter_check(pp, pr)
    275 #endif /* POOL_DIAGNOSTIC */
    276 
    277 /*
    278  * Return the pool page header based on page address.
    279  */
    280 static __inline struct pool_item_header *
    281 pr_find_pagehead(struct pool *pp, caddr_t page)
    282 {
    283 	struct pool_item_header *ph;
    284 
    285 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    286 		return ((struct pool_item_header *)(page + pp->pr_phoffset));
    287 
    288 	for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]);
    289 	     ph != NULL;
    290 	     ph = LIST_NEXT(ph, ph_hashlist)) {
    291 		if (ph->ph_page == page)
    292 			return (ph);
    293 	}
    294 	return (NULL);
    295 }
    296 
    297 /*
    298  * Remove a page from the pool.
    299  */
    300 static __inline void
    301 pr_rmpage(struct pool *pp, struct pool_item_header *ph)
    302 {
    303 
    304 	/*
    305 	 * If the page was idle, decrement the idle page count.
    306 	 */
    307 	if (ph->ph_nmissing == 0) {
    308 #ifdef DIAGNOSTIC
    309 		if (pp->pr_nidle == 0)
    310 			panic("pr_rmpage: nidle inconsistent");
    311 		if (pp->pr_nitems < pp->pr_itemsperpage)
    312 			panic("pr_rmpage: nitems inconsistent");
    313 #endif
    314 		pp->pr_nidle--;
    315 	}
    316 
    317 	pp->pr_nitems -= pp->pr_itemsperpage;
    318 
    319 	/*
    320 	 * Unlink a page from the pool and release it.
    321 	 */
    322 	TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    323 	(*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype);
    324 	pp->pr_npages--;
    325 	pp->pr_npagefree++;
    326 
    327 	if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    328 		int s;
    329 		LIST_REMOVE(ph, ph_hashlist);
    330 		s = splhigh();
    331 		pool_put(&phpool, ph);
    332 		splx(s);
    333 	}
    334 
    335 	if (pp->pr_curpage == ph) {
    336 		/*
    337 		 * Find a new non-empty page header, if any.
    338 		 * Start search from the page head, to increase the
    339 		 * chance for "high water" pages to be freed.
    340 		 */
    341 		for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
    342 		     ph = TAILQ_NEXT(ph, ph_pagelist))
    343 			if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    344 				break;
    345 
    346 		pp->pr_curpage = ph;
    347 	}
    348 }
    349 
    350 /*
    351  * Initialize the given pool resource structure.
    352  *
    353  * We export this routine to allow other kernel parts to declare
    354  * static pools that must be initialized before malloc() is available.
    355  */
    356 void
    357 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    358     const char *wchan, size_t pagesz,
    359     void *(*alloc)(unsigned long, int, int),
    360     void (*release)(void *, unsigned long, int),
    361     int mtype)
    362 {
    363 	int off, slack, i;
    364 
    365 #ifdef POOL_DIAGNOSTIC
    366 	/*
    367 	 * Always log if POOL_DIAGNOSTIC is defined.
    368 	 */
    369 	if (pool_logsize != 0)
    370 		flags |= PR_LOGGING;
    371 #endif
    372 
    373 	/*
    374 	 * Check arguments and construct default values.
    375 	 */
    376 	if (!powerof2(pagesz))
    377 		panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz);
    378 
    379 	if (alloc == NULL && release == NULL) {
    380 		alloc = pool_page_alloc;
    381 		release = pool_page_free;
    382 		pagesz = PAGE_SIZE;	/* Rounds to PAGE_SIZE anyhow. */
    383 	} else if ((alloc != NULL && release != NULL) == 0) {
    384 		/* If you specifiy one, must specify both. */
    385 		panic("pool_init: must specify alloc and release together");
    386 	}
    387 
    388 	if (pagesz == 0)
    389 		pagesz = PAGE_SIZE;
    390 
    391 	if (align == 0)
    392 		align = ALIGN(1);
    393 
    394 	if (size < sizeof(struct pool_item))
    395 		size = sizeof(struct pool_item);
    396 
    397 	size = ALIGN(size);
    398 	if (size > pagesz)
    399 		panic("pool_init: pool item size (%lu) too large",
    400 		      (u_long)size);
    401 
    402 	/*
    403 	 * Initialize the pool structure.
    404 	 */
    405 	TAILQ_INIT(&pp->pr_pagelist);
    406 	TAILQ_INIT(&pp->pr_cachelist);
    407 	pp->pr_curpage = NULL;
    408 	pp->pr_npages = 0;
    409 	pp->pr_minitems = 0;
    410 	pp->pr_minpages = 0;
    411 	pp->pr_maxpages = UINT_MAX;
    412 	pp->pr_roflags = flags;
    413 	pp->pr_flags = 0;
    414 	pp->pr_size = size;
    415 	pp->pr_align = align;
    416 	pp->pr_wchan = wchan;
    417 	pp->pr_mtype = mtype;
    418 	pp->pr_alloc = alloc;
    419 	pp->pr_free = release;
    420 	pp->pr_pagesz = pagesz;
    421 	pp->pr_pagemask = ~(pagesz - 1);
    422 	pp->pr_pageshift = ffs(pagesz) - 1;
    423 	pp->pr_nitems = 0;
    424 	pp->pr_nout = 0;
    425 	pp->pr_hardlimit = UINT_MAX;
    426 	pp->pr_hardlimit_warning = NULL;
    427 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    428 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    429 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    430 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    431 
    432 	/*
    433 	 * Decide whether to put the page header off page to avoid
    434 	 * wasting too large a part of the page. Off-page page headers
    435 	 * go on a hash table, so we can match a returned item
    436 	 * with its header based on the page address.
    437 	 * We use 1/16 of the page size as the threshold (XXX: tune)
    438 	 */
    439 	if (pp->pr_size < pagesz/16) {
    440 		/* Use the end of the page for the page header */
    441 		pp->pr_roflags |= PR_PHINPAGE;
    442 		pp->pr_phoffset = off =
    443 			pagesz - ALIGN(sizeof(struct pool_item_header));
    444 	} else {
    445 		/* The page header will be taken from our page header pool */
    446 		pp->pr_phoffset = 0;
    447 		off = pagesz;
    448 		for (i = 0; i < PR_HASHTABSIZE; i++) {
    449 			LIST_INIT(&pp->pr_hashtab[i]);
    450 		}
    451 	}
    452 
    453 	/*
    454 	 * Alignment is to take place at `ioff' within the item. This means
    455 	 * we must reserve up to `align - 1' bytes on the page to allow
    456 	 * appropriate positioning of each item.
    457 	 *
    458 	 * Silently enforce `0 <= ioff < align'.
    459 	 */
    460 	pp->pr_itemoffset = ioff = ioff % align;
    461 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    462 	KASSERT(pp->pr_itemsperpage != 0);
    463 
    464 	/*
    465 	 * Use the slack between the chunks and the page header
    466 	 * for "cache coloring".
    467 	 */
    468 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    469 	pp->pr_maxcolor = (slack / align) * align;
    470 	pp->pr_curcolor = 0;
    471 
    472 	pp->pr_nget = 0;
    473 	pp->pr_nfail = 0;
    474 	pp->pr_nput = 0;
    475 	pp->pr_npagealloc = 0;
    476 	pp->pr_npagefree = 0;
    477 	pp->pr_hiwat = 0;
    478 	pp->pr_nidle = 0;
    479 
    480 #ifdef POOL_DIAGNOSTIC
    481 	if (flags & PR_LOGGING) {
    482 		if (kmem_map == NULL ||
    483 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    484 		     M_TEMP, M_NOWAIT)) == NULL)
    485 			pp->pr_roflags &= ~PR_LOGGING;
    486 		pp->pr_curlogentry = 0;
    487 		pp->pr_logsize = pool_logsize;
    488 	}
    489 #endif
    490 
    491 	pp->pr_entered_file = NULL;
    492 	pp->pr_entered_line = 0;
    493 
    494 	simple_lock_init(&pp->pr_slock);
    495 
    496 	/*
    497 	 * Initialize private page header pool and cache magazine pool if we
    498 	 * haven't done so yet.
    499 	 * XXX LOCKING.
    500 	 */
    501 	if (phpool.pr_size == 0) {
    502 		pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
    503 		    0, "phpool", 0, 0, 0, 0);
    504 		pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
    505 		    0, "pcgpool", 0, 0, 0, 0);
    506 	}
    507 
    508 	/* Insert into the list of all pools. */
    509 	simple_lock(&pool_head_slock);
    510 	TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    511 	simple_unlock(&pool_head_slock);
    512 }
    513 
    514 /*
    515  * De-commision a pool resource.
    516  */
    517 void
    518 pool_destroy(struct pool *pp)
    519 {
    520 	struct pool_item_header *ph;
    521 	struct pool_cache *pc;
    522 
    523 	/* Destroy all caches for this pool. */
    524 	while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL)
    525 		pool_cache_destroy(pc);
    526 
    527 #ifdef DIAGNOSTIC
    528 	if (pp->pr_nout != 0) {
    529 		pr_printlog(pp, NULL, printf);
    530 		panic("pool_destroy: pool busy: still out: %u\n",
    531 		    pp->pr_nout);
    532 	}
    533 #endif
    534 
    535 	/* Remove all pages */
    536 	if ((pp->pr_roflags & PR_STATIC) == 0)
    537 		while ((ph = pp->pr_pagelist.tqh_first) != NULL)
    538 			pr_rmpage(pp, ph);
    539 
    540 	/* Remove from global pool list */
    541 	simple_lock(&pool_head_slock);
    542 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    543 	/* XXX Only clear this if we were drainpp? */
    544 	drainpp = NULL;
    545 	simple_unlock(&pool_head_slock);
    546 
    547 #ifdef POOL_DIAGNOSTIC
    548 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    549 		free(pp->pr_log, M_TEMP);
    550 #endif
    551 
    552 	if (pp->pr_roflags & PR_FREEHEADER)
    553 		free(pp, M_POOL);
    554 }
    555 
    556 static __inline struct pool_item_header *
    557 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
    558 {
    559 	struct pool_item_header *ph;
    560 	int s;
    561 
    562 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
    563 
    564 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    565 		ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
    566 	else {
    567 		s = splhigh();
    568 		ph = pool_get(&phpool, flags);
    569 		splx(s);
    570 	}
    571 
    572 	return (ph);
    573 }
    574 
    575 /*
    576  * Grab an item from the pool; must be called at appropriate spl level
    577  */
    578 void *
    579 #ifdef POOL_DIAGNOSTIC
    580 _pool_get(struct pool *pp, int flags, const char *file, long line)
    581 #else
    582 pool_get(struct pool *pp, int flags)
    583 #endif
    584 {
    585 	struct pool_item *pi;
    586 	struct pool_item_header *ph;
    587 	void *v;
    588 
    589 #ifdef DIAGNOSTIC
    590 	if (__predict_false((pp->pr_roflags & PR_STATIC) &&
    591 			    (flags & PR_MALLOCOK))) {
    592 		pr_printlog(pp, NULL, printf);
    593 		panic("pool_get: static");
    594 	}
    595 
    596 	if (__predict_false(curproc == NULL && doing_shutdown == 0 &&
    597 			    (flags & PR_WAITOK) != 0))
    598 		panic("pool_get: must have NOWAIT");
    599 
    600 #ifdef LOCKDEBUG
    601 	if (flags & PR_WAITOK)
    602 		simple_lock_only_held(NULL, "pool_get(PR_WAITOK)");
    603 #endif
    604 #endif /* DIAGNOSTIC */
    605 
    606 	simple_lock(&pp->pr_slock);
    607 	pr_enter(pp, file, line);
    608 
    609  startover:
    610 	/*
    611 	 * Check to see if we've reached the hard limit.  If we have,
    612 	 * and we can wait, then wait until an item has been returned to
    613 	 * the pool.
    614 	 */
    615 #ifdef DIAGNOSTIC
    616 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
    617 		pr_leave(pp);
    618 		simple_unlock(&pp->pr_slock);
    619 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
    620 	}
    621 #endif
    622 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    623 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    624 			/*
    625 			 * XXX: A warning isn't logged in this case.  Should
    626 			 * it be?
    627 			 */
    628 			pp->pr_flags |= PR_WANTED;
    629 			pr_leave(pp);
    630 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
    631 			pr_enter(pp, file, line);
    632 			goto startover;
    633 		}
    634 
    635 		/*
    636 		 * Log a message that the hard limit has been hit.
    637 		 */
    638 		if (pp->pr_hardlimit_warning != NULL &&
    639 		    ratecheck(&pp->pr_hardlimit_warning_last,
    640 			      &pp->pr_hardlimit_ratecap))
    641 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    642 
    643 		if (flags & PR_URGENT)
    644 			panic("pool_get: urgent");
    645 
    646 		pp->pr_nfail++;
    647 
    648 		pr_leave(pp);
    649 		simple_unlock(&pp->pr_slock);
    650 		return (NULL);
    651 	}
    652 
    653 	/*
    654 	 * The convention we use is that if `curpage' is not NULL, then
    655 	 * it points at a non-empty bucket. In particular, `curpage'
    656 	 * never points at a page header which has PR_PHINPAGE set and
    657 	 * has no items in its bucket.
    658 	 */
    659 	if ((ph = pp->pr_curpage) == NULL) {
    660 #ifdef DIAGNOSTIC
    661 		if (pp->pr_nitems != 0) {
    662 			simple_unlock(&pp->pr_slock);
    663 			printf("pool_get: %s: curpage NULL, nitems %u\n",
    664 			    pp->pr_wchan, pp->pr_nitems);
    665 			panic("pool_get: nitems inconsistent\n");
    666 		}
    667 #endif
    668 
    669 		/*
    670 		 * Call the back-end page allocator for more memory.
    671 		 * Release the pool lock, as the back-end page allocator
    672 		 * may block.
    673 		 */
    674 		pr_leave(pp);
    675 		simple_unlock(&pp->pr_slock);
    676 		v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype);
    677 		if (__predict_true(v != NULL))
    678 			ph = pool_alloc_item_header(pp, v, flags);
    679 		simple_lock(&pp->pr_slock);
    680 		pr_enter(pp, file, line);
    681 
    682 		if (__predict_false(v == NULL || ph == NULL)) {
    683 			if (v != NULL)
    684 				(*pp->pr_free)(v, pp->pr_pagesz, pp->pr_mtype);
    685 
    686 			/*
    687 			 * We were unable to allocate a page or item
    688 			 * header, but we released the lock during
    689 			 * allocation, so perhaps items were freed
    690 			 * back to the pool.  Check for this case.
    691 			 */
    692 			if (pp->pr_curpage != NULL)
    693 				goto startover;
    694 
    695 			if (flags & PR_URGENT)
    696 				panic("pool_get: urgent");
    697 
    698 			if ((flags & PR_WAITOK) == 0) {
    699 				pp->pr_nfail++;
    700 				pr_leave(pp);
    701 				simple_unlock(&pp->pr_slock);
    702 				return (NULL);
    703 			}
    704 
    705 			/*
    706 			 * Wait for items to be returned to this pool.
    707 			 *
    708 			 * XXX: we actually want to wait just until
    709 			 * the page allocator has memory again. Depending
    710 			 * on this pool's usage, we might get stuck here
    711 			 * for a long time.
    712 			 *
    713 			 * XXX: maybe we should wake up once a second and
    714 			 * try again?
    715 			 */
    716 			pp->pr_flags |= PR_WANTED;
    717 			pr_leave(pp);
    718 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
    719 			pr_enter(pp, file, line);
    720 			goto startover;
    721 		}
    722 
    723 		/* We have more memory; add it to the pool */
    724 		pool_prime_page(pp, v, ph);
    725 		pp->pr_npagealloc++;
    726 
    727 		/* Start the allocation process over. */
    728 		goto startover;
    729 	}
    730 
    731 	if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
    732 		pr_leave(pp);
    733 		simple_unlock(&pp->pr_slock);
    734 		panic("pool_get: %s: page empty", pp->pr_wchan);
    735 	}
    736 #ifdef DIAGNOSTIC
    737 	if (__predict_false(pp->pr_nitems == 0)) {
    738 		pr_leave(pp);
    739 		simple_unlock(&pp->pr_slock);
    740 		printf("pool_get: %s: items on itemlist, nitems %u\n",
    741 		    pp->pr_wchan, pp->pr_nitems);
    742 		panic("pool_get: nitems inconsistent\n");
    743 	}
    744 
    745 	pr_log(pp, v, PRLOG_GET, file, line);
    746 
    747 	if (__predict_false(pi->pi_magic != PI_MAGIC)) {
    748 		pr_printlog(pp, pi, printf);
    749 		panic("pool_get(%s): free list modified: magic=%x; page %p;"
    750 		       " item addr %p\n",
    751 			pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    752 	}
    753 #endif
    754 
    755 	/*
    756 	 * Remove from item list.
    757 	 */
    758 	TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
    759 	pp->pr_nitems--;
    760 	pp->pr_nout++;
    761 	if (ph->ph_nmissing == 0) {
    762 #ifdef DIAGNOSTIC
    763 		if (__predict_false(pp->pr_nidle == 0))
    764 			panic("pool_get: nidle inconsistent");
    765 #endif
    766 		pp->pr_nidle--;
    767 	}
    768 	ph->ph_nmissing++;
    769 	if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) {
    770 #ifdef DIAGNOSTIC
    771 		if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
    772 			pr_leave(pp);
    773 			simple_unlock(&pp->pr_slock);
    774 			panic("pool_get: %s: nmissing inconsistent",
    775 			    pp->pr_wchan);
    776 		}
    777 #endif
    778 		/*
    779 		 * Find a new non-empty page header, if any.
    780 		 * Start search from the page head, to increase
    781 		 * the chance for "high water" pages to be freed.
    782 		 *
    783 		 * Migrate empty pages to the end of the list.  This
    784 		 * will speed the update of curpage as pages become
    785 		 * idle.  Empty pages intermingled with idle pages
    786 		 * is no big deal.  As soon as a page becomes un-empty,
    787 		 * it will move back to the head of the list.
    788 		 */
    789 		TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    790 		TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
    791 		for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
    792 		     ph = TAILQ_NEXT(ph, ph_pagelist))
    793 			if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    794 				break;
    795 
    796 		pp->pr_curpage = ph;
    797 	}
    798 
    799 	pp->pr_nget++;
    800 
    801 	/*
    802 	 * If we have a low water mark and we are now below that low
    803 	 * water mark, add more items to the pool.
    804 	 */
    805 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
    806 		/*
    807 		 * XXX: Should we log a warning?  Should we set up a timeout
    808 		 * to try again in a second or so?  The latter could break
    809 		 * a caller's assumptions about interrupt protection, etc.
    810 		 */
    811 	}
    812 
    813 	pr_leave(pp);
    814 	simple_unlock(&pp->pr_slock);
    815 	return (v);
    816 }
    817 
    818 /*
    819  * Internal version of pool_put().  Pool is already locked/entered.
    820  */
    821 static void
    822 pool_do_put(struct pool *pp, void *v)
    823 {
    824 	struct pool_item *pi = v;
    825 	struct pool_item_header *ph;
    826 	caddr_t page;
    827 	int s;
    828 
    829 	page = (caddr_t)((u_long)v & pp->pr_pagemask);
    830 
    831 #ifdef DIAGNOSTIC
    832 	if (__predict_false(pp->pr_nout == 0)) {
    833 		printf("pool %s: putting with none out\n",
    834 		    pp->pr_wchan);
    835 		panic("pool_put");
    836 	}
    837 #endif
    838 
    839 	if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
    840 		pr_printlog(pp, NULL, printf);
    841 		panic("pool_put: %s: page header missing", pp->pr_wchan);
    842 	}
    843 
    844 #ifdef LOCKDEBUG
    845 	/*
    846 	 * Check if we're freeing a locked simple lock.
    847 	 */
    848 	simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
    849 #endif
    850 
    851 	/*
    852 	 * Return to item list.
    853 	 */
    854 #ifdef DIAGNOSTIC
    855 	pi->pi_magic = PI_MAGIC;
    856 #endif
    857 #ifdef DEBUG
    858 	{
    859 		int i, *ip = v;
    860 
    861 		for (i = 0; i < pp->pr_size / sizeof(int); i++) {
    862 			*ip++ = PI_MAGIC;
    863 		}
    864 	}
    865 #endif
    866 
    867 	TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    868 	ph->ph_nmissing--;
    869 	pp->pr_nput++;
    870 	pp->pr_nitems++;
    871 	pp->pr_nout--;
    872 
    873 	/* Cancel "pool empty" condition if it exists */
    874 	if (pp->pr_curpage == NULL)
    875 		pp->pr_curpage = ph;
    876 
    877 	if (pp->pr_flags & PR_WANTED) {
    878 		pp->pr_flags &= ~PR_WANTED;
    879 		if (ph->ph_nmissing == 0)
    880 			pp->pr_nidle++;
    881 		wakeup((caddr_t)pp);
    882 		return;
    883 	}
    884 
    885 	/*
    886 	 * If this page is now complete, do one of two things:
    887 	 *
    888 	 *	(1) If we have more pages than the page high water
    889 	 *	    mark, free the page back to the system.
    890 	 *
    891 	 *	(2) Move it to the end of the page list, so that
    892 	 *	    we minimize our chances of fragmenting the
    893 	 *	    pool.  Idle pages migrate to the end (along with
    894 	 *	    completely empty pages, so that we find un-empty
    895 	 *	    pages more quickly when we update curpage) of the
    896 	 *	    list so they can be more easily swept up by
    897 	 *	    the pagedaemon when pages are scarce.
    898 	 */
    899 	if (ph->ph_nmissing == 0) {
    900 		pp->pr_nidle++;
    901 		if (pp->pr_npages > pp->pr_maxpages) {
    902 			pr_rmpage(pp, ph);
    903 		} else {
    904 			TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    905 			TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
    906 
    907 			/*
    908 			 * Update the timestamp on the page.  A page must
    909 			 * be idle for some period of time before it can
    910 			 * be reclaimed by the pagedaemon.  This minimizes
    911 			 * ping-pong'ing for memory.
    912 			 */
    913 			s = splclock();
    914 			ph->ph_time = mono_time;
    915 			splx(s);
    916 
    917 			/*
    918 			 * Update the current page pointer.  Just look for
    919 			 * the first page with any free items.
    920 			 *
    921 			 * XXX: Maybe we want an option to look for the
    922 			 * page with the fewest available items, to minimize
    923 			 * fragmentation?
    924 			 */
    925 			for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
    926 			     ph = TAILQ_NEXT(ph, ph_pagelist))
    927 				if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    928 					break;
    929 
    930 			pp->pr_curpage = ph;
    931 		}
    932 	}
    933 	/*
    934 	 * If the page has just become un-empty, move it to the head of
    935 	 * the list, and make it the current page.  The next allocation
    936 	 * will get the item from this page, instead of further fragmenting
    937 	 * the pool.
    938 	 */
    939 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
    940 		TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    941 		TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
    942 		pp->pr_curpage = ph;
    943 	}
    944 }
    945 
    946 /*
    947  * Return resource to the pool; must be called at appropriate spl level
    948  */
    949 #ifdef POOL_DIAGNOSTIC
    950 void
    951 _pool_put(struct pool *pp, void *v, const char *file, long line)
    952 {
    953 
    954 	simple_lock(&pp->pr_slock);
    955 	pr_enter(pp, file, line);
    956 
    957 	pr_log(pp, v, PRLOG_PUT, file, line);
    958 
    959 	pool_do_put(pp, v);
    960 
    961 	pr_leave(pp);
    962 	simple_unlock(&pp->pr_slock);
    963 }
    964 #undef pool_put
    965 #endif /* POOL_DIAGNOSTIC */
    966 
    967 void
    968 pool_put(struct pool *pp, void *v)
    969 {
    970 
    971 	simple_lock(&pp->pr_slock);
    972 
    973 	pool_do_put(pp, v);
    974 
    975 	simple_unlock(&pp->pr_slock);
    976 }
    977 
    978 #ifdef POOL_DIAGNOSTIC
    979 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
    980 #endif
    981 
    982 /*
    983  * Add N items to the pool.
    984  */
    985 int
    986 pool_prime(struct pool *pp, int n)
    987 {
    988 	struct pool_item_header *ph;
    989 	caddr_t cp;
    990 	int newpages, error = 0;
    991 
    992 	simple_lock(&pp->pr_slock);
    993 
    994 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
    995 
    996 	while (newpages-- > 0) {
    997 		simple_unlock(&pp->pr_slock);
    998 		cp = (*pp->pr_alloc)(pp->pr_pagesz, PR_NOWAIT, pp->pr_mtype);
    999 		if (__predict_true(cp != NULL))
   1000 			ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
   1001 		simple_lock(&pp->pr_slock);
   1002 
   1003 		if (__predict_false(cp == NULL || ph == NULL)) {
   1004 			error = ENOMEM;
   1005 			if (cp != NULL)
   1006 				(*pp->pr_free)(cp, pp->pr_pagesz, pp->pr_mtype);
   1007 			break;
   1008 		}
   1009 
   1010 		pool_prime_page(pp, cp, ph);
   1011 		pp->pr_npagealloc++;
   1012 		pp->pr_minpages++;
   1013 	}
   1014 
   1015 	if (pp->pr_minpages >= pp->pr_maxpages)
   1016 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1017 
   1018 	simple_unlock(&pp->pr_slock);
   1019 	return (0);
   1020 }
   1021 
   1022 /*
   1023  * Add a page worth of items to the pool.
   1024  *
   1025  * Note, we must be called with the pool descriptor LOCKED.
   1026  */
   1027 static void
   1028 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
   1029 {
   1030 	struct pool_item *pi;
   1031 	caddr_t cp = storage;
   1032 	unsigned int align = pp->pr_align;
   1033 	unsigned int ioff = pp->pr_itemoffset;
   1034 	int n;
   1035 
   1036 	if (((u_long)cp & (pp->pr_pagesz - 1)) != 0)
   1037 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1038 
   1039 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1040 		LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)],
   1041 		    ph, ph_hashlist);
   1042 
   1043 	/*
   1044 	 * Insert page header.
   1045 	 */
   1046 	TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
   1047 	TAILQ_INIT(&ph->ph_itemlist);
   1048 	ph->ph_page = storage;
   1049 	ph->ph_nmissing = 0;
   1050 	memset(&ph->ph_time, 0, sizeof(ph->ph_time));
   1051 
   1052 	pp->pr_nidle++;
   1053 
   1054 	/*
   1055 	 * Color this page.
   1056 	 */
   1057 	cp = (caddr_t)(cp + pp->pr_curcolor);
   1058 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1059 		pp->pr_curcolor = 0;
   1060 
   1061 	/*
   1062 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1063 	 */
   1064 	if (ioff != 0)
   1065 		cp = (caddr_t)(cp + (align - ioff));
   1066 
   1067 	/*
   1068 	 * Insert remaining chunks on the bucket list.
   1069 	 */
   1070 	n = pp->pr_itemsperpage;
   1071 	pp->pr_nitems += n;
   1072 
   1073 	while (n--) {
   1074 		pi = (struct pool_item *)cp;
   1075 
   1076 		/* Insert on page list */
   1077 		TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
   1078 #ifdef DIAGNOSTIC
   1079 		pi->pi_magic = PI_MAGIC;
   1080 #endif
   1081 		cp = (caddr_t)(cp + pp->pr_size);
   1082 	}
   1083 
   1084 	/*
   1085 	 * If the pool was depleted, point at the new page.
   1086 	 */
   1087 	if (pp->pr_curpage == NULL)
   1088 		pp->pr_curpage = ph;
   1089 
   1090 	if (++pp->pr_npages > pp->pr_hiwat)
   1091 		pp->pr_hiwat = pp->pr_npages;
   1092 }
   1093 
   1094 /*
   1095  * Used by pool_get() when nitems drops below the low water mark.  This
   1096  * is used to catch up nitmes with the low water mark.
   1097  *
   1098  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1099  *
   1100  * Note 2, this doesn't work with static pools.
   1101  *
   1102  * Note 3, we must be called with the pool already locked, and we return
   1103  * with it locked.
   1104  */
   1105 static int
   1106 pool_catchup(struct pool *pp)
   1107 {
   1108 	struct pool_item_header *ph;
   1109 	caddr_t cp;
   1110 	int error = 0;
   1111 
   1112 	if (pp->pr_roflags & PR_STATIC) {
   1113 		/*
   1114 		 * We dropped below the low water mark, and this is not a
   1115 		 * good thing.  Log a warning.
   1116 		 *
   1117 		 * XXX: rate-limit this?
   1118 		 */
   1119 		printf("WARNING: static pool `%s' dropped below low water "
   1120 		    "mark\n", pp->pr_wchan);
   1121 		return (0);
   1122 	}
   1123 
   1124 	while (POOL_NEEDS_CATCHUP(pp)) {
   1125 		/*
   1126 		 * Call the page back-end allocator for more memory.
   1127 		 *
   1128 		 * XXX: We never wait, so should we bother unlocking
   1129 		 * the pool descriptor?
   1130 		 */
   1131 		simple_unlock(&pp->pr_slock);
   1132 		cp = (*pp->pr_alloc)(pp->pr_pagesz, PR_NOWAIT, pp->pr_mtype);
   1133 		if (__predict_true(cp != NULL))
   1134 			ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
   1135 		simple_lock(&pp->pr_slock);
   1136 		if (__predict_false(cp == NULL || ph == NULL)) {
   1137 			if (cp != NULL)
   1138 				(*pp->pr_free)(cp, pp->pr_pagesz, pp->pr_mtype);
   1139 			error = ENOMEM;
   1140 			break;
   1141 		}
   1142 		pool_prime_page(pp, cp, ph);
   1143 		pp->pr_npagealloc++;
   1144 	}
   1145 
   1146 	return (error);
   1147 }
   1148 
   1149 void
   1150 pool_setlowat(struct pool *pp, int n)
   1151 {
   1152 	int error;
   1153 
   1154 	simple_lock(&pp->pr_slock);
   1155 
   1156 	pp->pr_minitems = n;
   1157 	pp->pr_minpages = (n == 0)
   1158 		? 0
   1159 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1160 
   1161 	/* Make sure we're caught up with the newly-set low water mark. */
   1162 	if (POOL_NEEDS_CATCHUP(pp) && (error = pool_catchup(pp) != 0)) {
   1163 		/*
   1164 		 * XXX: Should we log a warning?  Should we set up a timeout
   1165 		 * to try again in a second or so?  The latter could break
   1166 		 * a caller's assumptions about interrupt protection, etc.
   1167 		 */
   1168 	}
   1169 
   1170 	simple_unlock(&pp->pr_slock);
   1171 }
   1172 
   1173 void
   1174 pool_sethiwat(struct pool *pp, int n)
   1175 {
   1176 
   1177 	simple_lock(&pp->pr_slock);
   1178 
   1179 	pp->pr_maxpages = (n == 0)
   1180 		? 0
   1181 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1182 
   1183 	simple_unlock(&pp->pr_slock);
   1184 }
   1185 
   1186 void
   1187 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1188 {
   1189 
   1190 	simple_lock(&pp->pr_slock);
   1191 
   1192 	pp->pr_hardlimit = n;
   1193 	pp->pr_hardlimit_warning = warnmess;
   1194 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1195 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1196 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1197 
   1198 	/*
   1199 	 * In-line version of pool_sethiwat(), because we don't want to
   1200 	 * release the lock.
   1201 	 */
   1202 	pp->pr_maxpages = (n == 0)
   1203 		? 0
   1204 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1205 
   1206 	simple_unlock(&pp->pr_slock);
   1207 }
   1208 
   1209 /*
   1210  * Default page allocator.
   1211  */
   1212 static void *
   1213 pool_page_alloc(unsigned long sz, int flags, int mtype)
   1214 {
   1215 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   1216 
   1217 	return ((void *)uvm_km_alloc_poolpage(waitok));
   1218 }
   1219 
   1220 static void
   1221 pool_page_free(void *v, unsigned long sz, int mtype)
   1222 {
   1223 
   1224 	uvm_km_free_poolpage((vaddr_t)v);
   1225 }
   1226 
   1227 /*
   1228  * Alternate pool page allocator for pools that know they will
   1229  * never be accessed in interrupt context.
   1230  */
   1231 void *
   1232 pool_page_alloc_nointr(unsigned long sz, int flags, int mtype)
   1233 {
   1234 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   1235 
   1236 	return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object,
   1237 	    waitok));
   1238 }
   1239 
   1240 void
   1241 pool_page_free_nointr(void *v, unsigned long sz, int mtype)
   1242 {
   1243 
   1244 	uvm_km_free_poolpage1(kernel_map, (vaddr_t)v);
   1245 }
   1246 
   1247 
   1248 /*
   1249  * Release all complete pages that have not been used recently.
   1250  */
   1251 void
   1252 #ifdef POOL_DIAGNOSTIC
   1253 _pool_reclaim(struct pool *pp, const char *file, long line)
   1254 #else
   1255 pool_reclaim(struct pool *pp)
   1256 #endif
   1257 {
   1258 	struct pool_item_header *ph, *phnext;
   1259 	struct pool_cache *pc;
   1260 	struct timeval curtime;
   1261 	int s;
   1262 
   1263 	if (pp->pr_roflags & PR_STATIC)
   1264 		return;
   1265 
   1266 	if (simple_lock_try(&pp->pr_slock) == 0)
   1267 		return;
   1268 	pr_enter(pp, file, line);
   1269 
   1270 	/*
   1271 	 * Reclaim items from the pool's caches.
   1272 	 */
   1273 	for (pc = TAILQ_FIRST(&pp->pr_cachelist); pc != NULL;
   1274 	     pc = TAILQ_NEXT(pc, pc_poollist))
   1275 		pool_cache_reclaim(pc);
   1276 
   1277 	s = splclock();
   1278 	curtime = mono_time;
   1279 	splx(s);
   1280 
   1281 	for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) {
   1282 		phnext = TAILQ_NEXT(ph, ph_pagelist);
   1283 
   1284 		/* Check our minimum page claim */
   1285 		if (pp->pr_npages <= pp->pr_minpages)
   1286 			break;
   1287 
   1288 		if (ph->ph_nmissing == 0) {
   1289 			struct timeval diff;
   1290 			timersub(&curtime, &ph->ph_time, &diff);
   1291 			if (diff.tv_sec < pool_inactive_time)
   1292 				continue;
   1293 
   1294 			/*
   1295 			 * If freeing this page would put us below
   1296 			 * the low water mark, stop now.
   1297 			 */
   1298 			if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1299 			    pp->pr_minitems)
   1300 				break;
   1301 
   1302 			pr_rmpage(pp, ph);
   1303 		}
   1304 	}
   1305 
   1306 	pr_leave(pp);
   1307 	simple_unlock(&pp->pr_slock);
   1308 }
   1309 
   1310 
   1311 /*
   1312  * Drain pools, one at a time.
   1313  *
   1314  * Note, we must never be called from an interrupt context.
   1315  */
   1316 void
   1317 pool_drain(void *arg)
   1318 {
   1319 	struct pool *pp;
   1320 	int s;
   1321 
   1322 	s = splvm();
   1323 	simple_lock(&pool_head_slock);
   1324 
   1325 	if (drainpp == NULL && (drainpp = TAILQ_FIRST(&pool_head)) == NULL)
   1326 		goto out;
   1327 
   1328 	pp = drainpp;
   1329 	drainpp = TAILQ_NEXT(pp, pr_poollist);
   1330 
   1331 	pool_reclaim(pp);
   1332 
   1333  out:
   1334 	simple_unlock(&pool_head_slock);
   1335 	splx(s);
   1336 }
   1337 
   1338 
   1339 /*
   1340  * Diagnostic helpers.
   1341  */
   1342 void
   1343 pool_print(struct pool *pp, const char *modif)
   1344 {
   1345 	int s;
   1346 
   1347 	s = splvm();
   1348 	if (simple_lock_try(&pp->pr_slock) == 0) {
   1349 		printf("pool %s is locked; try again later\n",
   1350 		    pp->pr_wchan);
   1351 		splx(s);
   1352 		return;
   1353 	}
   1354 	pool_print1(pp, modif, printf);
   1355 	simple_unlock(&pp->pr_slock);
   1356 	splx(s);
   1357 }
   1358 
   1359 void
   1360 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1361 {
   1362 	int didlock = 0;
   1363 
   1364 	if (pp == NULL) {
   1365 		(*pr)("Must specify a pool to print.\n");
   1366 		return;
   1367 	}
   1368 
   1369 	/*
   1370 	 * Called from DDB; interrupts should be blocked, and all
   1371 	 * other processors should be paused.  We can skip locking
   1372 	 * the pool in this case.
   1373 	 *
   1374 	 * We do a simple_lock_try() just to print the lock
   1375 	 * status, however.
   1376 	 */
   1377 
   1378 	if (simple_lock_try(&pp->pr_slock) == 0)
   1379 		(*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
   1380 	else
   1381 		didlock = 1;
   1382 
   1383 	pool_print1(pp, modif, pr);
   1384 
   1385 	if (didlock)
   1386 		simple_unlock(&pp->pr_slock);
   1387 }
   1388 
   1389 static void
   1390 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1391 {
   1392 	struct pool_item_header *ph;
   1393 	struct pool_cache *pc;
   1394 	struct pool_cache_group *pcg;
   1395 #ifdef DIAGNOSTIC
   1396 	struct pool_item *pi;
   1397 #endif
   1398 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1399 	char c;
   1400 
   1401 	while ((c = *modif++) != '\0') {
   1402 		if (c == 'l')
   1403 			print_log = 1;
   1404 		if (c == 'p')
   1405 			print_pagelist = 1;
   1406 		if (c == 'c')
   1407 			print_cache = 1;
   1408 		modif++;
   1409 	}
   1410 
   1411 	(*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1412 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1413 	    pp->pr_roflags);
   1414 	(*pr)("\tpagesz %u, mtype %d\n", pp->pr_pagesz, pp->pr_mtype);
   1415 	(*pr)("\talloc %p, release %p\n", pp->pr_alloc, pp->pr_free);
   1416 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1417 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1418 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1419 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1420 
   1421 	(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
   1422 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1423 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1424 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1425 
   1426 	if (print_pagelist == 0)
   1427 		goto skip_pagelist;
   1428 
   1429 	if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
   1430 		(*pr)("\n\tpage list:\n");
   1431 	for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) {
   1432 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
   1433 		    ph->ph_page, ph->ph_nmissing,
   1434 		    (u_long)ph->ph_time.tv_sec,
   1435 		    (u_long)ph->ph_time.tv_usec);
   1436 #ifdef DIAGNOSTIC
   1437 		for (pi = TAILQ_FIRST(&ph->ph_itemlist); pi != NULL;
   1438 		     pi = TAILQ_NEXT(pi, pi_list)) {
   1439 			if (pi->pi_magic != PI_MAGIC) {
   1440 				(*pr)("\t\t\titem %p, magic 0x%x\n",
   1441 				    pi, pi->pi_magic);
   1442 			}
   1443 		}
   1444 #endif
   1445 	}
   1446 	if (pp->pr_curpage == NULL)
   1447 		(*pr)("\tno current page\n");
   1448 	else
   1449 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1450 
   1451  skip_pagelist:
   1452 
   1453 	if (print_log == 0)
   1454 		goto skip_log;
   1455 
   1456 	(*pr)("\n");
   1457 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1458 		(*pr)("\tno log\n");
   1459 	else
   1460 		pr_printlog(pp, NULL, pr);
   1461 
   1462  skip_log:
   1463 
   1464 	if (print_cache == 0)
   1465 		goto skip_cache;
   1466 
   1467 	for (pc = TAILQ_FIRST(&pp->pr_cachelist); pc != NULL;
   1468 	     pc = TAILQ_NEXT(pc, pc_poollist)) {
   1469 		(*pr)("\tcache %p: allocfrom %p freeto %p\n", pc,
   1470 		    pc->pc_allocfrom, pc->pc_freeto);
   1471 		(*pr)("\t    hits %lu misses %lu ngroups %lu nitems %lu\n",
   1472 		    pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
   1473 		for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
   1474 		     pcg = TAILQ_NEXT(pcg, pcg_list)) {
   1475 			(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);
   1476 			for (i = 0; i < PCG_NOBJECTS; i++)
   1477 				(*pr)("\t\t\t%p\n", pcg->pcg_objects[i]);
   1478 		}
   1479 	}
   1480 
   1481  skip_cache:
   1482 
   1483 	pr_enter_check(pp, pr);
   1484 }
   1485 
   1486 int
   1487 pool_chk(struct pool *pp, const char *label)
   1488 {
   1489 	struct pool_item_header *ph;
   1490 	int r = 0;
   1491 
   1492 	simple_lock(&pp->pr_slock);
   1493 
   1494 	for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL;
   1495 	     ph = TAILQ_NEXT(ph, ph_pagelist)) {
   1496 
   1497 		struct pool_item *pi;
   1498 		int n;
   1499 		caddr_t page;
   1500 
   1501 		page = (caddr_t)((u_long)ph & pp->pr_pagemask);
   1502 		if (page != ph->ph_page &&
   1503 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1504 			if (label != NULL)
   1505 				printf("%s: ", label);
   1506 			printf("pool(%p:%s): page inconsistency: page %p;"
   1507 			       " at page head addr %p (p %p)\n", pp,
   1508 				pp->pr_wchan, ph->ph_page,
   1509 				ph, page);
   1510 			r++;
   1511 			goto out;
   1512 		}
   1513 
   1514 		for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
   1515 		     pi != NULL;
   1516 		     pi = TAILQ_NEXT(pi,pi_list), n++) {
   1517 
   1518 #ifdef DIAGNOSTIC
   1519 			if (pi->pi_magic != PI_MAGIC) {
   1520 				if (label != NULL)
   1521 					printf("%s: ", label);
   1522 				printf("pool(%s): free list modified: magic=%x;"
   1523 				       " page %p; item ordinal %d;"
   1524 				       " addr %p (p %p)\n",
   1525 					pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1526 					n, pi, page);
   1527 				panic("pool");
   1528 			}
   1529 #endif
   1530 			page = (caddr_t)((u_long)pi & pp->pr_pagemask);
   1531 			if (page == ph->ph_page)
   1532 				continue;
   1533 
   1534 			if (label != NULL)
   1535 				printf("%s: ", label);
   1536 			printf("pool(%p:%s): page inconsistency: page %p;"
   1537 			       " item ordinal %d; addr %p (p %p)\n", pp,
   1538 				pp->pr_wchan, ph->ph_page,
   1539 				n, pi, page);
   1540 			r++;
   1541 			goto out;
   1542 		}
   1543 	}
   1544 out:
   1545 	simple_unlock(&pp->pr_slock);
   1546 	return (r);
   1547 }
   1548 
   1549 /*
   1550  * pool_cache_init:
   1551  *
   1552  *	Initialize a pool cache.
   1553  *
   1554  *	NOTE: If the pool must be protected from interrupts, we expect
   1555  *	to be called at the appropriate interrupt priority level.
   1556  */
   1557 void
   1558 pool_cache_init(struct pool_cache *pc, struct pool *pp,
   1559     int (*ctor)(void *, void *, int),
   1560     void (*dtor)(void *, void *),
   1561     void *arg)
   1562 {
   1563 
   1564 	TAILQ_INIT(&pc->pc_grouplist);
   1565 	simple_lock_init(&pc->pc_slock);
   1566 
   1567 	pc->pc_allocfrom = NULL;
   1568 	pc->pc_freeto = NULL;
   1569 	pc->pc_pool = pp;
   1570 
   1571 	pc->pc_ctor = ctor;
   1572 	pc->pc_dtor = dtor;
   1573 	pc->pc_arg  = arg;
   1574 
   1575 	pc->pc_hits   = 0;
   1576 	pc->pc_misses = 0;
   1577 
   1578 	pc->pc_ngroups = 0;
   1579 
   1580 	pc->pc_nitems = 0;
   1581 
   1582 	simple_lock(&pp->pr_slock);
   1583 	TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist);
   1584 	simple_unlock(&pp->pr_slock);
   1585 }
   1586 
   1587 /*
   1588  * pool_cache_destroy:
   1589  *
   1590  *	Destroy a pool cache.
   1591  */
   1592 void
   1593 pool_cache_destroy(struct pool_cache *pc)
   1594 {
   1595 	struct pool *pp = pc->pc_pool;
   1596 
   1597 	/* First, invalidate the entire cache. */
   1598 	pool_cache_invalidate(pc);
   1599 
   1600 	/* ...and remove it from the pool's cache list. */
   1601 	simple_lock(&pp->pr_slock);
   1602 	TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist);
   1603 	simple_unlock(&pp->pr_slock);
   1604 }
   1605 
   1606 static __inline void *
   1607 pcg_get(struct pool_cache_group *pcg)
   1608 {
   1609 	void *object;
   1610 	u_int idx;
   1611 
   1612 	KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
   1613 	KASSERT(pcg->pcg_avail != 0);
   1614 	idx = --pcg->pcg_avail;
   1615 
   1616 	KASSERT(pcg->pcg_objects[idx] != NULL);
   1617 	object = pcg->pcg_objects[idx];
   1618 	pcg->pcg_objects[idx] = NULL;
   1619 
   1620 	return (object);
   1621 }
   1622 
   1623 static __inline void
   1624 pcg_put(struct pool_cache_group *pcg, void *object)
   1625 {
   1626 	u_int idx;
   1627 
   1628 	KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
   1629 	idx = pcg->pcg_avail++;
   1630 
   1631 	KASSERT(pcg->pcg_objects[idx] == NULL);
   1632 	pcg->pcg_objects[idx] = object;
   1633 }
   1634 
   1635 /*
   1636  * pool_cache_get:
   1637  *
   1638  *	Get an object from a pool cache.
   1639  */
   1640 void *
   1641 pool_cache_get(struct pool_cache *pc, int flags)
   1642 {
   1643 	struct pool_cache_group *pcg;
   1644 	void *object;
   1645 
   1646 #ifdef LOCKDEBUG
   1647 	if (flags & PR_WAITOK)
   1648 		simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)");
   1649 #endif
   1650 
   1651 	simple_lock(&pc->pc_slock);
   1652 
   1653 	if ((pcg = pc->pc_allocfrom) == NULL) {
   1654 		for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
   1655 		     pcg = TAILQ_NEXT(pcg, pcg_list)) {
   1656 			if (pcg->pcg_avail != 0) {
   1657 				pc->pc_allocfrom = pcg;
   1658 				goto have_group;
   1659 			}
   1660 		}
   1661 
   1662 		/*
   1663 		 * No groups with any available objects.  Allocate
   1664 		 * a new object, construct it, and return it to
   1665 		 * the caller.  We will allocate a group, if necessary,
   1666 		 * when the object is freed back to the cache.
   1667 		 */
   1668 		pc->pc_misses++;
   1669 		simple_unlock(&pc->pc_slock);
   1670 		object = pool_get(pc->pc_pool, flags);
   1671 		if (object != NULL && pc->pc_ctor != NULL) {
   1672 			if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
   1673 				pool_put(pc->pc_pool, object);
   1674 				return (NULL);
   1675 			}
   1676 		}
   1677 		return (object);
   1678 	}
   1679 
   1680  have_group:
   1681 	pc->pc_hits++;
   1682 	pc->pc_nitems--;
   1683 	object = pcg_get(pcg);
   1684 
   1685 	if (pcg->pcg_avail == 0)
   1686 		pc->pc_allocfrom = NULL;
   1687 
   1688 	simple_unlock(&pc->pc_slock);
   1689 
   1690 	return (object);
   1691 }
   1692 
   1693 /*
   1694  * pool_cache_put:
   1695  *
   1696  *	Put an object back to the pool cache.
   1697  */
   1698 void
   1699 pool_cache_put(struct pool_cache *pc, void *object)
   1700 {
   1701 	struct pool_cache_group *pcg;
   1702 	int s;
   1703 
   1704 	simple_lock(&pc->pc_slock);
   1705 
   1706 	if ((pcg = pc->pc_freeto) == NULL) {
   1707 		for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
   1708 		     pcg = TAILQ_NEXT(pcg, pcg_list)) {
   1709 			if (pcg->pcg_avail != PCG_NOBJECTS) {
   1710 				pc->pc_freeto = pcg;
   1711 				goto have_group;
   1712 			}
   1713 		}
   1714 
   1715 		/*
   1716 		 * No empty groups to free the object to.  Attempt to
   1717 		 * allocate one.
   1718 		 */
   1719 		simple_unlock(&pc->pc_slock);
   1720 		s = splvm();
   1721 		pcg = pool_get(&pcgpool, PR_NOWAIT);
   1722 		splx(s);
   1723 		if (pcg != NULL) {
   1724 			memset(pcg, 0, sizeof(*pcg));
   1725 			simple_lock(&pc->pc_slock);
   1726 			pc->pc_ngroups++;
   1727 			TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list);
   1728 			if (pc->pc_freeto == NULL)
   1729 				pc->pc_freeto = pcg;
   1730 			goto have_group;
   1731 		}
   1732 
   1733 		/*
   1734 		 * Unable to allocate a cache group; destruct the object
   1735 		 * and free it back to the pool.
   1736 		 */
   1737 		pool_cache_destruct_object(pc, object);
   1738 		return;
   1739 	}
   1740 
   1741  have_group:
   1742 	pc->pc_nitems++;
   1743 	pcg_put(pcg, object);
   1744 
   1745 	if (pcg->pcg_avail == PCG_NOBJECTS)
   1746 		pc->pc_freeto = NULL;
   1747 
   1748 	simple_unlock(&pc->pc_slock);
   1749 }
   1750 
   1751 /*
   1752  * pool_cache_destruct_object:
   1753  *
   1754  *	Force destruction of an object and its release back into
   1755  *	the pool.
   1756  */
   1757 void
   1758 pool_cache_destruct_object(struct pool_cache *pc, void *object)
   1759 {
   1760 
   1761 	if (pc->pc_dtor != NULL)
   1762 		(*pc->pc_dtor)(pc->pc_arg, object);
   1763 	pool_put(pc->pc_pool, object);
   1764 }
   1765 
   1766 /*
   1767  * pool_cache_do_invalidate:
   1768  *
   1769  *	This internal function implements pool_cache_invalidate() and
   1770  *	pool_cache_reclaim().
   1771  */
   1772 static void
   1773 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups,
   1774     void (*putit)(struct pool *, void *))
   1775 {
   1776 	struct pool_cache_group *pcg, *npcg;
   1777 	void *object;
   1778 	int s;
   1779 
   1780 	for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
   1781 	     pcg = npcg) {
   1782 		npcg = TAILQ_NEXT(pcg, pcg_list);
   1783 		while (pcg->pcg_avail != 0) {
   1784 			pc->pc_nitems--;
   1785 			object = pcg_get(pcg);
   1786 			if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg)
   1787 				pc->pc_allocfrom = NULL;
   1788 			if (pc->pc_dtor != NULL)
   1789 				(*pc->pc_dtor)(pc->pc_arg, object);
   1790 			(*putit)(pc->pc_pool, object);
   1791 		}
   1792 		if (free_groups) {
   1793 			pc->pc_ngroups--;
   1794 			TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list);
   1795 			if (pc->pc_freeto == pcg)
   1796 				pc->pc_freeto = NULL;
   1797 			s = splvm();
   1798 			pool_put(&pcgpool, pcg);
   1799 			splx(s);
   1800 		}
   1801 	}
   1802 }
   1803 
   1804 /*
   1805  * pool_cache_invalidate:
   1806  *
   1807  *	Invalidate a pool cache (destruct and release all of the
   1808  *	cached objects).
   1809  */
   1810 void
   1811 pool_cache_invalidate(struct pool_cache *pc)
   1812 {
   1813 
   1814 	simple_lock(&pc->pc_slock);
   1815 	pool_cache_do_invalidate(pc, 0, pool_put);
   1816 	simple_unlock(&pc->pc_slock);
   1817 }
   1818 
   1819 /*
   1820  * pool_cache_reclaim:
   1821  *
   1822  *	Reclaim a pool cache for pool_reclaim().
   1823  */
   1824 static void
   1825 pool_cache_reclaim(struct pool_cache *pc)
   1826 {
   1827 
   1828 	simple_lock(&pc->pc_slock);
   1829 	pool_cache_do_invalidate(pc, 1, pool_do_put);
   1830 	simple_unlock(&pc->pc_slock);
   1831 }
   1832