subr_pool.c revision 1.61 1 /* $NetBSD: subr_pool.c,v 1.61 2001/09/26 07:14:56 chs Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include "opt_pool.h"
41 #include "opt_poollog.h"
42 #include "opt_lockdebug.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/proc.h>
47 #include <sys/errno.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/lock.h>
51 #include <sys/pool.h>
52 #include <sys/syslog.h>
53
54 #include <uvm/uvm.h>
55
56 /*
57 * Pool resource management utility.
58 *
59 * Memory is allocated in pages which are split into pieces according
60 * to the pool item size. Each page is kept on a list headed by `pr_pagelist'
61 * in the pool structure and the individual pool items are on a linked list
62 * headed by `ph_itemlist' in each page header. The memory for building
63 * the page list is either taken from the allocated pages themselves (for
64 * small pool items) or taken from an internal pool of page headers (`phpool').
65 */
66
67 /* List of all pools */
68 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
69
70 /* Private pool for page header structures */
71 static struct pool phpool;
72
73 /* # of seconds to retain page after last use */
74 int pool_inactive_time = 10;
75
76 /* Next candidate for drainage (see pool_drain()) */
77 static struct pool *drainpp;
78
79 /* This spin lock protects both pool_head and drainpp. */
80 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
81
82 struct pool_item_header {
83 /* Page headers */
84 TAILQ_ENTRY(pool_item_header)
85 ph_pagelist; /* pool page list */
86 TAILQ_HEAD(,pool_item) ph_itemlist; /* chunk list for this page */
87 LIST_ENTRY(pool_item_header)
88 ph_hashlist; /* Off-page page headers */
89 int ph_nmissing; /* # of chunks in use */
90 caddr_t ph_page; /* this page's address */
91 struct timeval ph_time; /* last referenced */
92 };
93 TAILQ_HEAD(pool_pagelist,pool_item_header);
94
95 struct pool_item {
96 #ifdef DIAGNOSTIC
97 int pi_magic;
98 #endif
99 #define PI_MAGIC 0xdeadbeef
100 /* Other entries use only this list entry */
101 TAILQ_ENTRY(pool_item) pi_list;
102 };
103
104 #define PR_HASH_INDEX(pp,addr) \
105 (((u_long)(addr) >> (pp)->pr_pageshift) & (PR_HASHTABSIZE - 1))
106
107 #define POOL_NEEDS_CATCHUP(pp) \
108 ((pp)->pr_nitems < (pp)->pr_minitems)
109
110 /*
111 * Pool cache management.
112 *
113 * Pool caches provide a way for constructed objects to be cached by the
114 * pool subsystem. This can lead to performance improvements by avoiding
115 * needless object construction/destruction; it is deferred until absolutely
116 * necessary.
117 *
118 * Caches are grouped into cache groups. Each cache group references
119 * up to 16 constructed objects. When a cache allocates an object
120 * from the pool, it calls the object's constructor and places it into
121 * a cache group. When a cache group frees an object back to the pool,
122 * it first calls the object's destructor. This allows the object to
123 * persist in constructed form while freed to the cache.
124 *
125 * Multiple caches may exist for each pool. This allows a single
126 * object type to have multiple constructed forms. The pool references
127 * each cache, so that when a pool is drained by the pagedaemon, it can
128 * drain each individual cache as well. Each time a cache is drained,
129 * the most idle cache group is freed to the pool in its entirety.
130 *
131 * Pool caches are layed on top of pools. By layering them, we can avoid
132 * the complexity of cache management for pools which would not benefit
133 * from it.
134 */
135
136 /* The cache group pool. */
137 static struct pool pcgpool;
138
139 /* The pool cache group. */
140 #define PCG_NOBJECTS 16
141 struct pool_cache_group {
142 TAILQ_ENTRY(pool_cache_group)
143 pcg_list; /* link in the pool cache's group list */
144 u_int pcg_avail; /* # available objects */
145 /* pointers to the objects */
146 void *pcg_objects[PCG_NOBJECTS];
147 };
148
149 static void pool_cache_reclaim(struct pool_cache *);
150
151 static int pool_catchup(struct pool *);
152 static void pool_prime_page(struct pool *, caddr_t,
153 struct pool_item_header *);
154 static void *pool_page_alloc(unsigned long, int, int);
155 static void pool_page_free(void *, unsigned long, int);
156
157 static void pool_print1(struct pool *, const char *,
158 void (*)(const char *, ...));
159
160 /*
161 * Pool log entry. An array of these is allocated in pool_init().
162 */
163 struct pool_log {
164 const char *pl_file;
165 long pl_line;
166 int pl_action;
167 #define PRLOG_GET 1
168 #define PRLOG_PUT 2
169 void *pl_addr;
170 };
171
172 /* Number of entries in pool log buffers */
173 #ifndef POOL_LOGSIZE
174 #define POOL_LOGSIZE 10
175 #endif
176
177 int pool_logsize = POOL_LOGSIZE;
178
179 #ifdef POOL_DIAGNOSTIC
180 static __inline void
181 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
182 {
183 int n = pp->pr_curlogentry;
184 struct pool_log *pl;
185
186 if ((pp->pr_roflags & PR_LOGGING) == 0)
187 return;
188
189 /*
190 * Fill in the current entry. Wrap around and overwrite
191 * the oldest entry if necessary.
192 */
193 pl = &pp->pr_log[n];
194 pl->pl_file = file;
195 pl->pl_line = line;
196 pl->pl_action = action;
197 pl->pl_addr = v;
198 if (++n >= pp->pr_logsize)
199 n = 0;
200 pp->pr_curlogentry = n;
201 }
202
203 static void
204 pr_printlog(struct pool *pp, struct pool_item *pi,
205 void (*pr)(const char *, ...))
206 {
207 int i = pp->pr_logsize;
208 int n = pp->pr_curlogentry;
209
210 if ((pp->pr_roflags & PR_LOGGING) == 0)
211 return;
212
213 /*
214 * Print all entries in this pool's log.
215 */
216 while (i-- > 0) {
217 struct pool_log *pl = &pp->pr_log[n];
218 if (pl->pl_action != 0) {
219 if (pi == NULL || pi == pl->pl_addr) {
220 (*pr)("\tlog entry %d:\n", i);
221 (*pr)("\t\taction = %s, addr = %p\n",
222 pl->pl_action == PRLOG_GET ? "get" : "put",
223 pl->pl_addr);
224 (*pr)("\t\tfile: %s at line %lu\n",
225 pl->pl_file, pl->pl_line);
226 }
227 }
228 if (++n >= pp->pr_logsize)
229 n = 0;
230 }
231 }
232
233 static __inline void
234 pr_enter(struct pool *pp, const char *file, long line)
235 {
236
237 if (__predict_false(pp->pr_entered_file != NULL)) {
238 printf("pool %s: reentrancy at file %s line %ld\n",
239 pp->pr_wchan, file, line);
240 printf(" previous entry at file %s line %ld\n",
241 pp->pr_entered_file, pp->pr_entered_line);
242 panic("pr_enter");
243 }
244
245 pp->pr_entered_file = file;
246 pp->pr_entered_line = line;
247 }
248
249 static __inline void
250 pr_leave(struct pool *pp)
251 {
252
253 if (__predict_false(pp->pr_entered_file == NULL)) {
254 printf("pool %s not entered?\n", pp->pr_wchan);
255 panic("pr_leave");
256 }
257
258 pp->pr_entered_file = NULL;
259 pp->pr_entered_line = 0;
260 }
261
262 static __inline void
263 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
264 {
265
266 if (pp->pr_entered_file != NULL)
267 (*pr)("\n\tcurrently entered from file %s line %ld\n",
268 pp->pr_entered_file, pp->pr_entered_line);
269 }
270 #else
271 #define pr_log(pp, v, action, file, line)
272 #define pr_printlog(pp, pi, pr)
273 #define pr_enter(pp, file, line)
274 #define pr_leave(pp)
275 #define pr_enter_check(pp, pr)
276 #endif /* POOL_DIAGNOSTIC */
277
278 /*
279 * Return the pool page header based on page address.
280 */
281 static __inline struct pool_item_header *
282 pr_find_pagehead(struct pool *pp, caddr_t page)
283 {
284 struct pool_item_header *ph;
285
286 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
287 return ((struct pool_item_header *)(page + pp->pr_phoffset));
288
289 for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]);
290 ph != NULL;
291 ph = LIST_NEXT(ph, ph_hashlist)) {
292 if (ph->ph_page == page)
293 return (ph);
294 }
295 return (NULL);
296 }
297
298 /*
299 * Remove a page from the pool.
300 */
301 static __inline void
302 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
303 struct pool_pagelist *pq)
304 {
305 int s;
306
307 /*
308 * If the page was idle, decrement the idle page count.
309 */
310 if (ph->ph_nmissing == 0) {
311 #ifdef DIAGNOSTIC
312 if (pp->pr_nidle == 0)
313 panic("pr_rmpage: nidle inconsistent");
314 if (pp->pr_nitems < pp->pr_itemsperpage)
315 panic("pr_rmpage: nitems inconsistent");
316 #endif
317 pp->pr_nidle--;
318 }
319
320 pp->pr_nitems -= pp->pr_itemsperpage;
321
322 /*
323 * Unlink a page from the pool and release it (or queue it for release).
324 */
325 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
326 if (pq) {
327 TAILQ_INSERT_HEAD(pq, ph, ph_pagelist);
328 } else {
329 (*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype);
330 if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
331 LIST_REMOVE(ph, ph_hashlist);
332 s = splhigh();
333 pool_put(&phpool, ph);
334 splx(s);
335 }
336 }
337 pp->pr_npages--;
338 pp->pr_npagefree++;
339
340 if (pp->pr_curpage == ph) {
341 /*
342 * Find a new non-empty page header, if any.
343 * Start search from the page head, to increase the
344 * chance for "high water" pages to be freed.
345 */
346 TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist)
347 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
348 break;
349
350 pp->pr_curpage = ph;
351 }
352 }
353
354 /*
355 * Initialize the given pool resource structure.
356 *
357 * We export this routine to allow other kernel parts to declare
358 * static pools that must be initialized before malloc() is available.
359 */
360 void
361 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
362 const char *wchan, size_t pagesz,
363 void *(*alloc)(unsigned long, int, int),
364 void (*release)(void *, unsigned long, int),
365 int mtype)
366 {
367 int off, slack, i;
368
369 #ifdef POOL_DIAGNOSTIC
370 /*
371 * Always log if POOL_DIAGNOSTIC is defined.
372 */
373 if (pool_logsize != 0)
374 flags |= PR_LOGGING;
375 #endif
376
377 /*
378 * Check arguments and construct default values.
379 */
380 if (!powerof2(pagesz))
381 panic("pool_init: page size invalid (%lx)\n", (u_long)pagesz);
382
383 if (alloc == NULL && release == NULL) {
384 alloc = pool_page_alloc;
385 release = pool_page_free;
386 pagesz = PAGE_SIZE; /* Rounds to PAGE_SIZE anyhow. */
387 } else if ((alloc != NULL && release != NULL) == 0) {
388 /* If you specifiy one, must specify both. */
389 panic("pool_init: must specify alloc and release together");
390 }
391
392 if (pagesz == 0)
393 pagesz = PAGE_SIZE;
394
395 if (align == 0)
396 align = ALIGN(1);
397
398 if (size < sizeof(struct pool_item))
399 size = sizeof(struct pool_item);
400
401 size = ALIGN(size);
402 if (size > pagesz)
403 panic("pool_init: pool item size (%lu) too large",
404 (u_long)size);
405
406 /*
407 * Initialize the pool structure.
408 */
409 TAILQ_INIT(&pp->pr_pagelist);
410 TAILQ_INIT(&pp->pr_cachelist);
411 pp->pr_curpage = NULL;
412 pp->pr_npages = 0;
413 pp->pr_minitems = 0;
414 pp->pr_minpages = 0;
415 pp->pr_maxpages = UINT_MAX;
416 pp->pr_roflags = flags;
417 pp->pr_flags = 0;
418 pp->pr_size = size;
419 pp->pr_align = align;
420 pp->pr_wchan = wchan;
421 pp->pr_mtype = mtype;
422 pp->pr_alloc = alloc;
423 pp->pr_free = release;
424 pp->pr_pagesz = pagesz;
425 pp->pr_pagemask = ~(pagesz - 1);
426 pp->pr_pageshift = ffs(pagesz) - 1;
427 pp->pr_nitems = 0;
428 pp->pr_nout = 0;
429 pp->pr_hardlimit = UINT_MAX;
430 pp->pr_hardlimit_warning = NULL;
431 pp->pr_hardlimit_ratecap.tv_sec = 0;
432 pp->pr_hardlimit_ratecap.tv_usec = 0;
433 pp->pr_hardlimit_warning_last.tv_sec = 0;
434 pp->pr_hardlimit_warning_last.tv_usec = 0;
435
436 /*
437 * Decide whether to put the page header off page to avoid
438 * wasting too large a part of the page. Off-page page headers
439 * go on a hash table, so we can match a returned item
440 * with its header based on the page address.
441 * We use 1/16 of the page size as the threshold (XXX: tune)
442 */
443 if (pp->pr_size < pagesz/16) {
444 /* Use the end of the page for the page header */
445 pp->pr_roflags |= PR_PHINPAGE;
446 pp->pr_phoffset = off =
447 pagesz - ALIGN(sizeof(struct pool_item_header));
448 } else {
449 /* The page header will be taken from our page header pool */
450 pp->pr_phoffset = 0;
451 off = pagesz;
452 for (i = 0; i < PR_HASHTABSIZE; i++) {
453 LIST_INIT(&pp->pr_hashtab[i]);
454 }
455 }
456
457 /*
458 * Alignment is to take place at `ioff' within the item. This means
459 * we must reserve up to `align - 1' bytes on the page to allow
460 * appropriate positioning of each item.
461 *
462 * Silently enforce `0 <= ioff < align'.
463 */
464 pp->pr_itemoffset = ioff = ioff % align;
465 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
466 KASSERT(pp->pr_itemsperpage != 0);
467
468 /*
469 * Use the slack between the chunks and the page header
470 * for "cache coloring".
471 */
472 slack = off - pp->pr_itemsperpage * pp->pr_size;
473 pp->pr_maxcolor = (slack / align) * align;
474 pp->pr_curcolor = 0;
475
476 pp->pr_nget = 0;
477 pp->pr_nfail = 0;
478 pp->pr_nput = 0;
479 pp->pr_npagealloc = 0;
480 pp->pr_npagefree = 0;
481 pp->pr_hiwat = 0;
482 pp->pr_nidle = 0;
483
484 #ifdef POOL_DIAGNOSTIC
485 if (flags & PR_LOGGING) {
486 if (kmem_map == NULL ||
487 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
488 M_TEMP, M_NOWAIT)) == NULL)
489 pp->pr_roflags &= ~PR_LOGGING;
490 pp->pr_curlogentry = 0;
491 pp->pr_logsize = pool_logsize;
492 }
493 #endif
494
495 pp->pr_entered_file = NULL;
496 pp->pr_entered_line = 0;
497
498 simple_lock_init(&pp->pr_slock);
499
500 /*
501 * Initialize private page header pool and cache magazine pool if we
502 * haven't done so yet.
503 * XXX LOCKING.
504 */
505 if (phpool.pr_size == 0) {
506 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
507 0, "phpool", 0, 0, 0, 0);
508 pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
509 0, "pcgpool", 0, 0, 0, 0);
510 }
511
512 /* Insert into the list of all pools. */
513 simple_lock(&pool_head_slock);
514 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
515 simple_unlock(&pool_head_slock);
516 }
517
518 /*
519 * De-commision a pool resource.
520 */
521 void
522 pool_destroy(struct pool *pp)
523 {
524 struct pool_item_header *ph;
525 struct pool_cache *pc;
526
527 /* Destroy all caches for this pool. */
528 while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL)
529 pool_cache_destroy(pc);
530
531 #ifdef DIAGNOSTIC
532 if (pp->pr_nout != 0) {
533 pr_printlog(pp, NULL, printf);
534 panic("pool_destroy: pool busy: still out: %u\n",
535 pp->pr_nout);
536 }
537 #endif
538
539 /* Remove all pages */
540 if ((pp->pr_roflags & PR_STATIC) == 0)
541 while ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
542 pr_rmpage(pp, ph, NULL);
543
544 /* Remove from global pool list */
545 simple_lock(&pool_head_slock);
546 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
547 if (drainpp == pp) {
548 drainpp = NULL;
549 }
550 simple_unlock(&pool_head_slock);
551
552 #ifdef POOL_DIAGNOSTIC
553 if ((pp->pr_roflags & PR_LOGGING) != 0)
554 free(pp->pr_log, M_TEMP);
555 #endif
556
557 if (pp->pr_roflags & PR_FREEHEADER)
558 free(pp, M_POOL);
559 }
560
561 static __inline struct pool_item_header *
562 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
563 {
564 struct pool_item_header *ph;
565 int s;
566
567 LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
568
569 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
570 ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
571 else {
572 s = splhigh();
573 ph = pool_get(&phpool, flags);
574 splx(s);
575 }
576
577 return (ph);
578 }
579
580 /*
581 * Grab an item from the pool; must be called at appropriate spl level
582 */
583 void *
584 #ifdef POOL_DIAGNOSTIC
585 _pool_get(struct pool *pp, int flags, const char *file, long line)
586 #else
587 pool_get(struct pool *pp, int flags)
588 #endif
589 {
590 struct pool_item *pi;
591 struct pool_item_header *ph;
592 void *v;
593
594 #ifdef DIAGNOSTIC
595 if (__predict_false((pp->pr_roflags & PR_STATIC) &&
596 (flags & PR_MALLOCOK))) {
597 pr_printlog(pp, NULL, printf);
598 panic("pool_get: static");
599 }
600
601 if (__predict_false(curproc == NULL && doing_shutdown == 0 &&
602 (flags & PR_WAITOK) != 0))
603 panic("pool_get: must have NOWAIT");
604
605 #ifdef LOCKDEBUG
606 if (flags & PR_WAITOK)
607 simple_lock_only_held(NULL, "pool_get(PR_WAITOK)");
608 #endif
609 #endif /* DIAGNOSTIC */
610
611 simple_lock(&pp->pr_slock);
612 pr_enter(pp, file, line);
613
614 startover:
615 /*
616 * Check to see if we've reached the hard limit. If we have,
617 * and we can wait, then wait until an item has been returned to
618 * the pool.
619 */
620 #ifdef DIAGNOSTIC
621 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
622 pr_leave(pp);
623 simple_unlock(&pp->pr_slock);
624 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
625 }
626 #endif
627 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
628 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
629 /*
630 * XXX: A warning isn't logged in this case. Should
631 * it be?
632 */
633 pp->pr_flags |= PR_WANTED;
634 pr_leave(pp);
635 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
636 pr_enter(pp, file, line);
637 goto startover;
638 }
639
640 /*
641 * Log a message that the hard limit has been hit.
642 */
643 if (pp->pr_hardlimit_warning != NULL &&
644 ratecheck(&pp->pr_hardlimit_warning_last,
645 &pp->pr_hardlimit_ratecap))
646 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
647
648 if (flags & PR_URGENT)
649 panic("pool_get: urgent");
650
651 pp->pr_nfail++;
652
653 pr_leave(pp);
654 simple_unlock(&pp->pr_slock);
655 return (NULL);
656 }
657
658 /*
659 * The convention we use is that if `curpage' is not NULL, then
660 * it points at a non-empty bucket. In particular, `curpage'
661 * never points at a page header which has PR_PHINPAGE set and
662 * has no items in its bucket.
663 */
664 if ((ph = pp->pr_curpage) == NULL) {
665 #ifdef DIAGNOSTIC
666 if (pp->pr_nitems != 0) {
667 simple_unlock(&pp->pr_slock);
668 printf("pool_get: %s: curpage NULL, nitems %u\n",
669 pp->pr_wchan, pp->pr_nitems);
670 panic("pool_get: nitems inconsistent\n");
671 }
672 #endif
673
674 /*
675 * Call the back-end page allocator for more memory.
676 * Release the pool lock, as the back-end page allocator
677 * may block.
678 */
679 pr_leave(pp);
680 simple_unlock(&pp->pr_slock);
681 v = (*pp->pr_alloc)(pp->pr_pagesz, flags, pp->pr_mtype);
682 if (__predict_true(v != NULL))
683 ph = pool_alloc_item_header(pp, v, flags);
684 simple_lock(&pp->pr_slock);
685 pr_enter(pp, file, line);
686
687 if (__predict_false(v == NULL || ph == NULL)) {
688 if (v != NULL)
689 (*pp->pr_free)(v, pp->pr_pagesz, pp->pr_mtype);
690
691 /*
692 * We were unable to allocate a page or item
693 * header, but we released the lock during
694 * allocation, so perhaps items were freed
695 * back to the pool. Check for this case.
696 */
697 if (pp->pr_curpage != NULL)
698 goto startover;
699
700 if (flags & PR_URGENT)
701 panic("pool_get: urgent");
702
703 if ((flags & PR_WAITOK) == 0) {
704 pp->pr_nfail++;
705 pr_leave(pp);
706 simple_unlock(&pp->pr_slock);
707 return (NULL);
708 }
709
710 /*
711 * Wait for items to be returned to this pool.
712 *
713 * XXX: we actually want to wait just until
714 * the page allocator has memory again. Depending
715 * on this pool's usage, we might get stuck here
716 * for a long time.
717 *
718 * XXX: maybe we should wake up once a second and
719 * try again?
720 */
721 pp->pr_flags |= PR_WANTED;
722 pr_leave(pp);
723 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
724 pr_enter(pp, file, line);
725 goto startover;
726 }
727
728 /* We have more memory; add it to the pool */
729 pool_prime_page(pp, v, ph);
730 pp->pr_npagealloc++;
731
732 /* Start the allocation process over. */
733 goto startover;
734 }
735
736 if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
737 pr_leave(pp);
738 simple_unlock(&pp->pr_slock);
739 panic("pool_get: %s: page empty", pp->pr_wchan);
740 }
741 #ifdef DIAGNOSTIC
742 if (__predict_false(pp->pr_nitems == 0)) {
743 pr_leave(pp);
744 simple_unlock(&pp->pr_slock);
745 printf("pool_get: %s: items on itemlist, nitems %u\n",
746 pp->pr_wchan, pp->pr_nitems);
747 panic("pool_get: nitems inconsistent\n");
748 }
749
750 pr_log(pp, v, PRLOG_GET, file, line);
751
752 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
753 pr_printlog(pp, pi, printf);
754 panic("pool_get(%s): free list modified: magic=%x; page %p;"
755 " item addr %p\n",
756 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
757 }
758 #endif
759
760 /*
761 * Remove from item list.
762 */
763 TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
764 pp->pr_nitems--;
765 pp->pr_nout++;
766 if (ph->ph_nmissing == 0) {
767 #ifdef DIAGNOSTIC
768 if (__predict_false(pp->pr_nidle == 0))
769 panic("pool_get: nidle inconsistent");
770 #endif
771 pp->pr_nidle--;
772 }
773 ph->ph_nmissing++;
774 if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) {
775 #ifdef DIAGNOSTIC
776 if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
777 pr_leave(pp);
778 simple_unlock(&pp->pr_slock);
779 panic("pool_get: %s: nmissing inconsistent",
780 pp->pr_wchan);
781 }
782 #endif
783 /*
784 * Find a new non-empty page header, if any.
785 * Start search from the page head, to increase
786 * the chance for "high water" pages to be freed.
787 *
788 * Migrate empty pages to the end of the list. This
789 * will speed the update of curpage as pages become
790 * idle. Empty pages intermingled with idle pages
791 * is no big deal. As soon as a page becomes un-empty,
792 * it will move back to the head of the list.
793 */
794 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
795 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
796 TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist)
797 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
798 break;
799
800 pp->pr_curpage = ph;
801 }
802
803 pp->pr_nget++;
804
805 /*
806 * If we have a low water mark and we are now below that low
807 * water mark, add more items to the pool.
808 */
809 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
810 /*
811 * XXX: Should we log a warning? Should we set up a timeout
812 * to try again in a second or so? The latter could break
813 * a caller's assumptions about interrupt protection, etc.
814 */
815 }
816
817 pr_leave(pp);
818 simple_unlock(&pp->pr_slock);
819 return (v);
820 }
821
822 /*
823 * Internal version of pool_put(). Pool is already locked/entered.
824 */
825 static void
826 pool_do_put(struct pool *pp, void *v)
827 {
828 struct pool_item *pi = v;
829 struct pool_item_header *ph;
830 caddr_t page;
831 int s;
832
833 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
834
835 page = (caddr_t)((u_long)v & pp->pr_pagemask);
836
837 #ifdef DIAGNOSTIC
838 if (__predict_false(pp->pr_nout == 0)) {
839 printf("pool %s: putting with none out\n",
840 pp->pr_wchan);
841 panic("pool_put");
842 }
843 #endif
844
845 if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
846 pr_printlog(pp, NULL, printf);
847 panic("pool_put: %s: page header missing", pp->pr_wchan);
848 }
849
850 #ifdef LOCKDEBUG
851 /*
852 * Check if we're freeing a locked simple lock.
853 */
854 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
855 #endif
856
857 /*
858 * Return to item list.
859 */
860 #ifdef DIAGNOSTIC
861 pi->pi_magic = PI_MAGIC;
862 #endif
863 #ifdef DEBUG
864 {
865 int i, *ip = v;
866
867 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
868 *ip++ = PI_MAGIC;
869 }
870 }
871 #endif
872
873 TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
874 ph->ph_nmissing--;
875 pp->pr_nput++;
876 pp->pr_nitems++;
877 pp->pr_nout--;
878
879 /* Cancel "pool empty" condition if it exists */
880 if (pp->pr_curpage == NULL)
881 pp->pr_curpage = ph;
882
883 if (pp->pr_flags & PR_WANTED) {
884 pp->pr_flags &= ~PR_WANTED;
885 if (ph->ph_nmissing == 0)
886 pp->pr_nidle++;
887 wakeup((caddr_t)pp);
888 return;
889 }
890
891 /*
892 * If this page is now complete, do one of two things:
893 *
894 * (1) If we have more pages than the page high water
895 * mark, free the page back to the system.
896 *
897 * (2) Move it to the end of the page list, so that
898 * we minimize our chances of fragmenting the
899 * pool. Idle pages migrate to the end (along with
900 * completely empty pages, so that we find un-empty
901 * pages more quickly when we update curpage) of the
902 * list so they can be more easily swept up by
903 * the pagedaemon when pages are scarce.
904 */
905 if (ph->ph_nmissing == 0) {
906 pp->pr_nidle++;
907 if (pp->pr_npages > pp->pr_maxpages) {
908 pr_rmpage(pp, ph, NULL);
909 } else {
910 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
911 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
912
913 /*
914 * Update the timestamp on the page. A page must
915 * be idle for some period of time before it can
916 * be reclaimed by the pagedaemon. This minimizes
917 * ping-pong'ing for memory.
918 */
919 s = splclock();
920 ph->ph_time = mono_time;
921 splx(s);
922
923 /*
924 * Update the current page pointer. Just look for
925 * the first page with any free items.
926 *
927 * XXX: Maybe we want an option to look for the
928 * page with the fewest available items, to minimize
929 * fragmentation?
930 */
931 TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist)
932 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
933 break;
934
935 pp->pr_curpage = ph;
936 }
937 }
938 /*
939 * If the page has just become un-empty, move it to the head of
940 * the list, and make it the current page. The next allocation
941 * will get the item from this page, instead of further fragmenting
942 * the pool.
943 */
944 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
945 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
946 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
947 pp->pr_curpage = ph;
948 }
949 }
950
951 /*
952 * Return resource to the pool; must be called at appropriate spl level
953 */
954 #ifdef POOL_DIAGNOSTIC
955 void
956 _pool_put(struct pool *pp, void *v, const char *file, long line)
957 {
958
959 simple_lock(&pp->pr_slock);
960 pr_enter(pp, file, line);
961
962 pr_log(pp, v, PRLOG_PUT, file, line);
963
964 pool_do_put(pp, v);
965
966 pr_leave(pp);
967 simple_unlock(&pp->pr_slock);
968 }
969 #undef pool_put
970 #endif /* POOL_DIAGNOSTIC */
971
972 void
973 pool_put(struct pool *pp, void *v)
974 {
975
976 simple_lock(&pp->pr_slock);
977
978 pool_do_put(pp, v);
979
980 simple_unlock(&pp->pr_slock);
981 }
982
983 #ifdef POOL_DIAGNOSTIC
984 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
985 #endif
986
987 /*
988 * Add N items to the pool.
989 */
990 int
991 pool_prime(struct pool *pp, int n)
992 {
993 struct pool_item_header *ph;
994 caddr_t cp;
995 int newpages, error = 0;
996
997 simple_lock(&pp->pr_slock);
998
999 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1000
1001 while (newpages-- > 0) {
1002 simple_unlock(&pp->pr_slock);
1003 cp = (*pp->pr_alloc)(pp->pr_pagesz, PR_NOWAIT, pp->pr_mtype);
1004 if (__predict_true(cp != NULL))
1005 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1006 simple_lock(&pp->pr_slock);
1007
1008 if (__predict_false(cp == NULL || ph == NULL)) {
1009 error = ENOMEM;
1010 if (cp != NULL)
1011 (*pp->pr_free)(cp, pp->pr_pagesz, pp->pr_mtype);
1012 break;
1013 }
1014
1015 pool_prime_page(pp, cp, ph);
1016 pp->pr_npagealloc++;
1017 pp->pr_minpages++;
1018 }
1019
1020 if (pp->pr_minpages >= pp->pr_maxpages)
1021 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1022
1023 simple_unlock(&pp->pr_slock);
1024 return (0);
1025 }
1026
1027 /*
1028 * Add a page worth of items to the pool.
1029 *
1030 * Note, we must be called with the pool descriptor LOCKED.
1031 */
1032 static void
1033 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
1034 {
1035 struct pool_item *pi;
1036 caddr_t cp = storage;
1037 unsigned int align = pp->pr_align;
1038 unsigned int ioff = pp->pr_itemoffset;
1039 int n;
1040
1041 if (((u_long)cp & (pp->pr_pagesz - 1)) != 0)
1042 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1043
1044 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1045 LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)],
1046 ph, ph_hashlist);
1047
1048 /*
1049 * Insert page header.
1050 */
1051 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
1052 TAILQ_INIT(&ph->ph_itemlist);
1053 ph->ph_page = storage;
1054 ph->ph_nmissing = 0;
1055 memset(&ph->ph_time, 0, sizeof(ph->ph_time));
1056
1057 pp->pr_nidle++;
1058
1059 /*
1060 * Color this page.
1061 */
1062 cp = (caddr_t)(cp + pp->pr_curcolor);
1063 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1064 pp->pr_curcolor = 0;
1065
1066 /*
1067 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1068 */
1069 if (ioff != 0)
1070 cp = (caddr_t)(cp + (align - ioff));
1071
1072 /*
1073 * Insert remaining chunks on the bucket list.
1074 */
1075 n = pp->pr_itemsperpage;
1076 pp->pr_nitems += n;
1077
1078 while (n--) {
1079 pi = (struct pool_item *)cp;
1080
1081 /* Insert on page list */
1082 TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
1083 #ifdef DIAGNOSTIC
1084 pi->pi_magic = PI_MAGIC;
1085 #endif
1086 cp = (caddr_t)(cp + pp->pr_size);
1087 }
1088
1089 /*
1090 * If the pool was depleted, point at the new page.
1091 */
1092 if (pp->pr_curpage == NULL)
1093 pp->pr_curpage = ph;
1094
1095 if (++pp->pr_npages > pp->pr_hiwat)
1096 pp->pr_hiwat = pp->pr_npages;
1097 }
1098
1099 /*
1100 * Used by pool_get() when nitems drops below the low water mark. This
1101 * is used to catch up nitmes with the low water mark.
1102 *
1103 * Note 1, we never wait for memory here, we let the caller decide what to do.
1104 *
1105 * Note 2, this doesn't work with static pools.
1106 *
1107 * Note 3, we must be called with the pool already locked, and we return
1108 * with it locked.
1109 */
1110 static int
1111 pool_catchup(struct pool *pp)
1112 {
1113 struct pool_item_header *ph;
1114 caddr_t cp;
1115 int error = 0;
1116
1117 if (pp->pr_roflags & PR_STATIC) {
1118 /*
1119 * We dropped below the low water mark, and this is not a
1120 * good thing. Log a warning.
1121 *
1122 * XXX: rate-limit this?
1123 */
1124 printf("WARNING: static pool `%s' dropped below low water "
1125 "mark\n", pp->pr_wchan);
1126 return (0);
1127 }
1128
1129 while (POOL_NEEDS_CATCHUP(pp)) {
1130 /*
1131 * Call the page back-end allocator for more memory.
1132 *
1133 * XXX: We never wait, so should we bother unlocking
1134 * the pool descriptor?
1135 */
1136 simple_unlock(&pp->pr_slock);
1137 cp = (*pp->pr_alloc)(pp->pr_pagesz, PR_NOWAIT, pp->pr_mtype);
1138 if (__predict_true(cp != NULL))
1139 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1140 simple_lock(&pp->pr_slock);
1141 if (__predict_false(cp == NULL || ph == NULL)) {
1142 if (cp != NULL)
1143 (*pp->pr_free)(cp, pp->pr_pagesz, pp->pr_mtype);
1144 error = ENOMEM;
1145 break;
1146 }
1147 pool_prime_page(pp, cp, ph);
1148 pp->pr_npagealloc++;
1149 }
1150
1151 return (error);
1152 }
1153
1154 void
1155 pool_setlowat(struct pool *pp, int n)
1156 {
1157 int error;
1158
1159 simple_lock(&pp->pr_slock);
1160
1161 pp->pr_minitems = n;
1162 pp->pr_minpages = (n == 0)
1163 ? 0
1164 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1165
1166 /* Make sure we're caught up with the newly-set low water mark. */
1167 if (POOL_NEEDS_CATCHUP(pp) && (error = pool_catchup(pp) != 0)) {
1168 /*
1169 * XXX: Should we log a warning? Should we set up a timeout
1170 * to try again in a second or so? The latter could break
1171 * a caller's assumptions about interrupt protection, etc.
1172 */
1173 }
1174
1175 simple_unlock(&pp->pr_slock);
1176 }
1177
1178 void
1179 pool_sethiwat(struct pool *pp, int n)
1180 {
1181
1182 simple_lock(&pp->pr_slock);
1183
1184 pp->pr_maxpages = (n == 0)
1185 ? 0
1186 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1187
1188 simple_unlock(&pp->pr_slock);
1189 }
1190
1191 void
1192 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1193 {
1194
1195 simple_lock(&pp->pr_slock);
1196
1197 pp->pr_hardlimit = n;
1198 pp->pr_hardlimit_warning = warnmess;
1199 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1200 pp->pr_hardlimit_warning_last.tv_sec = 0;
1201 pp->pr_hardlimit_warning_last.tv_usec = 0;
1202
1203 /*
1204 * In-line version of pool_sethiwat(), because we don't want to
1205 * release the lock.
1206 */
1207 pp->pr_maxpages = (n == 0)
1208 ? 0
1209 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1210
1211 simple_unlock(&pp->pr_slock);
1212 }
1213
1214 /*
1215 * Default page allocator.
1216 */
1217 static void *
1218 pool_page_alloc(unsigned long sz, int flags, int mtype)
1219 {
1220 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1221
1222 return ((void *)uvm_km_alloc_poolpage(waitok));
1223 }
1224
1225 static void
1226 pool_page_free(void *v, unsigned long sz, int mtype)
1227 {
1228
1229 uvm_km_free_poolpage((vaddr_t)v);
1230 }
1231
1232 /*
1233 * Alternate pool page allocator for pools that know they will
1234 * never be accessed in interrupt context.
1235 */
1236 void *
1237 pool_page_alloc_nointr(unsigned long sz, int flags, int mtype)
1238 {
1239 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
1240
1241 return ((void *)uvm_km_alloc_poolpage1(kernel_map, uvm.kernel_object,
1242 waitok));
1243 }
1244
1245 void
1246 pool_page_free_nointr(void *v, unsigned long sz, int mtype)
1247 {
1248
1249 uvm_km_free_poolpage1(kernel_map, (vaddr_t)v);
1250 }
1251
1252
1253 /*
1254 * Release all complete pages that have not been used recently.
1255 */
1256 void
1257 #ifdef POOL_DIAGNOSTIC
1258 _pool_reclaim(struct pool *pp, const char *file, long line)
1259 #else
1260 pool_reclaim(struct pool *pp)
1261 #endif
1262 {
1263 struct pool_item_header *ph, *phnext;
1264 struct pool_cache *pc;
1265 struct timeval curtime;
1266 struct pool_pagelist pq;
1267 int s;
1268
1269 if (pp->pr_roflags & PR_STATIC)
1270 return;
1271
1272 if (simple_lock_try(&pp->pr_slock) == 0)
1273 return;
1274 pr_enter(pp, file, line);
1275 TAILQ_INIT(&pq);
1276
1277 /*
1278 * Reclaim items from the pool's caches.
1279 */
1280 TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
1281 pool_cache_reclaim(pc);
1282
1283 s = splclock();
1284 curtime = mono_time;
1285 splx(s);
1286
1287 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) {
1288 phnext = TAILQ_NEXT(ph, ph_pagelist);
1289
1290 /* Check our minimum page claim */
1291 if (pp->pr_npages <= pp->pr_minpages)
1292 break;
1293
1294 if (ph->ph_nmissing == 0) {
1295 struct timeval diff;
1296 timersub(&curtime, &ph->ph_time, &diff);
1297 if (diff.tv_sec < pool_inactive_time)
1298 continue;
1299
1300 /*
1301 * If freeing this page would put us below
1302 * the low water mark, stop now.
1303 */
1304 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1305 pp->pr_minitems)
1306 break;
1307
1308 pr_rmpage(pp, ph, &pq);
1309 }
1310 }
1311
1312 pr_leave(pp);
1313 simple_unlock(&pp->pr_slock);
1314 if (TAILQ_EMPTY(&pq)) {
1315 return;
1316 }
1317 while ((ph = TAILQ_FIRST(&pq)) != NULL) {
1318 TAILQ_REMOVE(&pq, ph, ph_pagelist);
1319 (*pp->pr_free)(ph->ph_page, pp->pr_pagesz, pp->pr_mtype);
1320 if (pp->pr_roflags & PR_PHINPAGE) {
1321 continue;
1322 }
1323 LIST_REMOVE(ph, ph_hashlist);
1324 s = splhigh();
1325 pool_put(&phpool, ph);
1326 splx(s);
1327 }
1328 }
1329
1330
1331 /*
1332 * Drain pools, one at a time.
1333 *
1334 * Note, we must never be called from an interrupt context.
1335 */
1336 void
1337 pool_drain(void *arg)
1338 {
1339 struct pool *pp;
1340 int s;
1341
1342 pp = NULL;
1343 s = splvm();
1344 simple_lock(&pool_head_slock);
1345 if (drainpp == NULL) {
1346 drainpp = TAILQ_FIRST(&pool_head);
1347 }
1348 if (drainpp) {
1349 pp = drainpp;
1350 drainpp = TAILQ_NEXT(pp, pr_poollist);
1351 }
1352 simple_unlock(&pool_head_slock);
1353 splx(s);
1354
1355 pool_reclaim(pp);
1356 }
1357
1358
1359 /*
1360 * Diagnostic helpers.
1361 */
1362 void
1363 pool_print(struct pool *pp, const char *modif)
1364 {
1365 int s;
1366
1367 s = splvm();
1368 if (simple_lock_try(&pp->pr_slock) == 0) {
1369 printf("pool %s is locked; try again later\n",
1370 pp->pr_wchan);
1371 splx(s);
1372 return;
1373 }
1374 pool_print1(pp, modif, printf);
1375 simple_unlock(&pp->pr_slock);
1376 splx(s);
1377 }
1378
1379 void
1380 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1381 {
1382 int didlock = 0;
1383
1384 if (pp == NULL) {
1385 (*pr)("Must specify a pool to print.\n");
1386 return;
1387 }
1388
1389 /*
1390 * Called from DDB; interrupts should be blocked, and all
1391 * other processors should be paused. We can skip locking
1392 * the pool in this case.
1393 *
1394 * We do a simple_lock_try() just to print the lock
1395 * status, however.
1396 */
1397
1398 if (simple_lock_try(&pp->pr_slock) == 0)
1399 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1400 else
1401 didlock = 1;
1402
1403 pool_print1(pp, modif, pr);
1404
1405 if (didlock)
1406 simple_unlock(&pp->pr_slock);
1407 }
1408
1409 static void
1410 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1411 {
1412 struct pool_item_header *ph;
1413 struct pool_cache *pc;
1414 struct pool_cache_group *pcg;
1415 #ifdef DIAGNOSTIC
1416 struct pool_item *pi;
1417 #endif
1418 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1419 char c;
1420
1421 while ((c = *modif++) != '\0') {
1422 if (c == 'l')
1423 print_log = 1;
1424 if (c == 'p')
1425 print_pagelist = 1;
1426 if (c == 'c')
1427 print_cache = 1;
1428 modif++;
1429 }
1430
1431 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1432 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1433 pp->pr_roflags);
1434 (*pr)("\tpagesz %u, mtype %d\n", pp->pr_pagesz, pp->pr_mtype);
1435 (*pr)("\talloc %p, release %p\n", pp->pr_alloc, pp->pr_free);
1436 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1437 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1438 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1439 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1440
1441 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1442 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1443 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1444 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1445
1446 if (print_pagelist == 0)
1447 goto skip_pagelist;
1448
1449 if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
1450 (*pr)("\n\tpage list:\n");
1451 for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) {
1452 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1453 ph->ph_page, ph->ph_nmissing,
1454 (u_long)ph->ph_time.tv_sec,
1455 (u_long)ph->ph_time.tv_usec);
1456 #ifdef DIAGNOSTIC
1457 TAILQ_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1458 if (pi->pi_magic != PI_MAGIC) {
1459 (*pr)("\t\t\titem %p, magic 0x%x\n",
1460 pi, pi->pi_magic);
1461 }
1462 }
1463 #endif
1464 }
1465 if (pp->pr_curpage == NULL)
1466 (*pr)("\tno current page\n");
1467 else
1468 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1469
1470 skip_pagelist:
1471
1472 if (print_log == 0)
1473 goto skip_log;
1474
1475 (*pr)("\n");
1476 if ((pp->pr_roflags & PR_LOGGING) == 0)
1477 (*pr)("\tno log\n");
1478 else
1479 pr_printlog(pp, NULL, pr);
1480
1481 skip_log:
1482
1483 if (print_cache == 0)
1484 goto skip_cache;
1485
1486 TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
1487 (*pr)("\tcache %p: allocfrom %p freeto %p\n", pc,
1488 pc->pc_allocfrom, pc->pc_freeto);
1489 (*pr)("\t hits %lu misses %lu ngroups %lu nitems %lu\n",
1490 pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
1491 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1492 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);
1493 for (i = 0; i < PCG_NOBJECTS; i++)
1494 (*pr)("\t\t\t%p\n", pcg->pcg_objects[i]);
1495 }
1496 }
1497
1498 skip_cache:
1499
1500 pr_enter_check(pp, pr);
1501 }
1502
1503 int
1504 pool_chk(struct pool *pp, const char *label)
1505 {
1506 struct pool_item_header *ph;
1507 int r = 0;
1508
1509 simple_lock(&pp->pr_slock);
1510
1511 TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist) {
1512 struct pool_item *pi;
1513 int n;
1514 caddr_t page;
1515
1516 page = (caddr_t)((u_long)ph & pp->pr_pagemask);
1517 if (page != ph->ph_page &&
1518 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1519 if (label != NULL)
1520 printf("%s: ", label);
1521 printf("pool(%p:%s): page inconsistency: page %p;"
1522 " at page head addr %p (p %p)\n", pp,
1523 pp->pr_wchan, ph->ph_page,
1524 ph, page);
1525 r++;
1526 goto out;
1527 }
1528
1529 for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
1530 pi != NULL;
1531 pi = TAILQ_NEXT(pi,pi_list), n++) {
1532
1533 #ifdef DIAGNOSTIC
1534 if (pi->pi_magic != PI_MAGIC) {
1535 if (label != NULL)
1536 printf("%s: ", label);
1537 printf("pool(%s): free list modified: magic=%x;"
1538 " page %p; item ordinal %d;"
1539 " addr %p (p %p)\n",
1540 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1541 n, pi, page);
1542 panic("pool");
1543 }
1544 #endif
1545 page = (caddr_t)((u_long)pi & pp->pr_pagemask);
1546 if (page == ph->ph_page)
1547 continue;
1548
1549 if (label != NULL)
1550 printf("%s: ", label);
1551 printf("pool(%p:%s): page inconsistency: page %p;"
1552 " item ordinal %d; addr %p (p %p)\n", pp,
1553 pp->pr_wchan, ph->ph_page,
1554 n, pi, page);
1555 r++;
1556 goto out;
1557 }
1558 }
1559 out:
1560 simple_unlock(&pp->pr_slock);
1561 return (r);
1562 }
1563
1564 /*
1565 * pool_cache_init:
1566 *
1567 * Initialize a pool cache.
1568 *
1569 * NOTE: If the pool must be protected from interrupts, we expect
1570 * to be called at the appropriate interrupt priority level.
1571 */
1572 void
1573 pool_cache_init(struct pool_cache *pc, struct pool *pp,
1574 int (*ctor)(void *, void *, int),
1575 void (*dtor)(void *, void *),
1576 void *arg)
1577 {
1578
1579 TAILQ_INIT(&pc->pc_grouplist);
1580 simple_lock_init(&pc->pc_slock);
1581
1582 pc->pc_allocfrom = NULL;
1583 pc->pc_freeto = NULL;
1584 pc->pc_pool = pp;
1585
1586 pc->pc_ctor = ctor;
1587 pc->pc_dtor = dtor;
1588 pc->pc_arg = arg;
1589
1590 pc->pc_hits = 0;
1591 pc->pc_misses = 0;
1592
1593 pc->pc_ngroups = 0;
1594
1595 pc->pc_nitems = 0;
1596
1597 simple_lock(&pp->pr_slock);
1598 TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist);
1599 simple_unlock(&pp->pr_slock);
1600 }
1601
1602 /*
1603 * pool_cache_destroy:
1604 *
1605 * Destroy a pool cache.
1606 */
1607 void
1608 pool_cache_destroy(struct pool_cache *pc)
1609 {
1610 struct pool *pp = pc->pc_pool;
1611
1612 /* First, invalidate the entire cache. */
1613 pool_cache_invalidate(pc);
1614
1615 /* ...and remove it from the pool's cache list. */
1616 simple_lock(&pp->pr_slock);
1617 TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist);
1618 simple_unlock(&pp->pr_slock);
1619 }
1620
1621 static __inline void *
1622 pcg_get(struct pool_cache_group *pcg)
1623 {
1624 void *object;
1625 u_int idx;
1626
1627 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
1628 KASSERT(pcg->pcg_avail != 0);
1629 idx = --pcg->pcg_avail;
1630
1631 KASSERT(pcg->pcg_objects[idx] != NULL);
1632 object = pcg->pcg_objects[idx];
1633 pcg->pcg_objects[idx] = NULL;
1634
1635 return (object);
1636 }
1637
1638 static __inline void
1639 pcg_put(struct pool_cache_group *pcg, void *object)
1640 {
1641 u_int idx;
1642
1643 KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
1644 idx = pcg->pcg_avail++;
1645
1646 KASSERT(pcg->pcg_objects[idx] == NULL);
1647 pcg->pcg_objects[idx] = object;
1648 }
1649
1650 /*
1651 * pool_cache_get:
1652 *
1653 * Get an object from a pool cache.
1654 */
1655 void *
1656 pool_cache_get(struct pool_cache *pc, int flags)
1657 {
1658 struct pool_cache_group *pcg;
1659 void *object;
1660
1661 #ifdef LOCKDEBUG
1662 if (flags & PR_WAITOK)
1663 simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)");
1664 #endif
1665
1666 simple_lock(&pc->pc_slock);
1667
1668 if ((pcg = pc->pc_allocfrom) == NULL) {
1669 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1670 if (pcg->pcg_avail != 0) {
1671 pc->pc_allocfrom = pcg;
1672 goto have_group;
1673 }
1674 }
1675
1676 /*
1677 * No groups with any available objects. Allocate
1678 * a new object, construct it, and return it to
1679 * the caller. We will allocate a group, if necessary,
1680 * when the object is freed back to the cache.
1681 */
1682 pc->pc_misses++;
1683 simple_unlock(&pc->pc_slock);
1684 object = pool_get(pc->pc_pool, flags);
1685 if (object != NULL && pc->pc_ctor != NULL) {
1686 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
1687 pool_put(pc->pc_pool, object);
1688 return (NULL);
1689 }
1690 }
1691 return (object);
1692 }
1693
1694 have_group:
1695 pc->pc_hits++;
1696 pc->pc_nitems--;
1697 object = pcg_get(pcg);
1698
1699 if (pcg->pcg_avail == 0)
1700 pc->pc_allocfrom = NULL;
1701
1702 simple_unlock(&pc->pc_slock);
1703
1704 return (object);
1705 }
1706
1707 /*
1708 * pool_cache_put:
1709 *
1710 * Put an object back to the pool cache.
1711 */
1712 void
1713 pool_cache_put(struct pool_cache *pc, void *object)
1714 {
1715 struct pool_cache_group *pcg;
1716 int s;
1717
1718 simple_lock(&pc->pc_slock);
1719
1720 if ((pcg = pc->pc_freeto) == NULL) {
1721 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1722 if (pcg->pcg_avail != PCG_NOBJECTS) {
1723 pc->pc_freeto = pcg;
1724 goto have_group;
1725 }
1726 }
1727
1728 /*
1729 * No empty groups to free the object to. Attempt to
1730 * allocate one.
1731 */
1732 simple_unlock(&pc->pc_slock);
1733 s = splvm();
1734 pcg = pool_get(&pcgpool, PR_NOWAIT);
1735 splx(s);
1736 if (pcg != NULL) {
1737 memset(pcg, 0, sizeof(*pcg));
1738 simple_lock(&pc->pc_slock);
1739 pc->pc_ngroups++;
1740 TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list);
1741 if (pc->pc_freeto == NULL)
1742 pc->pc_freeto = pcg;
1743 goto have_group;
1744 }
1745
1746 /*
1747 * Unable to allocate a cache group; destruct the object
1748 * and free it back to the pool.
1749 */
1750 pool_cache_destruct_object(pc, object);
1751 return;
1752 }
1753
1754 have_group:
1755 pc->pc_nitems++;
1756 pcg_put(pcg, object);
1757
1758 if (pcg->pcg_avail == PCG_NOBJECTS)
1759 pc->pc_freeto = NULL;
1760
1761 simple_unlock(&pc->pc_slock);
1762 }
1763
1764 /*
1765 * pool_cache_destruct_object:
1766 *
1767 * Force destruction of an object and its release back into
1768 * the pool.
1769 */
1770 void
1771 pool_cache_destruct_object(struct pool_cache *pc, void *object)
1772 {
1773
1774 if (pc->pc_dtor != NULL)
1775 (*pc->pc_dtor)(pc->pc_arg, object);
1776 pool_put(pc->pc_pool, object);
1777 }
1778
1779 /*
1780 * pool_cache_do_invalidate:
1781 *
1782 * This internal function implements pool_cache_invalidate() and
1783 * pool_cache_reclaim().
1784 */
1785 static void
1786 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups,
1787 void (*putit)(struct pool *, void *))
1788 {
1789 struct pool_cache_group *pcg, *npcg;
1790 void *object;
1791 int s;
1792
1793 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1794 pcg = npcg) {
1795 npcg = TAILQ_NEXT(pcg, pcg_list);
1796 while (pcg->pcg_avail != 0) {
1797 pc->pc_nitems--;
1798 object = pcg_get(pcg);
1799 if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg)
1800 pc->pc_allocfrom = NULL;
1801 if (pc->pc_dtor != NULL)
1802 (*pc->pc_dtor)(pc->pc_arg, object);
1803 (*putit)(pc->pc_pool, object);
1804 }
1805 if (free_groups) {
1806 pc->pc_ngroups--;
1807 TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list);
1808 if (pc->pc_freeto == pcg)
1809 pc->pc_freeto = NULL;
1810 s = splvm();
1811 pool_put(&pcgpool, pcg);
1812 splx(s);
1813 }
1814 }
1815 }
1816
1817 /*
1818 * pool_cache_invalidate:
1819 *
1820 * Invalidate a pool cache (destruct and release all of the
1821 * cached objects).
1822 */
1823 void
1824 pool_cache_invalidate(struct pool_cache *pc)
1825 {
1826
1827 simple_lock(&pc->pc_slock);
1828 pool_cache_do_invalidate(pc, 0, pool_put);
1829 simple_unlock(&pc->pc_slock);
1830 }
1831
1832 /*
1833 * pool_cache_reclaim:
1834 *
1835 * Reclaim a pool cache for pool_reclaim().
1836 */
1837 static void
1838 pool_cache_reclaim(struct pool_cache *pc)
1839 {
1840
1841 simple_lock(&pc->pc_slock);
1842 pool_cache_do_invalidate(pc, 1, pool_do_put);
1843 simple_unlock(&pc->pc_slock);
1844 }
1845