subr_pool.c revision 1.87 1 /* $NetBSD: subr_pool.c,v 1.87 2003/04/09 18:22:13 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.87 2003/04/09 18:22:13 thorpej Exp $");
42
43 #include "opt_pool.h"
44 #include "opt_poollog.h"
45 #include "opt_lockdebug.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/proc.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/lock.h>
54 #include <sys/pool.h>
55 #include <sys/syslog.h>
56
57 #include <uvm/uvm.h>
58
59 /*
60 * Pool resource management utility.
61 *
62 * Memory is allocated in pages which are split into pieces according
63 * to the pool item size. Each page is kept on a list headed by `pr_pagelist'
64 * in the pool structure and the individual pool items are on a linked list
65 * headed by `ph_itemlist' in each page header. The memory for building
66 * the page list is either taken from the allocated pages themselves (for
67 * small pool items) or taken from an internal pool of page headers (`phpool').
68 */
69
70 /* List of all pools */
71 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
72
73 /* Private pool for page header structures */
74 static struct pool phpool;
75
76 #ifdef POOL_SUBPAGE
77 /* Pool of subpages for use by normal pools. */
78 static struct pool psppool;
79 #endif
80
81 /* # of seconds to retain page after last use */
82 int pool_inactive_time = 10;
83
84 /* Next candidate for drainage (see pool_drain()) */
85 static struct pool *drainpp;
86
87 /* This spin lock protects both pool_head and drainpp. */
88 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
89
90 struct pool_item_header {
91 /* Page headers */
92 TAILQ_ENTRY(pool_item_header)
93 ph_pagelist; /* pool page list */
94 TAILQ_HEAD(,pool_item) ph_itemlist; /* chunk list for this page */
95 LIST_ENTRY(pool_item_header)
96 ph_hashlist; /* Off-page page headers */
97 unsigned int ph_nmissing; /* # of chunks in use */
98 caddr_t ph_page; /* this page's address */
99 struct timeval ph_time; /* last referenced */
100 };
101 TAILQ_HEAD(pool_pagelist,pool_item_header);
102
103 struct pool_item {
104 #ifdef DIAGNOSTIC
105 u_int pi_magic;
106 #endif
107 #define PI_MAGIC 0xdeadbeefU
108 /* Other entries use only this list entry */
109 TAILQ_ENTRY(pool_item) pi_list;
110 };
111
112 #define PR_HASH_INDEX(pp,addr) \
113 (((u_long)(addr) >> (pp)->pr_alloc->pa_pageshift) & \
114 (PR_HASHTABSIZE - 1))
115
116 #define POOL_NEEDS_CATCHUP(pp) \
117 ((pp)->pr_nitems < (pp)->pr_minitems)
118
119 /*
120 * Pool cache management.
121 *
122 * Pool caches provide a way for constructed objects to be cached by the
123 * pool subsystem. This can lead to performance improvements by avoiding
124 * needless object construction/destruction; it is deferred until absolutely
125 * necessary.
126 *
127 * Caches are grouped into cache groups. Each cache group references
128 * up to 16 constructed objects. When a cache allocates an object
129 * from the pool, it calls the object's constructor and places it into
130 * a cache group. When a cache group frees an object back to the pool,
131 * it first calls the object's destructor. This allows the object to
132 * persist in constructed form while freed to the cache.
133 *
134 * Multiple caches may exist for each pool. This allows a single
135 * object type to have multiple constructed forms. The pool references
136 * each cache, so that when a pool is drained by the pagedaemon, it can
137 * drain each individual cache as well. Each time a cache is drained,
138 * the most idle cache group is freed to the pool in its entirety.
139 *
140 * Pool caches are layed on top of pools. By layering them, we can avoid
141 * the complexity of cache management for pools which would not benefit
142 * from it.
143 */
144
145 /* The cache group pool. */
146 static struct pool pcgpool;
147
148 static void pool_cache_reclaim(struct pool_cache *);
149
150 static int pool_catchup(struct pool *);
151 static void pool_prime_page(struct pool *, caddr_t,
152 struct pool_item_header *);
153
154 void *pool_allocator_alloc(struct pool *, int);
155 void pool_allocator_free(struct pool *, void *);
156
157 static void pool_print1(struct pool *, const char *,
158 void (*)(const char *, ...));
159
160 /*
161 * Pool log entry. An array of these is allocated in pool_init().
162 */
163 struct pool_log {
164 const char *pl_file;
165 long pl_line;
166 int pl_action;
167 #define PRLOG_GET 1
168 #define PRLOG_PUT 2
169 void *pl_addr;
170 };
171
172 #ifdef POOL_DIAGNOSTIC
173 /* Number of entries in pool log buffers */
174 #ifndef POOL_LOGSIZE
175 #define POOL_LOGSIZE 10
176 #endif
177
178 int pool_logsize = POOL_LOGSIZE;
179
180 static __inline void
181 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
182 {
183 int n = pp->pr_curlogentry;
184 struct pool_log *pl;
185
186 if ((pp->pr_roflags & PR_LOGGING) == 0)
187 return;
188
189 /*
190 * Fill in the current entry. Wrap around and overwrite
191 * the oldest entry if necessary.
192 */
193 pl = &pp->pr_log[n];
194 pl->pl_file = file;
195 pl->pl_line = line;
196 pl->pl_action = action;
197 pl->pl_addr = v;
198 if (++n >= pp->pr_logsize)
199 n = 0;
200 pp->pr_curlogentry = n;
201 }
202
203 static void
204 pr_printlog(struct pool *pp, struct pool_item *pi,
205 void (*pr)(const char *, ...))
206 {
207 int i = pp->pr_logsize;
208 int n = pp->pr_curlogentry;
209
210 if ((pp->pr_roflags & PR_LOGGING) == 0)
211 return;
212
213 /*
214 * Print all entries in this pool's log.
215 */
216 while (i-- > 0) {
217 struct pool_log *pl = &pp->pr_log[n];
218 if (pl->pl_action != 0) {
219 if (pi == NULL || pi == pl->pl_addr) {
220 (*pr)("\tlog entry %d:\n", i);
221 (*pr)("\t\taction = %s, addr = %p\n",
222 pl->pl_action == PRLOG_GET ? "get" : "put",
223 pl->pl_addr);
224 (*pr)("\t\tfile: %s at line %lu\n",
225 pl->pl_file, pl->pl_line);
226 }
227 }
228 if (++n >= pp->pr_logsize)
229 n = 0;
230 }
231 }
232
233 static __inline void
234 pr_enter(struct pool *pp, const char *file, long line)
235 {
236
237 if (__predict_false(pp->pr_entered_file != NULL)) {
238 printf("pool %s: reentrancy at file %s line %ld\n",
239 pp->pr_wchan, file, line);
240 printf(" previous entry at file %s line %ld\n",
241 pp->pr_entered_file, pp->pr_entered_line);
242 panic("pr_enter");
243 }
244
245 pp->pr_entered_file = file;
246 pp->pr_entered_line = line;
247 }
248
249 static __inline void
250 pr_leave(struct pool *pp)
251 {
252
253 if (__predict_false(pp->pr_entered_file == NULL)) {
254 printf("pool %s not entered?\n", pp->pr_wchan);
255 panic("pr_leave");
256 }
257
258 pp->pr_entered_file = NULL;
259 pp->pr_entered_line = 0;
260 }
261
262 static __inline void
263 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
264 {
265
266 if (pp->pr_entered_file != NULL)
267 (*pr)("\n\tcurrently entered from file %s line %ld\n",
268 pp->pr_entered_file, pp->pr_entered_line);
269 }
270 #else
271 #define pr_log(pp, v, action, file, line)
272 #define pr_printlog(pp, pi, pr)
273 #define pr_enter(pp, file, line)
274 #define pr_leave(pp)
275 #define pr_enter_check(pp, pr)
276 #endif /* POOL_DIAGNOSTIC */
277
278 /*
279 * Return the pool page header based on page address.
280 */
281 static __inline struct pool_item_header *
282 pr_find_pagehead(struct pool *pp, caddr_t page)
283 {
284 struct pool_item_header *ph;
285
286 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
287 return ((struct pool_item_header *)(page + pp->pr_phoffset));
288
289 for (ph = LIST_FIRST(&pp->pr_hashtab[PR_HASH_INDEX(pp, page)]);
290 ph != NULL;
291 ph = LIST_NEXT(ph, ph_hashlist)) {
292 if (ph->ph_page == page)
293 return (ph);
294 }
295 return (NULL);
296 }
297
298 /*
299 * Remove a page from the pool.
300 */
301 static __inline void
302 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
303 struct pool_pagelist *pq)
304 {
305 int s;
306
307 /*
308 * If the page was idle, decrement the idle page count.
309 */
310 if (ph->ph_nmissing == 0) {
311 #ifdef DIAGNOSTIC
312 if (pp->pr_nidle == 0)
313 panic("pr_rmpage: nidle inconsistent");
314 if (pp->pr_nitems < pp->pr_itemsperpage)
315 panic("pr_rmpage: nitems inconsistent");
316 #endif
317 pp->pr_nidle--;
318 }
319
320 pp->pr_nitems -= pp->pr_itemsperpage;
321
322 /*
323 * Unlink a page from the pool and release it (or queue it for release).
324 */
325 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
326 if (pq) {
327 TAILQ_INSERT_HEAD(pq, ph, ph_pagelist);
328 } else {
329 pool_allocator_free(pp, ph->ph_page);
330 if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
331 LIST_REMOVE(ph, ph_hashlist);
332 s = splvm();
333 pool_put(&phpool, ph);
334 splx(s);
335 }
336 }
337 pp->pr_npages--;
338 pp->pr_npagefree++;
339
340 if (pp->pr_curpage == ph) {
341 /*
342 * Find a new non-empty page header, if any.
343 * Start search from the page head, to increase the
344 * chance for "high water" pages to be freed.
345 */
346 TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist)
347 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
348 break;
349
350 pp->pr_curpage = ph;
351 }
352 }
353
354 /*
355 * Initialize the given pool resource structure.
356 *
357 * We export this routine to allow other kernel parts to declare
358 * static pools that must be initialized before malloc() is available.
359 */
360 void
361 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
362 const char *wchan, struct pool_allocator *palloc)
363 {
364 int off, slack, i;
365
366 #ifdef POOL_DIAGNOSTIC
367 /*
368 * Always log if POOL_DIAGNOSTIC is defined.
369 */
370 if (pool_logsize != 0)
371 flags |= PR_LOGGING;
372 #endif
373
374 #ifdef POOL_SUBPAGE
375 /*
376 * XXX We don't provide a real `nointr' back-end
377 * yet; all sub-pages come from a kmem back-end.
378 * maybe some day...
379 */
380 if (palloc == NULL) {
381 extern struct pool_allocator pool_allocator_kmem_subpage;
382 palloc = &pool_allocator_kmem_subpage;
383 }
384 /*
385 * We'll assume any user-specified back-end allocator
386 * will deal with sub-pages, or simply don't care.
387 */
388 #else
389 if (palloc == NULL)
390 palloc = &pool_allocator_kmem;
391 #endif /* POOL_SUBPAGE */
392 if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
393 if (palloc->pa_pagesz == 0) {
394 #ifdef POOL_SUBPAGE
395 if (palloc == &pool_allocator_kmem)
396 palloc->pa_pagesz = PAGE_SIZE;
397 else
398 palloc->pa_pagesz = POOL_SUBPAGE;
399 #else
400 palloc->pa_pagesz = PAGE_SIZE;
401 #endif /* POOL_SUBPAGE */
402 }
403
404 TAILQ_INIT(&palloc->pa_list);
405
406 simple_lock_init(&palloc->pa_slock);
407 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
408 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
409 palloc->pa_flags |= PA_INITIALIZED;
410 }
411
412 if (align == 0)
413 align = ALIGN(1);
414
415 if (size < sizeof(struct pool_item))
416 size = sizeof(struct pool_item);
417
418 size = roundup(size, align);
419 #ifdef DIAGNOSTIC
420 if (size > palloc->pa_pagesz)
421 panic("pool_init: pool item size (%lu) too large",
422 (u_long)size);
423 #endif
424
425 /*
426 * Initialize the pool structure.
427 */
428 TAILQ_INIT(&pp->pr_pagelist);
429 TAILQ_INIT(&pp->pr_cachelist);
430 pp->pr_curpage = NULL;
431 pp->pr_npages = 0;
432 pp->pr_minitems = 0;
433 pp->pr_minpages = 0;
434 pp->pr_maxpages = UINT_MAX;
435 pp->pr_roflags = flags;
436 pp->pr_flags = 0;
437 pp->pr_size = size;
438 pp->pr_align = align;
439 pp->pr_wchan = wchan;
440 pp->pr_alloc = palloc;
441 pp->pr_nitems = 0;
442 pp->pr_nout = 0;
443 pp->pr_hardlimit = UINT_MAX;
444 pp->pr_hardlimit_warning = NULL;
445 pp->pr_hardlimit_ratecap.tv_sec = 0;
446 pp->pr_hardlimit_ratecap.tv_usec = 0;
447 pp->pr_hardlimit_warning_last.tv_sec = 0;
448 pp->pr_hardlimit_warning_last.tv_usec = 0;
449 pp->pr_drain_hook = NULL;
450 pp->pr_drain_hook_arg = NULL;
451
452 /*
453 * Decide whether to put the page header off page to avoid
454 * wasting too large a part of the page. Off-page page headers
455 * go on a hash table, so we can match a returned item
456 * with its header based on the page address.
457 * We use 1/16 of the page size as the threshold (XXX: tune)
458 */
459 if (pp->pr_size < palloc->pa_pagesz/16) {
460 /* Use the end of the page for the page header */
461 pp->pr_roflags |= PR_PHINPAGE;
462 pp->pr_phoffset = off = palloc->pa_pagesz -
463 ALIGN(sizeof(struct pool_item_header));
464 } else {
465 /* The page header will be taken from our page header pool */
466 pp->pr_phoffset = 0;
467 off = palloc->pa_pagesz;
468 for (i = 0; i < PR_HASHTABSIZE; i++) {
469 LIST_INIT(&pp->pr_hashtab[i]);
470 }
471 }
472
473 /*
474 * Alignment is to take place at `ioff' within the item. This means
475 * we must reserve up to `align - 1' bytes on the page to allow
476 * appropriate positioning of each item.
477 *
478 * Silently enforce `0 <= ioff < align'.
479 */
480 pp->pr_itemoffset = ioff = ioff % align;
481 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
482 KASSERT(pp->pr_itemsperpage != 0);
483
484 /*
485 * Use the slack between the chunks and the page header
486 * for "cache coloring".
487 */
488 slack = off - pp->pr_itemsperpage * pp->pr_size;
489 pp->pr_maxcolor = (slack / align) * align;
490 pp->pr_curcolor = 0;
491
492 pp->pr_nget = 0;
493 pp->pr_nfail = 0;
494 pp->pr_nput = 0;
495 pp->pr_npagealloc = 0;
496 pp->pr_npagefree = 0;
497 pp->pr_hiwat = 0;
498 pp->pr_nidle = 0;
499
500 #ifdef POOL_DIAGNOSTIC
501 if (flags & PR_LOGGING) {
502 if (kmem_map == NULL ||
503 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
504 M_TEMP, M_NOWAIT)) == NULL)
505 pp->pr_roflags &= ~PR_LOGGING;
506 pp->pr_curlogentry = 0;
507 pp->pr_logsize = pool_logsize;
508 }
509 #endif
510
511 pp->pr_entered_file = NULL;
512 pp->pr_entered_line = 0;
513
514 simple_lock_init(&pp->pr_slock);
515
516 /*
517 * Initialize private page header pool and cache magazine pool if we
518 * haven't done so yet.
519 * XXX LOCKING.
520 */
521 if (phpool.pr_size == 0) {
522 #ifdef POOL_SUBPAGE
523 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0, 0,
524 "phpool", &pool_allocator_kmem);
525 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
526 PR_RECURSIVE, "psppool", &pool_allocator_kmem);
527 #else
528 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
529 0, "phpool", NULL);
530 #endif
531 pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
532 0, "pcgpool", NULL);
533 }
534
535 /* Insert into the list of all pools. */
536 simple_lock(&pool_head_slock);
537 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
538 simple_unlock(&pool_head_slock);
539
540 /* Insert this into the list of pools using this allocator. */
541 simple_lock(&palloc->pa_slock);
542 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
543 simple_unlock(&palloc->pa_slock);
544 }
545
546 /*
547 * De-commision a pool resource.
548 */
549 void
550 pool_destroy(struct pool *pp)
551 {
552 struct pool_item_header *ph;
553 struct pool_cache *pc;
554
555 /* Locking order: pool_allocator -> pool */
556 simple_lock(&pp->pr_alloc->pa_slock);
557 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
558 simple_unlock(&pp->pr_alloc->pa_slock);
559
560 /* Destroy all caches for this pool. */
561 while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL)
562 pool_cache_destroy(pc);
563
564 #ifdef DIAGNOSTIC
565 if (pp->pr_nout != 0) {
566 pr_printlog(pp, NULL, printf);
567 panic("pool_destroy: pool busy: still out: %u",
568 pp->pr_nout);
569 }
570 #endif
571
572 /* Remove all pages */
573 while ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
574 pr_rmpage(pp, ph, NULL);
575
576 /* Remove from global pool list */
577 simple_lock(&pool_head_slock);
578 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
579 if (drainpp == pp) {
580 drainpp = NULL;
581 }
582 simple_unlock(&pool_head_slock);
583
584 #ifdef POOL_DIAGNOSTIC
585 if ((pp->pr_roflags & PR_LOGGING) != 0)
586 free(pp->pr_log, M_TEMP);
587 #endif
588 }
589
590 void
591 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
592 {
593
594 /* XXX no locking -- must be used just after pool_init() */
595 #ifdef DIAGNOSTIC
596 if (pp->pr_drain_hook != NULL)
597 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
598 #endif
599 pp->pr_drain_hook = fn;
600 pp->pr_drain_hook_arg = arg;
601 }
602
603 static __inline struct pool_item_header *
604 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
605 {
606 struct pool_item_header *ph;
607 int s;
608
609 LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
610
611 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
612 ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
613 else {
614 s = splvm();
615 ph = pool_get(&phpool, flags);
616 splx(s);
617 }
618
619 return (ph);
620 }
621
622 /*
623 * Grab an item from the pool; must be called at appropriate spl level
624 */
625 void *
626 #ifdef POOL_DIAGNOSTIC
627 _pool_get(struct pool *pp, int flags, const char *file, long line)
628 #else
629 pool_get(struct pool *pp, int flags)
630 #endif
631 {
632 struct pool_item *pi;
633 struct pool_item_header *ph;
634 void *v;
635
636 #ifdef DIAGNOSTIC
637 if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
638 (flags & PR_WAITOK) != 0))
639 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
640
641 #ifdef LOCKDEBUG
642 if (flags & PR_WAITOK)
643 simple_lock_only_held(NULL, "pool_get(PR_WAITOK)");
644 #endif
645 #endif /* DIAGNOSTIC */
646
647 simple_lock(&pp->pr_slock);
648 pr_enter(pp, file, line);
649
650 startover:
651 /*
652 * Check to see if we've reached the hard limit. If we have,
653 * and we can wait, then wait until an item has been returned to
654 * the pool.
655 */
656 #ifdef DIAGNOSTIC
657 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
658 pr_leave(pp);
659 simple_unlock(&pp->pr_slock);
660 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
661 }
662 #endif
663 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
664 if (pp->pr_drain_hook != NULL) {
665 /*
666 * Since the drain hook is going to free things
667 * back to the pool, unlock, call the hook, re-lock,
668 * and check the hardlimit condition again.
669 */
670 pr_leave(pp);
671 simple_unlock(&pp->pr_slock);
672 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
673 simple_lock(&pp->pr_slock);
674 pr_enter(pp, file, line);
675 if (pp->pr_nout < pp->pr_hardlimit)
676 goto startover;
677 }
678
679 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
680 /*
681 * XXX: A warning isn't logged in this case. Should
682 * it be?
683 */
684 pp->pr_flags |= PR_WANTED;
685 pr_leave(pp);
686 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
687 pr_enter(pp, file, line);
688 goto startover;
689 }
690
691 /*
692 * Log a message that the hard limit has been hit.
693 */
694 if (pp->pr_hardlimit_warning != NULL &&
695 ratecheck(&pp->pr_hardlimit_warning_last,
696 &pp->pr_hardlimit_ratecap))
697 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
698
699 pp->pr_nfail++;
700
701 pr_leave(pp);
702 simple_unlock(&pp->pr_slock);
703 return (NULL);
704 }
705
706 /*
707 * The convention we use is that if `curpage' is not NULL, then
708 * it points at a non-empty bucket. In particular, `curpage'
709 * never points at a page header which has PR_PHINPAGE set and
710 * has no items in its bucket.
711 */
712 if ((ph = pp->pr_curpage) == NULL) {
713 #ifdef DIAGNOSTIC
714 if (pp->pr_nitems != 0) {
715 simple_unlock(&pp->pr_slock);
716 printf("pool_get: %s: curpage NULL, nitems %u\n",
717 pp->pr_wchan, pp->pr_nitems);
718 panic("pool_get: nitems inconsistent");
719 }
720 #endif
721
722 /*
723 * Call the back-end page allocator for more memory.
724 * Release the pool lock, as the back-end page allocator
725 * may block.
726 */
727 pr_leave(pp);
728 simple_unlock(&pp->pr_slock);
729 v = pool_allocator_alloc(pp, flags);
730 if (__predict_true(v != NULL))
731 ph = pool_alloc_item_header(pp, v, flags);
732 simple_lock(&pp->pr_slock);
733 pr_enter(pp, file, line);
734
735 if (__predict_false(v == NULL || ph == NULL)) {
736 if (v != NULL)
737 pool_allocator_free(pp, v);
738
739 /*
740 * We were unable to allocate a page or item
741 * header, but we released the lock during
742 * allocation, so perhaps items were freed
743 * back to the pool. Check for this case.
744 */
745 if (pp->pr_curpage != NULL)
746 goto startover;
747
748 if ((flags & PR_WAITOK) == 0) {
749 pp->pr_nfail++;
750 pr_leave(pp);
751 simple_unlock(&pp->pr_slock);
752 return (NULL);
753 }
754
755 /*
756 * Wait for items to be returned to this pool.
757 *
758 * XXX: maybe we should wake up once a second and
759 * try again?
760 */
761 pp->pr_flags |= PR_WANTED;
762 /* PA_WANTED is already set on the allocator. */
763 pr_leave(pp);
764 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
765 pr_enter(pp, file, line);
766 goto startover;
767 }
768
769 /* We have more memory; add it to the pool */
770 pool_prime_page(pp, v, ph);
771 pp->pr_npagealloc++;
772
773 /* Start the allocation process over. */
774 goto startover;
775 }
776
777 if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
778 pr_leave(pp);
779 simple_unlock(&pp->pr_slock);
780 panic("pool_get: %s: page empty", pp->pr_wchan);
781 }
782 #ifdef DIAGNOSTIC
783 if (__predict_false(pp->pr_nitems == 0)) {
784 pr_leave(pp);
785 simple_unlock(&pp->pr_slock);
786 printf("pool_get: %s: items on itemlist, nitems %u\n",
787 pp->pr_wchan, pp->pr_nitems);
788 panic("pool_get: nitems inconsistent");
789 }
790 #endif
791
792 #ifdef POOL_DIAGNOSTIC
793 pr_log(pp, v, PRLOG_GET, file, line);
794 #endif
795
796 #ifdef DIAGNOSTIC
797 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
798 pr_printlog(pp, pi, printf);
799 panic("pool_get(%s): free list modified: magic=%x; page %p;"
800 " item addr %p\n",
801 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
802 }
803 #endif
804
805 /*
806 * Remove from item list.
807 */
808 TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
809 pp->pr_nitems--;
810 pp->pr_nout++;
811 if (ph->ph_nmissing == 0) {
812 #ifdef DIAGNOSTIC
813 if (__predict_false(pp->pr_nidle == 0))
814 panic("pool_get: nidle inconsistent");
815 #endif
816 pp->pr_nidle--;
817 }
818 ph->ph_nmissing++;
819 if (TAILQ_FIRST(&ph->ph_itemlist) == NULL) {
820 #ifdef DIAGNOSTIC
821 if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
822 pr_leave(pp);
823 simple_unlock(&pp->pr_slock);
824 panic("pool_get: %s: nmissing inconsistent",
825 pp->pr_wchan);
826 }
827 #endif
828 /*
829 * Find a new non-empty page header, if any.
830 * Start search from the page head, to increase
831 * the chance for "high water" pages to be freed.
832 *
833 * Migrate empty pages to the end of the list. This
834 * will speed the update of curpage as pages become
835 * idle. Empty pages intermingled with idle pages
836 * is no big deal. As soon as a page becomes un-empty,
837 * it will move back to the head of the list.
838 */
839 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
840 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
841 TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist)
842 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
843 break;
844
845 pp->pr_curpage = ph;
846 }
847
848 pp->pr_nget++;
849
850 /*
851 * If we have a low water mark and we are now below that low
852 * water mark, add more items to the pool.
853 */
854 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
855 /*
856 * XXX: Should we log a warning? Should we set up a timeout
857 * to try again in a second or so? The latter could break
858 * a caller's assumptions about interrupt protection, etc.
859 */
860 }
861
862 pr_leave(pp);
863 simple_unlock(&pp->pr_slock);
864 return (v);
865 }
866
867 /*
868 * Internal version of pool_put(). Pool is already locked/entered.
869 */
870 static void
871 pool_do_put(struct pool *pp, void *v)
872 {
873 struct pool_item *pi = v;
874 struct pool_item_header *ph;
875 caddr_t page;
876 int s;
877
878 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
879
880 page = (caddr_t)((u_long)v & pp->pr_alloc->pa_pagemask);
881
882 #ifdef DIAGNOSTIC
883 if (__predict_false(pp->pr_nout == 0)) {
884 printf("pool %s: putting with none out\n",
885 pp->pr_wchan);
886 panic("pool_put");
887 }
888 #endif
889
890 if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
891 pr_printlog(pp, NULL, printf);
892 panic("pool_put: %s: page header missing", pp->pr_wchan);
893 }
894
895 #ifdef LOCKDEBUG
896 /*
897 * Check if we're freeing a locked simple lock.
898 */
899 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
900 #endif
901
902 /*
903 * Return to item list.
904 */
905 #ifdef DIAGNOSTIC
906 pi->pi_magic = PI_MAGIC;
907 #endif
908 #ifdef DEBUG
909 {
910 int i, *ip = v;
911
912 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
913 *ip++ = PI_MAGIC;
914 }
915 }
916 #endif
917
918 TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
919 KDASSERT(ph->ph_nmissing != 0);
920 ph->ph_nmissing--;
921 pp->pr_nput++;
922 pp->pr_nitems++;
923 pp->pr_nout--;
924
925 /* Cancel "pool empty" condition if it exists */
926 if (pp->pr_curpage == NULL)
927 pp->pr_curpage = ph;
928
929 if (pp->pr_flags & PR_WANTED) {
930 pp->pr_flags &= ~PR_WANTED;
931 if (ph->ph_nmissing == 0)
932 pp->pr_nidle++;
933 wakeup((caddr_t)pp);
934 return;
935 }
936
937 /*
938 * If this page is now complete, do one of two things:
939 *
940 * (1) If we have more pages than the page high water
941 * mark, free the page back to the system.
942 *
943 * (2) Move it to the end of the page list, so that
944 * we minimize our chances of fragmenting the
945 * pool. Idle pages migrate to the end (along with
946 * completely empty pages, so that we find un-empty
947 * pages more quickly when we update curpage) of the
948 * list so they can be more easily swept up by
949 * the pagedaemon when pages are scarce.
950 */
951 if (ph->ph_nmissing == 0) {
952 pp->pr_nidle++;
953 if (pp->pr_npages > pp->pr_maxpages ||
954 (pp->pr_alloc->pa_flags & PA_WANT) != 0) {
955 pr_rmpage(pp, ph, NULL);
956 } else {
957 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
958 TAILQ_INSERT_TAIL(&pp->pr_pagelist, ph, ph_pagelist);
959
960 /*
961 * Update the timestamp on the page. A page must
962 * be idle for some period of time before it can
963 * be reclaimed by the pagedaemon. This minimizes
964 * ping-pong'ing for memory.
965 */
966 s = splclock();
967 ph->ph_time = mono_time;
968 splx(s);
969
970 /*
971 * Update the current page pointer. Just look for
972 * the first page with any free items.
973 *
974 * XXX: Maybe we want an option to look for the
975 * page with the fewest available items, to minimize
976 * fragmentation?
977 */
978 TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist)
979 if (TAILQ_FIRST(&ph->ph_itemlist) != NULL)
980 break;
981
982 pp->pr_curpage = ph;
983 }
984 }
985 /*
986 * If the page has just become un-empty, move it to the head of
987 * the list, and make it the current page. The next allocation
988 * will get the item from this page, instead of further fragmenting
989 * the pool.
990 */
991 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
992 TAILQ_REMOVE(&pp->pr_pagelist, ph, ph_pagelist);
993 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
994 pp->pr_curpage = ph;
995 }
996 }
997
998 /*
999 * Return resource to the pool; must be called at appropriate spl level
1000 */
1001 #ifdef POOL_DIAGNOSTIC
1002 void
1003 _pool_put(struct pool *pp, void *v, const char *file, long line)
1004 {
1005
1006 simple_lock(&pp->pr_slock);
1007 pr_enter(pp, file, line);
1008
1009 pr_log(pp, v, PRLOG_PUT, file, line);
1010
1011 pool_do_put(pp, v);
1012
1013 pr_leave(pp);
1014 simple_unlock(&pp->pr_slock);
1015 }
1016 #undef pool_put
1017 #endif /* POOL_DIAGNOSTIC */
1018
1019 void
1020 pool_put(struct pool *pp, void *v)
1021 {
1022
1023 simple_lock(&pp->pr_slock);
1024
1025 pool_do_put(pp, v);
1026
1027 simple_unlock(&pp->pr_slock);
1028 }
1029
1030 #ifdef POOL_DIAGNOSTIC
1031 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1032 #endif
1033
1034 /*
1035 * Add N items to the pool.
1036 */
1037 int
1038 pool_prime(struct pool *pp, int n)
1039 {
1040 struct pool_item_header *ph = NULL;
1041 caddr_t cp;
1042 int newpages;
1043
1044 simple_lock(&pp->pr_slock);
1045
1046 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1047
1048 while (newpages-- > 0) {
1049 simple_unlock(&pp->pr_slock);
1050 cp = pool_allocator_alloc(pp, PR_NOWAIT);
1051 if (__predict_true(cp != NULL))
1052 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1053 simple_lock(&pp->pr_slock);
1054
1055 if (__predict_false(cp == NULL || ph == NULL)) {
1056 if (cp != NULL)
1057 pool_allocator_free(pp, cp);
1058 break;
1059 }
1060
1061 pool_prime_page(pp, cp, ph);
1062 pp->pr_npagealloc++;
1063 pp->pr_minpages++;
1064 }
1065
1066 if (pp->pr_minpages >= pp->pr_maxpages)
1067 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1068
1069 simple_unlock(&pp->pr_slock);
1070 return (0);
1071 }
1072
1073 /*
1074 * Add a page worth of items to the pool.
1075 *
1076 * Note, we must be called with the pool descriptor LOCKED.
1077 */
1078 static void
1079 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
1080 {
1081 struct pool_item *pi;
1082 caddr_t cp = storage;
1083 unsigned int align = pp->pr_align;
1084 unsigned int ioff = pp->pr_itemoffset;
1085 int n;
1086
1087 #ifdef DIAGNOSTIC
1088 if (((u_long)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1089 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1090 #endif
1091
1092 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1093 LIST_INSERT_HEAD(&pp->pr_hashtab[PR_HASH_INDEX(pp, cp)],
1094 ph, ph_hashlist);
1095
1096 /*
1097 * Insert page header.
1098 */
1099 TAILQ_INSERT_HEAD(&pp->pr_pagelist, ph, ph_pagelist);
1100 TAILQ_INIT(&ph->ph_itemlist);
1101 ph->ph_page = storage;
1102 ph->ph_nmissing = 0;
1103 memset(&ph->ph_time, 0, sizeof(ph->ph_time));
1104
1105 pp->pr_nidle++;
1106
1107 /*
1108 * Color this page.
1109 */
1110 cp = (caddr_t)(cp + pp->pr_curcolor);
1111 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1112 pp->pr_curcolor = 0;
1113
1114 /*
1115 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1116 */
1117 if (ioff != 0)
1118 cp = (caddr_t)(cp + (align - ioff));
1119
1120 /*
1121 * Insert remaining chunks on the bucket list.
1122 */
1123 n = pp->pr_itemsperpage;
1124 pp->pr_nitems += n;
1125
1126 while (n--) {
1127 pi = (struct pool_item *)cp;
1128
1129 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1130
1131 /* Insert on page list */
1132 TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
1133 #ifdef DIAGNOSTIC
1134 pi->pi_magic = PI_MAGIC;
1135 #endif
1136 cp = (caddr_t)(cp + pp->pr_size);
1137 }
1138
1139 /*
1140 * If the pool was depleted, point at the new page.
1141 */
1142 if (pp->pr_curpage == NULL)
1143 pp->pr_curpage = ph;
1144
1145 if (++pp->pr_npages > pp->pr_hiwat)
1146 pp->pr_hiwat = pp->pr_npages;
1147 }
1148
1149 /*
1150 * Used by pool_get() when nitems drops below the low water mark. This
1151 * is used to catch up nitmes with the low water mark.
1152 *
1153 * Note 1, we never wait for memory here, we let the caller decide what to do.
1154 *
1155 * Note 2, we must be called with the pool already locked, and we return
1156 * with it locked.
1157 */
1158 static int
1159 pool_catchup(struct pool *pp)
1160 {
1161 struct pool_item_header *ph = NULL;
1162 caddr_t cp;
1163 int error = 0;
1164
1165 while (POOL_NEEDS_CATCHUP(pp)) {
1166 /*
1167 * Call the page back-end allocator for more memory.
1168 *
1169 * XXX: We never wait, so should we bother unlocking
1170 * the pool descriptor?
1171 */
1172 simple_unlock(&pp->pr_slock);
1173 cp = pool_allocator_alloc(pp, PR_NOWAIT);
1174 if (__predict_true(cp != NULL))
1175 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1176 simple_lock(&pp->pr_slock);
1177 if (__predict_false(cp == NULL || ph == NULL)) {
1178 if (cp != NULL)
1179 pool_allocator_free(pp, cp);
1180 error = ENOMEM;
1181 break;
1182 }
1183 pool_prime_page(pp, cp, ph);
1184 pp->pr_npagealloc++;
1185 }
1186
1187 return (error);
1188 }
1189
1190 void
1191 pool_setlowat(struct pool *pp, int n)
1192 {
1193
1194 simple_lock(&pp->pr_slock);
1195
1196 pp->pr_minitems = n;
1197 pp->pr_minpages = (n == 0)
1198 ? 0
1199 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1200
1201 /* Make sure we're caught up with the newly-set low water mark. */
1202 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1203 /*
1204 * XXX: Should we log a warning? Should we set up a timeout
1205 * to try again in a second or so? The latter could break
1206 * a caller's assumptions about interrupt protection, etc.
1207 */
1208 }
1209
1210 simple_unlock(&pp->pr_slock);
1211 }
1212
1213 void
1214 pool_sethiwat(struct pool *pp, int n)
1215 {
1216
1217 simple_lock(&pp->pr_slock);
1218
1219 pp->pr_maxpages = (n == 0)
1220 ? 0
1221 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1222
1223 simple_unlock(&pp->pr_slock);
1224 }
1225
1226 void
1227 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1228 {
1229
1230 simple_lock(&pp->pr_slock);
1231
1232 pp->pr_hardlimit = n;
1233 pp->pr_hardlimit_warning = warnmess;
1234 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1235 pp->pr_hardlimit_warning_last.tv_sec = 0;
1236 pp->pr_hardlimit_warning_last.tv_usec = 0;
1237
1238 /*
1239 * In-line version of pool_sethiwat(), because we don't want to
1240 * release the lock.
1241 */
1242 pp->pr_maxpages = (n == 0)
1243 ? 0
1244 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1245
1246 simple_unlock(&pp->pr_slock);
1247 }
1248
1249 /*
1250 * Release all complete pages that have not been used recently.
1251 */
1252 int
1253 #ifdef POOL_DIAGNOSTIC
1254 _pool_reclaim(struct pool *pp, const char *file, long line)
1255 #else
1256 pool_reclaim(struct pool *pp)
1257 #endif
1258 {
1259 struct pool_item_header *ph, *phnext;
1260 struct pool_cache *pc;
1261 struct timeval curtime;
1262 struct pool_pagelist pq;
1263 int s;
1264
1265 if (pp->pr_drain_hook != NULL) {
1266 /*
1267 * The drain hook must be called with the pool unlocked.
1268 */
1269 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1270 }
1271
1272 if (simple_lock_try(&pp->pr_slock) == 0)
1273 return (0);
1274 pr_enter(pp, file, line);
1275
1276 TAILQ_INIT(&pq);
1277
1278 /*
1279 * Reclaim items from the pool's caches.
1280 */
1281 TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
1282 pool_cache_reclaim(pc);
1283
1284 s = splclock();
1285 curtime = mono_time;
1286 splx(s);
1287
1288 for (ph = TAILQ_FIRST(&pp->pr_pagelist); ph != NULL; ph = phnext) {
1289 phnext = TAILQ_NEXT(ph, ph_pagelist);
1290
1291 /* Check our minimum page claim */
1292 if (pp->pr_npages <= pp->pr_minpages)
1293 break;
1294
1295 if (ph->ph_nmissing == 0) {
1296 struct timeval diff;
1297 timersub(&curtime, &ph->ph_time, &diff);
1298 if (diff.tv_sec < pool_inactive_time)
1299 continue;
1300
1301 /*
1302 * If freeing this page would put us below
1303 * the low water mark, stop now.
1304 */
1305 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1306 pp->pr_minitems)
1307 break;
1308
1309 pr_rmpage(pp, ph, &pq);
1310 }
1311 }
1312
1313 pr_leave(pp);
1314 simple_unlock(&pp->pr_slock);
1315 if (TAILQ_EMPTY(&pq))
1316 return (0);
1317
1318 while ((ph = TAILQ_FIRST(&pq)) != NULL) {
1319 TAILQ_REMOVE(&pq, ph, ph_pagelist);
1320 pool_allocator_free(pp, ph->ph_page);
1321 if (pp->pr_roflags & PR_PHINPAGE) {
1322 continue;
1323 }
1324 LIST_REMOVE(ph, ph_hashlist);
1325 s = splvm();
1326 pool_put(&phpool, ph);
1327 splx(s);
1328 }
1329
1330 return (1);
1331 }
1332
1333 /*
1334 * Drain pools, one at a time.
1335 *
1336 * Note, we must never be called from an interrupt context.
1337 */
1338 void
1339 pool_drain(void *arg)
1340 {
1341 struct pool *pp;
1342 int s;
1343
1344 pp = NULL;
1345 s = splvm();
1346 simple_lock(&pool_head_slock);
1347 if (drainpp == NULL) {
1348 drainpp = TAILQ_FIRST(&pool_head);
1349 }
1350 if (drainpp) {
1351 pp = drainpp;
1352 drainpp = TAILQ_NEXT(pp, pr_poollist);
1353 }
1354 simple_unlock(&pool_head_slock);
1355 pool_reclaim(pp);
1356 splx(s);
1357 }
1358
1359 /*
1360 * Diagnostic helpers.
1361 */
1362 void
1363 pool_print(struct pool *pp, const char *modif)
1364 {
1365 int s;
1366
1367 s = splvm();
1368 if (simple_lock_try(&pp->pr_slock) == 0) {
1369 printf("pool %s is locked; try again later\n",
1370 pp->pr_wchan);
1371 splx(s);
1372 return;
1373 }
1374 pool_print1(pp, modif, printf);
1375 simple_unlock(&pp->pr_slock);
1376 splx(s);
1377 }
1378
1379 void
1380 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1381 {
1382 int didlock = 0;
1383
1384 if (pp == NULL) {
1385 (*pr)("Must specify a pool to print.\n");
1386 return;
1387 }
1388
1389 /*
1390 * Called from DDB; interrupts should be blocked, and all
1391 * other processors should be paused. We can skip locking
1392 * the pool in this case.
1393 *
1394 * We do a simple_lock_try() just to print the lock
1395 * status, however.
1396 */
1397
1398 if (simple_lock_try(&pp->pr_slock) == 0)
1399 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1400 else
1401 didlock = 1;
1402
1403 pool_print1(pp, modif, pr);
1404
1405 if (didlock)
1406 simple_unlock(&pp->pr_slock);
1407 }
1408
1409 static void
1410 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1411 {
1412 struct pool_item_header *ph;
1413 struct pool_cache *pc;
1414 struct pool_cache_group *pcg;
1415 #ifdef DIAGNOSTIC
1416 struct pool_item *pi;
1417 #endif
1418 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1419 char c;
1420
1421 while ((c = *modif++) != '\0') {
1422 if (c == 'l')
1423 print_log = 1;
1424 if (c == 'p')
1425 print_pagelist = 1;
1426 if (c == 'c')
1427 print_cache = 1;
1428 }
1429
1430 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1431 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1432 pp->pr_roflags);
1433 (*pr)("\talloc %p\n", pp->pr_alloc);
1434 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1435 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1436 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1437 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1438
1439 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1440 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1441 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1442 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1443
1444 if (print_pagelist == 0)
1445 goto skip_pagelist;
1446
1447 if ((ph = TAILQ_FIRST(&pp->pr_pagelist)) != NULL)
1448 (*pr)("\n\tpage list:\n");
1449 for (; ph != NULL; ph = TAILQ_NEXT(ph, ph_pagelist)) {
1450 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1451 ph->ph_page, ph->ph_nmissing,
1452 (u_long)ph->ph_time.tv_sec,
1453 (u_long)ph->ph_time.tv_usec);
1454 #ifdef DIAGNOSTIC
1455 TAILQ_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1456 if (pi->pi_magic != PI_MAGIC) {
1457 (*pr)("\t\t\titem %p, magic 0x%x\n",
1458 pi, pi->pi_magic);
1459 }
1460 }
1461 #endif
1462 }
1463 if (pp->pr_curpage == NULL)
1464 (*pr)("\tno current page\n");
1465 else
1466 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1467
1468 skip_pagelist:
1469
1470 if (print_log == 0)
1471 goto skip_log;
1472
1473 (*pr)("\n");
1474 if ((pp->pr_roflags & PR_LOGGING) == 0)
1475 (*pr)("\tno log\n");
1476 else
1477 pr_printlog(pp, NULL, pr);
1478
1479 skip_log:
1480
1481 if (print_cache == 0)
1482 goto skip_cache;
1483
1484 TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
1485 (*pr)("\tcache %p: allocfrom %p freeto %p\n", pc,
1486 pc->pc_allocfrom, pc->pc_freeto);
1487 (*pr)("\t hits %lu misses %lu ngroups %lu nitems %lu\n",
1488 pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
1489 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1490 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);
1491 for (i = 0; i < PCG_NOBJECTS; i++) {
1492 if (pcg->pcg_objects[i].pcgo_pa !=
1493 POOL_PADDR_INVALID) {
1494 (*pr)("\t\t\t%p, 0x%llx\n",
1495 pcg->pcg_objects[i].pcgo_va,
1496 (unsigned long long)
1497 pcg->pcg_objects[i].pcgo_pa);
1498 } else {
1499 (*pr)("\t\t\t%p\n",
1500 pcg->pcg_objects[i].pcgo_va);
1501 }
1502 }
1503 }
1504 }
1505
1506 skip_cache:
1507
1508 pr_enter_check(pp, pr);
1509 }
1510
1511 int
1512 pool_chk(struct pool *pp, const char *label)
1513 {
1514 struct pool_item_header *ph;
1515 int r = 0;
1516
1517 simple_lock(&pp->pr_slock);
1518
1519 TAILQ_FOREACH(ph, &pp->pr_pagelist, ph_pagelist) {
1520 struct pool_item *pi;
1521 int n;
1522 caddr_t page;
1523
1524 page = (caddr_t)((u_long)ph & pp->pr_alloc->pa_pagemask);
1525 if (page != ph->ph_page &&
1526 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1527 if (label != NULL)
1528 printf("%s: ", label);
1529 printf("pool(%p:%s): page inconsistency: page %p;"
1530 " at page head addr %p (p %p)\n", pp,
1531 pp->pr_wchan, ph->ph_page,
1532 ph, page);
1533 r++;
1534 goto out;
1535 }
1536
1537 for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
1538 pi != NULL;
1539 pi = TAILQ_NEXT(pi,pi_list), n++) {
1540
1541 #ifdef DIAGNOSTIC
1542 if (pi->pi_magic != PI_MAGIC) {
1543 if (label != NULL)
1544 printf("%s: ", label);
1545 printf("pool(%s): free list modified: magic=%x;"
1546 " page %p; item ordinal %d;"
1547 " addr %p (p %p)\n",
1548 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1549 n, pi, page);
1550 panic("pool");
1551 }
1552 #endif
1553 page =
1554 (caddr_t)((u_long)pi & pp->pr_alloc->pa_pagemask);
1555 if (page == ph->ph_page)
1556 continue;
1557
1558 if (label != NULL)
1559 printf("%s: ", label);
1560 printf("pool(%p:%s): page inconsistency: page %p;"
1561 " item ordinal %d; addr %p (p %p)\n", pp,
1562 pp->pr_wchan, ph->ph_page,
1563 n, pi, page);
1564 r++;
1565 goto out;
1566 }
1567 }
1568 out:
1569 simple_unlock(&pp->pr_slock);
1570 return (r);
1571 }
1572
1573 /*
1574 * pool_cache_init:
1575 *
1576 * Initialize a pool cache.
1577 *
1578 * NOTE: If the pool must be protected from interrupts, we expect
1579 * to be called at the appropriate interrupt priority level.
1580 */
1581 void
1582 pool_cache_init(struct pool_cache *pc, struct pool *pp,
1583 int (*ctor)(void *, void *, int),
1584 void (*dtor)(void *, void *),
1585 void *arg)
1586 {
1587
1588 TAILQ_INIT(&pc->pc_grouplist);
1589 simple_lock_init(&pc->pc_slock);
1590
1591 pc->pc_allocfrom = NULL;
1592 pc->pc_freeto = NULL;
1593 pc->pc_pool = pp;
1594
1595 pc->pc_ctor = ctor;
1596 pc->pc_dtor = dtor;
1597 pc->pc_arg = arg;
1598
1599 pc->pc_hits = 0;
1600 pc->pc_misses = 0;
1601
1602 pc->pc_ngroups = 0;
1603
1604 pc->pc_nitems = 0;
1605
1606 simple_lock(&pp->pr_slock);
1607 TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist);
1608 simple_unlock(&pp->pr_slock);
1609 }
1610
1611 /*
1612 * pool_cache_destroy:
1613 *
1614 * Destroy a pool cache.
1615 */
1616 void
1617 pool_cache_destroy(struct pool_cache *pc)
1618 {
1619 struct pool *pp = pc->pc_pool;
1620
1621 /* First, invalidate the entire cache. */
1622 pool_cache_invalidate(pc);
1623
1624 /* ...and remove it from the pool's cache list. */
1625 simple_lock(&pp->pr_slock);
1626 TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist);
1627 simple_unlock(&pp->pr_slock);
1628 }
1629
1630 static __inline void *
1631 pcg_get(struct pool_cache_group *pcg, paddr_t *pap)
1632 {
1633 void *object;
1634 u_int idx;
1635
1636 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
1637 KASSERT(pcg->pcg_avail != 0);
1638 idx = --pcg->pcg_avail;
1639
1640 KASSERT(pcg->pcg_objects[idx].pcgo_va != NULL);
1641 object = pcg->pcg_objects[idx].pcgo_va;
1642 if (pap != NULL)
1643 *pap = pcg->pcg_objects[idx].pcgo_pa;
1644 pcg->pcg_objects[idx].pcgo_va = NULL;
1645
1646 return (object);
1647 }
1648
1649 static __inline void
1650 pcg_put(struct pool_cache_group *pcg, void *object, paddr_t pa)
1651 {
1652 u_int idx;
1653
1654 KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
1655 idx = pcg->pcg_avail++;
1656
1657 KASSERT(pcg->pcg_objects[idx].pcgo_va == NULL);
1658 pcg->pcg_objects[idx].pcgo_va = object;
1659 pcg->pcg_objects[idx].pcgo_pa = pa;
1660 }
1661
1662 /*
1663 * pool_cache_get{,_paddr}:
1664 *
1665 * Get an object from a pool cache (optionally returning
1666 * the physical address of the object).
1667 */
1668 void *
1669 pool_cache_get_paddr(struct pool_cache *pc, int flags, paddr_t *pap)
1670 {
1671 struct pool_cache_group *pcg;
1672 void *object;
1673
1674 #ifdef LOCKDEBUG
1675 if (flags & PR_WAITOK)
1676 simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)");
1677 #endif
1678
1679 simple_lock(&pc->pc_slock);
1680
1681 if ((pcg = pc->pc_allocfrom) == NULL) {
1682 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1683 if (pcg->pcg_avail != 0) {
1684 pc->pc_allocfrom = pcg;
1685 goto have_group;
1686 }
1687 }
1688
1689 /*
1690 * No groups with any available objects. Allocate
1691 * a new object, construct it, and return it to
1692 * the caller. We will allocate a group, if necessary,
1693 * when the object is freed back to the cache.
1694 */
1695 pc->pc_misses++;
1696 simple_unlock(&pc->pc_slock);
1697 object = pool_get(pc->pc_pool, flags);
1698 if (object != NULL && pc->pc_ctor != NULL) {
1699 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
1700 pool_put(pc->pc_pool, object);
1701 return (NULL);
1702 }
1703 }
1704 if (object != NULL && pap != NULL) {
1705 #ifdef POOL_VTOPHYS
1706 *pap = POOL_VTOPHYS(object);
1707 #else
1708 *pap = POOL_PADDR_INVALID;
1709 #endif
1710 }
1711 return (object);
1712 }
1713
1714 have_group:
1715 pc->pc_hits++;
1716 pc->pc_nitems--;
1717 object = pcg_get(pcg, pap);
1718
1719 if (pcg->pcg_avail == 0)
1720 pc->pc_allocfrom = NULL;
1721
1722 simple_unlock(&pc->pc_slock);
1723
1724 return (object);
1725 }
1726
1727 /*
1728 * pool_cache_put{,_paddr}:
1729 *
1730 * Put an object back to the pool cache (optionally caching the
1731 * physical address of the object).
1732 */
1733 void
1734 pool_cache_put_paddr(struct pool_cache *pc, void *object, paddr_t pa)
1735 {
1736 struct pool_cache_group *pcg;
1737 int s;
1738
1739 simple_lock(&pc->pc_slock);
1740
1741 if ((pcg = pc->pc_freeto) == NULL) {
1742 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1743 if (pcg->pcg_avail != PCG_NOBJECTS) {
1744 pc->pc_freeto = pcg;
1745 goto have_group;
1746 }
1747 }
1748
1749 /*
1750 * No empty groups to free the object to. Attempt to
1751 * allocate one.
1752 */
1753 simple_unlock(&pc->pc_slock);
1754 s = splvm();
1755 pcg = pool_get(&pcgpool, PR_NOWAIT);
1756 splx(s);
1757 if (pcg != NULL) {
1758 memset(pcg, 0, sizeof(*pcg));
1759 simple_lock(&pc->pc_slock);
1760 pc->pc_ngroups++;
1761 TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list);
1762 if (pc->pc_freeto == NULL)
1763 pc->pc_freeto = pcg;
1764 goto have_group;
1765 }
1766
1767 /*
1768 * Unable to allocate a cache group; destruct the object
1769 * and free it back to the pool.
1770 */
1771 pool_cache_destruct_object(pc, object);
1772 return;
1773 }
1774
1775 have_group:
1776 pc->pc_nitems++;
1777 pcg_put(pcg, object, pa);
1778
1779 if (pcg->pcg_avail == PCG_NOBJECTS)
1780 pc->pc_freeto = NULL;
1781
1782 simple_unlock(&pc->pc_slock);
1783 }
1784
1785 /*
1786 * pool_cache_destruct_object:
1787 *
1788 * Force destruction of an object and its release back into
1789 * the pool.
1790 */
1791 void
1792 pool_cache_destruct_object(struct pool_cache *pc, void *object)
1793 {
1794
1795 if (pc->pc_dtor != NULL)
1796 (*pc->pc_dtor)(pc->pc_arg, object);
1797 pool_put(pc->pc_pool, object);
1798 }
1799
1800 /*
1801 * pool_cache_do_invalidate:
1802 *
1803 * This internal function implements pool_cache_invalidate() and
1804 * pool_cache_reclaim().
1805 */
1806 static void
1807 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups,
1808 void (*putit)(struct pool *, void *))
1809 {
1810 struct pool_cache_group *pcg, *npcg;
1811 void *object;
1812 int s;
1813
1814 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1815 pcg = npcg) {
1816 npcg = TAILQ_NEXT(pcg, pcg_list);
1817 while (pcg->pcg_avail != 0) {
1818 pc->pc_nitems--;
1819 object = pcg_get(pcg, NULL);
1820 if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg)
1821 pc->pc_allocfrom = NULL;
1822 if (pc->pc_dtor != NULL)
1823 (*pc->pc_dtor)(pc->pc_arg, object);
1824 (*putit)(pc->pc_pool, object);
1825 }
1826 if (free_groups) {
1827 pc->pc_ngroups--;
1828 TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list);
1829 if (pc->pc_freeto == pcg)
1830 pc->pc_freeto = NULL;
1831 s = splvm();
1832 pool_put(&pcgpool, pcg);
1833 splx(s);
1834 }
1835 }
1836 }
1837
1838 /*
1839 * pool_cache_invalidate:
1840 *
1841 * Invalidate a pool cache (destruct and release all of the
1842 * cached objects).
1843 */
1844 void
1845 pool_cache_invalidate(struct pool_cache *pc)
1846 {
1847
1848 simple_lock(&pc->pc_slock);
1849 pool_cache_do_invalidate(pc, 0, pool_put);
1850 simple_unlock(&pc->pc_slock);
1851 }
1852
1853 /*
1854 * pool_cache_reclaim:
1855 *
1856 * Reclaim a pool cache for pool_reclaim().
1857 */
1858 static void
1859 pool_cache_reclaim(struct pool_cache *pc)
1860 {
1861
1862 simple_lock(&pc->pc_slock);
1863 pool_cache_do_invalidate(pc, 1, pool_do_put);
1864 simple_unlock(&pc->pc_slock);
1865 }
1866
1867 /*
1868 * Pool backend allocators.
1869 *
1870 * Each pool has a backend allocator that handles allocation, deallocation,
1871 * and any additional draining that might be needed.
1872 *
1873 * We provide two standard allocators:
1874 *
1875 * pool_allocator_kmem - the default when no allocator is specified
1876 *
1877 * pool_allocator_nointr - used for pools that will not be accessed
1878 * in interrupt context.
1879 */
1880 void *pool_page_alloc(struct pool *, int);
1881 void pool_page_free(struct pool *, void *);
1882
1883 struct pool_allocator pool_allocator_kmem = {
1884 pool_page_alloc, pool_page_free, 0,
1885 };
1886
1887 void *pool_page_alloc_nointr(struct pool *, int);
1888 void pool_page_free_nointr(struct pool *, void *);
1889
1890 struct pool_allocator pool_allocator_nointr = {
1891 pool_page_alloc_nointr, pool_page_free_nointr, 0,
1892 };
1893
1894 #ifdef POOL_SUBPAGE
1895 void *pool_subpage_alloc(struct pool *, int);
1896 void pool_subpage_free(struct pool *, void *);
1897
1898 struct pool_allocator pool_allocator_kmem_subpage = {
1899 pool_subpage_alloc, pool_subpage_free, 0,
1900 };
1901 #endif /* POOL_SUBPAGE */
1902
1903 /*
1904 * We have at least three different resources for the same allocation and
1905 * each resource can be depleted. First, we have the ready elements in the
1906 * pool. Then we have the resource (typically a vm_map) for this allocator.
1907 * Finally, we have physical memory. Waiting for any of these can be
1908 * unnecessary when any other is freed, but the kernel doesn't support
1909 * sleeping on multiple wait channels, so we have to employ another strategy.
1910 *
1911 * The caller sleeps on the pool (so that it can be awakened when an item
1912 * is returned to the pool), but we set PA_WANT on the allocator. When a
1913 * page is returned to the allocator and PA_WANT is set, pool_allocator_free
1914 * will wake up all sleeping pools belonging to this allocator.
1915 *
1916 * XXX Thundering herd.
1917 */
1918 void *
1919 pool_allocator_alloc(struct pool *org, int flags)
1920 {
1921 struct pool_allocator *pa = org->pr_alloc;
1922 struct pool *pp, *start;
1923 int s, freed;
1924 void *res;
1925
1926 do {
1927 if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
1928 return (res);
1929 if ((flags & PR_WAITOK) == 0) {
1930 /*
1931 * We only run the drain hookhere if PR_NOWAIT.
1932 * In other cases, the hook will be run in
1933 * pool_reclaim().
1934 */
1935 if (org->pr_drain_hook != NULL) {
1936 (*org->pr_drain_hook)(org->pr_drain_hook_arg,
1937 flags);
1938 if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
1939 return (res);
1940 }
1941 break;
1942 }
1943
1944 /*
1945 * Drain all pools, except "org", that use this
1946 * allocator. We do this to reclaim VA space.
1947 * pa_alloc is responsible for waiting for
1948 * physical memory.
1949 *
1950 * XXX We risk looping forever if start if someone
1951 * calls pool_destroy on "start". But there is no
1952 * other way to have potentially sleeping pool_reclaim,
1953 * non-sleeping locks on pool_allocator, and some
1954 * stirring of drained pools in the allocator.
1955 *
1956 * XXX Maybe we should use pool_head_slock for locking
1957 * the allocators?
1958 */
1959 freed = 0;
1960
1961 s = splvm();
1962 simple_lock(&pa->pa_slock);
1963 pp = start = TAILQ_FIRST(&pa->pa_list);
1964 do {
1965 TAILQ_REMOVE(&pa->pa_list, pp, pr_alloc_list);
1966 TAILQ_INSERT_TAIL(&pa->pa_list, pp, pr_alloc_list);
1967 if (pp == org)
1968 continue;
1969 simple_unlock(&pa->pa_slock);
1970 freed = pool_reclaim(pp);
1971 simple_lock(&pa->pa_slock);
1972 } while ((pp = TAILQ_FIRST(&pa->pa_list)) != start &&
1973 freed == 0);
1974
1975 if (freed == 0) {
1976 /*
1977 * We set PA_WANT here, the caller will most likely
1978 * sleep waiting for pages (if not, this won't hurt
1979 * that much), and there is no way to set this in
1980 * the caller without violating locking order.
1981 */
1982 pa->pa_flags |= PA_WANT;
1983 }
1984 simple_unlock(&pa->pa_slock);
1985 splx(s);
1986 } while (freed);
1987 return (NULL);
1988 }
1989
1990 void
1991 pool_allocator_free(struct pool *pp, void *v)
1992 {
1993 struct pool_allocator *pa = pp->pr_alloc;
1994 int s;
1995
1996 (*pa->pa_free)(pp, v);
1997
1998 s = splvm();
1999 simple_lock(&pa->pa_slock);
2000 if ((pa->pa_flags & PA_WANT) == 0) {
2001 simple_unlock(&pa->pa_slock);
2002 splx(s);
2003 return;
2004 }
2005
2006 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
2007 simple_lock(&pp->pr_slock);
2008 if ((pp->pr_flags & PR_WANTED) != 0) {
2009 pp->pr_flags &= ~PR_WANTED;
2010 wakeup(pp);
2011 }
2012 simple_unlock(&pp->pr_slock);
2013 }
2014 pa->pa_flags &= ~PA_WANT;
2015 simple_unlock(&pa->pa_slock);
2016 splx(s);
2017 }
2018
2019 void *
2020 pool_page_alloc(struct pool *pp, int flags)
2021 {
2022 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2023
2024 return ((void *) uvm_km_alloc_poolpage(waitok));
2025 }
2026
2027 void
2028 pool_page_free(struct pool *pp, void *v)
2029 {
2030
2031 uvm_km_free_poolpage((vaddr_t) v);
2032 }
2033
2034 #ifdef POOL_SUBPAGE
2035 /* Sub-page allocator, for machines with large hardware pages. */
2036 void *
2037 pool_subpage_alloc(struct pool *pp, int flags)
2038 {
2039
2040 return (pool_get(&psppool, flags));
2041 }
2042
2043 void
2044 pool_subpage_free(struct pool *pp, void *v)
2045 {
2046
2047 pool_put(&psppool, v);
2048 }
2049
2050 /* We don't provide a real nointr allocator. Maybe later. */
2051 void *
2052 pool_page_alloc_nointr(struct pool *pp, int flags)
2053 {
2054
2055 return (pool_subpage_alloc(pp, flags));
2056 }
2057
2058 void
2059 pool_page_free_nointr(struct pool *pp, void *v)
2060 {
2061
2062 pool_subpage_free(pp, v);
2063 }
2064 #else
2065 void *
2066 pool_page_alloc_nointr(struct pool *pp, int flags)
2067 {
2068 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2069
2070 return ((void *) uvm_km_alloc_poolpage1(kernel_map,
2071 uvm.kernel_object, waitok));
2072 }
2073
2074 void
2075 pool_page_free_nointr(struct pool *pp, void *v)
2076 {
2077
2078 uvm_km_free_poolpage1(kernel_map, (vaddr_t) v);
2079 }
2080 #endif /* POOL_SUBPAGE */
2081