subr_pool.c revision 1.88 1 /* $NetBSD: subr_pool.c,v 1.88 2003/11/13 02:44:01 chs Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.88 2003/11/13 02:44:01 chs Exp $");
42
43 #include "opt_pool.h"
44 #include "opt_poollog.h"
45 #include "opt_lockdebug.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/proc.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/lock.h>
54 #include <sys/pool.h>
55 #include <sys/syslog.h>
56
57 #include <uvm/uvm.h>
58
59 /*
60 * Pool resource management utility.
61 *
62 * Memory is allocated in pages which are split into pieces according to
63 * the pool item size. Each page is kept on one of three lists in the
64 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
65 * for empty, full and partially-full pages respectively. The individual
66 * pool items are on a linked list headed by `ph_itemlist' in each page
67 * header. The memory for building the page list is either taken from
68 * the allocated pages themselves (for small pool items) or taken from
69 * an internal pool of page headers (`phpool').
70 */
71
72 /* List of all pools */
73 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
74
75 /* Private pool for page header structures */
76 static struct pool phpool;
77
78 #ifdef POOL_SUBPAGE
79 /* Pool of subpages for use by normal pools. */
80 static struct pool psppool;
81 #endif
82
83 /* # of seconds to retain page after last use */
84 int pool_inactive_time = 10;
85
86 /* Next candidate for drainage (see pool_drain()) */
87 static struct pool *drainpp;
88
89 /* This spin lock protects both pool_head and drainpp. */
90 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
91
92 struct pool_item_header {
93 /* Page headers */
94 LIST_ENTRY(pool_item_header)
95 ph_pagelist; /* pool page list */
96 TAILQ_HEAD(,pool_item) ph_itemlist; /* chunk list for this page */
97 SPLAY_ENTRY(pool_item_header)
98 ph_node; /* Off-page page headers */
99 unsigned int ph_nmissing; /* # of chunks in use */
100 caddr_t ph_page; /* this page's address */
101 struct timeval ph_time; /* last referenced */
102 };
103
104 struct pool_item {
105 #ifdef DIAGNOSTIC
106 u_int pi_magic;
107 #endif
108 #define PI_MAGIC 0xdeadbeefU
109 /* Other entries use only this list entry */
110 TAILQ_ENTRY(pool_item) pi_list;
111 };
112
113 #define POOL_NEEDS_CATCHUP(pp) \
114 ((pp)->pr_nitems < (pp)->pr_minitems)
115
116 /*
117 * Pool cache management.
118 *
119 * Pool caches provide a way for constructed objects to be cached by the
120 * pool subsystem. This can lead to performance improvements by avoiding
121 * needless object construction/destruction; it is deferred until absolutely
122 * necessary.
123 *
124 * Caches are grouped into cache groups. Each cache group references
125 * up to 16 constructed objects. When a cache allocates an object
126 * from the pool, it calls the object's constructor and places it into
127 * a cache group. When a cache group frees an object back to the pool,
128 * it first calls the object's destructor. This allows the object to
129 * persist in constructed form while freed to the cache.
130 *
131 * Multiple caches may exist for each pool. This allows a single
132 * object type to have multiple constructed forms. The pool references
133 * each cache, so that when a pool is drained by the pagedaemon, it can
134 * drain each individual cache as well. Each time a cache is drained,
135 * the most idle cache group is freed to the pool in its entirety.
136 *
137 * Pool caches are layed on top of pools. By layering them, we can avoid
138 * the complexity of cache management for pools which would not benefit
139 * from it.
140 */
141
142 /* The cache group pool. */
143 static struct pool pcgpool;
144
145 static void pool_cache_reclaim(struct pool_cache *);
146
147 static int pool_catchup(struct pool *);
148 static void pool_prime_page(struct pool *, caddr_t,
149 struct pool_item_header *);
150 static void pool_update_curpage(struct pool *);
151
152 void *pool_allocator_alloc(struct pool *, int);
153 void pool_allocator_free(struct pool *, void *);
154
155 static void pool_print_pagelist(struct pool_pagelist *,
156 void (*)(const char *, ...));
157 static void pool_print1(struct pool *, const char *,
158 void (*)(const char *, ...));
159
160 static int pool_chk_page(struct pool *, const char *,
161 struct pool_item_header *);
162
163 /*
164 * Pool log entry. An array of these is allocated in pool_init().
165 */
166 struct pool_log {
167 const char *pl_file;
168 long pl_line;
169 int pl_action;
170 #define PRLOG_GET 1
171 #define PRLOG_PUT 2
172 void *pl_addr;
173 };
174
175 #ifdef POOL_DIAGNOSTIC
176 /* Number of entries in pool log buffers */
177 #ifndef POOL_LOGSIZE
178 #define POOL_LOGSIZE 10
179 #endif
180
181 int pool_logsize = POOL_LOGSIZE;
182
183 static __inline void
184 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
185 {
186 int n = pp->pr_curlogentry;
187 struct pool_log *pl;
188
189 if ((pp->pr_roflags & PR_LOGGING) == 0)
190 return;
191
192 /*
193 * Fill in the current entry. Wrap around and overwrite
194 * the oldest entry if necessary.
195 */
196 pl = &pp->pr_log[n];
197 pl->pl_file = file;
198 pl->pl_line = line;
199 pl->pl_action = action;
200 pl->pl_addr = v;
201 if (++n >= pp->pr_logsize)
202 n = 0;
203 pp->pr_curlogentry = n;
204 }
205
206 static void
207 pr_printlog(struct pool *pp, struct pool_item *pi,
208 void (*pr)(const char *, ...))
209 {
210 int i = pp->pr_logsize;
211 int n = pp->pr_curlogentry;
212
213 if ((pp->pr_roflags & PR_LOGGING) == 0)
214 return;
215
216 /*
217 * Print all entries in this pool's log.
218 */
219 while (i-- > 0) {
220 struct pool_log *pl = &pp->pr_log[n];
221 if (pl->pl_action != 0) {
222 if (pi == NULL || pi == pl->pl_addr) {
223 (*pr)("\tlog entry %d:\n", i);
224 (*pr)("\t\taction = %s, addr = %p\n",
225 pl->pl_action == PRLOG_GET ? "get" : "put",
226 pl->pl_addr);
227 (*pr)("\t\tfile: %s at line %lu\n",
228 pl->pl_file, pl->pl_line);
229 }
230 }
231 if (++n >= pp->pr_logsize)
232 n = 0;
233 }
234 }
235
236 static __inline void
237 pr_enter(struct pool *pp, const char *file, long line)
238 {
239
240 if (__predict_false(pp->pr_entered_file != NULL)) {
241 printf("pool %s: reentrancy at file %s line %ld\n",
242 pp->pr_wchan, file, line);
243 printf(" previous entry at file %s line %ld\n",
244 pp->pr_entered_file, pp->pr_entered_line);
245 panic("pr_enter");
246 }
247
248 pp->pr_entered_file = file;
249 pp->pr_entered_line = line;
250 }
251
252 static __inline void
253 pr_leave(struct pool *pp)
254 {
255
256 if (__predict_false(pp->pr_entered_file == NULL)) {
257 printf("pool %s not entered?\n", pp->pr_wchan);
258 panic("pr_leave");
259 }
260
261 pp->pr_entered_file = NULL;
262 pp->pr_entered_line = 0;
263 }
264
265 static __inline void
266 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
267 {
268
269 if (pp->pr_entered_file != NULL)
270 (*pr)("\n\tcurrently entered from file %s line %ld\n",
271 pp->pr_entered_file, pp->pr_entered_line);
272 }
273 #else
274 #define pr_log(pp, v, action, file, line)
275 #define pr_printlog(pp, pi, pr)
276 #define pr_enter(pp, file, line)
277 #define pr_leave(pp)
278 #define pr_enter_check(pp, pr)
279 #endif /* POOL_DIAGNOSTIC */
280
281 static __inline int
282 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
283 {
284 if (a->ph_page < b->ph_page)
285 return (-1);
286 else if (a->ph_page > b->ph_page)
287 return (1);
288 else
289 return (0);
290 }
291
292 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
293 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
294
295 /*
296 * Return the pool page header based on page address.
297 */
298 static __inline struct pool_item_header *
299 pr_find_pagehead(struct pool *pp, caddr_t page)
300 {
301 struct pool_item_header *ph, tmp;
302
303 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
304 return ((struct pool_item_header *)(page + pp->pr_phoffset));
305
306 tmp.ph_page = page;
307 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
308 return ph;
309 }
310
311 /*
312 * Remove a page from the pool.
313 */
314 static __inline void
315 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
316 struct pool_pagelist *pq)
317 {
318 int s;
319
320 /*
321 * If the page was idle, decrement the idle page count.
322 */
323 if (ph->ph_nmissing == 0) {
324 #ifdef DIAGNOSTIC
325 if (pp->pr_nidle == 0)
326 panic("pr_rmpage: nidle inconsistent");
327 if (pp->pr_nitems < pp->pr_itemsperpage)
328 panic("pr_rmpage: nitems inconsistent");
329 #endif
330 pp->pr_nidle--;
331 }
332
333 pp->pr_nitems -= pp->pr_itemsperpage;
334
335 /*
336 * Unlink a page from the pool and release it (or queue it for release).
337 */
338 LIST_REMOVE(ph, ph_pagelist);
339 if (pq) {
340 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
341 } else {
342 pool_allocator_free(pp, ph->ph_page);
343 if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
344 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
345 s = splvm();
346 pool_put(&phpool, ph);
347 splx(s);
348 }
349 }
350 pp->pr_npages--;
351 pp->pr_npagefree++;
352
353 pool_update_curpage(pp);
354 }
355
356 /*
357 * Initialize the given pool resource structure.
358 *
359 * We export this routine to allow other kernel parts to declare
360 * static pools that must be initialized before malloc() is available.
361 */
362 void
363 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
364 const char *wchan, struct pool_allocator *palloc)
365 {
366 int off, slack;
367
368 #ifdef POOL_DIAGNOSTIC
369 /*
370 * Always log if POOL_DIAGNOSTIC is defined.
371 */
372 if (pool_logsize != 0)
373 flags |= PR_LOGGING;
374 #endif
375
376 #ifdef POOL_SUBPAGE
377 /*
378 * XXX We don't provide a real `nointr' back-end
379 * yet; all sub-pages come from a kmem back-end.
380 * maybe some day...
381 */
382 if (palloc == NULL) {
383 extern struct pool_allocator pool_allocator_kmem_subpage;
384 palloc = &pool_allocator_kmem_subpage;
385 }
386 /*
387 * We'll assume any user-specified back-end allocator
388 * will deal with sub-pages, or simply don't care.
389 */
390 #else
391 if (palloc == NULL)
392 palloc = &pool_allocator_kmem;
393 #endif /* POOL_SUBPAGE */
394 if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
395 if (palloc->pa_pagesz == 0) {
396 #ifdef POOL_SUBPAGE
397 if (palloc == &pool_allocator_kmem)
398 palloc->pa_pagesz = PAGE_SIZE;
399 else
400 palloc->pa_pagesz = POOL_SUBPAGE;
401 #else
402 palloc->pa_pagesz = PAGE_SIZE;
403 #endif /* POOL_SUBPAGE */
404 }
405
406 TAILQ_INIT(&palloc->pa_list);
407
408 simple_lock_init(&palloc->pa_slock);
409 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
410 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
411 palloc->pa_flags |= PA_INITIALIZED;
412 }
413
414 if (align == 0)
415 align = ALIGN(1);
416
417 if (size < sizeof(struct pool_item))
418 size = sizeof(struct pool_item);
419
420 size = roundup(size, align);
421 #ifdef DIAGNOSTIC
422 if (size > palloc->pa_pagesz)
423 panic("pool_init: pool item size (%lu) too large",
424 (u_long)size);
425 #endif
426
427 /*
428 * Initialize the pool structure.
429 */
430 LIST_INIT(&pp->pr_emptypages);
431 LIST_INIT(&pp->pr_fullpages);
432 LIST_INIT(&pp->pr_partpages);
433 TAILQ_INIT(&pp->pr_cachelist);
434 pp->pr_curpage = NULL;
435 pp->pr_npages = 0;
436 pp->pr_minitems = 0;
437 pp->pr_minpages = 0;
438 pp->pr_maxpages = UINT_MAX;
439 pp->pr_roflags = flags;
440 pp->pr_flags = 0;
441 pp->pr_size = size;
442 pp->pr_align = align;
443 pp->pr_wchan = wchan;
444 pp->pr_alloc = palloc;
445 pp->pr_nitems = 0;
446 pp->pr_nout = 0;
447 pp->pr_hardlimit = UINT_MAX;
448 pp->pr_hardlimit_warning = NULL;
449 pp->pr_hardlimit_ratecap.tv_sec = 0;
450 pp->pr_hardlimit_ratecap.tv_usec = 0;
451 pp->pr_hardlimit_warning_last.tv_sec = 0;
452 pp->pr_hardlimit_warning_last.tv_usec = 0;
453 pp->pr_drain_hook = NULL;
454 pp->pr_drain_hook_arg = NULL;
455
456 /*
457 * Decide whether to put the page header off page to avoid
458 * wasting too large a part of the page. Off-page page headers
459 * go on a hash table, so we can match a returned item
460 * with its header based on the page address.
461 * We use 1/16 of the page size as the threshold (XXX: tune)
462 */
463 if (pp->pr_size < palloc->pa_pagesz/16) {
464 /* Use the end of the page for the page header */
465 pp->pr_roflags |= PR_PHINPAGE;
466 pp->pr_phoffset = off = palloc->pa_pagesz -
467 ALIGN(sizeof(struct pool_item_header));
468 } else {
469 /* The page header will be taken from our page header pool */
470 pp->pr_phoffset = 0;
471 off = palloc->pa_pagesz;
472 SPLAY_INIT(&pp->pr_phtree);
473 }
474
475 /*
476 * Alignment is to take place at `ioff' within the item. This means
477 * we must reserve up to `align - 1' bytes on the page to allow
478 * appropriate positioning of each item.
479 *
480 * Silently enforce `0 <= ioff < align'.
481 */
482 pp->pr_itemoffset = ioff = ioff % align;
483 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
484 KASSERT(pp->pr_itemsperpage != 0);
485
486 /*
487 * Use the slack between the chunks and the page header
488 * for "cache coloring".
489 */
490 slack = off - pp->pr_itemsperpage * pp->pr_size;
491 pp->pr_maxcolor = (slack / align) * align;
492 pp->pr_curcolor = 0;
493
494 pp->pr_nget = 0;
495 pp->pr_nfail = 0;
496 pp->pr_nput = 0;
497 pp->pr_npagealloc = 0;
498 pp->pr_npagefree = 0;
499 pp->pr_hiwat = 0;
500 pp->pr_nidle = 0;
501
502 #ifdef POOL_DIAGNOSTIC
503 if (flags & PR_LOGGING) {
504 if (kmem_map == NULL ||
505 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
506 M_TEMP, M_NOWAIT)) == NULL)
507 pp->pr_roflags &= ~PR_LOGGING;
508 pp->pr_curlogentry = 0;
509 pp->pr_logsize = pool_logsize;
510 }
511 #endif
512
513 pp->pr_entered_file = NULL;
514 pp->pr_entered_line = 0;
515
516 simple_lock_init(&pp->pr_slock);
517
518 /*
519 * Initialize private page header pool and cache magazine pool if we
520 * haven't done so yet.
521 * XXX LOCKING.
522 */
523 if (phpool.pr_size == 0) {
524 #ifdef POOL_SUBPAGE
525 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0, 0,
526 "phpool", &pool_allocator_kmem);
527 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
528 PR_RECURSIVE, "psppool", &pool_allocator_kmem);
529 #else
530 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
531 0, "phpool", NULL);
532 #endif
533 pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
534 0, "pcgpool", NULL);
535 }
536
537 /* Insert into the list of all pools. */
538 simple_lock(&pool_head_slock);
539 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
540 simple_unlock(&pool_head_slock);
541
542 /* Insert this into the list of pools using this allocator. */
543 simple_lock(&palloc->pa_slock);
544 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
545 simple_unlock(&palloc->pa_slock);
546 }
547
548 /*
549 * De-commision a pool resource.
550 */
551 void
552 pool_destroy(struct pool *pp)
553 {
554 struct pool_item_header *ph;
555 struct pool_cache *pc;
556
557 /* Locking order: pool_allocator -> pool */
558 simple_lock(&pp->pr_alloc->pa_slock);
559 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
560 simple_unlock(&pp->pr_alloc->pa_slock);
561
562 /* Destroy all caches for this pool. */
563 while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL)
564 pool_cache_destroy(pc);
565
566 #ifdef DIAGNOSTIC
567 if (pp->pr_nout != 0) {
568 pr_printlog(pp, NULL, printf);
569 panic("pool_destroy: pool busy: still out: %u",
570 pp->pr_nout);
571 }
572 #endif
573
574 /* Remove all pages */
575 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
576 pr_rmpage(pp, ph, NULL);
577 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
578 KASSERT(LIST_EMPTY(&pp->pr_partpages));
579
580 /* Remove from global pool list */
581 simple_lock(&pool_head_slock);
582 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
583 if (drainpp == pp) {
584 drainpp = NULL;
585 }
586 simple_unlock(&pool_head_slock);
587
588 #ifdef POOL_DIAGNOSTIC
589 if ((pp->pr_roflags & PR_LOGGING) != 0)
590 free(pp->pr_log, M_TEMP);
591 #endif
592 }
593
594 void
595 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
596 {
597
598 /* XXX no locking -- must be used just after pool_init() */
599 #ifdef DIAGNOSTIC
600 if (pp->pr_drain_hook != NULL)
601 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
602 #endif
603 pp->pr_drain_hook = fn;
604 pp->pr_drain_hook_arg = arg;
605 }
606
607 static struct pool_item_header *
608 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
609 {
610 struct pool_item_header *ph;
611 int s;
612
613 LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
614
615 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
616 ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
617 else {
618 s = splvm();
619 ph = pool_get(&phpool, flags);
620 splx(s);
621 }
622
623 return (ph);
624 }
625
626 /*
627 * Grab an item from the pool; must be called at appropriate spl level
628 */
629 void *
630 #ifdef POOL_DIAGNOSTIC
631 _pool_get(struct pool *pp, int flags, const char *file, long line)
632 #else
633 pool_get(struct pool *pp, int flags)
634 #endif
635 {
636 struct pool_item *pi;
637 struct pool_item_header *ph;
638 void *v;
639
640 #ifdef DIAGNOSTIC
641 if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
642 (flags & PR_WAITOK) != 0))
643 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
644
645 #ifdef LOCKDEBUG
646 if (flags & PR_WAITOK)
647 simple_lock_only_held(NULL, "pool_get(PR_WAITOK)");
648 #endif
649 #endif /* DIAGNOSTIC */
650
651 simple_lock(&pp->pr_slock);
652 pr_enter(pp, file, line);
653
654 startover:
655 /*
656 * Check to see if we've reached the hard limit. If we have,
657 * and we can wait, then wait until an item has been returned to
658 * the pool.
659 */
660 #ifdef DIAGNOSTIC
661 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
662 pr_leave(pp);
663 simple_unlock(&pp->pr_slock);
664 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
665 }
666 #endif
667 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
668 if (pp->pr_drain_hook != NULL) {
669 /*
670 * Since the drain hook is going to free things
671 * back to the pool, unlock, call the hook, re-lock,
672 * and check the hardlimit condition again.
673 */
674 pr_leave(pp);
675 simple_unlock(&pp->pr_slock);
676 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
677 simple_lock(&pp->pr_slock);
678 pr_enter(pp, file, line);
679 if (pp->pr_nout < pp->pr_hardlimit)
680 goto startover;
681 }
682
683 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
684 /*
685 * XXX: A warning isn't logged in this case. Should
686 * it be?
687 */
688 pp->pr_flags |= PR_WANTED;
689 pr_leave(pp);
690 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
691 pr_enter(pp, file, line);
692 goto startover;
693 }
694
695 /*
696 * Log a message that the hard limit has been hit.
697 */
698 if (pp->pr_hardlimit_warning != NULL &&
699 ratecheck(&pp->pr_hardlimit_warning_last,
700 &pp->pr_hardlimit_ratecap))
701 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
702
703 pp->pr_nfail++;
704
705 pr_leave(pp);
706 simple_unlock(&pp->pr_slock);
707 return (NULL);
708 }
709
710 /*
711 * The convention we use is that if `curpage' is not NULL, then
712 * it points at a non-empty bucket. In particular, `curpage'
713 * never points at a page header which has PR_PHINPAGE set and
714 * has no items in its bucket.
715 */
716 if ((ph = pp->pr_curpage) == NULL) {
717 #ifdef DIAGNOSTIC
718 if (pp->pr_nitems != 0) {
719 simple_unlock(&pp->pr_slock);
720 printf("pool_get: %s: curpage NULL, nitems %u\n",
721 pp->pr_wchan, pp->pr_nitems);
722 panic("pool_get: nitems inconsistent");
723 }
724 #endif
725
726 /*
727 * Call the back-end page allocator for more memory.
728 * Release the pool lock, as the back-end page allocator
729 * may block.
730 */
731 pr_leave(pp);
732 simple_unlock(&pp->pr_slock);
733 v = pool_allocator_alloc(pp, flags);
734 if (__predict_true(v != NULL))
735 ph = pool_alloc_item_header(pp, v, flags);
736 simple_lock(&pp->pr_slock);
737 pr_enter(pp, file, line);
738
739 if (__predict_false(v == NULL || ph == NULL)) {
740 if (v != NULL)
741 pool_allocator_free(pp, v);
742
743 /*
744 * We were unable to allocate a page or item
745 * header, but we released the lock during
746 * allocation, so perhaps items were freed
747 * back to the pool. Check for this case.
748 */
749 if (pp->pr_curpage != NULL)
750 goto startover;
751
752 if ((flags & PR_WAITOK) == 0) {
753 pp->pr_nfail++;
754 pr_leave(pp);
755 simple_unlock(&pp->pr_slock);
756 return (NULL);
757 }
758
759 /*
760 * Wait for items to be returned to this pool.
761 *
762 * XXX: maybe we should wake up once a second and
763 * try again?
764 */
765 pp->pr_flags |= PR_WANTED;
766 /* PA_WANTED is already set on the allocator. */
767 pr_leave(pp);
768 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
769 pr_enter(pp, file, line);
770 goto startover;
771 }
772
773 /* We have more memory; add it to the pool */
774 pool_prime_page(pp, v, ph);
775 pp->pr_npagealloc++;
776
777 /* Start the allocation process over. */
778 goto startover;
779 }
780 if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
781 pr_leave(pp);
782 simple_unlock(&pp->pr_slock);
783 panic("pool_get: %s: page empty", pp->pr_wchan);
784 }
785 #ifdef DIAGNOSTIC
786 if (__predict_false(pp->pr_nitems == 0)) {
787 pr_leave(pp);
788 simple_unlock(&pp->pr_slock);
789 printf("pool_get: %s: items on itemlist, nitems %u\n",
790 pp->pr_wchan, pp->pr_nitems);
791 panic("pool_get: nitems inconsistent");
792 }
793 #endif
794
795 #ifdef POOL_DIAGNOSTIC
796 pr_log(pp, v, PRLOG_GET, file, line);
797 #endif
798
799 #ifdef DIAGNOSTIC
800 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
801 pr_printlog(pp, pi, printf);
802 panic("pool_get(%s): free list modified: magic=%x; page %p;"
803 " item addr %p\n",
804 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
805 }
806 #endif
807
808 /*
809 * Remove from item list.
810 */
811 TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
812 pp->pr_nitems--;
813 pp->pr_nout++;
814 if (ph->ph_nmissing == 0) {
815 #ifdef DIAGNOSTIC
816 if (__predict_false(pp->pr_nidle == 0))
817 panic("pool_get: nidle inconsistent");
818 #endif
819 pp->pr_nidle--;
820
821 /*
822 * This page was previously empty. Move it to the list of
823 * partially-full pages. This page is already curpage.
824 */
825 LIST_REMOVE(ph, ph_pagelist);
826 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
827 }
828 ph->ph_nmissing++;
829 if (TAILQ_EMPTY(&ph->ph_itemlist)) {
830 #ifdef DIAGNOSTIC
831 if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
832 pr_leave(pp);
833 simple_unlock(&pp->pr_slock);
834 panic("pool_get: %s: nmissing inconsistent",
835 pp->pr_wchan);
836 }
837 #endif
838 /*
839 * This page is now full. Move it to the full list
840 * and select a new current page.
841 */
842 LIST_REMOVE(ph, ph_pagelist);
843 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
844 pool_update_curpage(pp);
845 }
846
847 pp->pr_nget++;
848
849 /*
850 * If we have a low water mark and we are now below that low
851 * water mark, add more items to the pool.
852 */
853 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
854 /*
855 * XXX: Should we log a warning? Should we set up a timeout
856 * to try again in a second or so? The latter could break
857 * a caller's assumptions about interrupt protection, etc.
858 */
859 }
860
861 pr_leave(pp);
862 simple_unlock(&pp->pr_slock);
863 return (v);
864 }
865
866 /*
867 * Internal version of pool_put(). Pool is already locked/entered.
868 */
869 static void
870 pool_do_put(struct pool *pp, void *v)
871 {
872 struct pool_item *pi = v;
873 struct pool_item_header *ph;
874 caddr_t page;
875 int s;
876
877 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
878
879 page = (caddr_t)((u_long)v & pp->pr_alloc->pa_pagemask);
880
881 #ifdef DIAGNOSTIC
882 if (__predict_false(pp->pr_nout == 0)) {
883 printf("pool %s: putting with none out\n",
884 pp->pr_wchan);
885 panic("pool_put");
886 }
887 #endif
888
889 if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
890 pr_printlog(pp, NULL, printf);
891 panic("pool_put: %s: page header missing", pp->pr_wchan);
892 }
893
894 #ifdef LOCKDEBUG
895 /*
896 * Check if we're freeing a locked simple lock.
897 */
898 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
899 #endif
900
901 /*
902 * Return to item list.
903 */
904 #ifdef DIAGNOSTIC
905 pi->pi_magic = PI_MAGIC;
906 #endif
907 #ifdef DEBUG
908 {
909 int i, *ip = v;
910
911 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
912 *ip++ = PI_MAGIC;
913 }
914 }
915 #endif
916
917 TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
918 KDASSERT(ph->ph_nmissing != 0);
919 ph->ph_nmissing--;
920 pp->pr_nput++;
921 pp->pr_nitems++;
922 pp->pr_nout--;
923
924 /* Cancel "pool empty" condition if it exists */
925 if (pp->pr_curpage == NULL)
926 pp->pr_curpage = ph;
927
928 if (pp->pr_flags & PR_WANTED) {
929 pp->pr_flags &= ~PR_WANTED;
930 if (ph->ph_nmissing == 0)
931 pp->pr_nidle++;
932 wakeup((caddr_t)pp);
933 return;
934 }
935
936 /*
937 * If this page is now empty, do one of two things:
938 *
939 * (1) If we have more pages than the page high water mark,
940 * free the page back to the system.
941 *
942 * (2) Otherwise, move the page to the empty page list.
943 *
944 * Either way, select a new current page (so we use a partially-full
945 * page if one is available).
946 */
947 if (ph->ph_nmissing == 0) {
948 pp->pr_nidle++;
949 if (pp->pr_npages > pp->pr_maxpages ||
950 (pp->pr_alloc->pa_flags & PA_WANT) != 0) {
951 pr_rmpage(pp, ph, NULL);
952 } else {
953 LIST_REMOVE(ph, ph_pagelist);
954 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
955
956 /*
957 * Update the timestamp on the page. A page must
958 * be idle for some period of time before it can
959 * be reclaimed by the pagedaemon. This minimizes
960 * ping-pong'ing for memory.
961 */
962 s = splclock();
963 ph->ph_time = mono_time;
964 splx(s);
965 }
966 pool_update_curpage(pp);
967 }
968
969 /*
970 * If the page was previously completely full, move it to the
971 * partially-full list and make it the current page. The next
972 * allocation will get the item from this page, instead of
973 * further fragmenting the pool.
974 */
975 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
976 LIST_REMOVE(ph, ph_pagelist);
977 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
978 pp->pr_curpage = ph;
979 }
980 }
981
982 /*
983 * Return resource to the pool; must be called at appropriate spl level
984 */
985 #ifdef POOL_DIAGNOSTIC
986 void
987 _pool_put(struct pool *pp, void *v, const char *file, long line)
988 {
989
990 simple_lock(&pp->pr_slock);
991 pr_enter(pp, file, line);
992
993 pr_log(pp, v, PRLOG_PUT, file, line);
994
995 pool_do_put(pp, v);
996
997 pr_leave(pp);
998 simple_unlock(&pp->pr_slock);
999 }
1000 #undef pool_put
1001 #endif /* POOL_DIAGNOSTIC */
1002
1003 void
1004 pool_put(struct pool *pp, void *v)
1005 {
1006
1007 simple_lock(&pp->pr_slock);
1008
1009 pool_do_put(pp, v);
1010
1011 simple_unlock(&pp->pr_slock);
1012 }
1013
1014 #ifdef POOL_DIAGNOSTIC
1015 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1016 #endif
1017
1018 /*
1019 * Add N items to the pool.
1020 */
1021 int
1022 pool_prime(struct pool *pp, int n)
1023 {
1024 struct pool_item_header *ph = NULL;
1025 caddr_t cp;
1026 int newpages;
1027
1028 simple_lock(&pp->pr_slock);
1029
1030 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1031
1032 while (newpages-- > 0) {
1033 simple_unlock(&pp->pr_slock);
1034 cp = pool_allocator_alloc(pp, PR_NOWAIT);
1035 if (__predict_true(cp != NULL))
1036 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1037 simple_lock(&pp->pr_slock);
1038
1039 if (__predict_false(cp == NULL || ph == NULL)) {
1040 if (cp != NULL)
1041 pool_allocator_free(pp, cp);
1042 break;
1043 }
1044
1045 pool_prime_page(pp, cp, ph);
1046 pp->pr_npagealloc++;
1047 pp->pr_minpages++;
1048 }
1049
1050 if (pp->pr_minpages >= pp->pr_maxpages)
1051 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1052
1053 simple_unlock(&pp->pr_slock);
1054 return (0);
1055 }
1056
1057 /*
1058 * Add a page worth of items to the pool.
1059 *
1060 * Note, we must be called with the pool descriptor LOCKED.
1061 */
1062 static void
1063 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
1064 {
1065 struct pool_item *pi;
1066 caddr_t cp = storage;
1067 unsigned int align = pp->pr_align;
1068 unsigned int ioff = pp->pr_itemoffset;
1069 int n;
1070
1071 #ifdef DIAGNOSTIC
1072 if (((u_long)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1073 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1074 #endif
1075
1076 /*
1077 * Insert page header.
1078 */
1079 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1080 TAILQ_INIT(&ph->ph_itemlist);
1081 ph->ph_page = storage;
1082 ph->ph_nmissing = 0;
1083 memset(&ph->ph_time, 0, sizeof(ph->ph_time));
1084 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1085 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1086
1087 pp->pr_nidle++;
1088
1089 /*
1090 * Color this page.
1091 */
1092 cp = (caddr_t)(cp + pp->pr_curcolor);
1093 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1094 pp->pr_curcolor = 0;
1095
1096 /*
1097 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1098 */
1099 if (ioff != 0)
1100 cp = (caddr_t)(cp + (align - ioff));
1101
1102 /*
1103 * Insert remaining chunks on the bucket list.
1104 */
1105 n = pp->pr_itemsperpage;
1106 pp->pr_nitems += n;
1107
1108 while (n--) {
1109 pi = (struct pool_item *)cp;
1110
1111 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1112
1113 /* Insert on page list */
1114 TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
1115 #ifdef DIAGNOSTIC
1116 pi->pi_magic = PI_MAGIC;
1117 #endif
1118 cp = (caddr_t)(cp + pp->pr_size);
1119 }
1120
1121 /*
1122 * If the pool was depleted, point at the new page.
1123 */
1124 if (pp->pr_curpage == NULL)
1125 pp->pr_curpage = ph;
1126
1127 if (++pp->pr_npages > pp->pr_hiwat)
1128 pp->pr_hiwat = pp->pr_npages;
1129 }
1130
1131 /*
1132 * Used by pool_get() when nitems drops below the low water mark. This
1133 * is used to catch up pr_nitems with the low water mark.
1134 *
1135 * Note 1, we never wait for memory here, we let the caller decide what to do.
1136 *
1137 * Note 2, we must be called with the pool already locked, and we return
1138 * with it locked.
1139 */
1140 static int
1141 pool_catchup(struct pool *pp)
1142 {
1143 struct pool_item_header *ph = NULL;
1144 caddr_t cp;
1145 int error = 0;
1146
1147 while (POOL_NEEDS_CATCHUP(pp)) {
1148 /*
1149 * Call the page back-end allocator for more memory.
1150 *
1151 * XXX: We never wait, so should we bother unlocking
1152 * the pool descriptor?
1153 */
1154 simple_unlock(&pp->pr_slock);
1155 cp = pool_allocator_alloc(pp, PR_NOWAIT);
1156 if (__predict_true(cp != NULL))
1157 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1158 simple_lock(&pp->pr_slock);
1159 if (__predict_false(cp == NULL || ph == NULL)) {
1160 if (cp != NULL)
1161 pool_allocator_free(pp, cp);
1162 error = ENOMEM;
1163 break;
1164 }
1165 pool_prime_page(pp, cp, ph);
1166 pp->pr_npagealloc++;
1167 }
1168
1169 return (error);
1170 }
1171
1172 static void
1173 pool_update_curpage(struct pool *pp)
1174 {
1175
1176 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1177 if (pp->pr_curpage == NULL) {
1178 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1179 }
1180 }
1181
1182 void
1183 pool_setlowat(struct pool *pp, int n)
1184 {
1185
1186 simple_lock(&pp->pr_slock);
1187
1188 pp->pr_minitems = n;
1189 pp->pr_minpages = (n == 0)
1190 ? 0
1191 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1192
1193 /* Make sure we're caught up with the newly-set low water mark. */
1194 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1195 /*
1196 * XXX: Should we log a warning? Should we set up a timeout
1197 * to try again in a second or so? The latter could break
1198 * a caller's assumptions about interrupt protection, etc.
1199 */
1200 }
1201
1202 simple_unlock(&pp->pr_slock);
1203 }
1204
1205 void
1206 pool_sethiwat(struct pool *pp, int n)
1207 {
1208
1209 simple_lock(&pp->pr_slock);
1210
1211 pp->pr_maxpages = (n == 0)
1212 ? 0
1213 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1214
1215 simple_unlock(&pp->pr_slock);
1216 }
1217
1218 void
1219 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1220 {
1221
1222 simple_lock(&pp->pr_slock);
1223
1224 pp->pr_hardlimit = n;
1225 pp->pr_hardlimit_warning = warnmess;
1226 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1227 pp->pr_hardlimit_warning_last.tv_sec = 0;
1228 pp->pr_hardlimit_warning_last.tv_usec = 0;
1229
1230 /*
1231 * In-line version of pool_sethiwat(), because we don't want to
1232 * release the lock.
1233 */
1234 pp->pr_maxpages = (n == 0)
1235 ? 0
1236 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1237
1238 simple_unlock(&pp->pr_slock);
1239 }
1240
1241 /*
1242 * Release all complete pages that have not been used recently.
1243 */
1244 int
1245 #ifdef POOL_DIAGNOSTIC
1246 _pool_reclaim(struct pool *pp, const char *file, long line)
1247 #else
1248 pool_reclaim(struct pool *pp)
1249 #endif
1250 {
1251 struct pool_item_header *ph, *phnext;
1252 struct pool_cache *pc;
1253 struct timeval curtime;
1254 struct pool_pagelist pq;
1255 struct timeval diff;
1256 int s;
1257
1258 if (pp->pr_drain_hook != NULL) {
1259 /*
1260 * The drain hook must be called with the pool unlocked.
1261 */
1262 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1263 }
1264
1265 if (simple_lock_try(&pp->pr_slock) == 0)
1266 return (0);
1267 pr_enter(pp, file, line);
1268
1269 LIST_INIT(&pq);
1270
1271 /*
1272 * Reclaim items from the pool's caches.
1273 */
1274 TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
1275 pool_cache_reclaim(pc);
1276
1277 s = splclock();
1278 curtime = mono_time;
1279 splx(s);
1280
1281 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1282 phnext = LIST_NEXT(ph, ph_pagelist);
1283
1284 /* Check our minimum page claim */
1285 if (pp->pr_npages <= pp->pr_minpages)
1286 break;
1287
1288 KASSERT(ph->ph_nmissing == 0);
1289 timersub(&curtime, &ph->ph_time, &diff);
1290 if (diff.tv_sec < pool_inactive_time)
1291 continue;
1292
1293 /*
1294 * If freeing this page would put us below
1295 * the low water mark, stop now.
1296 */
1297 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1298 pp->pr_minitems)
1299 break;
1300
1301 pr_rmpage(pp, ph, &pq);
1302 }
1303
1304 pr_leave(pp);
1305 simple_unlock(&pp->pr_slock);
1306 if (LIST_EMPTY(&pq))
1307 return (0);
1308
1309 while ((ph = LIST_FIRST(&pq)) != NULL) {
1310 LIST_REMOVE(ph, ph_pagelist);
1311 pool_allocator_free(pp, ph->ph_page);
1312 if (pp->pr_roflags & PR_PHINPAGE) {
1313 continue;
1314 }
1315 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
1316 s = splvm();
1317 pool_put(&phpool, ph);
1318 splx(s);
1319 }
1320
1321 return (1);
1322 }
1323
1324 /*
1325 * Drain pools, one at a time.
1326 *
1327 * Note, we must never be called from an interrupt context.
1328 */
1329 void
1330 pool_drain(void *arg)
1331 {
1332 struct pool *pp;
1333 int s;
1334
1335 pp = NULL;
1336 s = splvm();
1337 simple_lock(&pool_head_slock);
1338 if (drainpp == NULL) {
1339 drainpp = TAILQ_FIRST(&pool_head);
1340 }
1341 if (drainpp) {
1342 pp = drainpp;
1343 drainpp = TAILQ_NEXT(pp, pr_poollist);
1344 }
1345 simple_unlock(&pool_head_slock);
1346 pool_reclaim(pp);
1347 splx(s);
1348 }
1349
1350 /*
1351 * Diagnostic helpers.
1352 */
1353 void
1354 pool_print(struct pool *pp, const char *modif)
1355 {
1356 int s;
1357
1358 s = splvm();
1359 if (simple_lock_try(&pp->pr_slock) == 0) {
1360 printf("pool %s is locked; try again later\n",
1361 pp->pr_wchan);
1362 splx(s);
1363 return;
1364 }
1365 pool_print1(pp, modif, printf);
1366 simple_unlock(&pp->pr_slock);
1367 splx(s);
1368 }
1369
1370 void
1371 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1372 {
1373 int didlock = 0;
1374
1375 if (pp == NULL) {
1376 (*pr)("Must specify a pool to print.\n");
1377 return;
1378 }
1379
1380 /*
1381 * Called from DDB; interrupts should be blocked, and all
1382 * other processors should be paused. We can skip locking
1383 * the pool in this case.
1384 *
1385 * We do a simple_lock_try() just to print the lock
1386 * status, however.
1387 */
1388
1389 if (simple_lock_try(&pp->pr_slock) == 0)
1390 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1391 else
1392 didlock = 1;
1393
1394 pool_print1(pp, modif, pr);
1395
1396 if (didlock)
1397 simple_unlock(&pp->pr_slock);
1398 }
1399
1400 static void
1401 pool_print_pagelist(struct pool_pagelist *pl, void (*pr)(const char *, ...))
1402 {
1403 struct pool_item_header *ph;
1404 #ifdef DIAGNOSTIC
1405 struct pool_item *pi;
1406 #endif
1407
1408 LIST_FOREACH(ph, pl, ph_pagelist) {
1409 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1410 ph->ph_page, ph->ph_nmissing,
1411 (u_long)ph->ph_time.tv_sec,
1412 (u_long)ph->ph_time.tv_usec);
1413 #ifdef DIAGNOSTIC
1414 TAILQ_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1415 if (pi->pi_magic != PI_MAGIC) {
1416 (*pr)("\t\t\titem %p, magic 0x%x\n",
1417 pi, pi->pi_magic);
1418 }
1419 }
1420 #endif
1421 }
1422 }
1423
1424 static void
1425 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1426 {
1427 struct pool_item_header *ph;
1428 struct pool_cache *pc;
1429 struct pool_cache_group *pcg;
1430 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1431 char c;
1432
1433 while ((c = *modif++) != '\0') {
1434 if (c == 'l')
1435 print_log = 1;
1436 if (c == 'p')
1437 print_pagelist = 1;
1438 if (c == 'c')
1439 print_cache = 1;
1440 }
1441
1442 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1443 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1444 pp->pr_roflags);
1445 (*pr)("\talloc %p\n", pp->pr_alloc);
1446 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1447 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1448 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1449 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1450
1451 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1452 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1453 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1454 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1455
1456 if (print_pagelist == 0)
1457 goto skip_pagelist;
1458
1459 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1460 (*pr)("\n\tempty page list:\n");
1461 pool_print_pagelist(&pp->pr_emptypages, pr);
1462 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1463 (*pr)("\n\tfull page list:\n");
1464 pool_print_pagelist(&pp->pr_fullpages, pr);
1465 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1466 (*pr)("\n\tpartial-page list:\n");
1467 pool_print_pagelist(&pp->pr_partpages, pr);
1468
1469 if (pp->pr_curpage == NULL)
1470 (*pr)("\tno current page\n");
1471 else
1472 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1473
1474 skip_pagelist:
1475 if (print_log == 0)
1476 goto skip_log;
1477
1478 (*pr)("\n");
1479 if ((pp->pr_roflags & PR_LOGGING) == 0)
1480 (*pr)("\tno log\n");
1481 else
1482 pr_printlog(pp, NULL, pr);
1483
1484 skip_log:
1485 if (print_cache == 0)
1486 goto skip_cache;
1487
1488 TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
1489 (*pr)("\tcache %p: allocfrom %p freeto %p\n", pc,
1490 pc->pc_allocfrom, pc->pc_freeto);
1491 (*pr)("\t hits %lu misses %lu ngroups %lu nitems %lu\n",
1492 pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
1493 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1494 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);
1495 for (i = 0; i < PCG_NOBJECTS; i++) {
1496 if (pcg->pcg_objects[i].pcgo_pa !=
1497 POOL_PADDR_INVALID) {
1498 (*pr)("\t\t\t%p, 0x%llx\n",
1499 pcg->pcg_objects[i].pcgo_va,
1500 (unsigned long long)
1501 pcg->pcg_objects[i].pcgo_pa);
1502 } else {
1503 (*pr)("\t\t\t%p\n",
1504 pcg->pcg_objects[i].pcgo_va);
1505 }
1506 }
1507 }
1508 }
1509
1510 skip_cache:
1511 pr_enter_check(pp, pr);
1512 }
1513
1514 static int
1515 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1516 {
1517 struct pool_item *pi;
1518 caddr_t page;
1519 int n;
1520
1521 page = (caddr_t)((u_long)ph & pp->pr_alloc->pa_pagemask);
1522 if (page != ph->ph_page &&
1523 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1524 if (label != NULL)
1525 printf("%s: ", label);
1526 printf("pool(%p:%s): page inconsistency: page %p;"
1527 " at page head addr %p (p %p)\n", pp,
1528 pp->pr_wchan, ph->ph_page,
1529 ph, page);
1530 return 1;
1531 }
1532
1533 for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
1534 pi != NULL;
1535 pi = TAILQ_NEXT(pi,pi_list), n++) {
1536
1537 #ifdef DIAGNOSTIC
1538 if (pi->pi_magic != PI_MAGIC) {
1539 if (label != NULL)
1540 printf("%s: ", label);
1541 printf("pool(%s): free list modified: magic=%x;"
1542 " page %p; item ordinal %d;"
1543 " addr %p (p %p)\n",
1544 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1545 n, pi, page);
1546 panic("pool");
1547 }
1548 #endif
1549 page =
1550 (caddr_t)((u_long)pi & pp->pr_alloc->pa_pagemask);
1551 if (page == ph->ph_page)
1552 continue;
1553
1554 if (label != NULL)
1555 printf("%s: ", label);
1556 printf("pool(%p:%s): page inconsistency: page %p;"
1557 " item ordinal %d; addr %p (p %p)\n", pp,
1558 pp->pr_wchan, ph->ph_page,
1559 n, pi, page);
1560 return 1;
1561 }
1562 return 0;
1563 }
1564
1565
1566 int
1567 pool_chk(struct pool *pp, const char *label)
1568 {
1569 struct pool_item_header *ph;
1570 int r = 0;
1571
1572 simple_lock(&pp->pr_slock);
1573 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1574 r = pool_chk_page(pp, label, ph);
1575 if (r) {
1576 goto out;
1577 }
1578 }
1579 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1580 r = pool_chk_page(pp, label, ph);
1581 if (r) {
1582 goto out;
1583 }
1584 }
1585 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1586 r = pool_chk_page(pp, label, ph);
1587 if (r) {
1588 goto out;
1589 }
1590 }
1591
1592 out:
1593 simple_unlock(&pp->pr_slock);
1594 return (r);
1595 }
1596
1597 /*
1598 * pool_cache_init:
1599 *
1600 * Initialize a pool cache.
1601 *
1602 * NOTE: If the pool must be protected from interrupts, we expect
1603 * to be called at the appropriate interrupt priority level.
1604 */
1605 void
1606 pool_cache_init(struct pool_cache *pc, struct pool *pp,
1607 int (*ctor)(void *, void *, int),
1608 void (*dtor)(void *, void *),
1609 void *arg)
1610 {
1611
1612 TAILQ_INIT(&pc->pc_grouplist);
1613 simple_lock_init(&pc->pc_slock);
1614
1615 pc->pc_allocfrom = NULL;
1616 pc->pc_freeto = NULL;
1617 pc->pc_pool = pp;
1618
1619 pc->pc_ctor = ctor;
1620 pc->pc_dtor = dtor;
1621 pc->pc_arg = arg;
1622
1623 pc->pc_hits = 0;
1624 pc->pc_misses = 0;
1625
1626 pc->pc_ngroups = 0;
1627
1628 pc->pc_nitems = 0;
1629
1630 simple_lock(&pp->pr_slock);
1631 TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist);
1632 simple_unlock(&pp->pr_slock);
1633 }
1634
1635 /*
1636 * pool_cache_destroy:
1637 *
1638 * Destroy a pool cache.
1639 */
1640 void
1641 pool_cache_destroy(struct pool_cache *pc)
1642 {
1643 struct pool *pp = pc->pc_pool;
1644
1645 /* First, invalidate the entire cache. */
1646 pool_cache_invalidate(pc);
1647
1648 /* ...and remove it from the pool's cache list. */
1649 simple_lock(&pp->pr_slock);
1650 TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist);
1651 simple_unlock(&pp->pr_slock);
1652 }
1653
1654 static __inline void *
1655 pcg_get(struct pool_cache_group *pcg, paddr_t *pap)
1656 {
1657 void *object;
1658 u_int idx;
1659
1660 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
1661 KASSERT(pcg->pcg_avail != 0);
1662 idx = --pcg->pcg_avail;
1663
1664 KASSERT(pcg->pcg_objects[idx].pcgo_va != NULL);
1665 object = pcg->pcg_objects[idx].pcgo_va;
1666 if (pap != NULL)
1667 *pap = pcg->pcg_objects[idx].pcgo_pa;
1668 pcg->pcg_objects[idx].pcgo_va = NULL;
1669
1670 return (object);
1671 }
1672
1673 static __inline void
1674 pcg_put(struct pool_cache_group *pcg, void *object, paddr_t pa)
1675 {
1676 u_int idx;
1677
1678 KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
1679 idx = pcg->pcg_avail++;
1680
1681 KASSERT(pcg->pcg_objects[idx].pcgo_va == NULL);
1682 pcg->pcg_objects[idx].pcgo_va = object;
1683 pcg->pcg_objects[idx].pcgo_pa = pa;
1684 }
1685
1686 /*
1687 * pool_cache_get{,_paddr}:
1688 *
1689 * Get an object from a pool cache (optionally returning
1690 * the physical address of the object).
1691 */
1692 void *
1693 pool_cache_get_paddr(struct pool_cache *pc, int flags, paddr_t *pap)
1694 {
1695 struct pool_cache_group *pcg;
1696 void *object;
1697
1698 #ifdef LOCKDEBUG
1699 if (flags & PR_WAITOK)
1700 simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)");
1701 #endif
1702
1703 simple_lock(&pc->pc_slock);
1704
1705 if ((pcg = pc->pc_allocfrom) == NULL) {
1706 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1707 if (pcg->pcg_avail != 0) {
1708 pc->pc_allocfrom = pcg;
1709 goto have_group;
1710 }
1711 }
1712
1713 /*
1714 * No groups with any available objects. Allocate
1715 * a new object, construct it, and return it to
1716 * the caller. We will allocate a group, if necessary,
1717 * when the object is freed back to the cache.
1718 */
1719 pc->pc_misses++;
1720 simple_unlock(&pc->pc_slock);
1721 object = pool_get(pc->pc_pool, flags);
1722 if (object != NULL && pc->pc_ctor != NULL) {
1723 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
1724 pool_put(pc->pc_pool, object);
1725 return (NULL);
1726 }
1727 }
1728 if (object != NULL && pap != NULL) {
1729 #ifdef POOL_VTOPHYS
1730 *pap = POOL_VTOPHYS(object);
1731 #else
1732 *pap = POOL_PADDR_INVALID;
1733 #endif
1734 }
1735 return (object);
1736 }
1737
1738 have_group:
1739 pc->pc_hits++;
1740 pc->pc_nitems--;
1741 object = pcg_get(pcg, pap);
1742
1743 if (pcg->pcg_avail == 0)
1744 pc->pc_allocfrom = NULL;
1745
1746 simple_unlock(&pc->pc_slock);
1747
1748 return (object);
1749 }
1750
1751 /*
1752 * pool_cache_put{,_paddr}:
1753 *
1754 * Put an object back to the pool cache (optionally caching the
1755 * physical address of the object).
1756 */
1757 void
1758 pool_cache_put_paddr(struct pool_cache *pc, void *object, paddr_t pa)
1759 {
1760 struct pool_cache_group *pcg;
1761 int s;
1762
1763 simple_lock(&pc->pc_slock);
1764
1765 if ((pcg = pc->pc_freeto) == NULL) {
1766 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1767 if (pcg->pcg_avail != PCG_NOBJECTS) {
1768 pc->pc_freeto = pcg;
1769 goto have_group;
1770 }
1771 }
1772
1773 /*
1774 * No empty groups to free the object to. Attempt to
1775 * allocate one.
1776 */
1777 simple_unlock(&pc->pc_slock);
1778 s = splvm();
1779 pcg = pool_get(&pcgpool, PR_NOWAIT);
1780 splx(s);
1781 if (pcg != NULL) {
1782 memset(pcg, 0, sizeof(*pcg));
1783 simple_lock(&pc->pc_slock);
1784 pc->pc_ngroups++;
1785 TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list);
1786 if (pc->pc_freeto == NULL)
1787 pc->pc_freeto = pcg;
1788 goto have_group;
1789 }
1790
1791 /*
1792 * Unable to allocate a cache group; destruct the object
1793 * and free it back to the pool.
1794 */
1795 pool_cache_destruct_object(pc, object);
1796 return;
1797 }
1798
1799 have_group:
1800 pc->pc_nitems++;
1801 pcg_put(pcg, object, pa);
1802
1803 if (pcg->pcg_avail == PCG_NOBJECTS)
1804 pc->pc_freeto = NULL;
1805
1806 simple_unlock(&pc->pc_slock);
1807 }
1808
1809 /*
1810 * pool_cache_destruct_object:
1811 *
1812 * Force destruction of an object and its release back into
1813 * the pool.
1814 */
1815 void
1816 pool_cache_destruct_object(struct pool_cache *pc, void *object)
1817 {
1818
1819 if (pc->pc_dtor != NULL)
1820 (*pc->pc_dtor)(pc->pc_arg, object);
1821 pool_put(pc->pc_pool, object);
1822 }
1823
1824 /*
1825 * pool_cache_do_invalidate:
1826 *
1827 * This internal function implements pool_cache_invalidate() and
1828 * pool_cache_reclaim().
1829 */
1830 static void
1831 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups,
1832 void (*putit)(struct pool *, void *))
1833 {
1834 struct pool_cache_group *pcg, *npcg;
1835 void *object;
1836 int s;
1837
1838 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1839 pcg = npcg) {
1840 npcg = TAILQ_NEXT(pcg, pcg_list);
1841 while (pcg->pcg_avail != 0) {
1842 pc->pc_nitems--;
1843 object = pcg_get(pcg, NULL);
1844 if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg)
1845 pc->pc_allocfrom = NULL;
1846 if (pc->pc_dtor != NULL)
1847 (*pc->pc_dtor)(pc->pc_arg, object);
1848 (*putit)(pc->pc_pool, object);
1849 }
1850 if (free_groups) {
1851 pc->pc_ngroups--;
1852 TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list);
1853 if (pc->pc_freeto == pcg)
1854 pc->pc_freeto = NULL;
1855 s = splvm();
1856 pool_put(&pcgpool, pcg);
1857 splx(s);
1858 }
1859 }
1860 }
1861
1862 /*
1863 * pool_cache_invalidate:
1864 *
1865 * Invalidate a pool cache (destruct and release all of the
1866 * cached objects).
1867 */
1868 void
1869 pool_cache_invalidate(struct pool_cache *pc)
1870 {
1871
1872 simple_lock(&pc->pc_slock);
1873 pool_cache_do_invalidate(pc, 0, pool_put);
1874 simple_unlock(&pc->pc_slock);
1875 }
1876
1877 /*
1878 * pool_cache_reclaim:
1879 *
1880 * Reclaim a pool cache for pool_reclaim().
1881 */
1882 static void
1883 pool_cache_reclaim(struct pool_cache *pc)
1884 {
1885
1886 simple_lock(&pc->pc_slock);
1887 pool_cache_do_invalidate(pc, 1, pool_do_put);
1888 simple_unlock(&pc->pc_slock);
1889 }
1890
1891 /*
1892 * Pool backend allocators.
1893 *
1894 * Each pool has a backend allocator that handles allocation, deallocation,
1895 * and any additional draining that might be needed.
1896 *
1897 * We provide two standard allocators:
1898 *
1899 * pool_allocator_kmem - the default when no allocator is specified
1900 *
1901 * pool_allocator_nointr - used for pools that will not be accessed
1902 * in interrupt context.
1903 */
1904 void *pool_page_alloc(struct pool *, int);
1905 void pool_page_free(struct pool *, void *);
1906
1907 struct pool_allocator pool_allocator_kmem = {
1908 pool_page_alloc, pool_page_free, 0,
1909 };
1910
1911 void *pool_page_alloc_nointr(struct pool *, int);
1912 void pool_page_free_nointr(struct pool *, void *);
1913
1914 struct pool_allocator pool_allocator_nointr = {
1915 pool_page_alloc_nointr, pool_page_free_nointr, 0,
1916 };
1917
1918 #ifdef POOL_SUBPAGE
1919 void *pool_subpage_alloc(struct pool *, int);
1920 void pool_subpage_free(struct pool *, void *);
1921
1922 struct pool_allocator pool_allocator_kmem_subpage = {
1923 pool_subpage_alloc, pool_subpage_free, 0,
1924 };
1925 #endif /* POOL_SUBPAGE */
1926
1927 /*
1928 * We have at least three different resources for the same allocation and
1929 * each resource can be depleted. First, we have the ready elements in the
1930 * pool. Then we have the resource (typically a vm_map) for this allocator.
1931 * Finally, we have physical memory. Waiting for any of these can be
1932 * unnecessary when any other is freed, but the kernel doesn't support
1933 * sleeping on multiple wait channels, so we have to employ another strategy.
1934 *
1935 * The caller sleeps on the pool (so that it can be awakened when an item
1936 * is returned to the pool), but we set PA_WANT on the allocator. When a
1937 * page is returned to the allocator and PA_WANT is set, pool_allocator_free
1938 * will wake up all sleeping pools belonging to this allocator.
1939 *
1940 * XXX Thundering herd.
1941 */
1942 void *
1943 pool_allocator_alloc(struct pool *org, int flags)
1944 {
1945 struct pool_allocator *pa = org->pr_alloc;
1946 struct pool *pp, *start;
1947 int s, freed;
1948 void *res;
1949
1950 do {
1951 if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
1952 return (res);
1953 if ((flags & PR_WAITOK) == 0) {
1954 /*
1955 * We only run the drain hookhere if PR_NOWAIT.
1956 * In other cases, the hook will be run in
1957 * pool_reclaim().
1958 */
1959 if (org->pr_drain_hook != NULL) {
1960 (*org->pr_drain_hook)(org->pr_drain_hook_arg,
1961 flags);
1962 if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
1963 return (res);
1964 }
1965 break;
1966 }
1967
1968 /*
1969 * Drain all pools, except "org", that use this
1970 * allocator. We do this to reclaim VA space.
1971 * pa_alloc is responsible for waiting for
1972 * physical memory.
1973 *
1974 * XXX We risk looping forever if start if someone
1975 * calls pool_destroy on "start". But there is no
1976 * other way to have potentially sleeping pool_reclaim,
1977 * non-sleeping locks on pool_allocator, and some
1978 * stirring of drained pools in the allocator.
1979 *
1980 * XXX Maybe we should use pool_head_slock for locking
1981 * the allocators?
1982 */
1983 freed = 0;
1984
1985 s = splvm();
1986 simple_lock(&pa->pa_slock);
1987 pp = start = TAILQ_FIRST(&pa->pa_list);
1988 do {
1989 TAILQ_REMOVE(&pa->pa_list, pp, pr_alloc_list);
1990 TAILQ_INSERT_TAIL(&pa->pa_list, pp, pr_alloc_list);
1991 if (pp == org)
1992 continue;
1993 simple_unlock(&pa->pa_slock);
1994 freed = pool_reclaim(pp);
1995 simple_lock(&pa->pa_slock);
1996 } while ((pp = TAILQ_FIRST(&pa->pa_list)) != start &&
1997 freed == 0);
1998
1999 if (freed == 0) {
2000 /*
2001 * We set PA_WANT here, the caller will most likely
2002 * sleep waiting for pages (if not, this won't hurt
2003 * that much), and there is no way to set this in
2004 * the caller without violating locking order.
2005 */
2006 pa->pa_flags |= PA_WANT;
2007 }
2008 simple_unlock(&pa->pa_slock);
2009 splx(s);
2010 } while (freed);
2011 return (NULL);
2012 }
2013
2014 void
2015 pool_allocator_free(struct pool *pp, void *v)
2016 {
2017 struct pool_allocator *pa = pp->pr_alloc;
2018 int s;
2019
2020 (*pa->pa_free)(pp, v);
2021
2022 s = splvm();
2023 simple_lock(&pa->pa_slock);
2024 if ((pa->pa_flags & PA_WANT) == 0) {
2025 simple_unlock(&pa->pa_slock);
2026 splx(s);
2027 return;
2028 }
2029
2030 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
2031 simple_lock(&pp->pr_slock);
2032 if ((pp->pr_flags & PR_WANTED) != 0) {
2033 pp->pr_flags &= ~PR_WANTED;
2034 wakeup(pp);
2035 }
2036 simple_unlock(&pp->pr_slock);
2037 }
2038 pa->pa_flags &= ~PA_WANT;
2039 simple_unlock(&pa->pa_slock);
2040 splx(s);
2041 }
2042
2043 void *
2044 pool_page_alloc(struct pool *pp, int flags)
2045 {
2046 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2047
2048 return ((void *) uvm_km_alloc_poolpage(waitok));
2049 }
2050
2051 void
2052 pool_page_free(struct pool *pp, void *v)
2053 {
2054
2055 uvm_km_free_poolpage((vaddr_t) v);
2056 }
2057
2058 #ifdef POOL_SUBPAGE
2059 /* Sub-page allocator, for machines with large hardware pages. */
2060 void *
2061 pool_subpage_alloc(struct pool *pp, int flags)
2062 {
2063
2064 return (pool_get(&psppool, flags));
2065 }
2066
2067 void
2068 pool_subpage_free(struct pool *pp, void *v)
2069 {
2070
2071 pool_put(&psppool, v);
2072 }
2073
2074 /* We don't provide a real nointr allocator. Maybe later. */
2075 void *
2076 pool_page_alloc_nointr(struct pool *pp, int flags)
2077 {
2078
2079 return (pool_subpage_alloc(pp, flags));
2080 }
2081
2082 void
2083 pool_page_free_nointr(struct pool *pp, void *v)
2084 {
2085
2086 pool_subpage_free(pp, v);
2087 }
2088 #else
2089 void *
2090 pool_page_alloc_nointr(struct pool *pp, int flags)
2091 {
2092 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2093
2094 return ((void *) uvm_km_alloc_poolpage1(kernel_map,
2095 uvm.kernel_object, waitok));
2096 }
2097
2098 void
2099 pool_page_free_nointr(struct pool *pp, void *v)
2100 {
2101
2102 uvm_km_free_poolpage1(kernel_map, (vaddr_t) v);
2103 }
2104 #endif /* POOL_SUBPAGE */
2105