subr_pool.c revision 1.87.2.2 1 /* $NetBSD: subr_pool.c,v 1.87.2.2 2004/09/18 14:53:03 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.87.2.2 2004/09/18 14:53:03 skrll Exp $");
42
43 #include "opt_pool.h"
44 #include "opt_poollog.h"
45 #include "opt_lockdebug.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/proc.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/lock.h>
54 #include <sys/pool.h>
55 #include <sys/syslog.h>
56
57 #include <uvm/uvm.h>
58
59 /*
60 * Pool resource management utility.
61 *
62 * Memory is allocated in pages which are split into pieces according to
63 * the pool item size. Each page is kept on one of three lists in the
64 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
65 * for empty, full and partially-full pages respectively. The individual
66 * pool items are on a linked list headed by `ph_itemlist' in each page
67 * header. The memory for building the page list is either taken from
68 * the allocated pages themselves (for small pool items) or taken from
69 * an internal pool of page headers (`phpool').
70 */
71
72 /* List of all pools */
73 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
74
75 /* Private pool for page header structures */
76 static struct pool phpool;
77
78 #ifdef POOL_SUBPAGE
79 /* Pool of subpages for use by normal pools. */
80 static struct pool psppool;
81 #endif
82
83 /* # of seconds to retain page after last use */
84 int pool_inactive_time = 10;
85
86 /* Next candidate for drainage (see pool_drain()) */
87 static struct pool *drainpp;
88
89 /* This spin lock protects both pool_head and drainpp. */
90 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
91
92 struct pool_item_header {
93 /* Page headers */
94 LIST_ENTRY(pool_item_header)
95 ph_pagelist; /* pool page list */
96 TAILQ_HEAD(,pool_item) ph_itemlist; /* chunk list for this page */
97 SPLAY_ENTRY(pool_item_header)
98 ph_node; /* Off-page page headers */
99 unsigned int ph_nmissing; /* # of chunks in use */
100 caddr_t ph_page; /* this page's address */
101 struct timeval ph_time; /* last referenced */
102 };
103
104 struct pool_item {
105 #ifdef DIAGNOSTIC
106 u_int pi_magic;
107 #endif
108 #define PI_MAGIC 0xdeadbeefU
109 /* Other entries use only this list entry */
110 TAILQ_ENTRY(pool_item) pi_list;
111 };
112
113 #define POOL_NEEDS_CATCHUP(pp) \
114 ((pp)->pr_nitems < (pp)->pr_minitems)
115
116 /*
117 * Pool cache management.
118 *
119 * Pool caches provide a way for constructed objects to be cached by the
120 * pool subsystem. This can lead to performance improvements by avoiding
121 * needless object construction/destruction; it is deferred until absolutely
122 * necessary.
123 *
124 * Caches are grouped into cache groups. Each cache group references
125 * up to 16 constructed objects. When a cache allocates an object
126 * from the pool, it calls the object's constructor and places it into
127 * a cache group. When a cache group frees an object back to the pool,
128 * it first calls the object's destructor. This allows the object to
129 * persist in constructed form while freed to the cache.
130 *
131 * Multiple caches may exist for each pool. This allows a single
132 * object type to have multiple constructed forms. The pool references
133 * each cache, so that when a pool is drained by the pagedaemon, it can
134 * drain each individual cache as well. Each time a cache is drained,
135 * the most idle cache group is freed to the pool in its entirety.
136 *
137 * Pool caches are layed on top of pools. By layering them, we can avoid
138 * the complexity of cache management for pools which would not benefit
139 * from it.
140 */
141
142 /* The cache group pool. */
143 static struct pool pcgpool;
144
145 static void pool_cache_reclaim(struct pool_cache *);
146
147 static int pool_catchup(struct pool *);
148 static void pool_prime_page(struct pool *, caddr_t,
149 struct pool_item_header *);
150 static void pool_update_curpage(struct pool *);
151
152 void *pool_allocator_alloc(struct pool *, int);
153 void pool_allocator_free(struct pool *, void *);
154
155 static void pool_print_pagelist(struct pool_pagelist *,
156 void (*)(const char *, ...));
157 static void pool_print1(struct pool *, const char *,
158 void (*)(const char *, ...));
159
160 static int pool_chk_page(struct pool *, const char *,
161 struct pool_item_header *);
162
163 /*
164 * Pool log entry. An array of these is allocated in pool_init().
165 */
166 struct pool_log {
167 const char *pl_file;
168 long pl_line;
169 int pl_action;
170 #define PRLOG_GET 1
171 #define PRLOG_PUT 2
172 void *pl_addr;
173 };
174
175 #ifdef POOL_DIAGNOSTIC
176 /* Number of entries in pool log buffers */
177 #ifndef POOL_LOGSIZE
178 #define POOL_LOGSIZE 10
179 #endif
180
181 int pool_logsize = POOL_LOGSIZE;
182
183 static __inline void
184 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
185 {
186 int n = pp->pr_curlogentry;
187 struct pool_log *pl;
188
189 if ((pp->pr_roflags & PR_LOGGING) == 0)
190 return;
191
192 /*
193 * Fill in the current entry. Wrap around and overwrite
194 * the oldest entry if necessary.
195 */
196 pl = &pp->pr_log[n];
197 pl->pl_file = file;
198 pl->pl_line = line;
199 pl->pl_action = action;
200 pl->pl_addr = v;
201 if (++n >= pp->pr_logsize)
202 n = 0;
203 pp->pr_curlogentry = n;
204 }
205
206 static void
207 pr_printlog(struct pool *pp, struct pool_item *pi,
208 void (*pr)(const char *, ...))
209 {
210 int i = pp->pr_logsize;
211 int n = pp->pr_curlogentry;
212
213 if ((pp->pr_roflags & PR_LOGGING) == 0)
214 return;
215
216 /*
217 * Print all entries in this pool's log.
218 */
219 while (i-- > 0) {
220 struct pool_log *pl = &pp->pr_log[n];
221 if (pl->pl_action != 0) {
222 if (pi == NULL || pi == pl->pl_addr) {
223 (*pr)("\tlog entry %d:\n", i);
224 (*pr)("\t\taction = %s, addr = %p\n",
225 pl->pl_action == PRLOG_GET ? "get" : "put",
226 pl->pl_addr);
227 (*pr)("\t\tfile: %s at line %lu\n",
228 pl->pl_file, pl->pl_line);
229 }
230 }
231 if (++n >= pp->pr_logsize)
232 n = 0;
233 }
234 }
235
236 static __inline void
237 pr_enter(struct pool *pp, const char *file, long line)
238 {
239
240 if (__predict_false(pp->pr_entered_file != NULL)) {
241 printf("pool %s: reentrancy at file %s line %ld\n",
242 pp->pr_wchan, file, line);
243 printf(" previous entry at file %s line %ld\n",
244 pp->pr_entered_file, pp->pr_entered_line);
245 panic("pr_enter");
246 }
247
248 pp->pr_entered_file = file;
249 pp->pr_entered_line = line;
250 }
251
252 static __inline void
253 pr_leave(struct pool *pp)
254 {
255
256 if (__predict_false(pp->pr_entered_file == NULL)) {
257 printf("pool %s not entered?\n", pp->pr_wchan);
258 panic("pr_leave");
259 }
260
261 pp->pr_entered_file = NULL;
262 pp->pr_entered_line = 0;
263 }
264
265 static __inline void
266 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
267 {
268
269 if (pp->pr_entered_file != NULL)
270 (*pr)("\n\tcurrently entered from file %s line %ld\n",
271 pp->pr_entered_file, pp->pr_entered_line);
272 }
273 #else
274 #define pr_log(pp, v, action, file, line)
275 #define pr_printlog(pp, pi, pr)
276 #define pr_enter(pp, file, line)
277 #define pr_leave(pp)
278 #define pr_enter_check(pp, pr)
279 #endif /* POOL_DIAGNOSTIC */
280
281 static __inline int
282 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
283 {
284 if (a->ph_page < b->ph_page)
285 return (-1);
286 else if (a->ph_page > b->ph_page)
287 return (1);
288 else
289 return (0);
290 }
291
292 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
293 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
294
295 /*
296 * Return the pool page header based on page address.
297 */
298 static __inline struct pool_item_header *
299 pr_find_pagehead(struct pool *pp, caddr_t page)
300 {
301 struct pool_item_header *ph, tmp;
302
303 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
304 return ((struct pool_item_header *)(page + pp->pr_phoffset));
305
306 tmp.ph_page = page;
307 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
308 return ph;
309 }
310
311 /*
312 * Remove a page from the pool.
313 */
314 static __inline void
315 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
316 struct pool_pagelist *pq)
317 {
318 int s;
319
320 LOCK_ASSERT(!simple_lock_held(&pp->pr_slock) || pq != NULL);
321
322 /*
323 * If the page was idle, decrement the idle page count.
324 */
325 if (ph->ph_nmissing == 0) {
326 #ifdef DIAGNOSTIC
327 if (pp->pr_nidle == 0)
328 panic("pr_rmpage: nidle inconsistent");
329 if (pp->pr_nitems < pp->pr_itemsperpage)
330 panic("pr_rmpage: nitems inconsistent");
331 #endif
332 pp->pr_nidle--;
333 }
334
335 pp->pr_nitems -= pp->pr_itemsperpage;
336
337 /*
338 * Unlink a page from the pool and release it (or queue it for release).
339 */
340 LIST_REMOVE(ph, ph_pagelist);
341 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
342 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
343 if (pq) {
344 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
345 } else {
346 pool_allocator_free(pp, ph->ph_page);
347 if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
348 s = splvm();
349 pool_put(&phpool, ph);
350 splx(s);
351 }
352 }
353 pp->pr_npages--;
354 pp->pr_npagefree++;
355
356 pool_update_curpage(pp);
357 }
358
359 /*
360 * Initialize all the pools listed in the "pools" link set.
361 */
362 void
363 link_pool_init(void)
364 {
365 __link_set_decl(pools, struct link_pool_init);
366 struct link_pool_init * const *pi;
367
368 __link_set_foreach(pi, pools)
369 pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
370 (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
371 (*pi)->palloc);
372 }
373
374 /*
375 * Initialize the given pool resource structure.
376 *
377 * We export this routine to allow other kernel parts to declare
378 * static pools that must be initialized before malloc() is available.
379 */
380 void
381 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
382 const char *wchan, struct pool_allocator *palloc)
383 {
384 int off, slack;
385 size_t trysize, phsize;
386 int s;
387
388 #ifdef POOL_DIAGNOSTIC
389 /*
390 * Always log if POOL_DIAGNOSTIC is defined.
391 */
392 if (pool_logsize != 0)
393 flags |= PR_LOGGING;
394 #endif
395
396 #ifdef POOL_SUBPAGE
397 /*
398 * XXX We don't provide a real `nointr' back-end
399 * yet; all sub-pages come from a kmem back-end.
400 * maybe some day...
401 */
402 if (palloc == NULL) {
403 extern struct pool_allocator pool_allocator_kmem_subpage;
404 palloc = &pool_allocator_kmem_subpage;
405 }
406 /*
407 * We'll assume any user-specified back-end allocator
408 * will deal with sub-pages, or simply don't care.
409 */
410 #else
411 if (palloc == NULL)
412 palloc = &pool_allocator_kmem;
413 #endif /* POOL_SUBPAGE */
414 if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
415 if (palloc->pa_pagesz == 0) {
416 #ifdef POOL_SUBPAGE
417 if (palloc == &pool_allocator_kmem)
418 palloc->pa_pagesz = PAGE_SIZE;
419 else
420 palloc->pa_pagesz = POOL_SUBPAGE;
421 #else
422 palloc->pa_pagesz = PAGE_SIZE;
423 #endif /* POOL_SUBPAGE */
424 }
425
426 TAILQ_INIT(&palloc->pa_list);
427
428 simple_lock_init(&palloc->pa_slock);
429 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
430 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
431 palloc->pa_flags |= PA_INITIALIZED;
432 }
433
434 if (align == 0)
435 align = ALIGN(1);
436
437 if (size < sizeof(struct pool_item))
438 size = sizeof(struct pool_item);
439
440 size = roundup(size, align);
441 #ifdef DIAGNOSTIC
442 if (size > palloc->pa_pagesz)
443 panic("pool_init: pool item size (%lu) too large",
444 (u_long)size);
445 #endif
446
447 /*
448 * Initialize the pool structure.
449 */
450 LIST_INIT(&pp->pr_emptypages);
451 LIST_INIT(&pp->pr_fullpages);
452 LIST_INIT(&pp->pr_partpages);
453 TAILQ_INIT(&pp->pr_cachelist);
454 pp->pr_curpage = NULL;
455 pp->pr_npages = 0;
456 pp->pr_minitems = 0;
457 pp->pr_minpages = 0;
458 pp->pr_maxpages = UINT_MAX;
459 pp->pr_roflags = flags;
460 pp->pr_flags = 0;
461 pp->pr_size = size;
462 pp->pr_align = align;
463 pp->pr_wchan = wchan;
464 pp->pr_alloc = palloc;
465 pp->pr_nitems = 0;
466 pp->pr_nout = 0;
467 pp->pr_hardlimit = UINT_MAX;
468 pp->pr_hardlimit_warning = NULL;
469 pp->pr_hardlimit_ratecap.tv_sec = 0;
470 pp->pr_hardlimit_ratecap.tv_usec = 0;
471 pp->pr_hardlimit_warning_last.tv_sec = 0;
472 pp->pr_hardlimit_warning_last.tv_usec = 0;
473 pp->pr_drain_hook = NULL;
474 pp->pr_drain_hook_arg = NULL;
475
476 /*
477 * Decide whether to put the page header off page to avoid
478 * wasting too large a part of the page or too big item.
479 * Off-page page headers go on a hash table, so we can match
480 * a returned item with its header based on the page address.
481 * We use 1/16 of the page size and about 8 times of the item
482 * size as the threshold (XXX: tune)
483 *
484 * However, we'll put the header into the page if we can put
485 * it without wasting any items.
486 *
487 * Silently enforce `0 <= ioff < align'.
488 */
489 pp->pr_itemoffset = ioff %= align;
490 /* See the comment below about reserved bytes. */
491 trysize = palloc->pa_pagesz - ((align - ioff) % align);
492 phsize = ALIGN(sizeof(struct pool_item_header));
493 if (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
494 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size) {
495 /* Use the end of the page for the page header */
496 pp->pr_roflags |= PR_PHINPAGE;
497 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
498 } else {
499 /* The page header will be taken from our page header pool */
500 pp->pr_phoffset = 0;
501 off = palloc->pa_pagesz;
502 SPLAY_INIT(&pp->pr_phtree);
503 }
504
505 /*
506 * Alignment is to take place at `ioff' within the item. This means
507 * we must reserve up to `align - 1' bytes on the page to allow
508 * appropriate positioning of each item.
509 */
510 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
511 KASSERT(pp->pr_itemsperpage != 0);
512
513 /*
514 * Use the slack between the chunks and the page header
515 * for "cache coloring".
516 */
517 slack = off - pp->pr_itemsperpage * pp->pr_size;
518 pp->pr_maxcolor = (slack / align) * align;
519 pp->pr_curcolor = 0;
520
521 pp->pr_nget = 0;
522 pp->pr_nfail = 0;
523 pp->pr_nput = 0;
524 pp->pr_npagealloc = 0;
525 pp->pr_npagefree = 0;
526 pp->pr_hiwat = 0;
527 pp->pr_nidle = 0;
528
529 #ifdef POOL_DIAGNOSTIC
530 if (flags & PR_LOGGING) {
531 if (kmem_map == NULL ||
532 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
533 M_TEMP, M_NOWAIT)) == NULL)
534 pp->pr_roflags &= ~PR_LOGGING;
535 pp->pr_curlogentry = 0;
536 pp->pr_logsize = pool_logsize;
537 }
538 #endif
539
540 pp->pr_entered_file = NULL;
541 pp->pr_entered_line = 0;
542
543 simple_lock_init(&pp->pr_slock);
544
545 /*
546 * Initialize private page header pool and cache magazine pool if we
547 * haven't done so yet.
548 * XXX LOCKING.
549 */
550 if (phpool.pr_size == 0) {
551 #ifdef POOL_SUBPAGE
552 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0, 0,
553 "phpool", &pool_allocator_kmem);
554 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
555 PR_RECURSIVE, "psppool", &pool_allocator_kmem);
556 #else
557 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
558 0, "phpool", NULL);
559 #endif
560 pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
561 0, "pcgpool", NULL);
562 }
563
564 /* Insert into the list of all pools. */
565 simple_lock(&pool_head_slock);
566 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
567 simple_unlock(&pool_head_slock);
568
569 /* Insert this into the list of pools using this allocator. */
570 s = splvm();
571 simple_lock(&palloc->pa_slock);
572 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
573 simple_unlock(&palloc->pa_slock);
574 splx(s);
575 }
576
577 /*
578 * De-commision a pool resource.
579 */
580 void
581 pool_destroy(struct pool *pp)
582 {
583 struct pool_item_header *ph;
584 struct pool_cache *pc;
585 int s;
586
587 /* Locking order: pool_allocator -> pool */
588 s = splvm();
589 simple_lock(&pp->pr_alloc->pa_slock);
590 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
591 simple_unlock(&pp->pr_alloc->pa_slock);
592 splx(s);
593
594 /* Destroy all caches for this pool. */
595 while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL)
596 pool_cache_destroy(pc);
597
598 #ifdef DIAGNOSTIC
599 if (pp->pr_nout != 0) {
600 pr_printlog(pp, NULL, printf);
601 panic("pool_destroy: pool busy: still out: %u",
602 pp->pr_nout);
603 }
604 #endif
605
606 /* Remove all pages */
607 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
608 pr_rmpage(pp, ph, NULL);
609 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
610 KASSERT(LIST_EMPTY(&pp->pr_partpages));
611
612 /* Remove from global pool list */
613 simple_lock(&pool_head_slock);
614 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
615 if (drainpp == pp) {
616 drainpp = NULL;
617 }
618 simple_unlock(&pool_head_slock);
619
620 #ifdef POOL_DIAGNOSTIC
621 if ((pp->pr_roflags & PR_LOGGING) != 0)
622 free(pp->pr_log, M_TEMP);
623 #endif
624 }
625
626 void
627 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
628 {
629
630 /* XXX no locking -- must be used just after pool_init() */
631 #ifdef DIAGNOSTIC
632 if (pp->pr_drain_hook != NULL)
633 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
634 #endif
635 pp->pr_drain_hook = fn;
636 pp->pr_drain_hook_arg = arg;
637 }
638
639 static struct pool_item_header *
640 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
641 {
642 struct pool_item_header *ph;
643 int s;
644
645 LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
646
647 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
648 ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
649 else {
650 s = splvm();
651 ph = pool_get(&phpool, flags);
652 splx(s);
653 }
654
655 return (ph);
656 }
657
658 /*
659 * Grab an item from the pool; must be called at appropriate spl level
660 */
661 void *
662 #ifdef POOL_DIAGNOSTIC
663 _pool_get(struct pool *pp, int flags, const char *file, long line)
664 #else
665 pool_get(struct pool *pp, int flags)
666 #endif
667 {
668 struct pool_item *pi;
669 struct pool_item_header *ph;
670 void *v;
671
672 #ifdef DIAGNOSTIC
673 if (__predict_false(pp->pr_itemsperpage == 0))
674 panic("pool_get: pool %p: pr_itemsperpage is zero, "
675 "pool not initialized?", pp);
676 if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
677 (flags & PR_WAITOK) != 0))
678 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
679
680 #ifdef LOCKDEBUG
681 if (flags & PR_WAITOK)
682 simple_lock_only_held(NULL, "pool_get(PR_WAITOK)");
683 #endif
684 #endif /* DIAGNOSTIC */
685
686 simple_lock(&pp->pr_slock);
687 pr_enter(pp, file, line);
688
689 startover:
690 /*
691 * Check to see if we've reached the hard limit. If we have,
692 * and we can wait, then wait until an item has been returned to
693 * the pool.
694 */
695 #ifdef DIAGNOSTIC
696 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
697 pr_leave(pp);
698 simple_unlock(&pp->pr_slock);
699 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
700 }
701 #endif
702 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
703 if (pp->pr_drain_hook != NULL) {
704 /*
705 * Since the drain hook is going to free things
706 * back to the pool, unlock, call the hook, re-lock,
707 * and check the hardlimit condition again.
708 */
709 pr_leave(pp);
710 simple_unlock(&pp->pr_slock);
711 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
712 simple_lock(&pp->pr_slock);
713 pr_enter(pp, file, line);
714 if (pp->pr_nout < pp->pr_hardlimit)
715 goto startover;
716 }
717
718 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
719 /*
720 * XXX: A warning isn't logged in this case. Should
721 * it be?
722 */
723 pp->pr_flags |= PR_WANTED;
724 pr_leave(pp);
725 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
726 pr_enter(pp, file, line);
727 goto startover;
728 }
729
730 /*
731 * Log a message that the hard limit has been hit.
732 */
733 if (pp->pr_hardlimit_warning != NULL &&
734 ratecheck(&pp->pr_hardlimit_warning_last,
735 &pp->pr_hardlimit_ratecap))
736 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
737
738 pp->pr_nfail++;
739
740 pr_leave(pp);
741 simple_unlock(&pp->pr_slock);
742 return (NULL);
743 }
744
745 /*
746 * The convention we use is that if `curpage' is not NULL, then
747 * it points at a non-empty bucket. In particular, `curpage'
748 * never points at a page header which has PR_PHINPAGE set and
749 * has no items in its bucket.
750 */
751 if ((ph = pp->pr_curpage) == NULL) {
752 #ifdef DIAGNOSTIC
753 if (pp->pr_nitems != 0) {
754 simple_unlock(&pp->pr_slock);
755 printf("pool_get: %s: curpage NULL, nitems %u\n",
756 pp->pr_wchan, pp->pr_nitems);
757 panic("pool_get: nitems inconsistent");
758 }
759 #endif
760
761 /*
762 * Call the back-end page allocator for more memory.
763 * Release the pool lock, as the back-end page allocator
764 * may block.
765 */
766 pr_leave(pp);
767 simple_unlock(&pp->pr_slock);
768 v = pool_allocator_alloc(pp, flags);
769 if (__predict_true(v != NULL))
770 ph = pool_alloc_item_header(pp, v, flags);
771
772 if (__predict_false(v == NULL || ph == NULL)) {
773 if (v != NULL)
774 pool_allocator_free(pp, v);
775
776 simple_lock(&pp->pr_slock);
777 pr_enter(pp, file, line);
778
779 /*
780 * We were unable to allocate a page or item
781 * header, but we released the lock during
782 * allocation, so perhaps items were freed
783 * back to the pool. Check for this case.
784 */
785 if (pp->pr_curpage != NULL)
786 goto startover;
787
788 if ((flags & PR_WAITOK) == 0) {
789 pp->pr_nfail++;
790 pr_leave(pp);
791 simple_unlock(&pp->pr_slock);
792 return (NULL);
793 }
794
795 /*
796 * Wait for items to be returned to this pool.
797 *
798 * XXX: maybe we should wake up once a second and
799 * try again?
800 */
801 pp->pr_flags |= PR_WANTED;
802 /* PA_WANTED is already set on the allocator. */
803 pr_leave(pp);
804 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
805 pr_enter(pp, file, line);
806 goto startover;
807 }
808
809 /* We have more memory; add it to the pool */
810 simple_lock(&pp->pr_slock);
811 pr_enter(pp, file, line);
812 pool_prime_page(pp, v, ph);
813 pp->pr_npagealloc++;
814
815 /* Start the allocation process over. */
816 goto startover;
817 }
818 if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
819 pr_leave(pp);
820 simple_unlock(&pp->pr_slock);
821 panic("pool_get: %s: page empty", pp->pr_wchan);
822 }
823 #ifdef DIAGNOSTIC
824 if (__predict_false(pp->pr_nitems == 0)) {
825 pr_leave(pp);
826 simple_unlock(&pp->pr_slock);
827 printf("pool_get: %s: items on itemlist, nitems %u\n",
828 pp->pr_wchan, pp->pr_nitems);
829 panic("pool_get: nitems inconsistent");
830 }
831 #endif
832
833 #ifdef POOL_DIAGNOSTIC
834 pr_log(pp, v, PRLOG_GET, file, line);
835 #endif
836
837 #ifdef DIAGNOSTIC
838 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
839 pr_printlog(pp, pi, printf);
840 panic("pool_get(%s): free list modified: magic=%x; page %p;"
841 " item addr %p\n",
842 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
843 }
844 #endif
845
846 /*
847 * Remove from item list.
848 */
849 TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
850 pp->pr_nitems--;
851 pp->pr_nout++;
852 if (ph->ph_nmissing == 0) {
853 #ifdef DIAGNOSTIC
854 if (__predict_false(pp->pr_nidle == 0))
855 panic("pool_get: nidle inconsistent");
856 #endif
857 pp->pr_nidle--;
858
859 /*
860 * This page was previously empty. Move it to the list of
861 * partially-full pages. This page is already curpage.
862 */
863 LIST_REMOVE(ph, ph_pagelist);
864 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
865 }
866 ph->ph_nmissing++;
867 if (TAILQ_EMPTY(&ph->ph_itemlist)) {
868 #ifdef DIAGNOSTIC
869 if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
870 pr_leave(pp);
871 simple_unlock(&pp->pr_slock);
872 panic("pool_get: %s: nmissing inconsistent",
873 pp->pr_wchan);
874 }
875 #endif
876 /*
877 * This page is now full. Move it to the full list
878 * and select a new current page.
879 */
880 LIST_REMOVE(ph, ph_pagelist);
881 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
882 pool_update_curpage(pp);
883 }
884
885 pp->pr_nget++;
886
887 /*
888 * If we have a low water mark and we are now below that low
889 * water mark, add more items to the pool.
890 */
891 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
892 /*
893 * XXX: Should we log a warning? Should we set up a timeout
894 * to try again in a second or so? The latter could break
895 * a caller's assumptions about interrupt protection, etc.
896 */
897 }
898
899 pr_leave(pp);
900 simple_unlock(&pp->pr_slock);
901 return (v);
902 }
903
904 /*
905 * Internal version of pool_put(). Pool is already locked/entered.
906 */
907 static void
908 pool_do_put(struct pool *pp, void *v)
909 {
910 struct pool_item *pi = v;
911 struct pool_item_header *ph;
912 caddr_t page;
913 int s;
914
915 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
916
917 page = (caddr_t)((u_long)v & pp->pr_alloc->pa_pagemask);
918
919 #ifdef DIAGNOSTIC
920 if (__predict_false(pp->pr_nout == 0)) {
921 printf("pool %s: putting with none out\n",
922 pp->pr_wchan);
923 panic("pool_put");
924 }
925 #endif
926
927 if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
928 pr_printlog(pp, NULL, printf);
929 panic("pool_put: %s: page header missing", pp->pr_wchan);
930 }
931
932 #ifdef LOCKDEBUG
933 /*
934 * Check if we're freeing a locked simple lock.
935 */
936 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
937 #endif
938
939 /*
940 * Return to item list.
941 */
942 #ifdef DIAGNOSTIC
943 pi->pi_magic = PI_MAGIC;
944 #endif
945 #ifdef DEBUG
946 {
947 int i, *ip = v;
948
949 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
950 *ip++ = PI_MAGIC;
951 }
952 }
953 #endif
954
955 TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
956 KDASSERT(ph->ph_nmissing != 0);
957 ph->ph_nmissing--;
958 pp->pr_nput++;
959 pp->pr_nitems++;
960 pp->pr_nout--;
961
962 /* Cancel "pool empty" condition if it exists */
963 if (pp->pr_curpage == NULL)
964 pp->pr_curpage = ph;
965
966 if (pp->pr_flags & PR_WANTED) {
967 pp->pr_flags &= ~PR_WANTED;
968 if (ph->ph_nmissing == 0)
969 pp->pr_nidle++;
970 wakeup((caddr_t)pp);
971 return;
972 }
973
974 /*
975 * If this page is now empty, do one of two things:
976 *
977 * (1) If we have more pages than the page high water mark,
978 * free the page back to the system. ONLY CONSIDER
979 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
980 * CLAIM.
981 *
982 * (2) Otherwise, move the page to the empty page list.
983 *
984 * Either way, select a new current page (so we use a partially-full
985 * page if one is available).
986 */
987 if (ph->ph_nmissing == 0) {
988 pp->pr_nidle++;
989 if (pp->pr_npages > pp->pr_minpages &&
990 (pp->pr_npages > pp->pr_maxpages ||
991 (pp->pr_alloc->pa_flags & PA_WANT) != 0)) {
992 simple_unlock(&pp->pr_slock);
993 pr_rmpage(pp, ph, NULL);
994 simple_lock(&pp->pr_slock);
995 } else {
996 LIST_REMOVE(ph, ph_pagelist);
997 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
998
999 /*
1000 * Update the timestamp on the page. A page must
1001 * be idle for some period of time before it can
1002 * be reclaimed by the pagedaemon. This minimizes
1003 * ping-pong'ing for memory.
1004 */
1005 s = splclock();
1006 ph->ph_time = mono_time;
1007 splx(s);
1008 }
1009 pool_update_curpage(pp);
1010 }
1011
1012 /*
1013 * If the page was previously completely full, move it to the
1014 * partially-full list and make it the current page. The next
1015 * allocation will get the item from this page, instead of
1016 * further fragmenting the pool.
1017 */
1018 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1019 LIST_REMOVE(ph, ph_pagelist);
1020 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1021 pp->pr_curpage = ph;
1022 }
1023 }
1024
1025 /*
1026 * Return resource to the pool; must be called at appropriate spl level
1027 */
1028 #ifdef POOL_DIAGNOSTIC
1029 void
1030 _pool_put(struct pool *pp, void *v, const char *file, long line)
1031 {
1032
1033 simple_lock(&pp->pr_slock);
1034 pr_enter(pp, file, line);
1035
1036 pr_log(pp, v, PRLOG_PUT, file, line);
1037
1038 pool_do_put(pp, v);
1039
1040 pr_leave(pp);
1041 simple_unlock(&pp->pr_slock);
1042 }
1043 #undef pool_put
1044 #endif /* POOL_DIAGNOSTIC */
1045
1046 void
1047 pool_put(struct pool *pp, void *v)
1048 {
1049
1050 simple_lock(&pp->pr_slock);
1051
1052 pool_do_put(pp, v);
1053
1054 simple_unlock(&pp->pr_slock);
1055 }
1056
1057 #ifdef POOL_DIAGNOSTIC
1058 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1059 #endif
1060
1061 /*
1062 * Add N items to the pool.
1063 */
1064 int
1065 pool_prime(struct pool *pp, int n)
1066 {
1067 struct pool_item_header *ph = NULL;
1068 caddr_t cp;
1069 int newpages;
1070
1071 simple_lock(&pp->pr_slock);
1072
1073 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1074
1075 while (newpages-- > 0) {
1076 simple_unlock(&pp->pr_slock);
1077 cp = pool_allocator_alloc(pp, PR_NOWAIT);
1078 if (__predict_true(cp != NULL))
1079 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1080
1081 if (__predict_false(cp == NULL || ph == NULL)) {
1082 if (cp != NULL)
1083 pool_allocator_free(pp, cp);
1084 simple_lock(&pp->pr_slock);
1085 break;
1086 }
1087
1088 simple_lock(&pp->pr_slock);
1089 pool_prime_page(pp, cp, ph);
1090 pp->pr_npagealloc++;
1091 pp->pr_minpages++;
1092 }
1093
1094 if (pp->pr_minpages >= pp->pr_maxpages)
1095 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1096
1097 simple_unlock(&pp->pr_slock);
1098 return (0);
1099 }
1100
1101 /*
1102 * Add a page worth of items to the pool.
1103 *
1104 * Note, we must be called with the pool descriptor LOCKED.
1105 */
1106 static void
1107 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
1108 {
1109 struct pool_item *pi;
1110 caddr_t cp = storage;
1111 unsigned int align = pp->pr_align;
1112 unsigned int ioff = pp->pr_itemoffset;
1113 int n;
1114 int s;
1115
1116 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
1117
1118 #ifdef DIAGNOSTIC
1119 if (((u_long)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1120 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1121 #endif
1122
1123 /*
1124 * Insert page header.
1125 */
1126 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1127 TAILQ_INIT(&ph->ph_itemlist);
1128 ph->ph_page = storage;
1129 ph->ph_nmissing = 0;
1130 s = splclock();
1131 ph->ph_time = mono_time;
1132 splx(s);
1133 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1134 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1135
1136 pp->pr_nidle++;
1137
1138 /*
1139 * Color this page.
1140 */
1141 cp = (caddr_t)(cp + pp->pr_curcolor);
1142 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1143 pp->pr_curcolor = 0;
1144
1145 /*
1146 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1147 */
1148 if (ioff != 0)
1149 cp = (caddr_t)(cp + (align - ioff));
1150
1151 /*
1152 * Insert remaining chunks on the bucket list.
1153 */
1154 n = pp->pr_itemsperpage;
1155 pp->pr_nitems += n;
1156
1157 while (n--) {
1158 pi = (struct pool_item *)cp;
1159
1160 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1161
1162 /* Insert on page list */
1163 TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
1164 #ifdef DIAGNOSTIC
1165 pi->pi_magic = PI_MAGIC;
1166 #endif
1167 cp = (caddr_t)(cp + pp->pr_size);
1168 }
1169
1170 /*
1171 * If the pool was depleted, point at the new page.
1172 */
1173 if (pp->pr_curpage == NULL)
1174 pp->pr_curpage = ph;
1175
1176 if (++pp->pr_npages > pp->pr_hiwat)
1177 pp->pr_hiwat = pp->pr_npages;
1178 }
1179
1180 /*
1181 * Used by pool_get() when nitems drops below the low water mark. This
1182 * is used to catch up pr_nitems with the low water mark.
1183 *
1184 * Note 1, we never wait for memory here, we let the caller decide what to do.
1185 *
1186 * Note 2, we must be called with the pool already locked, and we return
1187 * with it locked.
1188 */
1189 static int
1190 pool_catchup(struct pool *pp)
1191 {
1192 struct pool_item_header *ph = NULL;
1193 caddr_t cp;
1194 int error = 0;
1195
1196 while (POOL_NEEDS_CATCHUP(pp)) {
1197 /*
1198 * Call the page back-end allocator for more memory.
1199 *
1200 * XXX: We never wait, so should we bother unlocking
1201 * the pool descriptor?
1202 */
1203 simple_unlock(&pp->pr_slock);
1204 cp = pool_allocator_alloc(pp, PR_NOWAIT);
1205 if (__predict_true(cp != NULL))
1206 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1207 if (__predict_false(cp == NULL || ph == NULL)) {
1208 if (cp != NULL)
1209 pool_allocator_free(pp, cp);
1210 error = ENOMEM;
1211 simple_lock(&pp->pr_slock);
1212 break;
1213 }
1214 simple_lock(&pp->pr_slock);
1215 pool_prime_page(pp, cp, ph);
1216 pp->pr_npagealloc++;
1217 }
1218
1219 return (error);
1220 }
1221
1222 static void
1223 pool_update_curpage(struct pool *pp)
1224 {
1225
1226 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1227 if (pp->pr_curpage == NULL) {
1228 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1229 }
1230 }
1231
1232 void
1233 pool_setlowat(struct pool *pp, int n)
1234 {
1235
1236 simple_lock(&pp->pr_slock);
1237
1238 pp->pr_minitems = n;
1239 pp->pr_minpages = (n == 0)
1240 ? 0
1241 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1242
1243 /* Make sure we're caught up with the newly-set low water mark. */
1244 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1245 /*
1246 * XXX: Should we log a warning? Should we set up a timeout
1247 * to try again in a second or so? The latter could break
1248 * a caller's assumptions about interrupt protection, etc.
1249 */
1250 }
1251
1252 simple_unlock(&pp->pr_slock);
1253 }
1254
1255 void
1256 pool_sethiwat(struct pool *pp, int n)
1257 {
1258
1259 simple_lock(&pp->pr_slock);
1260
1261 pp->pr_maxpages = (n == 0)
1262 ? 0
1263 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1264
1265 simple_unlock(&pp->pr_slock);
1266 }
1267
1268 void
1269 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1270 {
1271
1272 simple_lock(&pp->pr_slock);
1273
1274 pp->pr_hardlimit = n;
1275 pp->pr_hardlimit_warning = warnmess;
1276 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1277 pp->pr_hardlimit_warning_last.tv_sec = 0;
1278 pp->pr_hardlimit_warning_last.tv_usec = 0;
1279
1280 /*
1281 * In-line version of pool_sethiwat(), because we don't want to
1282 * release the lock.
1283 */
1284 pp->pr_maxpages = (n == 0)
1285 ? 0
1286 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1287
1288 simple_unlock(&pp->pr_slock);
1289 }
1290
1291 /*
1292 * Release all complete pages that have not been used recently.
1293 */
1294 int
1295 #ifdef POOL_DIAGNOSTIC
1296 _pool_reclaim(struct pool *pp, const char *file, long line)
1297 #else
1298 pool_reclaim(struct pool *pp)
1299 #endif
1300 {
1301 struct pool_item_header *ph, *phnext;
1302 struct pool_cache *pc;
1303 struct timeval curtime;
1304 struct pool_pagelist pq;
1305 struct timeval diff;
1306 int s;
1307
1308 if (pp->pr_drain_hook != NULL) {
1309 /*
1310 * The drain hook must be called with the pool unlocked.
1311 */
1312 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1313 }
1314
1315 if (simple_lock_try(&pp->pr_slock) == 0)
1316 return (0);
1317 pr_enter(pp, file, line);
1318
1319 LIST_INIT(&pq);
1320
1321 /*
1322 * Reclaim items from the pool's caches.
1323 */
1324 TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
1325 pool_cache_reclaim(pc);
1326
1327 s = splclock();
1328 curtime = mono_time;
1329 splx(s);
1330
1331 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1332 phnext = LIST_NEXT(ph, ph_pagelist);
1333
1334 /* Check our minimum page claim */
1335 if (pp->pr_npages <= pp->pr_minpages)
1336 break;
1337
1338 KASSERT(ph->ph_nmissing == 0);
1339 timersub(&curtime, &ph->ph_time, &diff);
1340 if (diff.tv_sec < pool_inactive_time)
1341 continue;
1342
1343 /*
1344 * If freeing this page would put us below
1345 * the low water mark, stop now.
1346 */
1347 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1348 pp->pr_minitems)
1349 break;
1350
1351 pr_rmpage(pp, ph, &pq);
1352 }
1353
1354 pr_leave(pp);
1355 simple_unlock(&pp->pr_slock);
1356 if (LIST_EMPTY(&pq))
1357 return (0);
1358
1359 while ((ph = LIST_FIRST(&pq)) != NULL) {
1360 LIST_REMOVE(ph, ph_pagelist);
1361 pool_allocator_free(pp, ph->ph_page);
1362 if (pp->pr_roflags & PR_PHINPAGE) {
1363 continue;
1364 }
1365 s = splvm();
1366 pool_put(&phpool, ph);
1367 splx(s);
1368 }
1369
1370 return (1);
1371 }
1372
1373 /*
1374 * Drain pools, one at a time.
1375 *
1376 * Note, we must never be called from an interrupt context.
1377 */
1378 void
1379 pool_drain(void *arg)
1380 {
1381 struct pool *pp;
1382 int s;
1383
1384 pp = NULL;
1385 s = splvm();
1386 simple_lock(&pool_head_slock);
1387 if (drainpp == NULL) {
1388 drainpp = TAILQ_FIRST(&pool_head);
1389 }
1390 if (drainpp) {
1391 pp = drainpp;
1392 drainpp = TAILQ_NEXT(pp, pr_poollist);
1393 }
1394 simple_unlock(&pool_head_slock);
1395 pool_reclaim(pp);
1396 splx(s);
1397 }
1398
1399 /*
1400 * Diagnostic helpers.
1401 */
1402 void
1403 pool_print(struct pool *pp, const char *modif)
1404 {
1405 int s;
1406
1407 s = splvm();
1408 if (simple_lock_try(&pp->pr_slock) == 0) {
1409 printf("pool %s is locked; try again later\n",
1410 pp->pr_wchan);
1411 splx(s);
1412 return;
1413 }
1414 pool_print1(pp, modif, printf);
1415 simple_unlock(&pp->pr_slock);
1416 splx(s);
1417 }
1418
1419 void
1420 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1421 {
1422 int didlock = 0;
1423
1424 if (pp == NULL) {
1425 (*pr)("Must specify a pool to print.\n");
1426 return;
1427 }
1428
1429 /*
1430 * Called from DDB; interrupts should be blocked, and all
1431 * other processors should be paused. We can skip locking
1432 * the pool in this case.
1433 *
1434 * We do a simple_lock_try() just to print the lock
1435 * status, however.
1436 */
1437
1438 if (simple_lock_try(&pp->pr_slock) == 0)
1439 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1440 else
1441 didlock = 1;
1442
1443 pool_print1(pp, modif, pr);
1444
1445 if (didlock)
1446 simple_unlock(&pp->pr_slock);
1447 }
1448
1449 static void
1450 pool_print_pagelist(struct pool_pagelist *pl, void (*pr)(const char *, ...))
1451 {
1452 struct pool_item_header *ph;
1453 #ifdef DIAGNOSTIC
1454 struct pool_item *pi;
1455 #endif
1456
1457 LIST_FOREACH(ph, pl, ph_pagelist) {
1458 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1459 ph->ph_page, ph->ph_nmissing,
1460 (u_long)ph->ph_time.tv_sec,
1461 (u_long)ph->ph_time.tv_usec);
1462 #ifdef DIAGNOSTIC
1463 TAILQ_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1464 if (pi->pi_magic != PI_MAGIC) {
1465 (*pr)("\t\t\titem %p, magic 0x%x\n",
1466 pi, pi->pi_magic);
1467 }
1468 }
1469 #endif
1470 }
1471 }
1472
1473 static void
1474 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1475 {
1476 struct pool_item_header *ph;
1477 struct pool_cache *pc;
1478 struct pool_cache_group *pcg;
1479 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1480 char c;
1481
1482 while ((c = *modif++) != '\0') {
1483 if (c == 'l')
1484 print_log = 1;
1485 if (c == 'p')
1486 print_pagelist = 1;
1487 if (c == 'c')
1488 print_cache = 1;
1489 }
1490
1491 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1492 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1493 pp->pr_roflags);
1494 (*pr)("\talloc %p\n", pp->pr_alloc);
1495 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1496 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1497 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1498 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1499
1500 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1501 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1502 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1503 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1504
1505 if (print_pagelist == 0)
1506 goto skip_pagelist;
1507
1508 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1509 (*pr)("\n\tempty page list:\n");
1510 pool_print_pagelist(&pp->pr_emptypages, pr);
1511 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1512 (*pr)("\n\tfull page list:\n");
1513 pool_print_pagelist(&pp->pr_fullpages, pr);
1514 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1515 (*pr)("\n\tpartial-page list:\n");
1516 pool_print_pagelist(&pp->pr_partpages, pr);
1517
1518 if (pp->pr_curpage == NULL)
1519 (*pr)("\tno current page\n");
1520 else
1521 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1522
1523 skip_pagelist:
1524 if (print_log == 0)
1525 goto skip_log;
1526
1527 (*pr)("\n");
1528 if ((pp->pr_roflags & PR_LOGGING) == 0)
1529 (*pr)("\tno log\n");
1530 else
1531 pr_printlog(pp, NULL, pr);
1532
1533 skip_log:
1534 if (print_cache == 0)
1535 goto skip_cache;
1536
1537 TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
1538 (*pr)("\tcache %p: allocfrom %p freeto %p\n", pc,
1539 pc->pc_allocfrom, pc->pc_freeto);
1540 (*pr)("\t hits %lu misses %lu ngroups %lu nitems %lu\n",
1541 pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
1542 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1543 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);
1544 for (i = 0; i < PCG_NOBJECTS; i++) {
1545 if (pcg->pcg_objects[i].pcgo_pa !=
1546 POOL_PADDR_INVALID) {
1547 (*pr)("\t\t\t%p, 0x%llx\n",
1548 pcg->pcg_objects[i].pcgo_va,
1549 (unsigned long long)
1550 pcg->pcg_objects[i].pcgo_pa);
1551 } else {
1552 (*pr)("\t\t\t%p\n",
1553 pcg->pcg_objects[i].pcgo_va);
1554 }
1555 }
1556 }
1557 }
1558
1559 skip_cache:
1560 pr_enter_check(pp, pr);
1561 }
1562
1563 static int
1564 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1565 {
1566 struct pool_item *pi;
1567 caddr_t page;
1568 int n;
1569
1570 page = (caddr_t)((u_long)ph & pp->pr_alloc->pa_pagemask);
1571 if (page != ph->ph_page &&
1572 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1573 if (label != NULL)
1574 printf("%s: ", label);
1575 printf("pool(%p:%s): page inconsistency: page %p;"
1576 " at page head addr %p (p %p)\n", pp,
1577 pp->pr_wchan, ph->ph_page,
1578 ph, page);
1579 return 1;
1580 }
1581
1582 for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
1583 pi != NULL;
1584 pi = TAILQ_NEXT(pi,pi_list), n++) {
1585
1586 #ifdef DIAGNOSTIC
1587 if (pi->pi_magic != PI_MAGIC) {
1588 if (label != NULL)
1589 printf("%s: ", label);
1590 printf("pool(%s): free list modified: magic=%x;"
1591 " page %p; item ordinal %d;"
1592 " addr %p (p %p)\n",
1593 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1594 n, pi, page);
1595 panic("pool");
1596 }
1597 #endif
1598 page =
1599 (caddr_t)((u_long)pi & pp->pr_alloc->pa_pagemask);
1600 if (page == ph->ph_page)
1601 continue;
1602
1603 if (label != NULL)
1604 printf("%s: ", label);
1605 printf("pool(%p:%s): page inconsistency: page %p;"
1606 " item ordinal %d; addr %p (p %p)\n", pp,
1607 pp->pr_wchan, ph->ph_page,
1608 n, pi, page);
1609 return 1;
1610 }
1611 return 0;
1612 }
1613
1614
1615 int
1616 pool_chk(struct pool *pp, const char *label)
1617 {
1618 struct pool_item_header *ph;
1619 int r = 0;
1620
1621 simple_lock(&pp->pr_slock);
1622 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1623 r = pool_chk_page(pp, label, ph);
1624 if (r) {
1625 goto out;
1626 }
1627 }
1628 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1629 r = pool_chk_page(pp, label, ph);
1630 if (r) {
1631 goto out;
1632 }
1633 }
1634 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1635 r = pool_chk_page(pp, label, ph);
1636 if (r) {
1637 goto out;
1638 }
1639 }
1640
1641 out:
1642 simple_unlock(&pp->pr_slock);
1643 return (r);
1644 }
1645
1646 /*
1647 * pool_cache_init:
1648 *
1649 * Initialize a pool cache.
1650 *
1651 * NOTE: If the pool must be protected from interrupts, we expect
1652 * to be called at the appropriate interrupt priority level.
1653 */
1654 void
1655 pool_cache_init(struct pool_cache *pc, struct pool *pp,
1656 int (*ctor)(void *, void *, int),
1657 void (*dtor)(void *, void *),
1658 void *arg)
1659 {
1660
1661 TAILQ_INIT(&pc->pc_grouplist);
1662 simple_lock_init(&pc->pc_slock);
1663
1664 pc->pc_allocfrom = NULL;
1665 pc->pc_freeto = NULL;
1666 pc->pc_pool = pp;
1667
1668 pc->pc_ctor = ctor;
1669 pc->pc_dtor = dtor;
1670 pc->pc_arg = arg;
1671
1672 pc->pc_hits = 0;
1673 pc->pc_misses = 0;
1674
1675 pc->pc_ngroups = 0;
1676
1677 pc->pc_nitems = 0;
1678
1679 simple_lock(&pp->pr_slock);
1680 TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist);
1681 simple_unlock(&pp->pr_slock);
1682 }
1683
1684 /*
1685 * pool_cache_destroy:
1686 *
1687 * Destroy a pool cache.
1688 */
1689 void
1690 pool_cache_destroy(struct pool_cache *pc)
1691 {
1692 struct pool *pp = pc->pc_pool;
1693
1694 /* First, invalidate the entire cache. */
1695 pool_cache_invalidate(pc);
1696
1697 /* ...and remove it from the pool's cache list. */
1698 simple_lock(&pp->pr_slock);
1699 TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist);
1700 simple_unlock(&pp->pr_slock);
1701 }
1702
1703 static __inline void *
1704 pcg_get(struct pool_cache_group *pcg, paddr_t *pap)
1705 {
1706 void *object;
1707 u_int idx;
1708
1709 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
1710 KASSERT(pcg->pcg_avail != 0);
1711 idx = --pcg->pcg_avail;
1712
1713 KASSERT(pcg->pcg_objects[idx].pcgo_va != NULL);
1714 object = pcg->pcg_objects[idx].pcgo_va;
1715 if (pap != NULL)
1716 *pap = pcg->pcg_objects[idx].pcgo_pa;
1717 pcg->pcg_objects[idx].pcgo_va = NULL;
1718
1719 return (object);
1720 }
1721
1722 static __inline void
1723 pcg_put(struct pool_cache_group *pcg, void *object, paddr_t pa)
1724 {
1725 u_int idx;
1726
1727 KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
1728 idx = pcg->pcg_avail++;
1729
1730 KASSERT(pcg->pcg_objects[idx].pcgo_va == NULL);
1731 pcg->pcg_objects[idx].pcgo_va = object;
1732 pcg->pcg_objects[idx].pcgo_pa = pa;
1733 }
1734
1735 /*
1736 * pool_cache_get{,_paddr}:
1737 *
1738 * Get an object from a pool cache (optionally returning
1739 * the physical address of the object).
1740 */
1741 void *
1742 pool_cache_get_paddr(struct pool_cache *pc, int flags, paddr_t *pap)
1743 {
1744 struct pool_cache_group *pcg;
1745 void *object;
1746
1747 #ifdef LOCKDEBUG
1748 if (flags & PR_WAITOK)
1749 simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)");
1750 #endif
1751
1752 simple_lock(&pc->pc_slock);
1753
1754 if ((pcg = pc->pc_allocfrom) == NULL) {
1755 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1756 if (pcg->pcg_avail != 0) {
1757 pc->pc_allocfrom = pcg;
1758 goto have_group;
1759 }
1760 }
1761
1762 /*
1763 * No groups with any available objects. Allocate
1764 * a new object, construct it, and return it to
1765 * the caller. We will allocate a group, if necessary,
1766 * when the object is freed back to the cache.
1767 */
1768 pc->pc_misses++;
1769 simple_unlock(&pc->pc_slock);
1770 object = pool_get(pc->pc_pool, flags);
1771 if (object != NULL && pc->pc_ctor != NULL) {
1772 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
1773 pool_put(pc->pc_pool, object);
1774 return (NULL);
1775 }
1776 }
1777 if (object != NULL && pap != NULL) {
1778 #ifdef POOL_VTOPHYS
1779 *pap = POOL_VTOPHYS(object);
1780 #else
1781 *pap = POOL_PADDR_INVALID;
1782 #endif
1783 }
1784 return (object);
1785 }
1786
1787 have_group:
1788 pc->pc_hits++;
1789 pc->pc_nitems--;
1790 object = pcg_get(pcg, pap);
1791
1792 if (pcg->pcg_avail == 0)
1793 pc->pc_allocfrom = NULL;
1794
1795 simple_unlock(&pc->pc_slock);
1796
1797 return (object);
1798 }
1799
1800 /*
1801 * pool_cache_put{,_paddr}:
1802 *
1803 * Put an object back to the pool cache (optionally caching the
1804 * physical address of the object).
1805 */
1806 void
1807 pool_cache_put_paddr(struct pool_cache *pc, void *object, paddr_t pa)
1808 {
1809 struct pool_cache_group *pcg;
1810 int s;
1811
1812 simple_lock(&pc->pc_slock);
1813
1814 if ((pcg = pc->pc_freeto) == NULL) {
1815 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1816 if (pcg->pcg_avail != PCG_NOBJECTS) {
1817 pc->pc_freeto = pcg;
1818 goto have_group;
1819 }
1820 }
1821
1822 /*
1823 * No empty groups to free the object to. Attempt to
1824 * allocate one.
1825 */
1826 simple_unlock(&pc->pc_slock);
1827 s = splvm();
1828 pcg = pool_get(&pcgpool, PR_NOWAIT);
1829 splx(s);
1830 if (pcg != NULL) {
1831 memset(pcg, 0, sizeof(*pcg));
1832 simple_lock(&pc->pc_slock);
1833 pc->pc_ngroups++;
1834 TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list);
1835 if (pc->pc_freeto == NULL)
1836 pc->pc_freeto = pcg;
1837 goto have_group;
1838 }
1839
1840 /*
1841 * Unable to allocate a cache group; destruct the object
1842 * and free it back to the pool.
1843 */
1844 pool_cache_destruct_object(pc, object);
1845 return;
1846 }
1847
1848 have_group:
1849 pc->pc_nitems++;
1850 pcg_put(pcg, object, pa);
1851
1852 if (pcg->pcg_avail == PCG_NOBJECTS)
1853 pc->pc_freeto = NULL;
1854
1855 simple_unlock(&pc->pc_slock);
1856 }
1857
1858 /*
1859 * pool_cache_destruct_object:
1860 *
1861 * Force destruction of an object and its release back into
1862 * the pool.
1863 */
1864 void
1865 pool_cache_destruct_object(struct pool_cache *pc, void *object)
1866 {
1867
1868 if (pc->pc_dtor != NULL)
1869 (*pc->pc_dtor)(pc->pc_arg, object);
1870 pool_put(pc->pc_pool, object);
1871 }
1872
1873 /*
1874 * pool_cache_do_invalidate:
1875 *
1876 * This internal function implements pool_cache_invalidate() and
1877 * pool_cache_reclaim().
1878 */
1879 static void
1880 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups,
1881 void (*putit)(struct pool *, void *))
1882 {
1883 struct pool_cache_group *pcg, *npcg;
1884 void *object;
1885 int s;
1886
1887 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1888 pcg = npcg) {
1889 npcg = TAILQ_NEXT(pcg, pcg_list);
1890 while (pcg->pcg_avail != 0) {
1891 pc->pc_nitems--;
1892 object = pcg_get(pcg, NULL);
1893 if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg)
1894 pc->pc_allocfrom = NULL;
1895 if (pc->pc_dtor != NULL)
1896 (*pc->pc_dtor)(pc->pc_arg, object);
1897 (*putit)(pc->pc_pool, object);
1898 }
1899 if (free_groups) {
1900 pc->pc_ngroups--;
1901 TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list);
1902 if (pc->pc_freeto == pcg)
1903 pc->pc_freeto = NULL;
1904 s = splvm();
1905 pool_put(&pcgpool, pcg);
1906 splx(s);
1907 }
1908 }
1909 }
1910
1911 /*
1912 * pool_cache_invalidate:
1913 *
1914 * Invalidate a pool cache (destruct and release all of the
1915 * cached objects).
1916 */
1917 void
1918 pool_cache_invalidate(struct pool_cache *pc)
1919 {
1920
1921 simple_lock(&pc->pc_slock);
1922 pool_cache_do_invalidate(pc, 0, pool_put);
1923 simple_unlock(&pc->pc_slock);
1924 }
1925
1926 /*
1927 * pool_cache_reclaim:
1928 *
1929 * Reclaim a pool cache for pool_reclaim().
1930 */
1931 static void
1932 pool_cache_reclaim(struct pool_cache *pc)
1933 {
1934
1935 simple_lock(&pc->pc_slock);
1936 pool_cache_do_invalidate(pc, 1, pool_do_put);
1937 simple_unlock(&pc->pc_slock);
1938 }
1939
1940 /*
1941 * Pool backend allocators.
1942 *
1943 * Each pool has a backend allocator that handles allocation, deallocation,
1944 * and any additional draining that might be needed.
1945 *
1946 * We provide two standard allocators:
1947 *
1948 * pool_allocator_kmem - the default when no allocator is specified
1949 *
1950 * pool_allocator_nointr - used for pools that will not be accessed
1951 * in interrupt context.
1952 */
1953 void *pool_page_alloc(struct pool *, int);
1954 void pool_page_free(struct pool *, void *);
1955
1956 struct pool_allocator pool_allocator_kmem = {
1957 pool_page_alloc, pool_page_free, 0,
1958 };
1959
1960 void *pool_page_alloc_nointr(struct pool *, int);
1961 void pool_page_free_nointr(struct pool *, void *);
1962
1963 struct pool_allocator pool_allocator_nointr = {
1964 pool_page_alloc_nointr, pool_page_free_nointr, 0,
1965 };
1966
1967 #ifdef POOL_SUBPAGE
1968 void *pool_subpage_alloc(struct pool *, int);
1969 void pool_subpage_free(struct pool *, void *);
1970
1971 struct pool_allocator pool_allocator_kmem_subpage = {
1972 pool_subpage_alloc, pool_subpage_free, 0,
1973 };
1974 #endif /* POOL_SUBPAGE */
1975
1976 /*
1977 * We have at least three different resources for the same allocation and
1978 * each resource can be depleted. First, we have the ready elements in the
1979 * pool. Then we have the resource (typically a vm_map) for this allocator.
1980 * Finally, we have physical memory. Waiting for any of these can be
1981 * unnecessary when any other is freed, but the kernel doesn't support
1982 * sleeping on multiple wait channels, so we have to employ another strategy.
1983 *
1984 * The caller sleeps on the pool (so that it can be awakened when an item
1985 * is returned to the pool), but we set PA_WANT on the allocator. When a
1986 * page is returned to the allocator and PA_WANT is set, pool_allocator_free
1987 * will wake up all sleeping pools belonging to this allocator.
1988 *
1989 * XXX Thundering herd.
1990 */
1991 void *
1992 pool_allocator_alloc(struct pool *org, int flags)
1993 {
1994 struct pool_allocator *pa = org->pr_alloc;
1995 struct pool *pp, *start;
1996 int s, freed;
1997 void *res;
1998
1999 LOCK_ASSERT(!simple_lock_held(&org->pr_slock));
2000
2001 do {
2002 if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
2003 return (res);
2004 if ((flags & PR_WAITOK) == 0) {
2005 /*
2006 * We only run the drain hookhere if PR_NOWAIT.
2007 * In other cases, the hook will be run in
2008 * pool_reclaim().
2009 */
2010 if (org->pr_drain_hook != NULL) {
2011 (*org->pr_drain_hook)(org->pr_drain_hook_arg,
2012 flags);
2013 if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
2014 return (res);
2015 }
2016 break;
2017 }
2018
2019 /*
2020 * Drain all pools, except "org", that use this
2021 * allocator. We do this to reclaim VA space.
2022 * pa_alloc is responsible for waiting for
2023 * physical memory.
2024 *
2025 * XXX We risk looping forever if start if someone
2026 * calls pool_destroy on "start". But there is no
2027 * other way to have potentially sleeping pool_reclaim,
2028 * non-sleeping locks on pool_allocator, and some
2029 * stirring of drained pools in the allocator.
2030 *
2031 * XXX Maybe we should use pool_head_slock for locking
2032 * the allocators?
2033 */
2034 freed = 0;
2035
2036 s = splvm();
2037 simple_lock(&pa->pa_slock);
2038 pp = start = TAILQ_FIRST(&pa->pa_list);
2039 do {
2040 TAILQ_REMOVE(&pa->pa_list, pp, pr_alloc_list);
2041 TAILQ_INSERT_TAIL(&pa->pa_list, pp, pr_alloc_list);
2042 if (pp == org)
2043 continue;
2044 simple_unlock(&pa->pa_slock);
2045 freed = pool_reclaim(pp);
2046 simple_lock(&pa->pa_slock);
2047 } while ((pp = TAILQ_FIRST(&pa->pa_list)) != start &&
2048 freed == 0);
2049
2050 if (freed == 0) {
2051 /*
2052 * We set PA_WANT here, the caller will most likely
2053 * sleep waiting for pages (if not, this won't hurt
2054 * that much), and there is no way to set this in
2055 * the caller without violating locking order.
2056 */
2057 pa->pa_flags |= PA_WANT;
2058 }
2059 simple_unlock(&pa->pa_slock);
2060 splx(s);
2061 } while (freed);
2062 return (NULL);
2063 }
2064
2065 void
2066 pool_allocator_free(struct pool *pp, void *v)
2067 {
2068 struct pool_allocator *pa = pp->pr_alloc;
2069 int s;
2070
2071 LOCK_ASSERT(!simple_lock_held(&pp->pr_slock));
2072
2073 (*pa->pa_free)(pp, v);
2074
2075 s = splvm();
2076 simple_lock(&pa->pa_slock);
2077 if ((pa->pa_flags & PA_WANT) == 0) {
2078 simple_unlock(&pa->pa_slock);
2079 splx(s);
2080 return;
2081 }
2082
2083 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
2084 simple_lock(&pp->pr_slock);
2085 if ((pp->pr_flags & PR_WANTED) != 0) {
2086 pp->pr_flags &= ~PR_WANTED;
2087 wakeup(pp);
2088 }
2089 simple_unlock(&pp->pr_slock);
2090 }
2091 pa->pa_flags &= ~PA_WANT;
2092 simple_unlock(&pa->pa_slock);
2093 splx(s);
2094 }
2095
2096 void *
2097 pool_page_alloc(struct pool *pp, int flags)
2098 {
2099 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2100
2101 return ((void *) uvm_km_alloc_poolpage(waitok));
2102 }
2103
2104 void
2105 pool_page_free(struct pool *pp, void *v)
2106 {
2107
2108 uvm_km_free_poolpage((vaddr_t) v);
2109 }
2110
2111 #ifdef POOL_SUBPAGE
2112 /* Sub-page allocator, for machines with large hardware pages. */
2113 void *
2114 pool_subpage_alloc(struct pool *pp, int flags)
2115 {
2116 void *v;
2117 int s;
2118 s = splvm();
2119 v = pool_get(&psppool, flags);
2120 splx(s);
2121 return v;
2122 }
2123
2124 void
2125 pool_subpage_free(struct pool *pp, void *v)
2126 {
2127 int s;
2128 s = splvm();
2129 pool_put(&psppool, v);
2130 splx(s);
2131 }
2132
2133 /* We don't provide a real nointr allocator. Maybe later. */
2134 void *
2135 pool_page_alloc_nointr(struct pool *pp, int flags)
2136 {
2137
2138 return (pool_subpage_alloc(pp, flags));
2139 }
2140
2141 void
2142 pool_page_free_nointr(struct pool *pp, void *v)
2143 {
2144
2145 pool_subpage_free(pp, v);
2146 }
2147 #else
2148 void *
2149 pool_page_alloc_nointr(struct pool *pp, int flags)
2150 {
2151 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2152
2153 return ((void *) uvm_km_alloc_poolpage1(kernel_map,
2154 uvm.kernel_object, waitok));
2155 }
2156
2157 void
2158 pool_page_free_nointr(struct pool *pp, void *v)
2159 {
2160
2161 uvm_km_free_poolpage1(kernel_map, (vaddr_t) v);
2162 }
2163 #endif /* POOL_SUBPAGE */
2164