subr_pool.c revision 1.74.2.1 1 /* $NetBSD: subr_pool.c,v 1.74.2.1 2002/03/12 07:53:25 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000, 2002 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.74.2.1 2002/03/12 07:53:25 thorpej Exp $");
42
43 #include "opt_pool.h"
44 #include "opt_poollog.h"
45 #include "opt_lockdebug.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/proc.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/lock.h>
54 #include <sys/pool.h>
55 #include <sys/syslog.h>
56
57 #include <uvm/uvm.h>
58
59 /*
60 * Pool resource management utility.
61 *
62 * Memory is allocated in pages which are split into pieces according
63 * to the pool item size. Each page is kept on a list headed by `pr_pagelist'
64 * in the pool structure and the individual pool items are on a linked list
65 * headed by `ph_itemlist' in each page header. The memory for building
66 * the page list is either taken from the allocated pages themselves (for
67 * small pool items) or taken from an internal pool of page headers (`phpool').
68 */
69
70 /* List of all pools */
71 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
72
73 /* Private pool for page header structures */
74 static struct pool phpool;
75
76 #ifdef POOL_SUBPAGE
77 /* Pool of subpages for use by normal pools. */
78 static struct pool psppool;
79 #endif
80
81 /* # of seconds to retain page after last use */
82 int pool_inactive_time = 10;
83
84 /* Next candidate for drainage (see pool_drain()) */
85 static struct pool *drainpp;
86
87 /* This spin lock protects both pool_head and drainpp. */
88 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
89
90 struct pool_item_header {
91 /* Page headers */
92 TAILQ_ENTRY(pool_item_header)
93 ph_pagelist; /* pool page list */
94 TAILQ_HEAD(,pool_item) ph_itemlist; /* chunk list for this page */
95 LIST_ENTRY(pool_item_header)
96 ph_hashlist; /* Off-page page headers */
97 int ph_nmissing; /* # of chunks in use */
98 caddr_t ph_page; /* this page's address */
99 struct timeval ph_time; /* last referenced */
100 };
101 TAILQ_HEAD(pool_pagelist,pool_item_header);
102
103 struct pool_item {
104 #ifdef DIAGNOSTIC
105 int pi_magic;
106 #endif
107 #define PI_MAGIC 0xdeadbeef
108 /* Other entries use only this list entry */
109 TAILQ_ENTRY(pool_item) pi_list;
110 };
111
112 #define PR_HASH_INDEX(pp,addr) \
113 (((u_long)(addr) >> (pp)->pr_alloc->pa_pageshift) & \
114 (PR_HASHTABSIZE - 1))
115
116 #define POOL_NEEDS_CATCHUP(pp) \
117 ((pp)->pr_nitems < (pp)->pr_minitems)
118
119 /*
120 * Pool cache management.
121 *
122 * Pool caches provide a way for constructed objects to be cached by the
123 * pool subsystem. This can lead to performance improvements by avoiding
124 * needless object construction/destruction; it is deferred until absolutely
125 * necessary.
126 *
127 * Caches are grouped into cache groups. Each cache group references
128 * up to 16 constructed objects. When a cache allocates an object
129 * from the pool, it calls the object's constructor and places it into
130 * a cache group. When a cache group frees an object back to the pool,
131 * it first calls the object's destructor. This allows the object to
132 * persist in constructed form while freed to the cache.
133 *
134 * Multiple caches may exist for each pool. This allows a single
135 * object type to have multiple constructed forms. The pool references
136 * each cache, so that when a pool is drained by the pagedaemon, it can
137 * drain each individual cache as well. Each time a cache is drained,
138 * the most idle cache group is freed to the pool in its entirety.
139 *
140 * Pool caches are layed on top of pools. By layering them, we can avoid
141 * the complexity of cache management for pools which would not benefit
142 * from it.
143 */
144
145 /* The cache group pool. */
146 static struct pool pcgpool;
147
148 /* The pool cache group. */
149 #define PCG_NOBJECTS 16
150 struct pool_cache_group {
151 TAILQ_ENTRY(pool_cache_group)
152 pcg_list; /* link in the pool cache's group list */
153 u_int pcg_avail; /* # available objects */
154 /* pointers to the objects */
155 void *pcg_objects[PCG_NOBJECTS];
156 };
157
158 static void pool_cache_reclaim(struct pool_cache *);
159
160 static int pool_catchup(struct pool *);
161 static void pool_prime_page(struct pool *, caddr_t,
162 struct pool_item_header *);
163
164 void *pool_allocator_alloc(struct pool *, int);
165 void pool_allocator_free(struct pool *, void *);
166
167 static void pool_print1(struct pool *, const char *,
168 void (*)(const char *, ...));
169
170 /*
171 * Pool log entry. An array of these is allocated in pool_init().
172 */
173 struct pool_log {
174 const char *pl_file;
175 long pl_line;
176 int pl_action;
177 #define PRLOG_GET 1
178 #define PRLOG_PUT 2
179 void *pl_addr;
180 };
181
182 /* Number of entries in pool log buffers */
183 #ifndef POOL_LOGSIZE
184 #define POOL_LOGSIZE 10
185 #endif
186
187 int pool_logsize = POOL_LOGSIZE;
188
189 #ifdef POOL_DIAGNOSTIC
190 static __inline void
191 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
192 {
193 int n = pp->pr_curlogentry;
194 struct pool_log *pl;
195
196 if ((pp->pr_roflags & PR_LOGGING) == 0)
197 return;
198
199 /*
200 * Fill in the current entry. Wrap around and overwrite
201 * the oldest entry if necessary.
202 */
203 pl = &pp->pr_log[n];
204 pl->pl_file = file;
205 pl->pl_line = line;
206 pl->pl_action = action;
207 pl->pl_addr = v;
208 if (++n >= pp->pr_logsize)
209 n = 0;
210 pp->pr_curlogentry = n;
211 }
212
213 static void
214 pr_printlog(struct pool *pp, struct pool_item *pi,
215 void (*pr)(const char *, ...))
216 {
217 int i = pp->pr_logsize;
218 int n = pp->pr_curlogentry;
219
220 if ((pp->pr_roflags & PR_LOGGING) == 0)
221 return;
222
223 /*
224 * Print all entries in this pool's log.
225 */
226 while (i-- > 0) {
227 struct pool_log *pl = &pp->pr_log[n];
228 if (pl->pl_action != 0) {
229 if (pi == NULL || pi == pl->pl_addr) {
230 (*pr)("\tlog entry %d:\n", i);
231 (*pr)("\t\taction = %s, addr = %p\n",
232 pl->pl_action == PRLOG_GET ? "get" : "put",
233 pl->pl_addr);
234 (*pr)("\t\tfile: %s at line %lu\n",
235 pl->pl_file, pl->pl_line);
236 }
237 }
238 if (++n >= pp->pr_logsize)
239 n = 0;
240 }
241 }
242
243 static __inline void
244 pr_enter(struct pool *pp, const char *file, long line)
245 {
246
247 if (__predict_false(pp->pr_entered_file != NULL)) {
248 printf("pool %s: reentrancy at file %s line %ld\n",
249 pp->pr_wchan, file, line);
250 printf(" previous entry at file %s line %ld\n",
251 pp->pr_entered_file, pp->pr_entered_line);
252 panic("pr_enter");
253 }
254
255 pp->pr_entered_file = file;
256 pp->pr_entered_line = line;
257 }
258
259 static __inline void
260 pr_leave(struct pool *pp)
261 {
262
263 if (__predict_false(pp->pr_entered_file == NULL)) {
264 printf("pool %s not entered?\n", pp->pr_wchan);
265 panic("pr_leave");
266 }
267
268 pp->pr_entered_file = NULL;
269 pp->pr_entered_line = 0;
270 }
271
272 static __inline void
273 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
274 {
275
276 if (pp->pr_entered_file != NULL)
277 (*pr)("\n\tcurrently entered from file %s line %ld\n",
278 pp->pr_entered_file, pp->pr_entered_line);
279 }
280 #else
281 #define pr_log(pp, v, action, file, line)
282 #define pr_printlog(pp, pi, pr)
283 #define pr_enter(pp, file, line)
284 #define pr_leave(pp)
285 #define pr_enter_check(pp, pr)
286 #endif /* POOL_DIAGNOSTIC */
287
288 /*
289 * Return the pool page header based on page address.
290 */
291 static __inline struct pool_item_header *
292 pr_find_pagehead(struct pool *pp, caddr_t page)
293 {
294 struct pool_item_header *ph;
295
296 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
297 return ((struct pool_item_header *)(page + pp->pr_phoffset));
298
299 for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]);
300 ph != NULL;
301 ph = LIST_NEXT(ph, ph_hashlist)) {
302 if (ph->ph_page == page)
303 return (ph);
304 }
305 return (NULL);
306 }
307
308 /*
309 * Remove a page from the pool.
310 */
311 static __inline void
312 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
313 struct pool_pagelist *pq)
314 {
315 int s;
316
317 /*
318 * If the page was idle, decrement the idle page count.
319 */
320 if (ph->ph_nmissing == 0) {
321 #ifdef DIAGNOSTIC
322 if (pp->pr_nidle == 0)
323 panic("pr_rmpage: nidle inconsistent");
324 if (pp->pr_nitems < pp->pr_itemsperpage)
325 panic("pr_rmpage: nitems inconsistent");
326 #endif
327 pp->pr_nidle--;
328 }
329
330 pp->pr_nitems -= pp->pr_itemsperpage;
331
332 /*
333 * Unlink a page from the pool and release it (or queue it for release).
334 */
335 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
336 if (pq) {
337 TAILQ_INSERT_HEAD(pq, ph, ph_pagelist);
338 } else {
339 pool_allocator_free(pp, ph->ph_page);
340 if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
341 LIST_REMOVE(ph, ph_hashlist);
342 s = splhigh();
343 pool_put(&phpool, ph);
344 splx(s);
345 }
346 }
347 pp->pr_npages--;
348 pp->pr_npagefree++;
349
350 if (pp->pr_curpage == ph) {
351 /*
352 * Find a new non-empty page header, if any.
353 * Start search from the page head, to increase the
354 * chance for "high water" pages to be freed.
355 */
356 TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist)
357 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
358 break;
359
360 pp->pr_curpage = ph;
361 }
362 }
363
364 /*
365 * Initialize the given pool resource structure.
366 *
367 * We export this routine to allow other kernel parts to declare
368 * static pools that must be initialized before malloc() is available.
369 */
370 void
371 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
372 const char *wchan, struct pool_allocator *palloc)
373 {
374 int off, slack, i;
375
376 #ifdef POOL_DIAGNOSTIC
377 /*
378 * Always log if POOL_DIAGNOSTIC is defined.
379 */
380 if (pool_logsize != 0)
381 flags |= PR_LOGGING;
382 #endif
383
384 #ifdef POOL_SUBPAGE
385 /*
386 * XXX We don't provide a real `nointr' back-end
387 * yet; all sub-pages come from a kmem back-end.
388 * maybe some day...
389 */
390 if (palloc == NULL) {
391 extern struct pool_allocator pool_allocator_kmem_subpage;
392 palloc = &pool_allocator_kmem_subpage;
393 }
394 /*
395 * We'll assume any user-specified back-end allocator
396 * will deal with sub-pages, or simply don't care.
397 */
398 #else
399 if (palloc == NULL)
400 palloc = &pool_allocator_kmem;
401 #endif /* POOL_SUBPAGE */
402 if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
403 if (palloc->pa_pagesz == 0) {
404 #ifdef POOL_SUBPAGE
405 if (palloc == &pool_allocator_kmem)
406 palloc->pa_pagesz = PAGE_SIZE;
407 else
408 palloc->pa_pagesz = POOL_SUBPAGE;
409 #else
410 palloc->pa_pagesz = PAGE_SIZE;
411 #endif /* POOL_SUBPAGE */
412 }
413
414 TAILQ_INIT(&palloc->pa_list);
415
416 simple_lock_init(&palloc->pa_slock);
417 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
418 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
419 palloc->pa_flags |= PA_INITIALIZED;
420 }
421
422 if (align == 0)
423 align = ALIGN(1);
424
425 if (size < sizeof(struct pool_item))
426 size = sizeof(struct pool_item);
427
428 size = ALIGN(size);
429 #ifdef DIAGNOSTIC
430 if (size > palloc->pa_pagesz)
431 panic("pool_init: pool item size (%lu) too large",
432 (u_long)size);
433 #endif
434
435 /*
436 * Initialize the pool structure.
437 */
438 TAILQ_INIT(&pp->pr_pagelist);
439 TAILQ_INIT(&pp->pr_cachelist);
440 pp->pr_curpage = NULL;
441 pp->pr_npages = 0;
442 pp->pr_minitems = 0;
443 pp->pr_minpages = 0;
444 pp->pr_maxpages = UINT_MAX;
445 pp->pr_roflags = flags;
446 pp->pr_flags = 0;
447 pp->pr_size = size;
448 pp->pr_align = align;
449 pp->pr_wchan = wchan;
450 pp->pr_alloc = palloc;
451 pp->pr_nitems = 0;
452 pp->pr_nout = 0;
453 pp->pr_hardlimit = UINT_MAX;
454 pp->pr_hardlimit_warning = NULL;
455 pp->pr_hardlimit_ratecap.tv_sec = 0;
456 pp->pr_hardlimit_ratecap.tv_usec = 0;
457 pp->pr_hardlimit_warning_last.tv_sec = 0;
458 pp->pr_hardlimit_warning_last.tv_usec = 0;
459 pp->pr_drain_hook = NULL;
460 pp->pr_drain_hook_arg = NULL;
461
462 /*
463 * Decide whether to put the page header off page to avoid
464 * wasting too large a part of the page. Off-page page headers
465 * go on a hash table, so we can match a returned item
466 * with its header based on the page address.
467 * We use 1/16 of the page size as the threshold (XXX: tune)
468 */
469 if (pp->pr_size < palloc->pa_pagesz/16) {
470 /* Use the end of the page for the page header */
471 pp->pr_roflags |= PR_PHINPAGE;
472 pp->pr_phoffset = off = palloc->pa_pagesz -
473 ALIGN(sizeof(struct pool_item_header));
474 } else {
475 /* The page header will be taken from our page header pool */
476 pp->pr_phoffset = 0;
477 off = palloc->pa_pagesz;
478 for (i = 0; i < PR_HASHTABSIZE; i++) {
479 LIST_INIT(&pp->pr_hashtab[i]);
480 }
481 }
482
483 /*
484 * Alignment is to take place at `ioff' within the item. This means
485 * we must reserve up to `align - 1' bytes on the page to allow
486 * appropriate positioning of each item.
487 *
488 * Silently enforce `0 <= ioff < align'.
489 */
490 pp->pr_itemoffset = ioff = ioff % align;
491 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
492 KASSERT(pp->pr_itemsperpage != 0);
493
494 /*
495 * Use the slack between the chunks and the page header
496 * for "cache coloring".
497 */
498 slack = off - pp->pr_itemsperpage * pp->pr_size;
499 pp->pr_maxcolor = (slack / align) * align;
500 pp->pr_curcolor = 0;
501
502 pp->pr_nget = 0;
503 pp->pr_nfail = 0;
504 pp->pr_nput = 0;
505 pp->pr_npagealloc = 0;
506 pp->pr_npagefree = 0;
507 pp->pr_hiwat = 0;
508 pp->pr_nidle = 0;
509
510 #ifdef POOL_DIAGNOSTIC
511 if (flags & PR_LOGGING) {
512 if (kmem_map == NULL ||
513 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
514 M_TEMP, M_NOWAIT)) == NULL)
515 pp->pr_roflags &= ~PR_LOGGING;
516 pp->pr_curlogentry = 0;
517 pp->pr_logsize = pool_logsize;
518 }
519 #endif
520
521 pp->pr_entered_file = NULL;
522 pp->pr_entered_line = 0;
523
524 simple_lock_init(&pp->pr_slock);
525
526 /*
527 * Initialize private page header pool and cache magazine pool if we
528 * haven't done so yet.
529 * XXX LOCKING.
530 */
531 if (phpool.pr_size == 0) {
532 #ifdef POOL_SUBPAGE
533 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0, 0,
534 "phpool", &pool_allocator_kmem);
535 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
536 PR_RECURSIVE, "psppool", &pool_allocator_kmem);
537 #else
538 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
539 0, "phpool", NULL);
540 #endif
541 pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
542 0, "pcgpool", NULL);
543 }
544
545 /* Insert into the list of all pools. */
546 simple_lock(&pool_head_slock);
547 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
548 simple_unlock(&pool_head_slock);
549
550 /* Insert this into the list of pools using this allocator. */
551 simple_lock(&palloc->pa_slock);
552 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
553 simple_unlock(&palloc->pa_slock);
554 }
555
556 /*
557 * De-commision a pool resource.
558 */
559 void
560 pool_destroy(struct pool *pp)
561 {
562 struct pool_item_header *ph;
563 struct pool_cache *pc;
564
565 /* Locking order: pool_allocator -> pool */
566 simple_lock(&pp->pr_alloc->pa_slock);
567 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
568 simple_unlock(&pp->pr_alloc->pa_slock);
569
570 /* Destroy all caches for this pool. */
571 while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL)
572 pool_cache_destroy(pc);
573
574 #ifdef DIAGNOSTIC
575 if (pp->pr_nout != 0) {
576 pr_printlog(pp, NULL, printf);
577 panic("pool_destroy: pool busy: still out: %u\n",
578 pp->pr_nout);
579 }
580 #endif
581
582 /* Remove all pages */
583 while ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
584 pr_rmpage(pp, ph, NULL);
585
586 /* Remove from global pool list */
587 simple_lock(&pool_head_slock);
588 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
589 if (drainpp == pp) {
590 drainpp = NULL;
591 }
592 simple_unlock(&pool_head_slock);
593
594 #ifdef POOL_DIAGNOSTIC
595 if ((pp->pr_roflags & PR_LOGGING) != 0)
596 free(pp->pr_log, M_TEMP);
597 #endif
598 }
599
600 void
601 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
602 {
603
604 /* XXX no locking -- must be used just after pool_init() */
605 #ifdef DIAGNOSTIC
606 if (pp->pr_drain_hook != NULL)
607 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
608 #endif
609 pp->pr_drain_hook = fn;
610 pp->pr_drain_hook_arg = arg;
611 }
612
613 static __inline struct pool_item_header *
614 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
615 {
616 struct pool_item_header *ph;
617 int s;
618
619 LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
620
621 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
622 ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
623 else {
624 s = splhigh();
625 ph = pool_get(&phpool, flags);
626 splx(s);
627 }
628
629 return (ph);
630 }
631
632 /*
633 * Grab an item from the pool; must be called at appropriate spl level
634 */
635 void *
636 #ifdef POOL_DIAGNOSTIC
637 _pool_get(struct pool *pp, int flags, const char *file, long line)
638 #else
639 pool_get(struct pool *pp, int flags)
640 #endif
641 {
642 struct pool_item *pi;
643 struct pool_item_header *ph;
644 void *v;
645
646 #ifdef DIAGNOSTIC
647 if (__predict_false(curproc == NULL && doing_shutdown == 0 &&
648 (flags & PR_WAITOK) != 0))
649 panic("pool_get: must have NOWAIT");
650
651 #ifdef LOCKDEBUG
652 if (flags & PR_WAITOK)
653 simple_lock_only_held(NULL, "pool_get(PR_WAITOK)");
654 #endif
655 #endif /* DIAGNOSTIC */
656
657 simple_lock(&pp->pr_slock);
658 pr_enter(pp, file, line);
659
660 startover:
661 /*
662 * Check to see if we've reached the hard limit. If we have,
663 * and we can wait, then wait until an item has been returned to
664 * the pool.
665 */
666 #ifdef DIAGNOSTIC
667 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
668 pr_leave(pp);
669 simple_unlock(&pp->pr_slock);
670 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
671 }
672 #endif
673 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
674 if (pp->pr_drain_hook != NULL) {
675 /*
676 * Since the drain hook is going to free things
677 * back to the pool, unlock, call the hook, re-lock,
678 * and check the hardlimit condition again.
679 */
680 pr_leave(pp);
681 simple_unlock(&pp->pr_slock);
682 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
683 simple_lock(&pp->pr_slock);
684 pr_enter(pp, file, line);
685 if (pp->pr_nout < pp->pr_hardlimit)
686 goto startover;
687 }
688
689 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
690 /*
691 * XXX: A warning isn't logged in this case. Should
692 * it be?
693 */
694 pp->pr_flags |= PR_WANTED;
695 pr_leave(pp);
696 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
697 pr_enter(pp, file, line);
698 goto startover;
699 }
700
701 /*
702 * Log a message that the hard limit has been hit.
703 */
704 if (pp->pr_hardlimit_warning != NULL &&
705 ratecheck(&pp->pr_hardlimit_warning_last,
706 &pp->pr_hardlimit_ratecap))
707 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
708
709 pp->pr_nfail++;
710
711 pr_leave(pp);
712 simple_unlock(&pp->pr_slock);
713 return (NULL);
714 }
715
716 /*
717 * The convention we use is that if `curpage' is not NULL, then
718 * it points at a non-empty bucket. In particular, `curpage'
719 * never points at a page header which has PR_PHINPAGE set and
720 * has no items in its bucket.
721 */
722 if ((ph = pp->pr_curpage) == NULL) {
723 #ifdef DIAGNOSTIC
724 if (pp->pr_nitems != 0) {
725 simple_unlock(&pp->pr_slock);
726 printf("pool_get: %s: curpage NULL, nitems %u\n",
727 pp->pr_wchan, pp->pr_nitems);
728 panic("pool_get: nitems inconsistent\n");
729 }
730 #endif
731
732 /*
733 * Call the back-end page allocator for more memory.
734 * Release the pool lock, as the back-end page allocator
735 * may block.
736 */
737 pr_leave(pp);
738 simple_unlock(&pp->pr_slock);
739 v = pool_allocator_alloc(pp, flags);
740 if (__predict_true(v != NULL))
741 ph = pool_alloc_item_header(pp, v, flags);
742 simple_lock(&pp->pr_slock);
743 pr_enter(pp, file, line);
744
745 if (__predict_false(v == NULL || ph == NULL)) {
746 if (v != NULL)
747 pool_allocator_free(pp, v);
748
749 /*
750 * We were unable to allocate a page or item
751 * header, but we released the lock during
752 * allocation, so perhaps items were freed
753 * back to the pool. Check for this case.
754 */
755 if (pp->pr_curpage != NULL)
756 goto startover;
757
758 if ((flags & PR_WAITOK) == 0) {
759 pp->pr_nfail++;
760 pr_leave(pp);
761 simple_unlock(&pp->pr_slock);
762 return (NULL);
763 }
764
765 /*
766 * Wait for items to be returned to this pool.
767 *
768 * XXX: maybe we should wake up once a second and
769 * try again?
770 */
771 pp->pr_flags |= PR_WANTED;
772 /* PA_WANTED is already set on the allocator. */
773 pr_leave(pp);
774 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
775 pr_enter(pp, file, line);
776 goto startover;
777 }
778
779 /* We have more memory; add it to the pool */
780 pool_prime_page(pp, v, ph);
781 pp->pr_npagealloc++;
782
783 /* Start the allocation process over. */
784 goto startover;
785 }
786
787 if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
788 pr_leave(pp);
789 simple_unlock(&pp->pr_slock);
790 panic("pool_get: %s: page empty", pp->pr_wchan);
791 }
792 #ifdef DIAGNOSTIC
793 if (__predict_false(pp->pr_nitems == 0)) {
794 pr_leave(pp);
795 simple_unlock(&pp->pr_slock);
796 printf("pool_get: %s: items on itemlist, nitems %u\n",
797 pp->pr_wchan, pp->pr_nitems);
798 panic("pool_get: nitems inconsistent\n");
799 }
800 #endif
801
802 #ifdef POOL_DIAGNOSTIC
803 pr_log(pp, v, PRLOG_GET, file, line);
804 #endif
805
806 #ifdef DIAGNOSTIC
807 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
808 pr_printlog(pp, pi, printf);
809 panic("pool_get(%s): free list modified: magic=%x; page %p;"
810 " item addr %p\n",
811 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
812 }
813 #endif
814
815 /*
816 * Remove from item list.
817 */
818 TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
819 pp->pr_nitems--;
820 pp->pr_nout++;
821 if (ph->ph_nmissing == 0) {
822 #ifdef DIAGNOSTIC
823 if (__predict_false(pp->pr_nidle == 0))
824 panic("pool_get: nidle inconsistent");
825 #endif
826 pp->pr_nidle--;
827 }
828 ph->ph_nmissing++;
829 if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) {
830 #ifdef DIAGNOSTIC
831 if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
832 pr_leave(pp);
833 simple_unlock(&pp->pr_slock);
834 panic("pool_get: %s: nmissing inconsistent",
835 pp->pr_wchan);
836 }
837 #endif
838 /*
839 * Find a new non-empty page header, if any.
840 * Start search from the page head, to increase
841 * the chance for "high water" pages to be freed.
842 *
843 * Migrate empty pages to the end of the list. This
844 * will speed the update of curpage as pages become
845 * idle. Empty pages intermingled with idle pages
846 * is no big deal. As soon as a page becomes un-empty,
847 * it will move back to the head of the list.
848 */
849 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
850 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
851 TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist)
852 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
853 break;
854
855 pp->pr_curpage = ph;
856 }
857
858 pp->pr_nget++;
859
860 /*
861 * If we have a low water mark and we are now below that low
862 * water mark, add more items to the pool.
863 */
864 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
865 /*
866 * XXX: Should we log a warning? Should we set up a timeout
867 * to try again in a second or so? The latter could break
868 * a caller's assumptions about interrupt protection, etc.
869 */
870 }
871
872 pr_leave(pp);
873 simple_unlock(&pp->pr_slock);
874 KASSERT((((vaddr_t)v + pp->pr_itemoffset) & (pp->pr_align - 1)) == 0);
875 return (v);
876 }
877
878 /*
879 * Internal version of pool_put(). Pool is already locked/entered.
880 */
881 static void
882 pool_do_put(struct pool *pp, void *v)
883 {
884 struct pool_item *pi = v;
885 struct pool_item_header *ph;
886 caddr_t page;
887 int s;
888
889 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
890
891 page = (caddr_t)((u_long)v & pp->pr_alloc->pa_pagemask);
892
893 #ifdef DIAGNOSTIC
894 if (__predict_false(pp->pr_nout == 0)) {
895 printf("pool %s: putting with none out\n",
896 pp->pr_wchan);
897 panic("pool_put");
898 }
899 #endif
900
901 if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
902 pr_printlog(pp, NULL, printf);
903 panic("pool_put: %s: page header missing", pp->pr_wchan);
904 }
905
906 #ifdef LOCKDEBUG
907 /*
908 * Check if we're freeing a locked simple lock.
909 */
910 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
911 #endif
912
913 /*
914 * Return to item list.
915 */
916 #ifdef DIAGNOSTIC
917 pi->pi_magic = PI_MAGIC;
918 #endif
919 #ifdef DEBUG
920 {
921 int i, *ip = v;
922
923 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
924 *ip++ = PI_MAGIC;
925 }
926 }
927 #endif
928
929 TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
930 ph->ph_nmissing--;
931 pp->pr_nput++;
932 pp->pr_nitems++;
933 pp->pr_nout--;
934
935 /* Cancel "pool empty" condition if it exists */
936 if (pp->pr_curpage == NULL)
937 pp->pr_curpage = ph;
938
939 if (pp->pr_flags & PR_WANTED) {
940 pp->pr_flags &= ~PR_WANTED;
941 if (ph->ph_nmissing == 0)
942 pp->pr_nidle++;
943 wakeup((caddr_t)pp);
944 return;
945 }
946
947 /*
948 * If this page is now complete, do one of two things:
949 *
950 * (1) If we have more pages than the page high water
951 * mark, free the page back to the system.
952 *
953 * (2) Move it to the end of the page list, so that
954 * we minimize our chances of fragmenting the
955 * pool. Idle pages migrate to the end (along with
956 * completely empty pages, so that we find un-empty
957 * pages more quickly when we update curpage) of the
958 * list so they can be more easily swept up by
959 * the pagedaemon when pages are scarce.
960 */
961 if (ph->ph_nmissing == 0) {
962 pp->pr_nidle++;
963 if (pp->pr_npages > pp->pr_maxpages ||
964 (pp->pr_alloc->pa_flags & PA_WANT) != 0) {
965 pr_rmpage(pp, ph, NULL);
966 } else {
967 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
968 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
969
970 /*
971 * Update the timestamp on the page. A page must
972 * be idle for some period of time before it can
973 * be reclaimed by the pagedaemon. This minimizes
974 * ping-pong'ing for memory.
975 */
976 s = splclock();
977 ph->ph_time = mono_time;
978 splx(s);
979
980 /*
981 * Update the current page pointer. Just look for
982 * the first page with any free items.
983 *
984 * XXX: Maybe we want an option to look for the
985 * page with the fewest available items, to minimize
986 * fragmentation?
987 */
988 TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist)
989 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
990 break;
991
992 pp->pr_curpage = ph;
993 }
994 }
995 /*
996 * If the page has just become un-empty, move it to the head of
997 * the list, and make it the current page. The next allocation
998 * will get the item from this page, instead of further fragmenting
999 * the pool.
1000 */
1001 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1002 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
1003 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
1004 pp->pr_curpage = ph;
1005 }
1006 }
1007
1008 /*
1009 * Return resource to the pool; must be called at appropriate spl level
1010 */
1011 #ifdef POOL_DIAGNOSTIC
1012 void
1013 _pool_put(struct pool *pp, void *v, const char *file, long line)
1014 {
1015
1016 simple_lock(&pp->pr_slock);
1017 pr_enter(pp, file, line);
1018
1019 pr_log(pp, v, PRLOG_PUT, file, line);
1020
1021 pool_do_put(pp, v);
1022
1023 pr_leave(pp);
1024 simple_unlock(&pp->pr_slock);
1025 }
1026 #undef pool_put
1027 #endif /* POOL_DIAGNOSTIC */
1028
1029 void
1030 pool_put(struct pool *pp, void *v)
1031 {
1032
1033 simple_lock(&pp->pr_slock);
1034
1035 pool_do_put(pp, v);
1036
1037 simple_unlock(&pp->pr_slock);
1038 }
1039
1040 #ifdef POOL_DIAGNOSTIC
1041 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1042 #endif
1043
1044 /*
1045 * Add N items to the pool.
1046 */
1047 int
1048 pool_prime(struct pool *pp, int n)
1049 {
1050 struct pool_item_header *ph;
1051 caddr_t cp;
1052 int newpages, error = 0;
1053
1054 simple_lock(&pp->pr_slock);
1055
1056 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1057
1058 while (newpages-- > 0) {
1059 simple_unlock(&pp->pr_slock);
1060 cp = pool_allocator_alloc(pp, PR_NOWAIT);
1061 if (__predict_true(cp != NULL))
1062 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1063 simple_lock(&pp->pr_slock);
1064
1065 if (__predict_false(cp == NULL || ph == NULL)) {
1066 error = ENOMEM;
1067 if (cp != NULL)
1068 pool_allocator_free(pp, cp);
1069 break;
1070 }
1071
1072 pool_prime_page(pp, cp, ph);
1073 pp->pr_npagealloc++;
1074 pp->pr_minpages++;
1075 }
1076
1077 if (pp->pr_minpages >= pp->pr_maxpages)
1078 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1079
1080 simple_unlock(&pp->pr_slock);
1081 return (0);
1082 }
1083
1084 /*
1085 * Add a page worth of items to the pool.
1086 *
1087 * Note, we must be called with the pool descriptor LOCKED.
1088 */
1089 static void
1090 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
1091 {
1092 struct pool_item *pi;
1093 caddr_t cp = storage;
1094 const unsigned int align = pp->pr_align;
1095 const unsigned int ioff = pp->pr_itemoffset;
1096 const unsigned int alignsize = roundup(pp->pr_size, align);
1097 int n;
1098
1099 #ifdef DIAGNOSTIC
1100 if (((u_long)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1101 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1102 #endif
1103
1104 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1105 LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)],
1106 ph, ph_hashlist);
1107
1108 /*
1109 * Insert page header.
1110 */
1111 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
1112 TAILQ_INIT(&ph->ph_itemlist);
1113 ph->ph_page = storage;
1114 ph->ph_nmissing = 0;
1115 memset(&ph->ph_time, 0, sizeof(ph->ph_time));
1116
1117 pp->pr_nidle++;
1118
1119 /*
1120 * Color this page.
1121 */
1122 cp = (caddr_t)(cp + pp->pr_curcolor);
1123 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1124 pp->pr_curcolor = 0;
1125
1126 /*
1127 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1128 */
1129 if (ioff != 0)
1130 cp = (caddr_t)(cp + (align - ioff));
1131
1132 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1133
1134 /*
1135 * Insert remaining chunks on the bucket list.
1136 */
1137 n = pp->pr_itemsperpage;
1138 pp->pr_nitems += n;
1139
1140 while (n--) {
1141 pi = (struct pool_item *)cp;
1142
1143 /* Insert on page list */
1144 TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
1145 #ifdef DIAGNOSTIC
1146 pi->pi_magic = PI_MAGIC;
1147 #endif
1148 cp = (caddr_t)(cp + alignsize);
1149
1150 KASSERT((((vaddr_t)cp + ioff) & (align - 1)) == 0);
1151 }
1152
1153 /*
1154 * If the pool was depleted, point at the new page.
1155 */
1156 if (pp->pr_curpage == NULL)
1157 pp->pr_curpage = ph;
1158
1159 if (++pp->pr_npages > pp->pr_hiwat)
1160 pp->pr_hiwat = pp->pr_npages;
1161 }
1162
1163 /*
1164 * Used by pool_get() when nitems drops below the low water mark. This
1165 * is used to catch up nitmes with the low water mark.
1166 *
1167 * Note 1, we never wait for memory here, we let the caller decide what to do.
1168 *
1169 * Note 2, we must be called with the pool already locked, and we return
1170 * with it locked.
1171 */
1172 static int
1173 pool_catchup(struct pool *pp)
1174 {
1175 struct pool_item_header *ph;
1176 caddr_t cp;
1177 int error = 0;
1178
1179 while (POOL_NEEDS_CATCHUP(pp)) {
1180 /*
1181 * Call the page back-end allocator for more memory.
1182 *
1183 * XXX: We never wait, so should we bother unlocking
1184 * the pool descriptor?
1185 */
1186 simple_unlock(&pp->pr_slock);
1187 cp = pool_allocator_alloc(pp, PR_NOWAIT);
1188 if (__predict_true(cp != NULL))
1189 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1190 simple_lock(&pp->pr_slock);
1191 if (__predict_false(cp == NULL || ph == NULL)) {
1192 if (cp != NULL)
1193 pool_allocator_free(pp, cp);
1194 error = ENOMEM;
1195 break;
1196 }
1197 pool_prime_page(pp, cp, ph);
1198 pp->pr_npagealloc++;
1199 }
1200
1201 return (error);
1202 }
1203
1204 void
1205 pool_setlowat(struct pool *pp, int n)
1206 {
1207 int error;
1208
1209 simple_lock(&pp->pr_slock);
1210
1211 pp->pr_minitems = n;
1212 pp->pr_minpages = (n == 0)
1213 ? 0
1214 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1215
1216 /* Make sure we're caught up with the newly-set low water mark. */
1217 if (POOL_NEEDS_CATCHUP(pp) && (error = pool_catchup(pp) != 0)) {
1218 /*
1219 * XXX: Should we log a warning? Should we set up a timeout
1220 * to try again in a second or so? The latter could break
1221 * a caller's assumptions about interrupt protection, etc.
1222 */
1223 }
1224
1225 simple_unlock(&pp->pr_slock);
1226 }
1227
1228 void
1229 pool_sethiwat(struct pool *pp, int n)
1230 {
1231
1232 simple_lock(&pp->pr_slock);
1233
1234 pp->pr_maxpages = (n == 0)
1235 ? 0
1236 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1237
1238 simple_unlock(&pp->pr_slock);
1239 }
1240
1241 void
1242 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1243 {
1244
1245 simple_lock(&pp->pr_slock);
1246
1247 pp->pr_hardlimit = n;
1248 pp->pr_hardlimit_warning = warnmess;
1249 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1250 pp->pr_hardlimit_warning_last.tv_sec = 0;
1251 pp->pr_hardlimit_warning_last.tv_usec = 0;
1252
1253 /*
1254 * In-line version of pool_sethiwat(), because we don't want to
1255 * release the lock.
1256 */
1257 pp->pr_maxpages = (n == 0)
1258 ? 0
1259 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1260
1261 simple_unlock(&pp->pr_slock);
1262 }
1263
1264 /*
1265 * Release all complete pages that have not been used recently.
1266 */
1267 int
1268 #ifdef POOL_DIAGNOSTIC
1269 _pool_reclaim(struct pool *pp, const char *file, long line)
1270 #else
1271 pool_reclaim(struct pool *pp)
1272 #endif
1273 {
1274 struct pool_item_header *ph, *phnext;
1275 struct pool_cache *pc;
1276 struct timeval curtime;
1277 struct pool_pagelist pq;
1278 int s;
1279
1280 if (pp->pr_drain_hook != NULL) {
1281 /*
1282 * The drain hook must be called with the pool unlocked.
1283 */
1284 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1285 }
1286
1287 if (simple_lock_try(&pp->pr_slock) == 0)
1288 return (0);
1289 pr_enter(pp, file, line);
1290
1291 TAILQ_INIT(&pq);
1292
1293 /*
1294 * Reclaim items from the pool's caches.
1295 */
1296 TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
1297 pool_cache_reclaim(pc);
1298
1299 s = splclock();
1300 curtime = mono_time;
1301 splx(s);
1302
1303 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) {
1304 phnext = TAILQ_NEXT(ph, ph_pagelist);
1305
1306 /* Check our minimum page claim */
1307 if (pp->pr_npages <= pp->pr_minpages)
1308 break;
1309
1310 if (ph->ph_nmissing == 0) {
1311 struct timeval diff;
1312 timersub(&curtime, &ph->ph_time, &diff);
1313 if (diff.tv_sec < pool_inactive_time)
1314 continue;
1315
1316 /*
1317 * If freeing this page would put us below
1318 * the low water mark, stop now.
1319 */
1320 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1321 pp->pr_minitems)
1322 break;
1323
1324 pr_rmpage(pp, ph, &pq);
1325 }
1326 }
1327
1328 pr_leave(pp);
1329 simple_unlock(&pp->pr_slock);
1330 if (TAILQ_EMPTY(&pq))
1331 return (0);
1332
1333 while ((ph = TAILQ_FIRST(&pq)) != NULL) {
1334 TAILQ_REMOVE(&pq, ph, ph_pagelist);
1335 pool_allocator_free(pp, ph->ph_page);
1336 if (pp->pr_roflags & PR_PHINPAGE) {
1337 continue;
1338 }
1339 LIST_REMOVE(ph, ph_hashlist);
1340 s = splhigh();
1341 pool_put(&phpool, ph);
1342 splx(s);
1343 }
1344
1345 return (1);
1346 }
1347
1348 /*
1349 * Drain pools, one at a time.
1350 *
1351 * Note, we must never be called from an interrupt context.
1352 */
1353 void
1354 pool_drain(void *arg)
1355 {
1356 struct pool *pp;
1357 int s;
1358
1359 pp = NULL;
1360 s = splvm();
1361 simple_lock(&pool_head_slock);
1362 if (drainpp == NULL) {
1363 drainpp = TAILQ_FIRST(&pool_head);
1364 }
1365 if (drainpp) {
1366 pp = drainpp;
1367 drainpp = TAILQ_NEXT(pp, pr_poollist);
1368 }
1369 simple_unlock(&pool_head_slock);
1370 pool_reclaim(pp);
1371 splx(s);
1372 }
1373
1374 /*
1375 * Diagnostic helpers.
1376 */
1377 void
1378 pool_print(struct pool *pp, const char *modif)
1379 {
1380 int s;
1381
1382 s = splvm();
1383 if (simple_lock_try(&pp->pr_slock) == 0) {
1384 printf("pool %s is locked; try again later\n",
1385 pp->pr_wchan);
1386 splx(s);
1387 return;
1388 }
1389 pool_print1(pp, modif, printf);
1390 simple_unlock(&pp->pr_slock);
1391 splx(s);
1392 }
1393
1394 void
1395 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1396 {
1397 int didlock = 0;
1398
1399 if (pp == NULL) {
1400 (*pr)("Must specify a pool to print.\n");
1401 return;
1402 }
1403
1404 /*
1405 * Called from DDB; interrupts should be blocked, and all
1406 * other processors should be paused. We can skip locking
1407 * the pool in this case.
1408 *
1409 * We do a simple_lock_try() just to print the lock
1410 * status, however.
1411 */
1412
1413 if (simple_lock_try(&pp->pr_slock) == 0)
1414 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1415 else
1416 didlock = 1;
1417
1418 pool_print1(pp, modif, pr);
1419
1420 if (didlock)
1421 simple_unlock(&pp->pr_slock);
1422 }
1423
1424 static void
1425 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1426 {
1427 struct pool_item_header *ph;
1428 struct pool_cache *pc;
1429 struct pool_cache_group *pcg;
1430 #ifdef DIAGNOSTIC
1431 struct pool_item *pi;
1432 #endif
1433 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1434 char c;
1435
1436 while ((c = *modif++) != '\0') {
1437 if (c == 'l')
1438 print_log = 1;
1439 if (c == 'p')
1440 print_pagelist = 1;
1441 if (c == 'c')
1442 print_cache = 1;
1443 modif++;
1444 }
1445
1446 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1447 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1448 pp->pr_roflags);
1449 (*pr)("\talloc %p\n", pp->pr_alloc);
1450 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1451 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1452 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1453 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1454
1455 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1456 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1457 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1458 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1459
1460 if (print_pagelist == 0)
1461 goto skip_pagelist;
1462
1463 if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
1464 (*pr)("\n\tpage list:\n");
1465 for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) {
1466 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1467 ph->ph_page, ph->ph_nmissing,
1468 (u_long)ph->ph_time.tv_sec,
1469 (u_long)ph->ph_time.tv_usec);
1470 #ifdef DIAGNOSTIC
1471 TAILQ_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1472 if (pi->pi_magic != PI_MAGIC) {
1473 (*pr)("\t\t\titem %p, magic 0x%x\n",
1474 pi, pi->pi_magic);
1475 }
1476 }
1477 #endif
1478 }
1479 if (pp->pr_curpage == NULL)
1480 (*pr)("\tno current page\n");
1481 else
1482 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1483
1484 skip_pagelist:
1485
1486 if (print_log == 0)
1487 goto skip_log;
1488
1489 (*pr)("\n");
1490 if ((pp->pr_roflags & PR_LOGGING) == 0)
1491 (*pr)("\tno log\n");
1492 else
1493 pr_printlog(pp, NULL, pr);
1494
1495 skip_log:
1496
1497 if (print_cache == 0)
1498 goto skip_cache;
1499
1500 TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
1501 (*pr)("\tcache %p: allocfrom %p freeto %p\n", pc,
1502 pc->pc_allocfrom, pc->pc_freeto);
1503 (*pr)("\t hits %lu misses %lu ngroups %lu nitems %lu\n",
1504 pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
1505 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1506 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);
1507 for (i = 0; i < PCG_NOBJECTS; i++)
1508 (*pr)("\t\t\t%p\n", pcg->pcg_objects[i]);
1509 }
1510 }
1511
1512 skip_cache:
1513
1514 pr_enter_check(pp, pr);
1515 }
1516
1517 int
1518 pool_chk(struct pool *pp, const char *label)
1519 {
1520 struct pool_item_header *ph;
1521 int r = 0;
1522
1523 simple_lock(&pp->pr_slock);
1524
1525 TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist) {
1526 struct pool_item *pi;
1527 int n;
1528 caddr_t page;
1529
1530 page = (caddr_t)((u_long)ph & pp->pr_alloc->pa_pagemask);
1531 if (page != ph->ph_page &&
1532 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1533 if (label != NULL)
1534 printf("%s: ", label);
1535 printf("pool(%p:%s): page inconsistency: page %p;"
1536 " at page head addr %p (p %p)\n", pp,
1537 pp->pr_wchan, ph->ph_page,
1538 ph, page);
1539 r++;
1540 goto out;
1541 }
1542
1543 for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
1544 pi != NULL;
1545 pi = TAILQ_NEXT(pi,pi_list), n++) {
1546
1547 #ifdef DIAGNOSTIC
1548 if (pi->pi_magic != PI_MAGIC) {
1549 if (label != NULL)
1550 printf("%s: ", label);
1551 printf("pool(%s): free list modified: magic=%x;"
1552 " page %p; item ordinal %d;"
1553 " addr %p (p %p)\n",
1554 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1555 n, pi, page);
1556 panic("pool");
1557 }
1558 #endif
1559 page =
1560 (caddr_t)((u_long)pi & pp->pr_alloc->pa_pagemask);
1561 if (page == ph->ph_page)
1562 continue;
1563
1564 if (label != NULL)
1565 printf("%s: ", label);
1566 printf("pool(%p:%s): page inconsistency: page %p;"
1567 " item ordinal %d; addr %p (p %p)\n", pp,
1568 pp->pr_wchan, ph->ph_page,
1569 n, pi, page);
1570 r++;
1571 goto out;
1572 }
1573 }
1574 out:
1575 simple_unlock(&pp->pr_slock);
1576 return (r);
1577 }
1578
1579 /*
1580 * pool_cache_init:
1581 *
1582 * Initialize a pool cache.
1583 *
1584 * NOTE: If the pool must be protected from interrupts, we expect
1585 * to be called at the appropriate interrupt priority level.
1586 */
1587 void
1588 pool_cache_init(struct pool_cache *pc, struct pool *pp,
1589 int (*ctor)(void *, void *, int),
1590 void (*dtor)(void *, void *),
1591 void *arg)
1592 {
1593
1594 TAILQ_INIT(&pc->pc_grouplist);
1595 simple_lock_init(&pc->pc_slock);
1596
1597 pc->pc_allocfrom = NULL;
1598 pc->pc_freeto = NULL;
1599 pc->pc_pool = pp;
1600
1601 pc->pc_ctor = ctor;
1602 pc->pc_dtor = dtor;
1603 pc->pc_arg = arg;
1604
1605 pc->pc_hits = 0;
1606 pc->pc_misses = 0;
1607
1608 pc->pc_ngroups = 0;
1609
1610 pc->pc_nitems = 0;
1611
1612 simple_lock(&pp->pr_slock);
1613 TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist);
1614 simple_unlock(&pp->pr_slock);
1615 }
1616
1617 /*
1618 * pool_cache_destroy:
1619 *
1620 * Destroy a pool cache.
1621 */
1622 void
1623 pool_cache_destroy(struct pool_cache *pc)
1624 {
1625 struct pool *pp = pc->pc_pool;
1626
1627 /* First, invalidate the entire cache. */
1628 pool_cache_invalidate(pc);
1629
1630 /* ...and remove it from the pool's cache list. */
1631 simple_lock(&pp->pr_slock);
1632 TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist);
1633 simple_unlock(&pp->pr_slock);
1634 }
1635
1636 static __inline void *
1637 pcg_get(struct pool_cache_group *pcg)
1638 {
1639 void *object;
1640 u_int idx;
1641
1642 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
1643 KASSERT(pcg->pcg_avail != 0);
1644 idx = --pcg->pcg_avail;
1645
1646 KASSERT(pcg->pcg_objects[idx] != NULL);
1647 object = pcg->pcg_objects[idx];
1648 pcg->pcg_objects[idx] = NULL;
1649
1650 return (object);
1651 }
1652
1653 static __inline void
1654 pcg_put(struct pool_cache_group *pcg, void *object)
1655 {
1656 u_int idx;
1657
1658 KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
1659 idx = pcg->pcg_avail++;
1660
1661 KASSERT(pcg->pcg_objects[idx] == NULL);
1662 pcg->pcg_objects[idx] = object;
1663 }
1664
1665 /*
1666 * pool_cache_get:
1667 *
1668 * Get an object from a pool cache.
1669 */
1670 void *
1671 pool_cache_get(struct pool_cache *pc, int flags)
1672 {
1673 struct pool_cache_group *pcg;
1674 void *object;
1675
1676 #ifdef LOCKDEBUG
1677 if (flags & PR_WAITOK)
1678 simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)");
1679 #endif
1680
1681 simple_lock(&pc->pc_slock);
1682
1683 if ((pcg = pc->pc_allocfrom) == NULL) {
1684 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1685 if (pcg->pcg_avail != 0) {
1686 pc->pc_allocfrom = pcg;
1687 goto have_group;
1688 }
1689 }
1690
1691 /*
1692 * No groups with any available objects. Allocate
1693 * a new object, construct it, and return it to
1694 * the caller. We will allocate a group, if necessary,
1695 * when the object is freed back to the cache.
1696 */
1697 pc->pc_misses++;
1698 simple_unlock(&pc->pc_slock);
1699 object = pool_get(pc->pc_pool, flags);
1700 if (object != NULL && pc->pc_ctor != NULL) {
1701 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
1702 pool_put(pc->pc_pool, object);
1703 return (NULL);
1704 }
1705 }
1706 KASSERT((((vaddr_t)object + pc->pc_pool->pr_itemoffset) &
1707 (pc->pc_pool->pr_align - 1)) == 0);
1708 return (object);
1709 }
1710
1711 have_group:
1712 pc->pc_hits++;
1713 pc->pc_nitems--;
1714 object = pcg_get(pcg);
1715
1716 if (pcg->pcg_avail == 0)
1717 pc->pc_allocfrom = NULL;
1718
1719 simple_unlock(&pc->pc_slock);
1720
1721 KASSERT((((vaddr_t)object + pc->pc_pool->pr_itemoffset) &
1722 (pc->pc_pool->pr_align - 1)) == 0);
1723 return (object);
1724 }
1725
1726 /*
1727 * pool_cache_put:
1728 *
1729 * Put an object back to the pool cache.
1730 */
1731 void
1732 pool_cache_put(struct pool_cache *pc, void *object)
1733 {
1734 struct pool_cache_group *pcg;
1735 int s;
1736
1737 simple_lock(&pc->pc_slock);
1738
1739 if ((pcg = pc->pc_freeto) == NULL) {
1740 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1741 if (pcg->pcg_avail != PCG_NOBJECTS) {
1742 pc->pc_freeto = pcg;
1743 goto have_group;
1744 }
1745 }
1746
1747 /*
1748 * No empty groups to free the object to. Attempt to
1749 * allocate one.
1750 */
1751 simple_unlock(&pc->pc_slock);
1752 s = splvm();
1753 pcg = pool_get(&pcgpool, PR_NOWAIT);
1754 splx(s);
1755 if (pcg != NULL) {
1756 memset(pcg, 0, sizeof(*pcg));
1757 simple_lock(&pc->pc_slock);
1758 pc->pc_ngroups++;
1759 TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list);
1760 if (pc->pc_freeto == NULL)
1761 pc->pc_freeto = pcg;
1762 goto have_group;
1763 }
1764
1765 /*
1766 * Unable to allocate a cache group; destruct the object
1767 * and free it back to the pool.
1768 */
1769 pool_cache_destruct_object(pc, object);
1770 return;
1771 }
1772
1773 have_group:
1774 pc->pc_nitems++;
1775 pcg_put(pcg, object);
1776
1777 if (pcg->pcg_avail == PCG_NOBJECTS)
1778 pc->pc_freeto = NULL;
1779
1780 simple_unlock(&pc->pc_slock);
1781 }
1782
1783 /*
1784 * pool_cache_destruct_object:
1785 *
1786 * Force destruction of an object and its release back into
1787 * the pool.
1788 */
1789 void
1790 pool_cache_destruct_object(struct pool_cache *pc, void *object)
1791 {
1792
1793 if (pc->pc_dtor != NULL)
1794 (*pc->pc_dtor)(pc->pc_arg, object);
1795 pool_put(pc->pc_pool, object);
1796 }
1797
1798 /*
1799 * pool_cache_do_invalidate:
1800 *
1801 * This internal function implements pool_cache_invalidate() and
1802 * pool_cache_reclaim().
1803 */
1804 static void
1805 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups,
1806 void (*putit)(struct pool *, void *))
1807 {
1808 struct pool_cache_group *pcg, *npcg;
1809 void *object;
1810 int s;
1811
1812 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1813 pcg = npcg) {
1814 npcg = TAILQ_NEXT(pcg, pcg_list);
1815 while (pcg->pcg_avail != 0) {
1816 pc->pc_nitems--;
1817 object = pcg_get(pcg);
1818 if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg)
1819 pc->pc_allocfrom = NULL;
1820 if (pc->pc_dtor != NULL)
1821 (*pc->pc_dtor)(pc->pc_arg, object);
1822 (*putit)(pc->pc_pool, object);
1823 }
1824 if (free_groups) {
1825 pc->pc_ngroups--;
1826 TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list);
1827 if (pc->pc_freeto == pcg)
1828 pc->pc_freeto = NULL;
1829 s = splvm();
1830 pool_put(&pcgpool, pcg);
1831 splx(s);
1832 }
1833 }
1834 }
1835
1836 /*
1837 * pool_cache_invalidate:
1838 *
1839 * Invalidate a pool cache (destruct and release all of the
1840 * cached objects).
1841 */
1842 void
1843 pool_cache_invalidate(struct pool_cache *pc)
1844 {
1845
1846 simple_lock(&pc->pc_slock);
1847 pool_cache_do_invalidate(pc, 0, pool_put);
1848 simple_unlock(&pc->pc_slock);
1849 }
1850
1851 /*
1852 * pool_cache_reclaim:
1853 *
1854 * Reclaim a pool cache for pool_reclaim().
1855 */
1856 static void
1857 pool_cache_reclaim(struct pool_cache *pc)
1858 {
1859
1860 simple_lock(&pc->pc_slock);
1861 pool_cache_do_invalidate(pc, 1, pool_do_put);
1862 simple_unlock(&pc->pc_slock);
1863 }
1864
1865 /*
1866 * Pool backend allocators.
1867 *
1868 * Each pool has a backend allocator that handles allocation, deallocation,
1869 * and any additional draining that might be needed.
1870 *
1871 * We provide two standard allocators:
1872 *
1873 * pool_allocator_kmem - the default when no allocator is specified
1874 *
1875 * pool_allocator_nointr - used for pools that will not be accessed
1876 * in interrupt context.
1877 */
1878 void *pool_page_alloc(struct pool *, int);
1879 void pool_page_free(struct pool *, void *);
1880
1881 struct pool_allocator pool_allocator_kmem = {
1882 pool_page_alloc, pool_page_free, 0,
1883 };
1884
1885 void *pool_page_alloc_nointr(struct pool *, int);
1886 void pool_page_free_nointr(struct pool *, void *);
1887
1888 struct pool_allocator pool_allocator_nointr = {
1889 pool_page_alloc_nointr, pool_page_free_nointr, 0,
1890 };
1891
1892 #ifdef POOL_SUBPAGE
1893 void *pool_subpage_alloc(struct pool *, int);
1894 void pool_subpage_free(struct pool *, void *);
1895
1896 struct pool_allocator pool_allocator_kmem_subpage = {
1897 pool_subpage_alloc, pool_subpage_free, 0,
1898 };
1899 #endif /* POOL_SUBPAGE */
1900
1901 /*
1902 * We have at least three different resources for the same allocation and
1903 * each resource can be depleted. First, we have the ready elements in the
1904 * pool. Then we have the resource (typically a vm_map) for this allocator.
1905 * Finally, we have physical memory. Waiting for any of these can be
1906 * unnecessary when any other is freed, but the kernel doesn't support
1907 * sleeping on multiple wait channels, so we have to employ another strategy.
1908 *
1909 * The caller sleeps on the pool (so that it can be awakened when an item
1910 * is returned to the pool), but we set PA_WANT on the allocator. When a
1911 * page is returned to the allocator and PA_WANT is set, pool_allocator_free
1912 * will wake up all sleeping pools belonging to this allocator.
1913 *
1914 * XXX Thundering herd.
1915 */
1916 void *
1917 pool_allocator_alloc(struct pool *org, int flags)
1918 {
1919 struct pool_allocator *pa = org->pr_alloc;
1920 struct pool *pp, *start;
1921 int s, freed;
1922 void *res;
1923
1924 do {
1925 if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
1926 return (res);
1927 if ((flags & PR_WAITOK) == 0) {
1928 /*
1929 * We only run the drain hookhere if PR_NOWAIT.
1930 * In other cases, the hook will be run in
1931 * pool_reclaim().
1932 */
1933 if (org->pr_drain_hook != NULL) {
1934 (*org->pr_drain_hook)(org->pr_drain_hook_arg,
1935 flags);
1936 if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
1937 return (res);
1938 }
1939 break;
1940 }
1941
1942 /*
1943 * Drain all pools, except "org", that use this
1944 * allocator. We do this to reclaim VA space.
1945 * pa_alloc is responsible for waiting for
1946 * physical memory.
1947 *
1948 * XXX We risk looping forever if start if someone
1949 * calls pool_destroy on "start". But there is no
1950 * other way to have potentially sleeping pool_reclaim,
1951 * non-sleeping locks on pool_allocator, and some
1952 * stirring of drained pools in the allocator.
1953 *
1954 * XXX Maybe we should use pool_head_slock for locking
1955 * the allocators?
1956 */
1957 freed = 0;
1958
1959 s = splvm();
1960 simple_lock(&pa->pa_slock);
1961 pp = start = TAILQ_FIRST(&pa->pa_list);
1962 do {
1963 TAILQ_REMOVE(&pa->pa_list, pp, pr_alloc_list);
1964 TAILQ_INSERT_TAIL(&pa->pa_list, pp, pr_alloc_list);
1965 if (pp == org)
1966 continue;
1967 simple_unlock(&pa->pa_slock);
1968 freed = pool_reclaim(pp);
1969 simple_lock(&pa->pa_slock);
1970 } while ((pp = TAILQ_FIRST(&pa->pa_list)) != start &&
1971 freed == 0);
1972
1973 if (freed == 0) {
1974 /*
1975 * We set PA_WANT here, the caller will most likely
1976 * sleep waiting for pages (if not, this won't hurt
1977 * that much), and there is no way to set this in
1978 * the caller without violating locking order.
1979 */
1980 pa->pa_flags |= PA_WANT;
1981 }
1982 simple_unlock(&pa->pa_slock);
1983 splx(s);
1984 } while (freed);
1985 return (NULL);
1986 }
1987
1988 void
1989 pool_allocator_free(struct pool *pp, void *v)
1990 {
1991 struct pool_allocator *pa = pp->pr_alloc;
1992 int s;
1993
1994 (*pa->pa_free)(pp, v);
1995
1996 s = splvm();
1997 simple_lock(&pa->pa_slock);
1998 if ((pa->pa_flags & PA_WANT) == 0) {
1999 simple_unlock(&pa->pa_slock);
2000 splx(s);
2001 return;
2002 }
2003
2004 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
2005 simple_lock(&pp->pr_slock);
2006 if ((pp->pr_flags & PR_WANTED) != 0) {
2007 pp->pr_flags &= ~PR_WANTED;
2008 wakeup(pp);
2009 }
2010 simple_unlock(&pp->pr_slock);
2011 }
2012 pa->pa_flags &= ~PA_WANT;
2013 simple_unlock(&pa->pa_slock);
2014 splx(s);
2015 }
2016
2017 void *
2018 pool_page_alloc(struct pool *pp, int flags)
2019 {
2020 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2021
2022 return ((void *) uvm_km_alloc_poolpage(waitok));
2023 }
2024
2025 void
2026 pool_page_free(struct pool *pp, void *v)
2027 {
2028
2029 uvm_km_free_poolpage((vaddr_t) v);
2030 }
2031
2032 #ifdef POOL_SUBPAGE
2033 /* Sub-page allocator, for machines with large hardware pages. */
2034 void *
2035 pool_subpage_alloc(struct pool *pp, int flags)
2036 {
2037
2038 return (pool_get(&psppool, flags));
2039 }
2040
2041 void
2042 pool_subpage_free(struct pool *pp, void *v)
2043 {
2044
2045 pool_put(&psppool, v);
2046 }
2047
2048 /* We don't provide a real nointr allocator. Maybe later. */
2049 void *
2050 pool_page_alloc_nointr(struct pool *pp, int flags)
2051 {
2052
2053 return (pool_subpage_alloc(pp, flags));
2054 }
2055
2056 void
2057 pool_page_free_nointr(struct pool *pp, void *v)
2058 {
2059
2060 pool_subpage_free(pp, v);
2061 }
2062 #else
2063 void *
2064 pool_page_alloc_nointr(struct pool *pp, int flags)
2065 {
2066 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2067
2068 return ((void *) uvm_km_alloc_poolpage1(kernel_map,
2069 uvm.kernel_object, waitok));
2070 }
2071
2072 void
2073 pool_page_free_nointr(struct pool *pp, void *v)
2074 {
2075
2076 uvm_km_free_poolpage1(kernel_map, (vaddr_t) v);
2077 }
2078 #endif /* POOL_SUBPAGE */
2079