Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.60.2.1
      1 /*	$NetBSD: subr_pool.c,v 1.60.2.1 2002/01/10 20:00:01 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9  * Simulation Facility, NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 #include <sys/cdefs.h>
     41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.60.2.1 2002/01/10 20:00:01 thorpej Exp $");
     42 
     43 #include "opt_pool.h"
     44 #include "opt_poollog.h"
     45 #include "opt_lockdebug.h"
     46 
     47 #include <sys/param.h>
     48 #include <sys/systm.h>
     49 #include <sys/proc.h>
     50 #include <sys/errno.h>
     51 #include <sys/kernel.h>
     52 #include <sys/malloc.h>
     53 #include <sys/lock.h>
     54 #include <sys/pool.h>
     55 #include <sys/syslog.h>
     56 
     57 #include <uvm/uvm.h>
     58 
     59 /*
     60  * Pool resource management utility.
     61  *
     62  * Memory is allocated in pages which are split into pieces according
     63  * to the pool item size. Each page is kept on a list headed by `pr_pagelist'
     64  * in the pool structure and the individual pool items are on a linked list
     65  * headed by `ph_itemlist' in each page header. The memory for building
     66  * the page list is either taken from the allocated pages themselves (for
     67  * small pool items) or taken from an internal pool of page headers (`phpool').
     68  */
     69 
     70 /* List of all pools */
     71 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     72 
     73 /* Private pool for page header structures */
     74 static struct pool phpool;
     75 
     76 #ifdef POOL_SUBPAGE
     77 /* Pool of subpages for use by normal pools. */
     78 static struct pool psppool;
     79 #endif
     80 
     81 /* # of seconds to retain page after last use */
     82 int pool_inactive_time = 10;
     83 
     84 /* Next candidate for drainage (see pool_drain()) */
     85 static struct pool	*drainpp;
     86 
     87 /* This spin lock protects both pool_head and drainpp. */
     88 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
     89 
     90 struct pool_item_header {
     91 	/* Page headers */
     92 	TAILQ_ENTRY(pool_item_header)
     93 				ph_pagelist;	/* pool page list */
     94 	TAILQ_HEAD(,pool_item)	ph_itemlist;	/* chunk list for this page */
     95 	LIST_ENTRY(pool_item_header)
     96 				ph_hashlist;	/* Off-page page headers */
     97 	int			ph_nmissing;	/* # of chunks in use */
     98 	caddr_t			ph_page;	/* this page's address */
     99 	struct timeval		ph_time;	/* last referenced */
    100 };
    101 TAILQ_HEAD(pool_pagelist,pool_item_header);
    102 
    103 struct pool_item {
    104 #ifdef DIAGNOSTIC
    105 	int pi_magic;
    106 #endif
    107 #define	PI_MAGIC 0xdeadbeef
    108 	/* Other entries use only this list entry */
    109 	TAILQ_ENTRY(pool_item)	pi_list;
    110 };
    111 
    112 #define	PR_HASH_INDEX(pp,addr) \
    113 	(((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1))
    114 
    115 #define	POOL_NEEDS_CATCHUP(pp)						\
    116 	((pp)->pr_nitems < (pp)->pr_minitems)
    117 
    118 /*
    119  * Pool cache management.
    120  *
    121  * Pool caches provide a way for constructed objects to be cached by the
    122  * pool subsystem.  This can lead to performance improvements by avoiding
    123  * needless object construction/destruction; it is deferred until absolutely
    124  * necessary.
    125  *
    126  * Caches are grouped into cache groups.  Each cache group references
    127  * up to 16 constructed objects.  When a cache allocates an object
    128  * from the pool, it calls the object's constructor and places it into
    129  * a cache group.  When a cache group frees an object back to the pool,
    130  * it first calls the object's destructor.  This allows the object to
    131  * persist in constructed form while freed to the cache.
    132  *
    133  * Multiple caches may exist for each pool.  This allows a single
    134  * object type to have multiple constructed forms.  The pool references
    135  * each cache, so that when a pool is drained by the pagedaemon, it can
    136  * drain each individual cache as well.  Each time a cache is drained,
    137  * the most idle cache group is freed to the pool in its entirety.
    138  *
    139  * Pool caches are layed on top of pools.  By layering them, we can avoid
    140  * the complexity of cache management for pools which would not benefit
    141  * from it.
    142  */
    143 
    144 /* The cache group pool. */
    145 static struct pool pcgpool;
    146 
    147 /* The pool cache group. */
    148 #define	PCG_NOBJECTS		16
    149 struct pool_cache_group {
    150 	TAILQ_ENTRY(pool_cache_group)
    151 		pcg_list;	/* link in the pool cache's group list */
    152 	u_int	pcg_avail;	/* # available objects */
    153 				/* pointers to the objects */
    154 	void	*pcg_objects[PCG_NOBJECTS];
    155 };
    156 
    157 static void	pool_cache_reclaim(struct pool_cache *);
    158 
    159 static int	pool_catchup(struct pool *);
    160 static void	pool_prime_page(struct pool *, caddr_t,
    161 		    struct pool_item_header *);
    162 static void	*pool_page_alloc(unsigned long, int, int);
    163 static void	pool_page_free(void *, unsigned long, int);
    164 #ifdef POOL_SUBPAGE
    165 static void	*pool_subpage_alloc(unsigned long, int, int);
    166 static void	pool_subpage_free(void *, unsigned long, int);
    167 #endif
    168 
    169 static void pool_print1(struct pool *, const char *,
    170 	void (*)(const char *, ...));
    171 
    172 /*
    173  * Pool log entry. An array of these is allocated in pool_init().
    174  */
    175 struct pool_log {
    176 	const char	*pl_file;
    177 	long		pl_line;
    178 	int		pl_action;
    179 #define	PRLOG_GET	1
    180 #define	PRLOG_PUT	2
    181 	void		*pl_addr;
    182 };
    183 
    184 /* Number of entries in pool log buffers */
    185 #ifndef POOL_LOGSIZE
    186 #define	POOL_LOGSIZE	10
    187 #endif
    188 
    189 int pool_logsize = POOL_LOGSIZE;
    190 
    191 #ifdef POOL_DIAGNOSTIC
    192 static __inline void
    193 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    194 {
    195 	int n = pp->pr_curlogentry;
    196 	struct pool_log *pl;
    197 
    198 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    199 		return;
    200 
    201 	/*
    202 	 * Fill in the current entry. Wrap around and overwrite
    203 	 * the oldest entry if necessary.
    204 	 */
    205 	pl = &pp->pr_log[n];
    206 	pl->pl_file = file;
    207 	pl->pl_line = line;
    208 	pl->pl_action = action;
    209 	pl->pl_addr = v;
    210 	if (++n >= pp->pr_logsize)
    211 		n = 0;
    212 	pp->pr_curlogentry = n;
    213 }
    214 
    215 static void
    216 pr_printlog(struct pool *pp, struct pool_item *pi,
    217     void (*pr)(const char *, ...))
    218 {
    219 	int i = pp->pr_logsize;
    220 	int n = pp->pr_curlogentry;
    221 
    222 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    223 		return;
    224 
    225 	/*
    226 	 * Print all entries in this pool's log.
    227 	 */
    228 	while (i-- > 0) {
    229 		struct pool_log *pl = &pp->pr_log[n];
    230 		if (pl->pl_action != 0) {
    231 			if (pi == NULL || pi == pl->pl_addr) {
    232 				(*pr)("\tlog entry %d:\n", i);
    233 				(*pr)("\t\taction = %s, addr = %p\n",
    234 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    235 				    pl->pl_addr);
    236 				(*pr)("\t\tfile: %s at line %lu\n",
    237 				    pl->pl_file, pl->pl_line);
    238 			}
    239 		}
    240 		if (++n >= pp->pr_logsize)
    241 			n = 0;
    242 	}
    243 }
    244 
    245 static __inline void
    246 pr_enter(struct pool *pp, const char *file, long line)
    247 {
    248 
    249 	if (__predict_false(pp->pr_entered_file != NULL)) {
    250 		printf("pool %s: reentrancy at file %s line %ld\n",
    251 		    pp->pr_wchan, file, line);
    252 		printf("         previous entry at file %s line %ld\n",
    253 		    pp->pr_entered_file, pp->pr_entered_line);
    254 		panic("pr_enter");
    255 	}
    256 
    257 	pp->pr_entered_file = file;
    258 	pp->pr_entered_line = line;
    259 }
    260 
    261 static __inline void
    262 pr_leave(struct pool *pp)
    263 {
    264 
    265 	if (__predict_false(pp->pr_entered_file == NULL)) {
    266 		printf("pool %s not entered?\n", pp->pr_wchan);
    267 		panic("pr_leave");
    268 	}
    269 
    270 	pp->pr_entered_file = NULL;
    271 	pp->pr_entered_line = 0;
    272 }
    273 
    274 static __inline void
    275 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    276 {
    277 
    278 	if (pp->pr_entered_file != NULL)
    279 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    280 		    pp->pr_entered_file, pp->pr_entered_line);
    281 }
    282 #else
    283 #define	pr_log(pp, v, action, file, line)
    284 #define	pr_printlog(pp, pi, pr)
    285 #define	pr_enter(pp, file, line)
    286 #define	pr_leave(pp)
    287 #define	pr_enter_check(pp, pr)
    288 #endif /* POOL_DIAGNOSTIC */
    289 
    290 /*
    291  * Return the pool page header based on page address.
    292  */
    293 static __inline struct pool_item_header *
    294 pr_find_pagehead(struct pool *pp, caddr_t page)
    295 {
    296 	struct pool_item_header *ph;
    297 
    298 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    299 		return ((struct pool_item_header *)(page + pp->pr_phoffset));
    300 
    301 	for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]);
    302 	     ph != NULL;
    303 	     ph = LIST_NEXT(ph, ph_hashlist)) {
    304 		if (ph->ph_page == page)
    305 			return (ph);
    306 	}
    307 	return (NULL);
    308 }
    309 
    310 /*
    311  * Remove a page from the pool.
    312  */
    313 static __inline void
    314 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    315      struct pool_pagelist *pq)
    316 {
    317 	int s;
    318 
    319 	/*
    320 	 * If the page was idle, decrement the idle page count.
    321 	 */
    322 	if (ph->ph_nmissing == 0) {
    323 #ifdef DIAGNOSTIC
    324 		if (pp->pr_nidle == 0)
    325 			panic("pr_rmpage: nidle inconsistent");
    326 		if (pp->pr_nitems < pp->pr_itemsperpage)
    327 			panic("pr_rmpage: nitems inconsistent");
    328 #endif
    329 		pp->pr_nidle--;
    330 	}
    331 
    332 	pp->pr_nitems -= pp->pr_itemsperpage;
    333 
    334 	/*
    335 	 * Unlink a page from the pool and release it (or queue it for release).
    336 	 */
    337 	TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    338 	if (pq) {
    339 		TAILQ_INSERT_HEAD(pq, ph, ph_pagelist);
    340 	} else {
    341 		(*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype);
    342 		if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    343 			LIST_REMOVE(ph, ph_hashlist);
    344 			s = splhigh();
    345 			pool_put(&phpool, ph);
    346 			splx(s);
    347 		}
    348 	}
    349 	pp->pr_npages--;
    350 	pp->pr_npagefree++;
    351 
    352 	if (pp->pr_curpage == ph) {
    353 		/*
    354 		 * Find a new non-empty page header, if any.
    355 		 * Start search from the page head, to increase the
    356 		 * chance for "high water" pages to be freed.
    357 		 */
    358 		TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist)
    359 			if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    360 				break;
    361 
    362 		pp->pr_curpage = ph;
    363 	}
    364 }
    365 
    366 /*
    367  * Initialize the given pool resource structure.
    368  *
    369  * We export this routine to allow other kernel parts to declare
    370  * static pools that must be initialized before malloc() is available.
    371  */
    372 void
    373 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    374     const char *wchan, size_t pagesz,
    375     void *(*alloc)(unsigned long, int, int),
    376     void (*release)(void *, unsigned long, int),
    377     int mtype)
    378 {
    379 	int off, slack, i;
    380 
    381 #ifdef POOL_DIAGNOSTIC
    382 	/*
    383 	 * Always log if POOL_DIAGNOSTIC is defined.
    384 	 */
    385 	if (pool_logsize != 0)
    386 		flags |= PR_LOGGING;
    387 #endif
    388 
    389 	/*
    390 	 * Check arguments and construct default values.
    391 	 */
    392 	if (!powerof2(pagesz))
    393 		panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz);
    394 
    395 	if (alloc == NULL && release == NULL) {
    396 #ifdef POOL_SUBPAGE
    397 		alloc = pool_subpage_alloc;
    398 		release = pool_subpage_free;
    399 		pagesz = POOL_SUBPAGE;
    400 #else
    401 		alloc = pool_page_alloc;
    402 		release = pool_page_free;
    403 		pagesz = PAGE_SIZE;	/* Rounds to PAGE_SIZE anyhow. */
    404 #endif
    405 	} else if ((alloc != NULL && release != NULL) == 0) {
    406 		/* If you specifiy one, must specify both. */
    407 		panic("pool_init: must specify alloc and release together");
    408 	}
    409 #ifdef POOL_SUBPAGE
    410 	else if (alloc == pool_page_alloc_nointr &&
    411 	    release == pool_page_free_nointr)
    412 		pagesz = POOL_SUBPAGE;
    413 #endif
    414 
    415 	if (pagesz == 0)
    416 		pagesz = PAGE_SIZE;
    417 
    418 	if (align == 0)
    419 		align = ALIGN(1);
    420 
    421 	if (size < sizeof(struct pool_item))
    422 		size = sizeof(struct pool_item);
    423 
    424 	size = ALIGN(size);
    425 	if (size > pagesz)
    426 		panic("pool_init: pool item size (%lu) too large",
    427 		      (u_long)size);
    428 
    429 	/*
    430 	 * Initialize the pool structure.
    431 	 */
    432 	TAILQ_INIT(&pp->pr_pagelist);
    433 	TAILQ_INIT(&pp->pr_cachelist);
    434 	pp->pr_curpage = NULL;
    435 	pp->pr_npages = 0;
    436 	pp->pr_minitems = 0;
    437 	pp->pr_minpages = 0;
    438 	pp->pr_maxpages = UINT_MAX;
    439 	pp->pr_roflags = flags;
    440 	pp->pr_flags = 0;
    441 	pp->pr_size = size;
    442 	pp->pr_align = align;
    443 	pp->pr_wchan = wchan;
    444 	pp->pr_mtype = mtype;
    445 	pp->pr_alloc = alloc;
    446 	pp->pr_free = release;
    447 	pp->pr_pagesz = pagesz;
    448 	pp->pr_pagemask = ~(pagesz - 1);
    449 	pp->pr_pageshift = ffs(pagesz) - 1;
    450 	pp->pr_nitems = 0;
    451 	pp->pr_nout = 0;
    452 	pp->pr_hardlimit = UINT_MAX;
    453 	pp->pr_hardlimit_warning = NULL;
    454 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    455 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    456 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    457 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    458 
    459 	/*
    460 	 * Decide whether to put the page header off page to avoid
    461 	 * wasting too large a part of the page. Off-page page headers
    462 	 * go on a hash table, so we can match a returned item
    463 	 * with its header based on the page address.
    464 	 * We use 1/16 of the page size as the threshold (XXX: tune)
    465 	 */
    466 	if (pp->pr_size < pagesz/16) {
    467 		/* Use the end of the page for the page header */
    468 		pp->pr_roflags |= PR_PHINPAGE;
    469 		pp->pr_phoffset = off =
    470 			pagesz - ALIGN(sizeof(struct pool_item_header));
    471 	} else {
    472 		/* The page header will be taken from our page header pool */
    473 		pp->pr_phoffset = 0;
    474 		off = pagesz;
    475 		for (i = 0; i < PR_HASHTABSIZE; i++) {
    476 			LIST_INIT(&pp->pr_hashtab[i]);
    477 		}
    478 	}
    479 
    480 	/*
    481 	 * Alignment is to take place at `ioff' within the item. This means
    482 	 * we must reserve up to `align - 1' bytes on the page to allow
    483 	 * appropriate positioning of each item.
    484 	 *
    485 	 * Silently enforce `0 <= ioff < align'.
    486 	 */
    487 	pp->pr_itemoffset = ioff = ioff % align;
    488 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    489 	KASSERT(pp->pr_itemsperpage != 0);
    490 
    491 	/*
    492 	 * Use the slack between the chunks and the page header
    493 	 * for "cache coloring".
    494 	 */
    495 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    496 	pp->pr_maxcolor = (slack / align) * align;
    497 	pp->pr_curcolor = 0;
    498 
    499 	pp->pr_nget = 0;
    500 	pp->pr_nfail = 0;
    501 	pp->pr_nput = 0;
    502 	pp->pr_npagealloc = 0;
    503 	pp->pr_npagefree = 0;
    504 	pp->pr_hiwat = 0;
    505 	pp->pr_nidle = 0;
    506 
    507 #ifdef POOL_DIAGNOSTIC
    508 	if (flags & PR_LOGGING) {
    509 		if (kmem_map == NULL ||
    510 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    511 		     M_TEMP, M_NOWAIT)) == NULL)
    512 			pp->pr_roflags &= ~PR_LOGGING;
    513 		pp->pr_curlogentry = 0;
    514 		pp->pr_logsize = pool_logsize;
    515 	}
    516 #endif
    517 
    518 	pp->pr_entered_file = NULL;
    519 	pp->pr_entered_line = 0;
    520 
    521 	simple_lock_init(&pp->pr_slock);
    522 
    523 	/*
    524 	 * Initialize private page header pool and cache magazine pool if we
    525 	 * haven't done so yet.
    526 	 * XXX LOCKING.
    527 	 */
    528 	if (phpool.pr_size == 0) {
    529 #ifdef POOL_SUBPAGE
    530 		pool_init(&phpool, sizeof(struct pool_item_header), 0, 0, 0,
    531 		    "phpool", PAGE_SIZE, pool_page_alloc, pool_page_free, 0);
    532 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    533 		    PR_RECURSIVE, "psppool", PAGE_SIZE,
    534 		    pool_page_alloc, pool_page_free, 0);
    535 #else
    536 		pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
    537 		    0, "phpool", 0, 0, 0, 0);
    538 #endif
    539 		pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
    540 		    0, "pcgpool", 0, 0, 0, 0);
    541 	}
    542 
    543 	/* Insert into the list of all pools. */
    544 	simple_lock(&pool_head_slock);
    545 	TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    546 	simple_unlock(&pool_head_slock);
    547 }
    548 
    549 /*
    550  * De-commision a pool resource.
    551  */
    552 void
    553 pool_destroy(struct pool *pp)
    554 {
    555 	struct pool_item_header *ph;
    556 	struct pool_cache *pc;
    557 
    558 	/* Destroy all caches for this pool. */
    559 	while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL)
    560 		pool_cache_destroy(pc);
    561 
    562 #ifdef DIAGNOSTIC
    563 	if (pp->pr_nout != 0) {
    564 		pr_printlog(pp, NULL, printf);
    565 		panic("pool_destroy: pool busy: still out: %u\n",
    566 		    pp->pr_nout);
    567 	}
    568 #endif
    569 
    570 	/* Remove all pages */
    571 	if ((pp->pr_roflags & PR_STATIC) == 0)
    572 		while ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
    573 			pr_rmpage(pp, ph, NULL);
    574 
    575 	/* Remove from global pool list */
    576 	simple_lock(&pool_head_slock);
    577 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    578 	if (drainpp == pp) {
    579 		drainpp = NULL;
    580 	}
    581 	simple_unlock(&pool_head_slock);
    582 
    583 #ifdef POOL_DIAGNOSTIC
    584 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    585 		free(pp->pr_log, M_TEMP);
    586 #endif
    587 
    588 	if (pp->pr_roflags & PR_FREEHEADER)
    589 		free(pp, M_POOL);
    590 }
    591 
    592 static __inline struct pool_item_header *
    593 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
    594 {
    595 	struct pool_item_header *ph;
    596 	int s;
    597 
    598 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
    599 
    600 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    601 		ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
    602 	else {
    603 		s = splhigh();
    604 		ph = pool_get(&phpool, flags);
    605 		splx(s);
    606 	}
    607 
    608 	return (ph);
    609 }
    610 
    611 /*
    612  * Grab an item from the pool; must be called at appropriate spl level
    613  */
    614 void *
    615 #ifdef POOL_DIAGNOSTIC
    616 _pool_get(struct pool *pp, int flags, const char *file, long line)
    617 #else
    618 pool_get(struct pool *pp, int flags)
    619 #endif
    620 {
    621 	struct pool_item *pi;
    622 	struct pool_item_header *ph;
    623 	void *v;
    624 
    625 #ifdef DIAGNOSTIC
    626 	if (__predict_false((pp->pr_roflags & PR_STATIC) &&
    627 			    (flags & PR_MALLOCOK))) {
    628 		pr_printlog(pp, NULL, printf);
    629 		panic("pool_get: static");
    630 	}
    631 
    632 	if (__predict_false(curproc == NULL && doing_shutdown == 0 &&
    633 			    (flags & PR_WAITOK) != 0))
    634 		panic("pool_get: must have NOWAIT");
    635 
    636 #ifdef LOCKDEBUG
    637 	if (flags & PR_WAITOK)
    638 		simple_lock_only_held(NULL, "pool_get(PR_WAITOK)");
    639 #endif
    640 #endif /* DIAGNOSTIC */
    641 
    642 	simple_lock(&pp->pr_slock);
    643 	pr_enter(pp, file, line);
    644 
    645  startover:
    646 	/*
    647 	 * Check to see if we've reached the hard limit.  If we have,
    648 	 * and we can wait, then wait until an item has been returned to
    649 	 * the pool.
    650 	 */
    651 #ifdef DIAGNOSTIC
    652 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
    653 		pr_leave(pp);
    654 		simple_unlock(&pp->pr_slock);
    655 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
    656 	}
    657 #endif
    658 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    659 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    660 			/*
    661 			 * XXX: A warning isn't logged in this case.  Should
    662 			 * it be?
    663 			 */
    664 			pp->pr_flags |= PR_WANTED;
    665 			pr_leave(pp);
    666 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
    667 			pr_enter(pp, file, line);
    668 			goto startover;
    669 		}
    670 
    671 		/*
    672 		 * Log a message that the hard limit has been hit.
    673 		 */
    674 		if (pp->pr_hardlimit_warning != NULL &&
    675 		    ratecheck(&pp->pr_hardlimit_warning_last,
    676 			      &pp->pr_hardlimit_ratecap))
    677 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    678 
    679 		if (flags & PR_URGENT)
    680 			panic("pool_get: urgent");
    681 
    682 		pp->pr_nfail++;
    683 
    684 		pr_leave(pp);
    685 		simple_unlock(&pp->pr_slock);
    686 		return (NULL);
    687 	}
    688 
    689 	/*
    690 	 * The convention we use is that if `curpage' is not NULL, then
    691 	 * it points at a non-empty bucket. In particular, `curpage'
    692 	 * never points at a page header which has PR_PHINPAGE set and
    693 	 * has no items in its bucket.
    694 	 */
    695 	if ((ph = pp->pr_curpage) == NULL) {
    696 #ifdef DIAGNOSTIC
    697 		if (pp->pr_nitems != 0) {
    698 			simple_unlock(&pp->pr_slock);
    699 			printf("pool_get: %s: curpage NULL, nitems %u\n",
    700 			    pp->pr_wchan, pp->pr_nitems);
    701 			panic("pool_get: nitems inconsistent\n");
    702 		}
    703 #endif
    704 
    705 		/*
    706 		 * Call the back-end page allocator for more memory.
    707 		 * Release the pool lock, as the back-end page allocator
    708 		 * may block.
    709 		 */
    710 		pr_leave(pp);
    711 		simple_unlock(&pp->pr_slock);
    712 		v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype);
    713 		if (__predict_true(v != NULL))
    714 			ph = pool_alloc_item_header(pp, v, flags);
    715 		simple_lock(&pp->pr_slock);
    716 		pr_enter(pp, file, line);
    717 
    718 		if (__predict_false(v == NULL || ph == NULL)) {
    719 			if (v != NULL)
    720 				(*pp->pr_free)(v, pp->pr_pagesz, pp->pr_mtype);
    721 
    722 			/*
    723 			 * We were unable to allocate a page or item
    724 			 * header, but we released the lock during
    725 			 * allocation, so perhaps items were freed
    726 			 * back to the pool.  Check for this case.
    727 			 */
    728 			if (pp->pr_curpage != NULL)
    729 				goto startover;
    730 
    731 			if (flags & PR_URGENT)
    732 				panic("pool_get: urgent");
    733 
    734 			if ((flags & PR_WAITOK) == 0) {
    735 				pp->pr_nfail++;
    736 				pr_leave(pp);
    737 				simple_unlock(&pp->pr_slock);
    738 				return (NULL);
    739 			}
    740 
    741 			/*
    742 			 * Wait for items to be returned to this pool.
    743 			 *
    744 			 * XXX: we actually want to wait just until
    745 			 * the page allocator has memory again. Depending
    746 			 * on this pool's usage, we might get stuck here
    747 			 * for a long time.
    748 			 *
    749 			 * XXX: maybe we should wake up once a second and
    750 			 * try again?
    751 			 */
    752 			pp->pr_flags |= PR_WANTED;
    753 			pr_leave(pp);
    754 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
    755 			pr_enter(pp, file, line);
    756 			goto startover;
    757 		}
    758 
    759 		/* We have more memory; add it to the pool */
    760 		pool_prime_page(pp, v, ph);
    761 		pp->pr_npagealloc++;
    762 
    763 		/* Start the allocation process over. */
    764 		goto startover;
    765 	}
    766 
    767 	if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
    768 		pr_leave(pp);
    769 		simple_unlock(&pp->pr_slock);
    770 		panic("pool_get: %s: page empty", pp->pr_wchan);
    771 	}
    772 #ifdef DIAGNOSTIC
    773 	if (__predict_false(pp->pr_nitems == 0)) {
    774 		pr_leave(pp);
    775 		simple_unlock(&pp->pr_slock);
    776 		printf("pool_get: %s: items on itemlist, nitems %u\n",
    777 		    pp->pr_wchan, pp->pr_nitems);
    778 		panic("pool_get: nitems inconsistent\n");
    779 	}
    780 #endif
    781 
    782 #ifdef POOL_DIAGNOSTIC
    783 	pr_log(pp, v, PRLOG_GET, file, line);
    784 #endif
    785 
    786 #ifdef DIAGNOSTIC
    787 	if (__predict_false(pi->pi_magic != PI_MAGIC)) {
    788 		pr_printlog(pp, pi, printf);
    789 		panic("pool_get(%s): free list modified: magic=%x; page %p;"
    790 		       " item addr %p\n",
    791 			pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    792 	}
    793 #endif
    794 
    795 	/*
    796 	 * Remove from item list.
    797 	 */
    798 	TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
    799 	pp->pr_nitems--;
    800 	pp->pr_nout++;
    801 	if (ph->ph_nmissing == 0) {
    802 #ifdef DIAGNOSTIC
    803 		if (__predict_false(pp->pr_nidle == 0))
    804 			panic("pool_get: nidle inconsistent");
    805 #endif
    806 		pp->pr_nidle--;
    807 	}
    808 	ph->ph_nmissing++;
    809 	if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) {
    810 #ifdef DIAGNOSTIC
    811 		if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
    812 			pr_leave(pp);
    813 			simple_unlock(&pp->pr_slock);
    814 			panic("pool_get: %s: nmissing inconsistent",
    815 			    pp->pr_wchan);
    816 		}
    817 #endif
    818 		/*
    819 		 * Find a new non-empty page header, if any.
    820 		 * Start search from the page head, to increase
    821 		 * the chance for "high water" pages to be freed.
    822 		 *
    823 		 * Migrate empty pages to the end of the list.  This
    824 		 * will speed the update of curpage as pages become
    825 		 * idle.  Empty pages intermingled with idle pages
    826 		 * is no big deal.  As soon as a page becomes un-empty,
    827 		 * it will move back to the head of the list.
    828 		 */
    829 		TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    830 		TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
    831 		TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist)
    832 			if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    833 				break;
    834 
    835 		pp->pr_curpage = ph;
    836 	}
    837 
    838 	pp->pr_nget++;
    839 
    840 	/*
    841 	 * If we have a low water mark and we are now below that low
    842 	 * water mark, add more items to the pool.
    843 	 */
    844 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
    845 		/*
    846 		 * XXX: Should we log a warning?  Should we set up a timeout
    847 		 * to try again in a second or so?  The latter could break
    848 		 * a caller's assumptions about interrupt protection, etc.
    849 		 */
    850 	}
    851 
    852 	pr_leave(pp);
    853 	simple_unlock(&pp->pr_slock);
    854 	return (v);
    855 }
    856 
    857 /*
    858  * Internal version of pool_put().  Pool is already locked/entered.
    859  */
    860 static void
    861 pool_do_put(struct pool *pp, void *v)
    862 {
    863 	struct pool_item *pi = v;
    864 	struct pool_item_header *ph;
    865 	caddr_t page;
    866 	int s;
    867 
    868 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
    869 
    870 	page = (caddr_t)((u_long)v & pp->pr_pagemask);
    871 
    872 #ifdef DIAGNOSTIC
    873 	if (__predict_false(pp->pr_nout == 0)) {
    874 		printf("pool %s: putting with none out\n",
    875 		    pp->pr_wchan);
    876 		panic("pool_put");
    877 	}
    878 #endif
    879 
    880 	if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
    881 		pr_printlog(pp, NULL, printf);
    882 		panic("pool_put: %s: page header missing", pp->pr_wchan);
    883 	}
    884 
    885 #ifdef LOCKDEBUG
    886 	/*
    887 	 * Check if we're freeing a locked simple lock.
    888 	 */
    889 	simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
    890 #endif
    891 
    892 	/*
    893 	 * Return to item list.
    894 	 */
    895 #ifdef DIAGNOSTIC
    896 	pi->pi_magic = PI_MAGIC;
    897 #endif
    898 #ifdef DEBUG
    899 	{
    900 		int i, *ip = v;
    901 
    902 		for (i = 0; i < pp->pr_size / sizeof(int); i++) {
    903 			*ip++ = PI_MAGIC;
    904 		}
    905 	}
    906 #endif
    907 
    908 	TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    909 	ph->ph_nmissing--;
    910 	pp->pr_nput++;
    911 	pp->pr_nitems++;
    912 	pp->pr_nout--;
    913 
    914 	/* Cancel "pool empty" condition if it exists */
    915 	if (pp->pr_curpage == NULL)
    916 		pp->pr_curpage = ph;
    917 
    918 	if (pp->pr_flags & PR_WANTED) {
    919 		pp->pr_flags &= ~PR_WANTED;
    920 		if (ph->ph_nmissing == 0)
    921 			pp->pr_nidle++;
    922 		wakeup((caddr_t)pp);
    923 		return;
    924 	}
    925 
    926 	/*
    927 	 * If this page is now complete, do one of two things:
    928 	 *
    929 	 *	(1) If we have more pages than the page high water
    930 	 *	    mark, free the page back to the system.
    931 	 *
    932 	 *	(2) Move it to the end of the page list, so that
    933 	 *	    we minimize our chances of fragmenting the
    934 	 *	    pool.  Idle pages migrate to the end (along with
    935 	 *	    completely empty pages, so that we find un-empty
    936 	 *	    pages more quickly when we update curpage) of the
    937 	 *	    list so they can be more easily swept up by
    938 	 *	    the pagedaemon when pages are scarce.
    939 	 */
    940 	if (ph->ph_nmissing == 0) {
    941 		pp->pr_nidle++;
    942 		if (pp->pr_npages > pp->pr_maxpages) {
    943 			pr_rmpage(pp, ph, NULL);
    944 		} else {
    945 			TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    946 			TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
    947 
    948 			/*
    949 			 * Update the timestamp on the page.  A page must
    950 			 * be idle for some period of time before it can
    951 			 * be reclaimed by the pagedaemon.  This minimizes
    952 			 * ping-pong'ing for memory.
    953 			 */
    954 			s = splclock();
    955 			ph->ph_time = mono_time;
    956 			splx(s);
    957 
    958 			/*
    959 			 * Update the current page pointer.  Just look for
    960 			 * the first page with any free items.
    961 			 *
    962 			 * XXX: Maybe we want an option to look for the
    963 			 * page with the fewest available items, to minimize
    964 			 * fragmentation?
    965 			 */
    966 			TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist)
    967 				if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    968 					break;
    969 
    970 			pp->pr_curpage = ph;
    971 		}
    972 	}
    973 	/*
    974 	 * If the page has just become un-empty, move it to the head of
    975 	 * the list, and make it the current page.  The next allocation
    976 	 * will get the item from this page, instead of further fragmenting
    977 	 * the pool.
    978 	 */
    979 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
    980 		TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    981 		TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
    982 		pp->pr_curpage = ph;
    983 	}
    984 }
    985 
    986 /*
    987  * Return resource to the pool; must be called at appropriate spl level
    988  */
    989 #ifdef POOL_DIAGNOSTIC
    990 void
    991 _pool_put(struct pool *pp, void *v, const char *file, long line)
    992 {
    993 
    994 	simple_lock(&pp->pr_slock);
    995 	pr_enter(pp, file, line);
    996 
    997 	pr_log(pp, v, PRLOG_PUT, file, line);
    998 
    999 	pool_do_put(pp, v);
   1000 
   1001 	pr_leave(pp);
   1002 	simple_unlock(&pp->pr_slock);
   1003 }
   1004 #undef pool_put
   1005 #endif /* POOL_DIAGNOSTIC */
   1006 
   1007 void
   1008 pool_put(struct pool *pp, void *v)
   1009 {
   1010 
   1011 	simple_lock(&pp->pr_slock);
   1012 
   1013 	pool_do_put(pp, v);
   1014 
   1015 	simple_unlock(&pp->pr_slock);
   1016 }
   1017 
   1018 #ifdef POOL_DIAGNOSTIC
   1019 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1020 #endif
   1021 
   1022 /*
   1023  * Add N items to the pool.
   1024  */
   1025 int
   1026 pool_prime(struct pool *pp, int n)
   1027 {
   1028 	struct pool_item_header *ph;
   1029 	caddr_t cp;
   1030 	int newpages, error = 0;
   1031 
   1032 	simple_lock(&pp->pr_slock);
   1033 
   1034 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1035 
   1036 	while (newpages-- > 0) {
   1037 		simple_unlock(&pp->pr_slock);
   1038 		cp = (*pp->pr_alloc)(pp->pr_pagesz, PR_NOWAIT, pp->pr_mtype);
   1039 		if (__predict_true(cp != NULL))
   1040 			ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
   1041 		simple_lock(&pp->pr_slock);
   1042 
   1043 		if (__predict_false(cp == NULL || ph == NULL)) {
   1044 			error = ENOMEM;
   1045 			if (cp != NULL)
   1046 				(*pp->pr_free)(cp, pp->pr_pagesz, pp->pr_mtype);
   1047 			break;
   1048 		}
   1049 
   1050 		pool_prime_page(pp, cp, ph);
   1051 		pp->pr_npagealloc++;
   1052 		pp->pr_minpages++;
   1053 	}
   1054 
   1055 	if (pp->pr_minpages >= pp->pr_maxpages)
   1056 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1057 
   1058 	simple_unlock(&pp->pr_slock);
   1059 	return (0);
   1060 }
   1061 
   1062 /*
   1063  * Add a page worth of items to the pool.
   1064  *
   1065  * Note, we must be called with the pool descriptor LOCKED.
   1066  */
   1067 static void
   1068 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
   1069 {
   1070 	struct pool_item *pi;
   1071 	caddr_t cp = storage;
   1072 	unsigned int align = pp->pr_align;
   1073 	unsigned int ioff = pp->pr_itemoffset;
   1074 	int n;
   1075 
   1076 	if (((u_long)cp & (pp->pr_pagesz - 1)) != 0)
   1077 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1078 
   1079 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1080 		LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)],
   1081 		    ph, ph_hashlist);
   1082 
   1083 	/*
   1084 	 * Insert page header.
   1085 	 */
   1086 	TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
   1087 	TAILQ_INIT(&ph->ph_itemlist);
   1088 	ph->ph_page = storage;
   1089 	ph->ph_nmissing = 0;
   1090 	memset(&ph->ph_time, 0, sizeof(ph->ph_time));
   1091 
   1092 	pp->pr_nidle++;
   1093 
   1094 	/*
   1095 	 * Color this page.
   1096 	 */
   1097 	cp = (caddr_t)(cp + pp->pr_curcolor);
   1098 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1099 		pp->pr_curcolor = 0;
   1100 
   1101 	/*
   1102 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1103 	 */
   1104 	if (ioff != 0)
   1105 		cp = (caddr_t)(cp + (align - ioff));
   1106 
   1107 	/*
   1108 	 * Insert remaining chunks on the bucket list.
   1109 	 */
   1110 	n = pp->pr_itemsperpage;
   1111 	pp->pr_nitems += n;
   1112 
   1113 	while (n--) {
   1114 		pi = (struct pool_item *)cp;
   1115 
   1116 		/* Insert on page list */
   1117 		TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
   1118 #ifdef DIAGNOSTIC
   1119 		pi->pi_magic = PI_MAGIC;
   1120 #endif
   1121 		cp = (caddr_t)(cp + pp->pr_size);
   1122 	}
   1123 
   1124 	/*
   1125 	 * If the pool was depleted, point at the new page.
   1126 	 */
   1127 	if (pp->pr_curpage == NULL)
   1128 		pp->pr_curpage = ph;
   1129 
   1130 	if (++pp->pr_npages > pp->pr_hiwat)
   1131 		pp->pr_hiwat = pp->pr_npages;
   1132 }
   1133 
   1134 /*
   1135  * Used by pool_get() when nitems drops below the low water mark.  This
   1136  * is used to catch up nitmes with the low water mark.
   1137  *
   1138  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1139  *
   1140  * Note 2, this doesn't work with static pools.
   1141  *
   1142  * Note 3, we must be called with the pool already locked, and we return
   1143  * with it locked.
   1144  */
   1145 static int
   1146 pool_catchup(struct pool *pp)
   1147 {
   1148 	struct pool_item_header *ph;
   1149 	caddr_t cp;
   1150 	int error = 0;
   1151 
   1152 	if (pp->pr_roflags & PR_STATIC) {
   1153 		/*
   1154 		 * We dropped below the low water mark, and this is not a
   1155 		 * good thing.  Log a warning.
   1156 		 *
   1157 		 * XXX: rate-limit this?
   1158 		 */
   1159 		printf("WARNING: static pool `%s' dropped below low water "
   1160 		    "mark\n", pp->pr_wchan);
   1161 		return (0);
   1162 	}
   1163 
   1164 	while (POOL_NEEDS_CATCHUP(pp)) {
   1165 		/*
   1166 		 * Call the page back-end allocator for more memory.
   1167 		 *
   1168 		 * XXX: We never wait, so should we bother unlocking
   1169 		 * the pool descriptor?
   1170 		 */
   1171 		simple_unlock(&pp->pr_slock);
   1172 		cp = (*pp->pr_alloc)(pp->pr_pagesz, PR_NOWAIT, pp->pr_mtype);
   1173 		if (__predict_true(cp != NULL))
   1174 			ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
   1175 		simple_lock(&pp->pr_slock);
   1176 		if (__predict_false(cp == NULL || ph == NULL)) {
   1177 			if (cp != NULL)
   1178 				(*pp->pr_free)(cp, pp->pr_pagesz, pp->pr_mtype);
   1179 			error = ENOMEM;
   1180 			break;
   1181 		}
   1182 		pool_prime_page(pp, cp, ph);
   1183 		pp->pr_npagealloc++;
   1184 	}
   1185 
   1186 	return (error);
   1187 }
   1188 
   1189 void
   1190 pool_setlowat(struct pool *pp, int n)
   1191 {
   1192 	int error;
   1193 
   1194 	simple_lock(&pp->pr_slock);
   1195 
   1196 	pp->pr_minitems = n;
   1197 	pp->pr_minpages = (n == 0)
   1198 		? 0
   1199 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1200 
   1201 	/* Make sure we're caught up with the newly-set low water mark. */
   1202 	if (POOL_NEEDS_CATCHUP(pp) && (error = pool_catchup(pp) != 0)) {
   1203 		/*
   1204 		 * XXX: Should we log a warning?  Should we set up a timeout
   1205 		 * to try again in a second or so?  The latter could break
   1206 		 * a caller's assumptions about interrupt protection, etc.
   1207 		 */
   1208 	}
   1209 
   1210 	simple_unlock(&pp->pr_slock);
   1211 }
   1212 
   1213 void
   1214 pool_sethiwat(struct pool *pp, int n)
   1215 {
   1216 
   1217 	simple_lock(&pp->pr_slock);
   1218 
   1219 	pp->pr_maxpages = (n == 0)
   1220 		? 0
   1221 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1222 
   1223 	simple_unlock(&pp->pr_slock);
   1224 }
   1225 
   1226 void
   1227 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1228 {
   1229 
   1230 	simple_lock(&pp->pr_slock);
   1231 
   1232 	pp->pr_hardlimit = n;
   1233 	pp->pr_hardlimit_warning = warnmess;
   1234 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1235 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1236 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1237 
   1238 	/*
   1239 	 * In-line version of pool_sethiwat(), because we don't want to
   1240 	 * release the lock.
   1241 	 */
   1242 	pp->pr_maxpages = (n == 0)
   1243 		? 0
   1244 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1245 
   1246 	simple_unlock(&pp->pr_slock);
   1247 }
   1248 
   1249 /*
   1250  * Default page allocator.
   1251  */
   1252 static void *
   1253 pool_page_alloc(unsigned long sz, int flags, int mtype)
   1254 {
   1255 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   1256 
   1257 	return ((void *)uvm_km_alloc_poolpage(waitok));
   1258 }
   1259 
   1260 static void
   1261 pool_page_free(void *v, unsigned long sz, int mtype)
   1262 {
   1263 
   1264 	uvm_km_free_poolpage((vaddr_t)v);
   1265 }
   1266 
   1267 #ifdef POOL_SUBPAGE
   1268 /*
   1269  * Sub-page allocator, for machines with large hardware pages.
   1270  */
   1271 static void *
   1272 pool_subpage_alloc(unsigned long sz, int flags, int mtype)
   1273 {
   1274 
   1275 	return pool_get(&psppool, flags);
   1276 }
   1277 
   1278 static void
   1279 pool_subpage_free(void *v, unsigned long sz, int mtype)
   1280 {
   1281 
   1282 	pool_put(&psppool, v);
   1283 }
   1284 #endif
   1285 
   1286 #ifdef POOL_SUBPAGE
   1287 /* We don't provide a real nointr allocator.  Maybe later. */
   1288 void *
   1289 pool_page_alloc_nointr(unsigned long sz, int flags, int mtype)
   1290 {
   1291 
   1292 	return pool_subpage_alloc(sz, flags, mtype);
   1293 }
   1294 
   1295 void
   1296 pool_page_free_nointr(void *v, unsigned long sz, int mtype)
   1297 {
   1298 
   1299 	pool_subpage_free(v, sz, mtype);
   1300 }
   1301 #else
   1302 /*
   1303  * Alternate pool page allocator for pools that know they will
   1304  * never be accessed in interrupt context.
   1305  */
   1306 void *
   1307 pool_page_alloc_nointr(unsigned long sz, int flags, int mtype)
   1308 {
   1309 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   1310 
   1311 	return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object,
   1312 	    waitok));
   1313 }
   1314 
   1315 void
   1316 pool_page_free_nointr(void *v, unsigned long sz, int mtype)
   1317 {
   1318 
   1319 	uvm_km_free_poolpage1(kernel_map, (vaddr_t)v);
   1320 }
   1321 #endif
   1322 
   1323 
   1324 /*
   1325  * Release all complete pages that have not been used recently.
   1326  */
   1327 void
   1328 #ifdef POOL_DIAGNOSTIC
   1329 _pool_reclaim(struct pool *pp, const char *file, long line)
   1330 #else
   1331 pool_reclaim(struct pool *pp)
   1332 #endif
   1333 {
   1334 	struct pool_item_header *ph, *phnext;
   1335 	struct pool_cache *pc;
   1336 	struct timeval curtime;
   1337 	struct pool_pagelist pq;
   1338 	int s;
   1339 
   1340 	if (pp->pr_roflags & PR_STATIC)
   1341 		return;
   1342 
   1343 	if (simple_lock_try(&pp->pr_slock) == 0)
   1344 		return;
   1345 	pr_enter(pp, file, line);
   1346 	TAILQ_INIT(&pq);
   1347 
   1348 	/*
   1349 	 * Reclaim items from the pool's caches.
   1350 	 */
   1351 	TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
   1352 		pool_cache_reclaim(pc);
   1353 
   1354 	s = splclock();
   1355 	curtime = mono_time;
   1356 	splx(s);
   1357 
   1358 	for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) {
   1359 		phnext = TAILQ_NEXT(ph, ph_pagelist);
   1360 
   1361 		/* Check our minimum page claim */
   1362 		if (pp->pr_npages <= pp->pr_minpages)
   1363 			break;
   1364 
   1365 		if (ph->ph_nmissing == 0) {
   1366 			struct timeval diff;
   1367 			timersub(&curtime, &ph->ph_time, &diff);
   1368 			if (diff.tv_sec < pool_inactive_time)
   1369 				continue;
   1370 
   1371 			/*
   1372 			 * If freeing this page would put us below
   1373 			 * the low water mark, stop now.
   1374 			 */
   1375 			if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1376 			    pp->pr_minitems)
   1377 				break;
   1378 
   1379 			pr_rmpage(pp, ph, &pq);
   1380 		}
   1381 	}
   1382 
   1383 	pr_leave(pp);
   1384 	simple_unlock(&pp->pr_slock);
   1385 	if (TAILQ_EMPTY(&pq)) {
   1386 		return;
   1387 	}
   1388 	while ((ph = TAILQ_FIRST(&pq)) != NULL) {
   1389 		TAILQ_REMOVE(&pq, ph, ph_pagelist);
   1390 		(*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype);
   1391 		if (pp->pr_roflags & PR_PHINPAGE) {
   1392 			continue;
   1393 		}
   1394 		LIST_REMOVE(ph, ph_hashlist);
   1395 		s = splhigh();
   1396 		pool_put(&phpool, ph);
   1397 		splx(s);
   1398 	}
   1399 }
   1400 
   1401 
   1402 /*
   1403  * Drain pools, one at a time.
   1404  *
   1405  * Note, we must never be called from an interrupt context.
   1406  */
   1407 void
   1408 pool_drain(void *arg)
   1409 {
   1410 	struct pool *pp;
   1411 	int s;
   1412 
   1413 	pp = NULL;
   1414 	s = splvm();
   1415 	simple_lock(&pool_head_slock);
   1416 	if (drainpp == NULL) {
   1417 		drainpp = TAILQ_FIRST(&pool_head);
   1418 	}
   1419 	if (drainpp) {
   1420 		pp = drainpp;
   1421 		drainpp = TAILQ_NEXT(pp, pr_poollist);
   1422 	}
   1423 	simple_unlock(&pool_head_slock);
   1424 	pool_reclaim(pp);
   1425 	splx(s);
   1426 }
   1427 
   1428 
   1429 /*
   1430  * Diagnostic helpers.
   1431  */
   1432 void
   1433 pool_print(struct pool *pp, const char *modif)
   1434 {
   1435 	int s;
   1436 
   1437 	s = splvm();
   1438 	if (simple_lock_try(&pp->pr_slock) == 0) {
   1439 		printf("pool %s is locked; try again later\n",
   1440 		    pp->pr_wchan);
   1441 		splx(s);
   1442 		return;
   1443 	}
   1444 	pool_print1(pp, modif, printf);
   1445 	simple_unlock(&pp->pr_slock);
   1446 	splx(s);
   1447 }
   1448 
   1449 void
   1450 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1451 {
   1452 	int didlock = 0;
   1453 
   1454 	if (pp == NULL) {
   1455 		(*pr)("Must specify a pool to print.\n");
   1456 		return;
   1457 	}
   1458 
   1459 	/*
   1460 	 * Called from DDB; interrupts should be blocked, and all
   1461 	 * other processors should be paused.  We can skip locking
   1462 	 * the pool in this case.
   1463 	 *
   1464 	 * We do a simple_lock_try() just to print the lock
   1465 	 * status, however.
   1466 	 */
   1467 
   1468 	if (simple_lock_try(&pp->pr_slock) == 0)
   1469 		(*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
   1470 	else
   1471 		didlock = 1;
   1472 
   1473 	pool_print1(pp, modif, pr);
   1474 
   1475 	if (didlock)
   1476 		simple_unlock(&pp->pr_slock);
   1477 }
   1478 
   1479 static void
   1480 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1481 {
   1482 	struct pool_item_header *ph;
   1483 	struct pool_cache *pc;
   1484 	struct pool_cache_group *pcg;
   1485 #ifdef DIAGNOSTIC
   1486 	struct pool_item *pi;
   1487 #endif
   1488 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1489 	char c;
   1490 
   1491 	while ((c = *modif++) != '\0') {
   1492 		if (c == 'l')
   1493 			print_log = 1;
   1494 		if (c == 'p')
   1495 			print_pagelist = 1;
   1496 		if (c == 'c')
   1497 			print_cache = 1;
   1498 		modif++;
   1499 	}
   1500 
   1501 	(*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1502 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1503 	    pp->pr_roflags);
   1504 	(*pr)("\tpagesz %u, mtype %d\n", pp->pr_pagesz, pp->pr_mtype);
   1505 	(*pr)("\talloc %p, release %p\n", pp->pr_alloc, pp->pr_free);
   1506 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1507 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1508 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1509 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1510 
   1511 	(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
   1512 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1513 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1514 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1515 
   1516 	if (print_pagelist == 0)
   1517 		goto skip_pagelist;
   1518 
   1519 	if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
   1520 		(*pr)("\n\tpage list:\n");
   1521 	for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) {
   1522 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
   1523 		    ph->ph_page, ph->ph_nmissing,
   1524 		    (u_long)ph->ph_time.tv_sec,
   1525 		    (u_long)ph->ph_time.tv_usec);
   1526 #ifdef DIAGNOSTIC
   1527 		TAILQ_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1528 			if (pi->pi_magic != PI_MAGIC) {
   1529 				(*pr)("\t\t\titem %p, magic 0x%x\n",
   1530 				    pi, pi->pi_magic);
   1531 			}
   1532 		}
   1533 #endif
   1534 	}
   1535 	if (pp->pr_curpage == NULL)
   1536 		(*pr)("\tno current page\n");
   1537 	else
   1538 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1539 
   1540  skip_pagelist:
   1541 
   1542 	if (print_log == 0)
   1543 		goto skip_log;
   1544 
   1545 	(*pr)("\n");
   1546 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1547 		(*pr)("\tno log\n");
   1548 	else
   1549 		pr_printlog(pp, NULL, pr);
   1550 
   1551  skip_log:
   1552 
   1553 	if (print_cache == 0)
   1554 		goto skip_cache;
   1555 
   1556 	TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
   1557 		(*pr)("\tcache %p: allocfrom %p freeto %p\n", pc,
   1558 		    pc->pc_allocfrom, pc->pc_freeto);
   1559 		(*pr)("\t    hits %lu misses %lu ngroups %lu nitems %lu\n",
   1560 		    pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
   1561 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
   1562 			(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);
   1563 			for (i = 0; i < PCG_NOBJECTS; i++)
   1564 				(*pr)("\t\t\t%p\n", pcg->pcg_objects[i]);
   1565 		}
   1566 	}
   1567 
   1568  skip_cache:
   1569 
   1570 	pr_enter_check(pp, pr);
   1571 }
   1572 
   1573 int
   1574 pool_chk(struct pool *pp, const char *label)
   1575 {
   1576 	struct pool_item_header *ph;
   1577 	int r = 0;
   1578 
   1579 	simple_lock(&pp->pr_slock);
   1580 
   1581 	TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist) {
   1582 		struct pool_item *pi;
   1583 		int n;
   1584 		caddr_t page;
   1585 
   1586 		page = (caddr_t)((u_long)ph & pp->pr_pagemask);
   1587 		if (page != ph->ph_page &&
   1588 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1589 			if (label != NULL)
   1590 				printf("%s: ", label);
   1591 			printf("pool(%p:%s): page inconsistency: page %p;"
   1592 			       " at page head addr %p (p %p)\n", pp,
   1593 				pp->pr_wchan, ph->ph_page,
   1594 				ph, page);
   1595 			r++;
   1596 			goto out;
   1597 		}
   1598 
   1599 		for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
   1600 		     pi != NULL;
   1601 		     pi = TAILQ_NEXT(pi,pi_list), n++) {
   1602 
   1603 #ifdef DIAGNOSTIC
   1604 			if (pi->pi_magic != PI_MAGIC) {
   1605 				if (label != NULL)
   1606 					printf("%s: ", label);
   1607 				printf("pool(%s): free list modified: magic=%x;"
   1608 				       " page %p; item ordinal %d;"
   1609 				       " addr %p (p %p)\n",
   1610 					pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1611 					n, pi, page);
   1612 				panic("pool");
   1613 			}
   1614 #endif
   1615 			page = (caddr_t)((u_long)pi & pp->pr_pagemask);
   1616 			if (page == ph->ph_page)
   1617 				continue;
   1618 
   1619 			if (label != NULL)
   1620 				printf("%s: ", label);
   1621 			printf("pool(%p:%s): page inconsistency: page %p;"
   1622 			       " item ordinal %d; addr %p (p %p)\n", pp,
   1623 				pp->pr_wchan, ph->ph_page,
   1624 				n, pi, page);
   1625 			r++;
   1626 			goto out;
   1627 		}
   1628 	}
   1629 out:
   1630 	simple_unlock(&pp->pr_slock);
   1631 	return (r);
   1632 }
   1633 
   1634 /*
   1635  * pool_cache_init:
   1636  *
   1637  *	Initialize a pool cache.
   1638  *
   1639  *	NOTE: If the pool must be protected from interrupts, we expect
   1640  *	to be called at the appropriate interrupt priority level.
   1641  */
   1642 void
   1643 pool_cache_init(struct pool_cache *pc, struct pool *pp,
   1644     int (*ctor)(void *, void *, int),
   1645     void (*dtor)(void *, void *),
   1646     void *arg)
   1647 {
   1648 
   1649 	TAILQ_INIT(&pc->pc_grouplist);
   1650 	simple_lock_init(&pc->pc_slock);
   1651 
   1652 	pc->pc_allocfrom = NULL;
   1653 	pc->pc_freeto = NULL;
   1654 	pc->pc_pool = pp;
   1655 
   1656 	pc->pc_ctor = ctor;
   1657 	pc->pc_dtor = dtor;
   1658 	pc->pc_arg  = arg;
   1659 
   1660 	pc->pc_hits   = 0;
   1661 	pc->pc_misses = 0;
   1662 
   1663 	pc->pc_ngroups = 0;
   1664 
   1665 	pc->pc_nitems = 0;
   1666 
   1667 	simple_lock(&pp->pr_slock);
   1668 	TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist);
   1669 	simple_unlock(&pp->pr_slock);
   1670 }
   1671 
   1672 /*
   1673  * pool_cache_destroy:
   1674  *
   1675  *	Destroy a pool cache.
   1676  */
   1677 void
   1678 pool_cache_destroy(struct pool_cache *pc)
   1679 {
   1680 	struct pool *pp = pc->pc_pool;
   1681 
   1682 	/* First, invalidate the entire cache. */
   1683 	pool_cache_invalidate(pc);
   1684 
   1685 	/* ...and remove it from the pool's cache list. */
   1686 	simple_lock(&pp->pr_slock);
   1687 	TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist);
   1688 	simple_unlock(&pp->pr_slock);
   1689 }
   1690 
   1691 static __inline void *
   1692 pcg_get(struct pool_cache_group *pcg)
   1693 {
   1694 	void *object;
   1695 	u_int idx;
   1696 
   1697 	KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
   1698 	KASSERT(pcg->pcg_avail != 0);
   1699 	idx = --pcg->pcg_avail;
   1700 
   1701 	KASSERT(pcg->pcg_objects[idx] != NULL);
   1702 	object = pcg->pcg_objects[idx];
   1703 	pcg->pcg_objects[idx] = NULL;
   1704 
   1705 	return (object);
   1706 }
   1707 
   1708 static __inline void
   1709 pcg_put(struct pool_cache_group *pcg, void *object)
   1710 {
   1711 	u_int idx;
   1712 
   1713 	KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
   1714 	idx = pcg->pcg_avail++;
   1715 
   1716 	KASSERT(pcg->pcg_objects[idx] == NULL);
   1717 	pcg->pcg_objects[idx] = object;
   1718 }
   1719 
   1720 /*
   1721  * pool_cache_get:
   1722  *
   1723  *	Get an object from a pool cache.
   1724  */
   1725 void *
   1726 pool_cache_get(struct pool_cache *pc, int flags)
   1727 {
   1728 	struct pool_cache_group *pcg;
   1729 	void *object;
   1730 
   1731 #ifdef LOCKDEBUG
   1732 	if (flags & PR_WAITOK)
   1733 		simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)");
   1734 #endif
   1735 
   1736 	simple_lock(&pc->pc_slock);
   1737 
   1738 	if ((pcg = pc->pc_allocfrom) == NULL) {
   1739 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
   1740 			if (pcg->pcg_avail != 0) {
   1741 				pc->pc_allocfrom = pcg;
   1742 				goto have_group;
   1743 			}
   1744 		}
   1745 
   1746 		/*
   1747 		 * No groups with any available objects.  Allocate
   1748 		 * a new object, construct it, and return it to
   1749 		 * the caller.  We will allocate a group, if necessary,
   1750 		 * when the object is freed back to the cache.
   1751 		 */
   1752 		pc->pc_misses++;
   1753 		simple_unlock(&pc->pc_slock);
   1754 		object = pool_get(pc->pc_pool, flags);
   1755 		if (object != NULL && pc->pc_ctor != NULL) {
   1756 			if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
   1757 				pool_put(pc->pc_pool, object);
   1758 				return (NULL);
   1759 			}
   1760 		}
   1761 		return (object);
   1762 	}
   1763 
   1764  have_group:
   1765 	pc->pc_hits++;
   1766 	pc->pc_nitems--;
   1767 	object = pcg_get(pcg);
   1768 
   1769 	if (pcg->pcg_avail == 0)
   1770 		pc->pc_allocfrom = NULL;
   1771 
   1772 	simple_unlock(&pc->pc_slock);
   1773 
   1774 	return (object);
   1775 }
   1776 
   1777 /*
   1778  * pool_cache_put:
   1779  *
   1780  *	Put an object back to the pool cache.
   1781  */
   1782 void
   1783 pool_cache_put(struct pool_cache *pc, void *object)
   1784 {
   1785 	struct pool_cache_group *pcg;
   1786 	int s;
   1787 
   1788 	simple_lock(&pc->pc_slock);
   1789 
   1790 	if ((pcg = pc->pc_freeto) == NULL) {
   1791 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
   1792 			if (pcg->pcg_avail != PCG_NOBJECTS) {
   1793 				pc->pc_freeto = pcg;
   1794 				goto have_group;
   1795 			}
   1796 		}
   1797 
   1798 		/*
   1799 		 * No empty groups to free the object to.  Attempt to
   1800 		 * allocate one.
   1801 		 */
   1802 		simple_unlock(&pc->pc_slock);
   1803 		s = splvm();
   1804 		pcg = pool_get(&pcgpool, PR_NOWAIT);
   1805 		splx(s);
   1806 		if (pcg != NULL) {
   1807 			memset(pcg, 0, sizeof(*pcg));
   1808 			simple_lock(&pc->pc_slock);
   1809 			pc->pc_ngroups++;
   1810 			TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list);
   1811 			if (pc->pc_freeto == NULL)
   1812 				pc->pc_freeto = pcg;
   1813 			goto have_group;
   1814 		}
   1815 
   1816 		/*
   1817 		 * Unable to allocate a cache group; destruct the object
   1818 		 * and free it back to the pool.
   1819 		 */
   1820 		pool_cache_destruct_object(pc, object);
   1821 		return;
   1822 	}
   1823 
   1824  have_group:
   1825 	pc->pc_nitems++;
   1826 	pcg_put(pcg, object);
   1827 
   1828 	if (pcg->pcg_avail == PCG_NOBJECTS)
   1829 		pc->pc_freeto = NULL;
   1830 
   1831 	simple_unlock(&pc->pc_slock);
   1832 }
   1833 
   1834 /*
   1835  * pool_cache_destruct_object:
   1836  *
   1837  *	Force destruction of an object and its release back into
   1838  *	the pool.
   1839  */
   1840 void
   1841 pool_cache_destruct_object(struct pool_cache *pc, void *object)
   1842 {
   1843 
   1844 	if (pc->pc_dtor != NULL)
   1845 		(*pc->pc_dtor)(pc->pc_arg, object);
   1846 	pool_put(pc->pc_pool, object);
   1847 }
   1848 
   1849 /*
   1850  * pool_cache_do_invalidate:
   1851  *
   1852  *	This internal function implements pool_cache_invalidate() and
   1853  *	pool_cache_reclaim().
   1854  */
   1855 static void
   1856 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups,
   1857     void (*putit)(struct pool *, void *))
   1858 {
   1859 	struct pool_cache_group *pcg, *npcg;
   1860 	void *object;
   1861 	int s;
   1862 
   1863 	for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
   1864 	     pcg = npcg) {
   1865 		npcg = TAILQ_NEXT(pcg, pcg_list);
   1866 		while (pcg->pcg_avail != 0) {
   1867 			pc->pc_nitems--;
   1868 			object = pcg_get(pcg);
   1869 			if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg)
   1870 				pc->pc_allocfrom = NULL;
   1871 			if (pc->pc_dtor != NULL)
   1872 				(*pc->pc_dtor)(pc->pc_arg, object);
   1873 			(*putit)(pc->pc_pool, object);
   1874 		}
   1875 		if (free_groups) {
   1876 			pc->pc_ngroups--;
   1877 			TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list);
   1878 			if (pc->pc_freeto == pcg)
   1879 				pc->pc_freeto = NULL;
   1880 			s = splvm();
   1881 			pool_put(&pcgpool, pcg);
   1882 			splx(s);
   1883 		}
   1884 	}
   1885 }
   1886 
   1887 /*
   1888  * pool_cache_invalidate:
   1889  *
   1890  *	Invalidate a pool cache (destruct and release all of the
   1891  *	cached objects).
   1892  */
   1893 void
   1894 pool_cache_invalidate(struct pool_cache *pc)
   1895 {
   1896 
   1897 	simple_lock(&pc->pc_slock);
   1898 	pool_cache_do_invalidate(pc, 0, pool_put);
   1899 	simple_unlock(&pc->pc_slock);
   1900 }
   1901 
   1902 /*
   1903  * pool_cache_reclaim:
   1904  *
   1905  *	Reclaim a pool cache for pool_reclaim().
   1906  */
   1907 static void
   1908 pool_cache_reclaim(struct pool_cache *pc)
   1909 {
   1910 
   1911 	simple_lock(&pc->pc_slock);
   1912 	pool_cache_do_invalidate(pc, 1, pool_do_put);
   1913 	simple_unlock(&pc->pc_slock);
   1914 }
   1915