Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.86
      1 /*	$NetBSD: subr_pool.c,v 1.86 2003/03/16 08:06:51 matt Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9  * Simulation Facility, NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 #include <sys/cdefs.h>
     41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.86 2003/03/16 08:06:51 matt Exp $");
     42 
     43 #include "opt_pool.h"
     44 #include "opt_poollog.h"
     45 #include "opt_lockdebug.h"
     46 
     47 #include <sys/param.h>
     48 #include <sys/systm.h>
     49 #include <sys/proc.h>
     50 #include <sys/errno.h>
     51 #include <sys/kernel.h>
     52 #include <sys/malloc.h>
     53 #include <sys/lock.h>
     54 #include <sys/pool.h>
     55 #include <sys/syslog.h>
     56 
     57 #include <uvm/uvm.h>
     58 
     59 /*
     60  * Pool resource management utility.
     61  *
     62  * Memory is allocated in pages which are split into pieces according
     63  * to the pool item size. Each page is kept on a list headed by `pr_pagelist'
     64  * in the pool structure and the individual pool items are on a linked list
     65  * headed by `ph_itemlist' in each page header. The memory for building
     66  * the page list is either taken from the allocated pages themselves (for
     67  * small pool items) or taken from an internal pool of page headers (`phpool').
     68  */
     69 
     70 /* List of all pools */
     71 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     72 
     73 /* Private pool for page header structures */
     74 static struct pool phpool;
     75 
     76 #ifdef POOL_SUBPAGE
     77 /* Pool of subpages for use by normal pools. */
     78 static struct pool psppool;
     79 #endif
     80 
     81 /* # of seconds to retain page after last use */
     82 int pool_inactive_time = 10;
     83 
     84 /* Next candidate for drainage (see pool_drain()) */
     85 static struct pool	*drainpp;
     86 
     87 /* This spin lock protects both pool_head and drainpp. */
     88 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
     89 
     90 struct pool_item_header {
     91 	/* Page headers */
     92 	TAILQ_ENTRY(pool_item_header)
     93 				ph_pagelist;	/* pool page list */
     94 	TAILQ_HEAD(,pool_item)	ph_itemlist;	/* chunk list for this page */
     95 	LIST_ENTRY(pool_item_header)
     96 				ph_hashlist;	/* Off-page page headers */
     97 	unsigned int		ph_nmissing;	/* # of chunks in use */
     98 	caddr_t			ph_page;	/* this page's address */
     99 	struct timeval		ph_time;	/* last referenced */
    100 };
    101 TAILQ_HEAD(pool_pagelist,pool_item_header);
    102 
    103 struct pool_item {
    104 #ifdef DIAGNOSTIC
    105 	u_int pi_magic;
    106 #endif
    107 #define	PI_MAGIC 0xdeadbeefU
    108 	/* Other entries use only this list entry */
    109 	TAILQ_ENTRY(pool_item)	pi_list;
    110 };
    111 
    112 #define	PR_HASH_INDEX(pp,addr) \
    113 	(((u_long)(addr) >> (pp)->pr_alloc->pa_pageshift) & \
    114 	 (PR_HASHTABSIZE - 1))
    115 
    116 #define	POOL_NEEDS_CATCHUP(pp)						\
    117 	((pp)->pr_nitems < (pp)->pr_minitems)
    118 
    119 /*
    120  * Pool cache management.
    121  *
    122  * Pool caches provide a way for constructed objects to be cached by the
    123  * pool subsystem.  This can lead to performance improvements by avoiding
    124  * needless object construction/destruction; it is deferred until absolutely
    125  * necessary.
    126  *
    127  * Caches are grouped into cache groups.  Each cache group references
    128  * up to 16 constructed objects.  When a cache allocates an object
    129  * from the pool, it calls the object's constructor and places it into
    130  * a cache group.  When a cache group frees an object back to the pool,
    131  * it first calls the object's destructor.  This allows the object to
    132  * persist in constructed form while freed to the cache.
    133  *
    134  * Multiple caches may exist for each pool.  This allows a single
    135  * object type to have multiple constructed forms.  The pool references
    136  * each cache, so that when a pool is drained by the pagedaemon, it can
    137  * drain each individual cache as well.  Each time a cache is drained,
    138  * the most idle cache group is freed to the pool in its entirety.
    139  *
    140  * Pool caches are layed on top of pools.  By layering them, we can avoid
    141  * the complexity of cache management for pools which would not benefit
    142  * from it.
    143  */
    144 
    145 /* The cache group pool. */
    146 static struct pool pcgpool;
    147 
    148 static void	pool_cache_reclaim(struct pool_cache *);
    149 
    150 static int	pool_catchup(struct pool *);
    151 static void	pool_prime_page(struct pool *, caddr_t,
    152 		    struct pool_item_header *);
    153 
    154 void		*pool_allocator_alloc(struct pool *, int);
    155 void		pool_allocator_free(struct pool *, void *);
    156 
    157 static void pool_print1(struct pool *, const char *,
    158 	void (*)(const char *, ...));
    159 
    160 /*
    161  * Pool log entry. An array of these is allocated in pool_init().
    162  */
    163 struct pool_log {
    164 	const char	*pl_file;
    165 	long		pl_line;
    166 	int		pl_action;
    167 #define	PRLOG_GET	1
    168 #define	PRLOG_PUT	2
    169 	void		*pl_addr;
    170 };
    171 
    172 #ifdef POOL_DIAGNOSTIC
    173 /* Number of entries in pool log buffers */
    174 #ifndef POOL_LOGSIZE
    175 #define	POOL_LOGSIZE	10
    176 #endif
    177 
    178 int pool_logsize = POOL_LOGSIZE;
    179 
    180 static __inline void
    181 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    182 {
    183 	int n = pp->pr_curlogentry;
    184 	struct pool_log *pl;
    185 
    186 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    187 		return;
    188 
    189 	/*
    190 	 * Fill in the current entry. Wrap around and overwrite
    191 	 * the oldest entry if necessary.
    192 	 */
    193 	pl = &pp->pr_log[n];
    194 	pl->pl_file = file;
    195 	pl->pl_line = line;
    196 	pl->pl_action = action;
    197 	pl->pl_addr = v;
    198 	if (++n >= pp->pr_logsize)
    199 		n = 0;
    200 	pp->pr_curlogentry = n;
    201 }
    202 
    203 static void
    204 pr_printlog(struct pool *pp, struct pool_item *pi,
    205     void (*pr)(const char *, ...))
    206 {
    207 	int i = pp->pr_logsize;
    208 	int n = pp->pr_curlogentry;
    209 
    210 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    211 		return;
    212 
    213 	/*
    214 	 * Print all entries in this pool's log.
    215 	 */
    216 	while (i-- > 0) {
    217 		struct pool_log *pl = &pp->pr_log[n];
    218 		if (pl->pl_action != 0) {
    219 			if (pi == NULL || pi == pl->pl_addr) {
    220 				(*pr)("\tlog entry %d:\n", i);
    221 				(*pr)("\t\taction = %s, addr = %p\n",
    222 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    223 				    pl->pl_addr);
    224 				(*pr)("\t\tfile: %s at line %lu\n",
    225 				    pl->pl_file, pl->pl_line);
    226 			}
    227 		}
    228 		if (++n >= pp->pr_logsize)
    229 			n = 0;
    230 	}
    231 }
    232 
    233 static __inline void
    234 pr_enter(struct pool *pp, const char *file, long line)
    235 {
    236 
    237 	if (__predict_false(pp->pr_entered_file != NULL)) {
    238 		printf("pool %s: reentrancy at file %s line %ld\n",
    239 		    pp->pr_wchan, file, line);
    240 		printf("         previous entry at file %s line %ld\n",
    241 		    pp->pr_entered_file, pp->pr_entered_line);
    242 		panic("pr_enter");
    243 	}
    244 
    245 	pp->pr_entered_file = file;
    246 	pp->pr_entered_line = line;
    247 }
    248 
    249 static __inline void
    250 pr_leave(struct pool *pp)
    251 {
    252 
    253 	if (__predict_false(pp->pr_entered_file == NULL)) {
    254 		printf("pool %s not entered?\n", pp->pr_wchan);
    255 		panic("pr_leave");
    256 	}
    257 
    258 	pp->pr_entered_file = NULL;
    259 	pp->pr_entered_line = 0;
    260 }
    261 
    262 static __inline void
    263 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    264 {
    265 
    266 	if (pp->pr_entered_file != NULL)
    267 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    268 		    pp->pr_entered_file, pp->pr_entered_line);
    269 }
    270 #else
    271 #define	pr_log(pp, v, action, file, line)
    272 #define	pr_printlog(pp, pi, pr)
    273 #define	pr_enter(pp, file, line)
    274 #define	pr_leave(pp)
    275 #define	pr_enter_check(pp, pr)
    276 #endif /* POOL_DIAGNOSTIC */
    277 
    278 /*
    279  * Return the pool page header based on page address.
    280  */
    281 static __inline struct pool_item_header *
    282 pr_find_pagehead(struct pool *pp, caddr_t page)
    283 {
    284 	struct pool_item_header *ph;
    285 
    286 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    287 		return ((struct pool_item_header *)(page + pp->pr_phoffset));
    288 
    289 	for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]);
    290 	     ph != NULL;
    291 	     ph = LIST_NEXT(ph, ph_hashlist)) {
    292 		if (ph->ph_page == page)
    293 			return (ph);
    294 	}
    295 	return (NULL);
    296 }
    297 
    298 /*
    299  * Remove a page from the pool.
    300  */
    301 static __inline void
    302 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    303      struct pool_pagelist *pq)
    304 {
    305 	int s;
    306 
    307 	/*
    308 	 * If the page was idle, decrement the idle page count.
    309 	 */
    310 	if (ph->ph_nmissing == 0) {
    311 #ifdef DIAGNOSTIC
    312 		if (pp->pr_nidle == 0)
    313 			panic("pr_rmpage: nidle inconsistent");
    314 		if (pp->pr_nitems < pp->pr_itemsperpage)
    315 			panic("pr_rmpage: nitems inconsistent");
    316 #endif
    317 		pp->pr_nidle--;
    318 	}
    319 
    320 	pp->pr_nitems -= pp->pr_itemsperpage;
    321 
    322 	/*
    323 	 * Unlink a page from the pool and release it (or queue it for release).
    324 	 */
    325 	TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    326 	if (pq) {
    327 		TAILQ_INSERT_HEAD(pq, ph, ph_pagelist);
    328 	} else {
    329 		pool_allocator_free(pp, ph->ph_page);
    330 		if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    331 			LIST_REMOVE(ph, ph_hashlist);
    332 			s = splvm();
    333 			pool_put(&phpool, ph);
    334 			splx(s);
    335 		}
    336 	}
    337 	pp->pr_npages--;
    338 	pp->pr_npagefree++;
    339 
    340 	if (pp->pr_curpage == ph) {
    341 		/*
    342 		 * Find a new non-empty page header, if any.
    343 		 * Start search from the page head, to increase the
    344 		 * chance for "high water" pages to be freed.
    345 		 */
    346 		TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist)
    347 			if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    348 				break;
    349 
    350 		pp->pr_curpage = ph;
    351 	}
    352 }
    353 
    354 /*
    355  * Initialize the given pool resource structure.
    356  *
    357  * We export this routine to allow other kernel parts to declare
    358  * static pools that must be initialized before malloc() is available.
    359  */
    360 void
    361 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    362     const char *wchan, struct pool_allocator *palloc)
    363 {
    364 	int off, slack, i;
    365 
    366 #ifdef POOL_DIAGNOSTIC
    367 	/*
    368 	 * Always log if POOL_DIAGNOSTIC is defined.
    369 	 */
    370 	if (pool_logsize != 0)
    371 		flags |= PR_LOGGING;
    372 #endif
    373 
    374 #ifdef POOL_SUBPAGE
    375 	/*
    376 	 * XXX We don't provide a real `nointr' back-end
    377 	 * yet; all sub-pages come from a kmem back-end.
    378 	 * maybe some day...
    379 	 */
    380 	if (palloc == NULL) {
    381 		extern struct pool_allocator pool_allocator_kmem_subpage;
    382 		palloc = &pool_allocator_kmem_subpage;
    383 	}
    384 	/*
    385 	 * We'll assume any user-specified back-end allocator
    386 	 * will deal with sub-pages, or simply don't care.
    387 	 */
    388 #else
    389 	if (palloc == NULL)
    390 		palloc = &pool_allocator_kmem;
    391 #endif /* POOL_SUBPAGE */
    392 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
    393 		if (palloc->pa_pagesz == 0) {
    394 #ifdef POOL_SUBPAGE
    395 			if (palloc == &pool_allocator_kmem)
    396 				palloc->pa_pagesz = PAGE_SIZE;
    397 			else
    398 				palloc->pa_pagesz = POOL_SUBPAGE;
    399 #else
    400 			palloc->pa_pagesz = PAGE_SIZE;
    401 #endif /* POOL_SUBPAGE */
    402 		}
    403 
    404 		TAILQ_INIT(&palloc->pa_list);
    405 
    406 		simple_lock_init(&palloc->pa_slock);
    407 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    408 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    409 		palloc->pa_flags |= PA_INITIALIZED;
    410 	}
    411 
    412 	if (align == 0)
    413 		align = ALIGN(1);
    414 
    415 	if (size < sizeof(struct pool_item))
    416 		size = sizeof(struct pool_item);
    417 
    418 	size = roundup(size, align);
    419 #ifdef DIAGNOSTIC
    420 	if (size > palloc->pa_pagesz)
    421 		panic("pool_init: pool item size (%lu) too large",
    422 		      (u_long)size);
    423 #endif
    424 
    425 	/*
    426 	 * Initialize the pool structure.
    427 	 */
    428 	TAILQ_INIT(&pp->pr_pagelist);
    429 	TAILQ_INIT(&pp->pr_cachelist);
    430 	pp->pr_curpage = NULL;
    431 	pp->pr_npages = 0;
    432 	pp->pr_minitems = 0;
    433 	pp->pr_minpages = 0;
    434 	pp->pr_maxpages = UINT_MAX;
    435 	pp->pr_roflags = flags;
    436 	pp->pr_flags = 0;
    437 	pp->pr_size = size;
    438 	pp->pr_align = align;
    439 	pp->pr_wchan = wchan;
    440 	pp->pr_alloc = palloc;
    441 	pp->pr_nitems = 0;
    442 	pp->pr_nout = 0;
    443 	pp->pr_hardlimit = UINT_MAX;
    444 	pp->pr_hardlimit_warning = NULL;
    445 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    446 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    447 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    448 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    449 	pp->pr_drain_hook = NULL;
    450 	pp->pr_drain_hook_arg = NULL;
    451 
    452 	/*
    453 	 * Decide whether to put the page header off page to avoid
    454 	 * wasting too large a part of the page. Off-page page headers
    455 	 * go on a hash table, so we can match a returned item
    456 	 * with its header based on the page address.
    457 	 * We use 1/16 of the page size as the threshold (XXX: tune)
    458 	 */
    459 	if (pp->pr_size < palloc->pa_pagesz/16) {
    460 		/* Use the end of the page for the page header */
    461 		pp->pr_roflags |= PR_PHINPAGE;
    462 		pp->pr_phoffset = off = palloc->pa_pagesz -
    463 		    ALIGN(sizeof(struct pool_item_header));
    464 	} else {
    465 		/* The page header will be taken from our page header pool */
    466 		pp->pr_phoffset = 0;
    467 		off = palloc->pa_pagesz;
    468 		for (i = 0; i < PR_HASHTABSIZE; i++) {
    469 			LIST_INIT(&pp->pr_hashtab[i]);
    470 		}
    471 	}
    472 
    473 	/*
    474 	 * Alignment is to take place at `ioff' within the item. This means
    475 	 * we must reserve up to `align - 1' bytes on the page to allow
    476 	 * appropriate positioning of each item.
    477 	 *
    478 	 * Silently enforce `0 <= ioff < align'.
    479 	 */
    480 	pp->pr_itemoffset = ioff = ioff % align;
    481 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    482 	KASSERT(pp->pr_itemsperpage != 0);
    483 
    484 	/*
    485 	 * Use the slack between the chunks and the page header
    486 	 * for "cache coloring".
    487 	 */
    488 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    489 	pp->pr_maxcolor = (slack / align) * align;
    490 	pp->pr_curcolor = 0;
    491 
    492 	pp->pr_nget = 0;
    493 	pp->pr_nfail = 0;
    494 	pp->pr_nput = 0;
    495 	pp->pr_npagealloc = 0;
    496 	pp->pr_npagefree = 0;
    497 	pp->pr_hiwat = 0;
    498 	pp->pr_nidle = 0;
    499 
    500 #ifdef POOL_DIAGNOSTIC
    501 	if (flags & PR_LOGGING) {
    502 		if (kmem_map == NULL ||
    503 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    504 		     M_TEMP, M_NOWAIT)) == NULL)
    505 			pp->pr_roflags &= ~PR_LOGGING;
    506 		pp->pr_curlogentry = 0;
    507 		pp->pr_logsize = pool_logsize;
    508 	}
    509 #endif
    510 
    511 	pp->pr_entered_file = NULL;
    512 	pp->pr_entered_line = 0;
    513 
    514 	simple_lock_init(&pp->pr_slock);
    515 
    516 	/*
    517 	 * Initialize private page header pool and cache magazine pool if we
    518 	 * haven't done so yet.
    519 	 * XXX LOCKING.
    520 	 */
    521 	if (phpool.pr_size == 0) {
    522 #ifdef POOL_SUBPAGE
    523 		pool_init(&phpool, sizeof(struct pool_item_header), 0, 0, 0,
    524 		    "phpool", &pool_allocator_kmem);
    525 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    526 		    PR_RECURSIVE, "psppool", &pool_allocator_kmem);
    527 #else
    528 		pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
    529 		    0, "phpool", NULL);
    530 #endif
    531 		pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
    532 		    0, "pcgpool", NULL);
    533 	}
    534 
    535 	/* Insert into the list of all pools. */
    536 	simple_lock(&pool_head_slock);
    537 	TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    538 	simple_unlock(&pool_head_slock);
    539 
    540 	/* Insert this into the list of pools using this allocator. */
    541 	simple_lock(&palloc->pa_slock);
    542 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    543 	simple_unlock(&palloc->pa_slock);
    544 }
    545 
    546 /*
    547  * De-commision a pool resource.
    548  */
    549 void
    550 pool_destroy(struct pool *pp)
    551 {
    552 	struct pool_item_header *ph;
    553 	struct pool_cache *pc;
    554 
    555 	/* Locking order: pool_allocator -> pool */
    556 	simple_lock(&pp->pr_alloc->pa_slock);
    557 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    558 	simple_unlock(&pp->pr_alloc->pa_slock);
    559 
    560 	/* Destroy all caches for this pool. */
    561 	while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL)
    562 		pool_cache_destroy(pc);
    563 
    564 #ifdef DIAGNOSTIC
    565 	if (pp->pr_nout != 0) {
    566 		pr_printlog(pp, NULL, printf);
    567 		panic("pool_destroy: pool busy: still out: %u",
    568 		    pp->pr_nout);
    569 	}
    570 #endif
    571 
    572 	/* Remove all pages */
    573 	while ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
    574 		pr_rmpage(pp, ph, NULL);
    575 
    576 	/* Remove from global pool list */
    577 	simple_lock(&pool_head_slock);
    578 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    579 	if (drainpp == pp) {
    580 		drainpp = NULL;
    581 	}
    582 	simple_unlock(&pool_head_slock);
    583 
    584 #ifdef POOL_DIAGNOSTIC
    585 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    586 		free(pp->pr_log, M_TEMP);
    587 #endif
    588 }
    589 
    590 void
    591 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    592 {
    593 
    594 	/* XXX no locking -- must be used just after pool_init() */
    595 #ifdef DIAGNOSTIC
    596 	if (pp->pr_drain_hook != NULL)
    597 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    598 #endif
    599 	pp->pr_drain_hook = fn;
    600 	pp->pr_drain_hook_arg = arg;
    601 }
    602 
    603 static __inline struct pool_item_header *
    604 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
    605 {
    606 	struct pool_item_header *ph;
    607 	int s;
    608 
    609 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
    610 
    611 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    612 		ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
    613 	else {
    614 		s = splvm();
    615 		ph = pool_get(&phpool, flags);
    616 		splx(s);
    617 	}
    618 
    619 	return (ph);
    620 }
    621 
    622 /*
    623  * Grab an item from the pool; must be called at appropriate spl level
    624  */
    625 void *
    626 #ifdef POOL_DIAGNOSTIC
    627 _pool_get(struct pool *pp, int flags, const char *file, long line)
    628 #else
    629 pool_get(struct pool *pp, int flags)
    630 #endif
    631 {
    632 	struct pool_item *pi;
    633 	struct pool_item_header *ph;
    634 	void *v;
    635 
    636 #ifdef DIAGNOSTIC
    637 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
    638 			    (flags & PR_WAITOK) != 0))
    639 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
    640 
    641 #ifdef LOCKDEBUG
    642 	if (flags & PR_WAITOK)
    643 		simple_lock_only_held(NULL, "pool_get(PR_WAITOK)");
    644 #endif
    645 #endif /* DIAGNOSTIC */
    646 
    647 	simple_lock(&pp->pr_slock);
    648 	pr_enter(pp, file, line);
    649 
    650  startover:
    651 	/*
    652 	 * Check to see if we've reached the hard limit.  If we have,
    653 	 * and we can wait, then wait until an item has been returned to
    654 	 * the pool.
    655 	 */
    656 #ifdef DIAGNOSTIC
    657 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
    658 		pr_leave(pp);
    659 		simple_unlock(&pp->pr_slock);
    660 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
    661 	}
    662 #endif
    663 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    664 		if (pp->pr_drain_hook != NULL) {
    665 			/*
    666 			 * Since the drain hook is going to free things
    667 			 * back to the pool, unlock, call the hook, re-lock,
    668 			 * and check the hardlimit condition again.
    669 			 */
    670 			pr_leave(pp);
    671 			simple_unlock(&pp->pr_slock);
    672 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    673 			simple_lock(&pp->pr_slock);
    674 			pr_enter(pp, file, line);
    675 			if (pp->pr_nout < pp->pr_hardlimit)
    676 				goto startover;
    677 		}
    678 
    679 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    680 			/*
    681 			 * XXX: A warning isn't logged in this case.  Should
    682 			 * it be?
    683 			 */
    684 			pp->pr_flags |= PR_WANTED;
    685 			pr_leave(pp);
    686 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
    687 			pr_enter(pp, file, line);
    688 			goto startover;
    689 		}
    690 
    691 		/*
    692 		 * Log a message that the hard limit has been hit.
    693 		 */
    694 		if (pp->pr_hardlimit_warning != NULL &&
    695 		    ratecheck(&pp->pr_hardlimit_warning_last,
    696 			      &pp->pr_hardlimit_ratecap))
    697 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    698 
    699 		pp->pr_nfail++;
    700 
    701 		pr_leave(pp);
    702 		simple_unlock(&pp->pr_slock);
    703 		return (NULL);
    704 	}
    705 
    706 	/*
    707 	 * The convention we use is that if `curpage' is not NULL, then
    708 	 * it points at a non-empty bucket. In particular, `curpage'
    709 	 * never points at a page header which has PR_PHINPAGE set and
    710 	 * has no items in its bucket.
    711 	 */
    712 	if ((ph = pp->pr_curpage) == NULL) {
    713 #ifdef DIAGNOSTIC
    714 		if (pp->pr_nitems != 0) {
    715 			simple_unlock(&pp->pr_slock);
    716 			printf("pool_get: %s: curpage NULL, nitems %u\n",
    717 			    pp->pr_wchan, pp->pr_nitems);
    718 			panic("pool_get: nitems inconsistent");
    719 		}
    720 #endif
    721 
    722 		/*
    723 		 * Call the back-end page allocator for more memory.
    724 		 * Release the pool lock, as the back-end page allocator
    725 		 * may block.
    726 		 */
    727 		pr_leave(pp);
    728 		simple_unlock(&pp->pr_slock);
    729 		v = pool_allocator_alloc(pp, flags);
    730 		if (__predict_true(v != NULL))
    731 			ph = pool_alloc_item_header(pp, v, flags);
    732 		simple_lock(&pp->pr_slock);
    733 		pr_enter(pp, file, line);
    734 
    735 		if (__predict_false(v == NULL || ph == NULL)) {
    736 			if (v != NULL)
    737 				pool_allocator_free(pp, v);
    738 
    739 			/*
    740 			 * We were unable to allocate a page or item
    741 			 * header, but we released the lock during
    742 			 * allocation, so perhaps items were freed
    743 			 * back to the pool.  Check for this case.
    744 			 */
    745 			if (pp->pr_curpage != NULL)
    746 				goto startover;
    747 
    748 			if ((flags & PR_WAITOK) == 0) {
    749 				pp->pr_nfail++;
    750 				pr_leave(pp);
    751 				simple_unlock(&pp->pr_slock);
    752 				return (NULL);
    753 			}
    754 
    755 			/*
    756 			 * Wait for items to be returned to this pool.
    757 			 *
    758 			 * XXX: maybe we should wake up once a second and
    759 			 * try again?
    760 			 */
    761 			pp->pr_flags |= PR_WANTED;
    762 			/* PA_WANTED is already set on the allocator. */
    763 			pr_leave(pp);
    764 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
    765 			pr_enter(pp, file, line);
    766 			goto startover;
    767 		}
    768 
    769 		/* We have more memory; add it to the pool */
    770 		pool_prime_page(pp, v, ph);
    771 		pp->pr_npagealloc++;
    772 
    773 		/* Start the allocation process over. */
    774 		goto startover;
    775 	}
    776 
    777 	if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
    778 		pr_leave(pp);
    779 		simple_unlock(&pp->pr_slock);
    780 		panic("pool_get: %s: page empty", pp->pr_wchan);
    781 	}
    782 #ifdef DIAGNOSTIC
    783 	if (__predict_false(pp->pr_nitems == 0)) {
    784 		pr_leave(pp);
    785 		simple_unlock(&pp->pr_slock);
    786 		printf("pool_get: %s: items on itemlist, nitems %u\n",
    787 		    pp->pr_wchan, pp->pr_nitems);
    788 		panic("pool_get: nitems inconsistent");
    789 	}
    790 #endif
    791 
    792 #ifdef POOL_DIAGNOSTIC
    793 	pr_log(pp, v, PRLOG_GET, file, line);
    794 #endif
    795 
    796 #ifdef DIAGNOSTIC
    797 	if (__predict_false(pi->pi_magic != PI_MAGIC)) {
    798 		pr_printlog(pp, pi, printf);
    799 		panic("pool_get(%s): free list modified: magic=%x; page %p;"
    800 		       " item addr %p\n",
    801 			pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    802 	}
    803 #endif
    804 
    805 	/*
    806 	 * Remove from item list.
    807 	 */
    808 	TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
    809 	pp->pr_nitems--;
    810 	pp->pr_nout++;
    811 	if (ph->ph_nmissing == 0) {
    812 #ifdef DIAGNOSTIC
    813 		if (__predict_false(pp->pr_nidle == 0))
    814 			panic("pool_get: nidle inconsistent");
    815 #endif
    816 		pp->pr_nidle--;
    817 	}
    818 	ph->ph_nmissing++;
    819 	if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) {
    820 #ifdef DIAGNOSTIC
    821 		if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
    822 			pr_leave(pp);
    823 			simple_unlock(&pp->pr_slock);
    824 			panic("pool_get: %s: nmissing inconsistent",
    825 			    pp->pr_wchan);
    826 		}
    827 #endif
    828 		/*
    829 		 * Find a new non-empty page header, if any.
    830 		 * Start search from the page head, to increase
    831 		 * the chance for "high water" pages to be freed.
    832 		 *
    833 		 * Migrate empty pages to the end of the list.  This
    834 		 * will speed the update of curpage as pages become
    835 		 * idle.  Empty pages intermingled with idle pages
    836 		 * is no big deal.  As soon as a page becomes un-empty,
    837 		 * it will move back to the head of the list.
    838 		 */
    839 		TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    840 		TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
    841 		TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist)
    842 			if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    843 				break;
    844 
    845 		pp->pr_curpage = ph;
    846 	}
    847 
    848 	pp->pr_nget++;
    849 
    850 	/*
    851 	 * If we have a low water mark and we are now below that low
    852 	 * water mark, add more items to the pool.
    853 	 */
    854 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
    855 		/*
    856 		 * XXX: Should we log a warning?  Should we set up a timeout
    857 		 * to try again in a second or so?  The latter could break
    858 		 * a caller's assumptions about interrupt protection, etc.
    859 		 */
    860 	}
    861 
    862 	pr_leave(pp);
    863 	simple_unlock(&pp->pr_slock);
    864 	return (v);
    865 }
    866 
    867 /*
    868  * Internal version of pool_put().  Pool is already locked/entered.
    869  */
    870 static void
    871 pool_do_put(struct pool *pp, void *v)
    872 {
    873 	struct pool_item *pi = v;
    874 	struct pool_item_header *ph;
    875 	caddr_t page;
    876 	int s;
    877 
    878 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
    879 
    880 	page = (caddr_t)((u_long)v & pp->pr_alloc->pa_pagemask);
    881 
    882 #ifdef DIAGNOSTIC
    883 	if (__predict_false(pp->pr_nout == 0)) {
    884 		printf("pool %s: putting with none out\n",
    885 		    pp->pr_wchan);
    886 		panic("pool_put");
    887 	}
    888 #endif
    889 
    890 	if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
    891 		pr_printlog(pp, NULL, printf);
    892 		panic("pool_put: %s: page header missing", pp->pr_wchan);
    893 	}
    894 
    895 #ifdef LOCKDEBUG
    896 	/*
    897 	 * Check if we're freeing a locked simple lock.
    898 	 */
    899 	simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
    900 #endif
    901 
    902 	/*
    903 	 * Return to item list.
    904 	 */
    905 #ifdef DIAGNOSTIC
    906 	pi->pi_magic = PI_MAGIC;
    907 #endif
    908 #ifdef DEBUG
    909 	{
    910 		int i, *ip = v;
    911 
    912 		for (i = 0; i < pp->pr_size / sizeof(int); i++) {
    913 			*ip++ = PI_MAGIC;
    914 		}
    915 	}
    916 #endif
    917 
    918 	TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    919 	KDASSERT(ph->ph_nmissing != 0);
    920 	ph->ph_nmissing--;
    921 	pp->pr_nput++;
    922 	pp->pr_nitems++;
    923 	pp->pr_nout--;
    924 
    925 	/* Cancel "pool empty" condition if it exists */
    926 	if (pp->pr_curpage == NULL)
    927 		pp->pr_curpage = ph;
    928 
    929 	if (pp->pr_flags & PR_WANTED) {
    930 		pp->pr_flags &= ~PR_WANTED;
    931 		if (ph->ph_nmissing == 0)
    932 			pp->pr_nidle++;
    933 		wakeup((caddr_t)pp);
    934 		return;
    935 	}
    936 
    937 	/*
    938 	 * If this page is now complete, do one of two things:
    939 	 *
    940 	 *	(1) If we have more pages than the page high water
    941 	 *	    mark, free the page back to the system.
    942 	 *
    943 	 *	(2) Move it to the end of the page list, so that
    944 	 *	    we minimize our chances of fragmenting the
    945 	 *	    pool.  Idle pages migrate to the end (along with
    946 	 *	    completely empty pages, so that we find un-empty
    947 	 *	    pages more quickly when we update curpage) of the
    948 	 *	    list so they can be more easily swept up by
    949 	 *	    the pagedaemon when pages are scarce.
    950 	 */
    951 	if (ph->ph_nmissing == 0) {
    952 		pp->pr_nidle++;
    953 		if (pp->pr_npages > pp->pr_maxpages ||
    954 		    (pp->pr_alloc->pa_flags & PA_WANT) != 0) {
    955 			pr_rmpage(pp, ph, NULL);
    956 		} else {
    957 			TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    958 			TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
    959 
    960 			/*
    961 			 * Update the timestamp on the page.  A page must
    962 			 * be idle for some period of time before it can
    963 			 * be reclaimed by the pagedaemon.  This minimizes
    964 			 * ping-pong'ing for memory.
    965 			 */
    966 			s = splclock();
    967 			ph->ph_time = mono_time;
    968 			splx(s);
    969 
    970 			/*
    971 			 * Update the current page pointer.  Just look for
    972 			 * the first page with any free items.
    973 			 *
    974 			 * XXX: Maybe we want an option to look for the
    975 			 * page with the fewest available items, to minimize
    976 			 * fragmentation?
    977 			 */
    978 			TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist)
    979 				if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
    980 					break;
    981 
    982 			pp->pr_curpage = ph;
    983 		}
    984 	}
    985 	/*
    986 	 * If the page has just become un-empty, move it to the head of
    987 	 * the list, and make it the current page.  The next allocation
    988 	 * will get the item from this page, instead of further fragmenting
    989 	 * the pool.
    990 	 */
    991 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
    992 		TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
    993 		TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
    994 		pp->pr_curpage = ph;
    995 	}
    996 }
    997 
    998 /*
    999  * Return resource to the pool; must be called at appropriate spl level
   1000  */
   1001 #ifdef POOL_DIAGNOSTIC
   1002 void
   1003 _pool_put(struct pool *pp, void *v, const char *file, long line)
   1004 {
   1005 
   1006 	simple_lock(&pp->pr_slock);
   1007 	pr_enter(pp, file, line);
   1008 
   1009 	pr_log(pp, v, PRLOG_PUT, file, line);
   1010 
   1011 	pool_do_put(pp, v);
   1012 
   1013 	pr_leave(pp);
   1014 	simple_unlock(&pp->pr_slock);
   1015 }
   1016 #undef pool_put
   1017 #endif /* POOL_DIAGNOSTIC */
   1018 
   1019 void
   1020 pool_put(struct pool *pp, void *v)
   1021 {
   1022 
   1023 	simple_lock(&pp->pr_slock);
   1024 
   1025 	pool_do_put(pp, v);
   1026 
   1027 	simple_unlock(&pp->pr_slock);
   1028 }
   1029 
   1030 #ifdef POOL_DIAGNOSTIC
   1031 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1032 #endif
   1033 
   1034 /*
   1035  * Add N items to the pool.
   1036  */
   1037 int
   1038 pool_prime(struct pool *pp, int n)
   1039 {
   1040 	struct pool_item_header *ph = NULL;
   1041 	caddr_t cp;
   1042 	int newpages;
   1043 
   1044 	simple_lock(&pp->pr_slock);
   1045 
   1046 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1047 
   1048 	while (newpages-- > 0) {
   1049 		simple_unlock(&pp->pr_slock);
   1050 		cp = pool_allocator_alloc(pp, PR_NOWAIT);
   1051 		if (__predict_true(cp != NULL))
   1052 			ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
   1053 		simple_lock(&pp->pr_slock);
   1054 
   1055 		if (__predict_false(cp == NULL || ph == NULL)) {
   1056 			if (cp != NULL)
   1057 				pool_allocator_free(pp, cp);
   1058 			break;
   1059 		}
   1060 
   1061 		pool_prime_page(pp, cp, ph);
   1062 		pp->pr_npagealloc++;
   1063 		pp->pr_minpages++;
   1064 	}
   1065 
   1066 	if (pp->pr_minpages >= pp->pr_maxpages)
   1067 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1068 
   1069 	simple_unlock(&pp->pr_slock);
   1070 	return (0);
   1071 }
   1072 
   1073 /*
   1074  * Add a page worth of items to the pool.
   1075  *
   1076  * Note, we must be called with the pool descriptor LOCKED.
   1077  */
   1078 static void
   1079 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
   1080 {
   1081 	struct pool_item *pi;
   1082 	caddr_t cp = storage;
   1083 	unsigned int align = pp->pr_align;
   1084 	unsigned int ioff = pp->pr_itemoffset;
   1085 	int n;
   1086 
   1087 #ifdef DIAGNOSTIC
   1088 	if (((u_long)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1089 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1090 #endif
   1091 
   1092 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1093 		LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)],
   1094 		    ph, ph_hashlist);
   1095 
   1096 	/*
   1097 	 * Insert page header.
   1098 	 */
   1099 	TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
   1100 	TAILQ_INIT(&ph->ph_itemlist);
   1101 	ph->ph_page = storage;
   1102 	ph->ph_nmissing = 0;
   1103 	memset(&ph->ph_time, 0, sizeof(ph->ph_time));
   1104 
   1105 	pp->pr_nidle++;
   1106 
   1107 	/*
   1108 	 * Color this page.
   1109 	 */
   1110 	cp = (caddr_t)(cp + pp->pr_curcolor);
   1111 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1112 		pp->pr_curcolor = 0;
   1113 
   1114 	/*
   1115 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1116 	 */
   1117 	if (ioff != 0)
   1118 		cp = (caddr_t)(cp + (align - ioff));
   1119 
   1120 	/*
   1121 	 * Insert remaining chunks on the bucket list.
   1122 	 */
   1123 	n = pp->pr_itemsperpage;
   1124 	pp->pr_nitems += n;
   1125 
   1126 	while (n--) {
   1127 		pi = (struct pool_item *)cp;
   1128 
   1129 		KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1130 
   1131 		/* Insert on page list */
   1132 		TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
   1133 #ifdef DIAGNOSTIC
   1134 		pi->pi_magic = PI_MAGIC;
   1135 #endif
   1136 		cp = (caddr_t)(cp + pp->pr_size);
   1137 	}
   1138 
   1139 	/*
   1140 	 * If the pool was depleted, point at the new page.
   1141 	 */
   1142 	if (pp->pr_curpage == NULL)
   1143 		pp->pr_curpage = ph;
   1144 
   1145 	if (++pp->pr_npages > pp->pr_hiwat)
   1146 		pp->pr_hiwat = pp->pr_npages;
   1147 }
   1148 
   1149 /*
   1150  * Used by pool_get() when nitems drops below the low water mark.  This
   1151  * is used to catch up nitmes with the low water mark.
   1152  *
   1153  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1154  *
   1155  * Note 2, we must be called with the pool already locked, and we return
   1156  * with it locked.
   1157  */
   1158 static int
   1159 pool_catchup(struct pool *pp)
   1160 {
   1161 	struct pool_item_header *ph = NULL;
   1162 	caddr_t cp;
   1163 	int error = 0;
   1164 
   1165 	while (POOL_NEEDS_CATCHUP(pp)) {
   1166 		/*
   1167 		 * Call the page back-end allocator for more memory.
   1168 		 *
   1169 		 * XXX: We never wait, so should we bother unlocking
   1170 		 * the pool descriptor?
   1171 		 */
   1172 		simple_unlock(&pp->pr_slock);
   1173 		cp = pool_allocator_alloc(pp, PR_NOWAIT);
   1174 		if (__predict_true(cp != NULL))
   1175 			ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
   1176 		simple_lock(&pp->pr_slock);
   1177 		if (__predict_false(cp == NULL || ph == NULL)) {
   1178 			if (cp != NULL)
   1179 				pool_allocator_free(pp, cp);
   1180 			error = ENOMEM;
   1181 			break;
   1182 		}
   1183 		pool_prime_page(pp, cp, ph);
   1184 		pp->pr_npagealloc++;
   1185 	}
   1186 
   1187 	return (error);
   1188 }
   1189 
   1190 void
   1191 pool_setlowat(struct pool *pp, int n)
   1192 {
   1193 
   1194 	simple_lock(&pp->pr_slock);
   1195 
   1196 	pp->pr_minitems = n;
   1197 	pp->pr_minpages = (n == 0)
   1198 		? 0
   1199 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1200 
   1201 	/* Make sure we're caught up with the newly-set low water mark. */
   1202 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1203 		/*
   1204 		 * XXX: Should we log a warning?  Should we set up a timeout
   1205 		 * to try again in a second or so?  The latter could break
   1206 		 * a caller's assumptions about interrupt protection, etc.
   1207 		 */
   1208 	}
   1209 
   1210 	simple_unlock(&pp->pr_slock);
   1211 }
   1212 
   1213 void
   1214 pool_sethiwat(struct pool *pp, int n)
   1215 {
   1216 
   1217 	simple_lock(&pp->pr_slock);
   1218 
   1219 	pp->pr_maxpages = (n == 0)
   1220 		? 0
   1221 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1222 
   1223 	simple_unlock(&pp->pr_slock);
   1224 }
   1225 
   1226 void
   1227 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1228 {
   1229 
   1230 	simple_lock(&pp->pr_slock);
   1231 
   1232 	pp->pr_hardlimit = n;
   1233 	pp->pr_hardlimit_warning = warnmess;
   1234 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1235 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1236 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1237 
   1238 	/*
   1239 	 * In-line version of pool_sethiwat(), because we don't want to
   1240 	 * release the lock.
   1241 	 */
   1242 	pp->pr_maxpages = (n == 0)
   1243 		? 0
   1244 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1245 
   1246 	simple_unlock(&pp->pr_slock);
   1247 }
   1248 
   1249 /*
   1250  * Release all complete pages that have not been used recently.
   1251  */
   1252 int
   1253 #ifdef POOL_DIAGNOSTIC
   1254 _pool_reclaim(struct pool *pp, const char *file, long line)
   1255 #else
   1256 pool_reclaim(struct pool *pp)
   1257 #endif
   1258 {
   1259 	struct pool_item_header *ph, *phnext;
   1260 	struct pool_cache *pc;
   1261 	struct timeval curtime;
   1262 	struct pool_pagelist pq;
   1263 	int s;
   1264 
   1265 	if (pp->pr_drain_hook != NULL) {
   1266 		/*
   1267 		 * The drain hook must be called with the pool unlocked.
   1268 		 */
   1269 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1270 	}
   1271 
   1272 	if (simple_lock_try(&pp->pr_slock) == 0)
   1273 		return (0);
   1274 	pr_enter(pp, file, line);
   1275 
   1276 	TAILQ_INIT(&pq);
   1277 
   1278 	/*
   1279 	 * Reclaim items from the pool's caches.
   1280 	 */
   1281 	TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
   1282 		pool_cache_reclaim(pc);
   1283 
   1284 	s = splclock();
   1285 	curtime = mono_time;
   1286 	splx(s);
   1287 
   1288 	for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) {
   1289 		phnext = TAILQ_NEXT(ph, ph_pagelist);
   1290 
   1291 		/* Check our minimum page claim */
   1292 		if (pp->pr_npages <= pp->pr_minpages)
   1293 			break;
   1294 
   1295 		if (ph->ph_nmissing == 0) {
   1296 			struct timeval diff;
   1297 			timersub(&curtime, &ph->ph_time, &diff);
   1298 			if (diff.tv_sec < pool_inactive_time)
   1299 				continue;
   1300 
   1301 			/*
   1302 			 * If freeing this page would put us below
   1303 			 * the low water mark, stop now.
   1304 			 */
   1305 			if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1306 			    pp->pr_minitems)
   1307 				break;
   1308 
   1309 			pr_rmpage(pp, ph, &pq);
   1310 		}
   1311 	}
   1312 
   1313 	pr_leave(pp);
   1314 	simple_unlock(&pp->pr_slock);
   1315 	if (TAILQ_EMPTY(&pq))
   1316 		return (0);
   1317 
   1318 	while ((ph = TAILQ_FIRST(&pq)) != NULL) {
   1319 		TAILQ_REMOVE(&pq, ph, ph_pagelist);
   1320 		pool_allocator_free(pp, ph->ph_page);
   1321 		if (pp->pr_roflags & PR_PHINPAGE) {
   1322 			continue;
   1323 		}
   1324 		LIST_REMOVE(ph, ph_hashlist);
   1325 		s = splvm();
   1326 		pool_put(&phpool, ph);
   1327 		splx(s);
   1328 	}
   1329 
   1330 	return (1);
   1331 }
   1332 
   1333 /*
   1334  * Drain pools, one at a time.
   1335  *
   1336  * Note, we must never be called from an interrupt context.
   1337  */
   1338 void
   1339 pool_drain(void *arg)
   1340 {
   1341 	struct pool *pp;
   1342 	int s;
   1343 
   1344 	pp = NULL;
   1345 	s = splvm();
   1346 	simple_lock(&pool_head_slock);
   1347 	if (drainpp == NULL) {
   1348 		drainpp = TAILQ_FIRST(&pool_head);
   1349 	}
   1350 	if (drainpp) {
   1351 		pp = drainpp;
   1352 		drainpp = TAILQ_NEXT(pp, pr_poollist);
   1353 	}
   1354 	simple_unlock(&pool_head_slock);
   1355 	pool_reclaim(pp);
   1356 	splx(s);
   1357 }
   1358 
   1359 /*
   1360  * Diagnostic helpers.
   1361  */
   1362 void
   1363 pool_print(struct pool *pp, const char *modif)
   1364 {
   1365 	int s;
   1366 
   1367 	s = splvm();
   1368 	if (simple_lock_try(&pp->pr_slock) == 0) {
   1369 		printf("pool %s is locked; try again later\n",
   1370 		    pp->pr_wchan);
   1371 		splx(s);
   1372 		return;
   1373 	}
   1374 	pool_print1(pp, modif, printf);
   1375 	simple_unlock(&pp->pr_slock);
   1376 	splx(s);
   1377 }
   1378 
   1379 void
   1380 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1381 {
   1382 	int didlock = 0;
   1383 
   1384 	if (pp == NULL) {
   1385 		(*pr)("Must specify a pool to print.\n");
   1386 		return;
   1387 	}
   1388 
   1389 	/*
   1390 	 * Called from DDB; interrupts should be blocked, and all
   1391 	 * other processors should be paused.  We can skip locking
   1392 	 * the pool in this case.
   1393 	 *
   1394 	 * We do a simple_lock_try() just to print the lock
   1395 	 * status, however.
   1396 	 */
   1397 
   1398 	if (simple_lock_try(&pp->pr_slock) == 0)
   1399 		(*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
   1400 	else
   1401 		didlock = 1;
   1402 
   1403 	pool_print1(pp, modif, pr);
   1404 
   1405 	if (didlock)
   1406 		simple_unlock(&pp->pr_slock);
   1407 }
   1408 
   1409 static void
   1410 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1411 {
   1412 	struct pool_item_header *ph;
   1413 	struct pool_cache *pc;
   1414 	struct pool_cache_group *pcg;
   1415 #ifdef DIAGNOSTIC
   1416 	struct pool_item *pi;
   1417 #endif
   1418 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1419 	char c;
   1420 
   1421 	while ((c = *modif++) != '\0') {
   1422 		if (c == 'l')
   1423 			print_log = 1;
   1424 		if (c == 'p')
   1425 			print_pagelist = 1;
   1426 		if (c == 'c')
   1427 			print_cache = 1;
   1428 	}
   1429 
   1430 	(*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1431 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1432 	    pp->pr_roflags);
   1433 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1434 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1435 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1436 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1437 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1438 
   1439 	(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
   1440 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1441 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1442 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1443 
   1444 	if (print_pagelist == 0)
   1445 		goto skip_pagelist;
   1446 
   1447 	if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
   1448 		(*pr)("\n\tpage list:\n");
   1449 	for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) {
   1450 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
   1451 		    ph->ph_page, ph->ph_nmissing,
   1452 		    (u_long)ph->ph_time.tv_sec,
   1453 		    (u_long)ph->ph_time.tv_usec);
   1454 #ifdef DIAGNOSTIC
   1455 		TAILQ_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1456 			if (pi->pi_magic != PI_MAGIC) {
   1457 				(*pr)("\t\t\titem %p, magic 0x%x\n",
   1458 				    pi, pi->pi_magic);
   1459 			}
   1460 		}
   1461 #endif
   1462 	}
   1463 	if (pp->pr_curpage == NULL)
   1464 		(*pr)("\tno current page\n");
   1465 	else
   1466 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1467 
   1468  skip_pagelist:
   1469 
   1470 	if (print_log == 0)
   1471 		goto skip_log;
   1472 
   1473 	(*pr)("\n");
   1474 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1475 		(*pr)("\tno log\n");
   1476 	else
   1477 		pr_printlog(pp, NULL, pr);
   1478 
   1479  skip_log:
   1480 
   1481 	if (print_cache == 0)
   1482 		goto skip_cache;
   1483 
   1484 	TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
   1485 		(*pr)("\tcache %p: allocfrom %p freeto %p\n", pc,
   1486 		    pc->pc_allocfrom, pc->pc_freeto);
   1487 		(*pr)("\t    hits %lu misses %lu ngroups %lu nitems %lu\n",
   1488 		    pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
   1489 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
   1490 			(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);
   1491 			for (i = 0; i < PCG_NOBJECTS; i++)
   1492 				(*pr)("\t\t\t%p\n", pcg->pcg_objects[i]);
   1493 		}
   1494 	}
   1495 
   1496  skip_cache:
   1497 
   1498 	pr_enter_check(pp, pr);
   1499 }
   1500 
   1501 int
   1502 pool_chk(struct pool *pp, const char *label)
   1503 {
   1504 	struct pool_item_header *ph;
   1505 	int r = 0;
   1506 
   1507 	simple_lock(&pp->pr_slock);
   1508 
   1509 	TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist) {
   1510 		struct pool_item *pi;
   1511 		int n;
   1512 		caddr_t page;
   1513 
   1514 		page = (caddr_t)((u_long)ph & pp->pr_alloc->pa_pagemask);
   1515 		if (page != ph->ph_page &&
   1516 		    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1517 			if (label != NULL)
   1518 				printf("%s: ", label);
   1519 			printf("pool(%p:%s): page inconsistency: page %p;"
   1520 			       " at page head addr %p (p %p)\n", pp,
   1521 				pp->pr_wchan, ph->ph_page,
   1522 				ph, page);
   1523 			r++;
   1524 			goto out;
   1525 		}
   1526 
   1527 		for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
   1528 		     pi != NULL;
   1529 		     pi = TAILQ_NEXT(pi,pi_list), n++) {
   1530 
   1531 #ifdef DIAGNOSTIC
   1532 			if (pi->pi_magic != PI_MAGIC) {
   1533 				if (label != NULL)
   1534 					printf("%s: ", label);
   1535 				printf("pool(%s): free list modified: magic=%x;"
   1536 				       " page %p; item ordinal %d;"
   1537 				       " addr %p (p %p)\n",
   1538 					pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1539 					n, pi, page);
   1540 				panic("pool");
   1541 			}
   1542 #endif
   1543 			page =
   1544 			    (caddr_t)((u_long)pi & pp->pr_alloc->pa_pagemask);
   1545 			if (page == ph->ph_page)
   1546 				continue;
   1547 
   1548 			if (label != NULL)
   1549 				printf("%s: ", label);
   1550 			printf("pool(%p:%s): page inconsistency: page %p;"
   1551 			       " item ordinal %d; addr %p (p %p)\n", pp,
   1552 				pp->pr_wchan, ph->ph_page,
   1553 				n, pi, page);
   1554 			r++;
   1555 			goto out;
   1556 		}
   1557 	}
   1558 out:
   1559 	simple_unlock(&pp->pr_slock);
   1560 	return (r);
   1561 }
   1562 
   1563 /*
   1564  * pool_cache_init:
   1565  *
   1566  *	Initialize a pool cache.
   1567  *
   1568  *	NOTE: If the pool must be protected from interrupts, we expect
   1569  *	to be called at the appropriate interrupt priority level.
   1570  */
   1571 void
   1572 pool_cache_init(struct pool_cache *pc, struct pool *pp,
   1573     int (*ctor)(void *, void *, int),
   1574     void (*dtor)(void *, void *),
   1575     void *arg)
   1576 {
   1577 
   1578 	TAILQ_INIT(&pc->pc_grouplist);
   1579 	simple_lock_init(&pc->pc_slock);
   1580 
   1581 	pc->pc_allocfrom = NULL;
   1582 	pc->pc_freeto = NULL;
   1583 	pc->pc_pool = pp;
   1584 
   1585 	pc->pc_ctor = ctor;
   1586 	pc->pc_dtor = dtor;
   1587 	pc->pc_arg  = arg;
   1588 
   1589 	pc->pc_hits   = 0;
   1590 	pc->pc_misses = 0;
   1591 
   1592 	pc->pc_ngroups = 0;
   1593 
   1594 	pc->pc_nitems = 0;
   1595 
   1596 	simple_lock(&pp->pr_slock);
   1597 	TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist);
   1598 	simple_unlock(&pp->pr_slock);
   1599 }
   1600 
   1601 /*
   1602  * pool_cache_destroy:
   1603  *
   1604  *	Destroy a pool cache.
   1605  */
   1606 void
   1607 pool_cache_destroy(struct pool_cache *pc)
   1608 {
   1609 	struct pool *pp = pc->pc_pool;
   1610 
   1611 	/* First, invalidate the entire cache. */
   1612 	pool_cache_invalidate(pc);
   1613 
   1614 	/* ...and remove it from the pool's cache list. */
   1615 	simple_lock(&pp->pr_slock);
   1616 	TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist);
   1617 	simple_unlock(&pp->pr_slock);
   1618 }
   1619 
   1620 static __inline void *
   1621 pcg_get(struct pool_cache_group *pcg)
   1622 {
   1623 	void *object;
   1624 	u_int idx;
   1625 
   1626 	KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
   1627 	KASSERT(pcg->pcg_avail != 0);
   1628 	idx = --pcg->pcg_avail;
   1629 
   1630 	KASSERT(pcg->pcg_objects[idx] != NULL);
   1631 	object = pcg->pcg_objects[idx];
   1632 	pcg->pcg_objects[idx] = NULL;
   1633 
   1634 	return (object);
   1635 }
   1636 
   1637 static __inline void
   1638 pcg_put(struct pool_cache_group *pcg, void *object)
   1639 {
   1640 	u_int idx;
   1641 
   1642 	KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
   1643 	idx = pcg->pcg_avail++;
   1644 
   1645 	KASSERT(pcg->pcg_objects[idx] == NULL);
   1646 	pcg->pcg_objects[idx] = object;
   1647 }
   1648 
   1649 /*
   1650  * pool_cache_get:
   1651  *
   1652  *	Get an object from a pool cache.
   1653  */
   1654 void *
   1655 pool_cache_get(struct pool_cache *pc, int flags)
   1656 {
   1657 	struct pool_cache_group *pcg;
   1658 	void *object;
   1659 
   1660 #ifdef LOCKDEBUG
   1661 	if (flags & PR_WAITOK)
   1662 		simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)");
   1663 #endif
   1664 
   1665 	simple_lock(&pc->pc_slock);
   1666 
   1667 	if ((pcg = pc->pc_allocfrom) == NULL) {
   1668 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
   1669 			if (pcg->pcg_avail != 0) {
   1670 				pc->pc_allocfrom = pcg;
   1671 				goto have_group;
   1672 			}
   1673 		}
   1674 
   1675 		/*
   1676 		 * No groups with any available objects.  Allocate
   1677 		 * a new object, construct it, and return it to
   1678 		 * the caller.  We will allocate a group, if necessary,
   1679 		 * when the object is freed back to the cache.
   1680 		 */
   1681 		pc->pc_misses++;
   1682 		simple_unlock(&pc->pc_slock);
   1683 		object = pool_get(pc->pc_pool, flags);
   1684 		if (object != NULL && pc->pc_ctor != NULL) {
   1685 			if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
   1686 				pool_put(pc->pc_pool, object);
   1687 				return (NULL);
   1688 			}
   1689 		}
   1690 		return (object);
   1691 	}
   1692 
   1693  have_group:
   1694 	pc->pc_hits++;
   1695 	pc->pc_nitems--;
   1696 	object = pcg_get(pcg);
   1697 
   1698 	if (pcg->pcg_avail == 0)
   1699 		pc->pc_allocfrom = NULL;
   1700 
   1701 	simple_unlock(&pc->pc_slock);
   1702 
   1703 	return (object);
   1704 }
   1705 
   1706 /*
   1707  * pool_cache_put:
   1708  *
   1709  *	Put an object back to the pool cache.
   1710  */
   1711 void
   1712 pool_cache_put(struct pool_cache *pc, void *object)
   1713 {
   1714 	struct pool_cache_group *pcg;
   1715 	int s;
   1716 
   1717 	simple_lock(&pc->pc_slock);
   1718 
   1719 	if ((pcg = pc->pc_freeto) == NULL) {
   1720 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
   1721 			if (pcg->pcg_avail != PCG_NOBJECTS) {
   1722 				pc->pc_freeto = pcg;
   1723 				goto have_group;
   1724 			}
   1725 		}
   1726 
   1727 		/*
   1728 		 * No empty groups to free the object to.  Attempt to
   1729 		 * allocate one.
   1730 		 */
   1731 		simple_unlock(&pc->pc_slock);
   1732 		s = splvm();
   1733 		pcg = pool_get(&pcgpool, PR_NOWAIT);
   1734 		splx(s);
   1735 		if (pcg != NULL) {
   1736 			memset(pcg, 0, sizeof(*pcg));
   1737 			simple_lock(&pc->pc_slock);
   1738 			pc->pc_ngroups++;
   1739 			TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list);
   1740 			if (pc->pc_freeto == NULL)
   1741 				pc->pc_freeto = pcg;
   1742 			goto have_group;
   1743 		}
   1744 
   1745 		/*
   1746 		 * Unable to allocate a cache group; destruct the object
   1747 		 * and free it back to the pool.
   1748 		 */
   1749 		pool_cache_destruct_object(pc, object);
   1750 		return;
   1751 	}
   1752 
   1753  have_group:
   1754 	pc->pc_nitems++;
   1755 	pcg_put(pcg, object);
   1756 
   1757 	if (pcg->pcg_avail == PCG_NOBJECTS)
   1758 		pc->pc_freeto = NULL;
   1759 
   1760 	simple_unlock(&pc->pc_slock);
   1761 }
   1762 
   1763 /*
   1764  * pool_cache_destruct_object:
   1765  *
   1766  *	Force destruction of an object and its release back into
   1767  *	the pool.
   1768  */
   1769 void
   1770 pool_cache_destruct_object(struct pool_cache *pc, void *object)
   1771 {
   1772 
   1773 	if (pc->pc_dtor != NULL)
   1774 		(*pc->pc_dtor)(pc->pc_arg, object);
   1775 	pool_put(pc->pc_pool, object);
   1776 }
   1777 
   1778 /*
   1779  * pool_cache_do_invalidate:
   1780  *
   1781  *	This internal function implements pool_cache_invalidate() and
   1782  *	pool_cache_reclaim().
   1783  */
   1784 static void
   1785 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups,
   1786     void (*putit)(struct pool *, void *))
   1787 {
   1788 	struct pool_cache_group *pcg, *npcg;
   1789 	void *object;
   1790 	int s;
   1791 
   1792 	for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
   1793 	     pcg = npcg) {
   1794 		npcg = TAILQ_NEXT(pcg, pcg_list);
   1795 		while (pcg->pcg_avail != 0) {
   1796 			pc->pc_nitems--;
   1797 			object = pcg_get(pcg);
   1798 			if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg)
   1799 				pc->pc_allocfrom = NULL;
   1800 			if (pc->pc_dtor != NULL)
   1801 				(*pc->pc_dtor)(pc->pc_arg, object);
   1802 			(*putit)(pc->pc_pool, object);
   1803 		}
   1804 		if (free_groups) {
   1805 			pc->pc_ngroups--;
   1806 			TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list);
   1807 			if (pc->pc_freeto == pcg)
   1808 				pc->pc_freeto = NULL;
   1809 			s = splvm();
   1810 			pool_put(&pcgpool, pcg);
   1811 			splx(s);
   1812 		}
   1813 	}
   1814 }
   1815 
   1816 /*
   1817  * pool_cache_invalidate:
   1818  *
   1819  *	Invalidate a pool cache (destruct and release all of the
   1820  *	cached objects).
   1821  */
   1822 void
   1823 pool_cache_invalidate(struct pool_cache *pc)
   1824 {
   1825 
   1826 	simple_lock(&pc->pc_slock);
   1827 	pool_cache_do_invalidate(pc, 0, pool_put);
   1828 	simple_unlock(&pc->pc_slock);
   1829 }
   1830 
   1831 /*
   1832  * pool_cache_reclaim:
   1833  *
   1834  *	Reclaim a pool cache for pool_reclaim().
   1835  */
   1836 static void
   1837 pool_cache_reclaim(struct pool_cache *pc)
   1838 {
   1839 
   1840 	simple_lock(&pc->pc_slock);
   1841 	pool_cache_do_invalidate(pc, 1, pool_do_put);
   1842 	simple_unlock(&pc->pc_slock);
   1843 }
   1844 
   1845 /*
   1846  * Pool backend allocators.
   1847  *
   1848  * Each pool has a backend allocator that handles allocation, deallocation,
   1849  * and any additional draining that might be needed.
   1850  *
   1851  * We provide two standard allocators:
   1852  *
   1853  *	pool_allocator_kmem - the default when no allocator is specified
   1854  *
   1855  *	pool_allocator_nointr - used for pools that will not be accessed
   1856  *	in interrupt context.
   1857  */
   1858 void	*pool_page_alloc(struct pool *, int);
   1859 void	pool_page_free(struct pool *, void *);
   1860 
   1861 struct pool_allocator pool_allocator_kmem = {
   1862 	pool_page_alloc, pool_page_free, 0,
   1863 };
   1864 
   1865 void	*pool_page_alloc_nointr(struct pool *, int);
   1866 void	pool_page_free_nointr(struct pool *, void *);
   1867 
   1868 struct pool_allocator pool_allocator_nointr = {
   1869 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   1870 };
   1871 
   1872 #ifdef POOL_SUBPAGE
   1873 void	*pool_subpage_alloc(struct pool *, int);
   1874 void	pool_subpage_free(struct pool *, void *);
   1875 
   1876 struct pool_allocator pool_allocator_kmem_subpage = {
   1877 	pool_subpage_alloc, pool_subpage_free, 0,
   1878 };
   1879 #endif /* POOL_SUBPAGE */
   1880 
   1881 /*
   1882  * We have at least three different resources for the same allocation and
   1883  * each resource can be depleted.  First, we have the ready elements in the
   1884  * pool.  Then we have the resource (typically a vm_map) for this allocator.
   1885  * Finally, we have physical memory.  Waiting for any of these can be
   1886  * unnecessary when any other is freed, but the kernel doesn't support
   1887  * sleeping on multiple wait channels, so we have to employ another strategy.
   1888  *
   1889  * The caller sleeps on the pool (so that it can be awakened when an item
   1890  * is returned to the pool), but we set PA_WANT on the allocator.  When a
   1891  * page is returned to the allocator and PA_WANT is set, pool_allocator_free
   1892  * will wake up all sleeping pools belonging to this allocator.
   1893  *
   1894  * XXX Thundering herd.
   1895  */
   1896 void *
   1897 pool_allocator_alloc(struct pool *org, int flags)
   1898 {
   1899 	struct pool_allocator *pa = org->pr_alloc;
   1900 	struct pool *pp, *start;
   1901 	int s, freed;
   1902 	void *res;
   1903 
   1904 	do {
   1905 		if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
   1906 			return (res);
   1907 		if ((flags & PR_WAITOK) == 0) {
   1908 			/*
   1909 			 * We only run the drain hookhere if PR_NOWAIT.
   1910 			 * In other cases, the hook will be run in
   1911 			 * pool_reclaim().
   1912 			 */
   1913 			if (org->pr_drain_hook != NULL) {
   1914 				(*org->pr_drain_hook)(org->pr_drain_hook_arg,
   1915 				    flags);
   1916 				if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
   1917 					return (res);
   1918 			}
   1919 			break;
   1920 		}
   1921 
   1922 		/*
   1923 		 * Drain all pools, except "org", that use this
   1924 		 * allocator.  We do this to reclaim VA space.
   1925 		 * pa_alloc is responsible for waiting for
   1926 		 * physical memory.
   1927 		 *
   1928 		 * XXX We risk looping forever if start if someone
   1929 		 * calls pool_destroy on "start".  But there is no
   1930 		 * other way to have potentially sleeping pool_reclaim,
   1931 		 * non-sleeping locks on pool_allocator, and some
   1932 		 * stirring of drained pools in the allocator.
   1933 		 *
   1934 		 * XXX Maybe we should use pool_head_slock for locking
   1935 		 * the allocators?
   1936 		 */
   1937 		freed = 0;
   1938 
   1939 		s = splvm();
   1940 		simple_lock(&pa->pa_slock);
   1941 		pp = start = TAILQ_FIRST(&pa->pa_list);
   1942 		do {
   1943 			TAILQ_REMOVE(&pa->pa_list, pp, pr_alloc_list);
   1944 			TAILQ_INSERT_TAIL(&pa->pa_list, pp, pr_alloc_list);
   1945 			if (pp == org)
   1946 				continue;
   1947 			simple_unlock(&pa->pa_slock);
   1948 			freed = pool_reclaim(pp);
   1949 			simple_lock(&pa->pa_slock);
   1950 		} while ((pp = TAILQ_FIRST(&pa->pa_list)) != start &&
   1951 			 freed == 0);
   1952 
   1953 		if (freed == 0) {
   1954 			/*
   1955 			 * We set PA_WANT here, the caller will most likely
   1956 			 * sleep waiting for pages (if not, this won't hurt
   1957 			 * that much), and there is no way to set this in
   1958 			 * the caller without violating locking order.
   1959 			 */
   1960 			pa->pa_flags |= PA_WANT;
   1961 		}
   1962 		simple_unlock(&pa->pa_slock);
   1963 		splx(s);
   1964 	} while (freed);
   1965 	return (NULL);
   1966 }
   1967 
   1968 void
   1969 pool_allocator_free(struct pool *pp, void *v)
   1970 {
   1971 	struct pool_allocator *pa = pp->pr_alloc;
   1972 	int s;
   1973 
   1974 	(*pa->pa_free)(pp, v);
   1975 
   1976 	s = splvm();
   1977 	simple_lock(&pa->pa_slock);
   1978 	if ((pa->pa_flags & PA_WANT) == 0) {
   1979 		simple_unlock(&pa->pa_slock);
   1980 		splx(s);
   1981 		return;
   1982 	}
   1983 
   1984 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
   1985 		simple_lock(&pp->pr_slock);
   1986 		if ((pp->pr_flags & PR_WANTED) != 0) {
   1987 			pp->pr_flags &= ~PR_WANTED;
   1988 			wakeup(pp);
   1989 		}
   1990 		simple_unlock(&pp->pr_slock);
   1991 	}
   1992 	pa->pa_flags &= ~PA_WANT;
   1993 	simple_unlock(&pa->pa_slock);
   1994 	splx(s);
   1995 }
   1996 
   1997 void *
   1998 pool_page_alloc(struct pool *pp, int flags)
   1999 {
   2000 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   2001 
   2002 	return ((void *) uvm_km_alloc_poolpage(waitok));
   2003 }
   2004 
   2005 void
   2006 pool_page_free(struct pool *pp, void *v)
   2007 {
   2008 
   2009 	uvm_km_free_poolpage((vaddr_t) v);
   2010 }
   2011 
   2012 #ifdef POOL_SUBPAGE
   2013 /* Sub-page allocator, for machines with large hardware pages. */
   2014 void *
   2015 pool_subpage_alloc(struct pool *pp, int flags)
   2016 {
   2017 
   2018 	return (pool_get(&psppool, flags));
   2019 }
   2020 
   2021 void
   2022 pool_subpage_free(struct pool *pp, void *v)
   2023 {
   2024 
   2025 	pool_put(&psppool, v);
   2026 }
   2027 
   2028 /* We don't provide a real nointr allocator.  Maybe later. */
   2029 void *
   2030 pool_page_alloc_nointr(struct pool *pp, int flags)
   2031 {
   2032 
   2033 	return (pool_subpage_alloc(pp, flags));
   2034 }
   2035 
   2036 void
   2037 pool_page_free_nointr(struct pool *pp, void *v)
   2038 {
   2039 
   2040 	pool_subpage_free(pp, v);
   2041 }
   2042 #else
   2043 void *
   2044 pool_page_alloc_nointr(struct pool *pp, int flags)
   2045 {
   2046 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   2047 
   2048 	return ((void *) uvm_km_alloc_poolpage1(kernel_map,
   2049 	    uvm.kernel_object, waitok));
   2050 }
   2051 
   2052 void
   2053 pool_page_free_nointr(struct pool *pp, void *v)
   2054 {
   2055 
   2056 	uvm_km_free_poolpage1(kernel_map, (vaddr_t) v);
   2057 }
   2058 #endif /* POOL_SUBPAGE */
   2059