Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.90
      1 /*	$NetBSD: subr_pool.c,v 1.90 2004/01/09 19:00:16 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9  * Simulation Facility, NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 #include <sys/cdefs.h>
     41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.90 2004/01/09 19:00:16 thorpej Exp $");
     42 
     43 #include "opt_pool.h"
     44 #include "opt_poollog.h"
     45 #include "opt_lockdebug.h"
     46 
     47 #include <sys/param.h>
     48 #include <sys/systm.h>
     49 #include <sys/proc.h>
     50 #include <sys/errno.h>
     51 #include <sys/kernel.h>
     52 #include <sys/malloc.h>
     53 #include <sys/lock.h>
     54 #include <sys/pool.h>
     55 #include <sys/syslog.h>
     56 
     57 #include <uvm/uvm.h>
     58 
     59 /*
     60  * Pool resource management utility.
     61  *
     62  * Memory is allocated in pages which are split into pieces according to
     63  * the pool item size. Each page is kept on one of three lists in the
     64  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     65  * for empty, full and partially-full pages respectively. The individual
     66  * pool items are on a linked list headed by `ph_itemlist' in each page
     67  * header. The memory for building the page list is either taken from
     68  * the allocated pages themselves (for small pool items) or taken from
     69  * an internal pool of page headers (`phpool').
     70  */
     71 
     72 /* List of all pools */
     73 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     74 
     75 /* Private pool for page header structures */
     76 static struct pool phpool;
     77 
     78 #ifdef POOL_SUBPAGE
     79 /* Pool of subpages for use by normal pools. */
     80 static struct pool psppool;
     81 #endif
     82 
     83 /* # of seconds to retain page after last use */
     84 int pool_inactive_time = 10;
     85 
     86 /* Next candidate for drainage (see pool_drain()) */
     87 static struct pool	*drainpp;
     88 
     89 /* This spin lock protects both pool_head and drainpp. */
     90 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
     91 
     92 struct pool_item_header {
     93 	/* Page headers */
     94 	LIST_ENTRY(pool_item_header)
     95 				ph_pagelist;	/* pool page list */
     96 	TAILQ_HEAD(,pool_item)	ph_itemlist;	/* chunk list for this page */
     97 	SPLAY_ENTRY(pool_item_header)
     98 				ph_node;	/* Off-page page headers */
     99 	unsigned int		ph_nmissing;	/* # of chunks in use */
    100 	caddr_t			ph_page;	/* this page's address */
    101 	struct timeval		ph_time;	/* last referenced */
    102 };
    103 
    104 struct pool_item {
    105 #ifdef DIAGNOSTIC
    106 	u_int pi_magic;
    107 #endif
    108 #define	PI_MAGIC 0xdeadbeefU
    109 	/* Other entries use only this list entry */
    110 	TAILQ_ENTRY(pool_item)	pi_list;
    111 };
    112 
    113 #define	POOL_NEEDS_CATCHUP(pp)						\
    114 	((pp)->pr_nitems < (pp)->pr_minitems)
    115 
    116 /*
    117  * Pool cache management.
    118  *
    119  * Pool caches provide a way for constructed objects to be cached by the
    120  * pool subsystem.  This can lead to performance improvements by avoiding
    121  * needless object construction/destruction; it is deferred until absolutely
    122  * necessary.
    123  *
    124  * Caches are grouped into cache groups.  Each cache group references
    125  * up to 16 constructed objects.  When a cache allocates an object
    126  * from the pool, it calls the object's constructor and places it into
    127  * a cache group.  When a cache group frees an object back to the pool,
    128  * it first calls the object's destructor.  This allows the object to
    129  * persist in constructed form while freed to the cache.
    130  *
    131  * Multiple caches may exist for each pool.  This allows a single
    132  * object type to have multiple constructed forms.  The pool references
    133  * each cache, so that when a pool is drained by the pagedaemon, it can
    134  * drain each individual cache as well.  Each time a cache is drained,
    135  * the most idle cache group is freed to the pool in its entirety.
    136  *
    137  * Pool caches are layed on top of pools.  By layering them, we can avoid
    138  * the complexity of cache management for pools which would not benefit
    139  * from it.
    140  */
    141 
    142 /* The cache group pool. */
    143 static struct pool pcgpool;
    144 
    145 static void	pool_cache_reclaim(struct pool_cache *);
    146 
    147 static int	pool_catchup(struct pool *);
    148 static void	pool_prime_page(struct pool *, caddr_t,
    149 		    struct pool_item_header *);
    150 static void	pool_update_curpage(struct pool *);
    151 
    152 void		*pool_allocator_alloc(struct pool *, int);
    153 void		pool_allocator_free(struct pool *, void *);
    154 
    155 static void pool_print_pagelist(struct pool_pagelist *,
    156 	void (*)(const char *, ...));
    157 static void pool_print1(struct pool *, const char *,
    158 	void (*)(const char *, ...));
    159 
    160 static int pool_chk_page(struct pool *, const char *,
    161 			 struct pool_item_header *);
    162 
    163 /*
    164  * Pool log entry. An array of these is allocated in pool_init().
    165  */
    166 struct pool_log {
    167 	const char	*pl_file;
    168 	long		pl_line;
    169 	int		pl_action;
    170 #define	PRLOG_GET	1
    171 #define	PRLOG_PUT	2
    172 	void		*pl_addr;
    173 };
    174 
    175 #ifdef POOL_DIAGNOSTIC
    176 /* Number of entries in pool log buffers */
    177 #ifndef POOL_LOGSIZE
    178 #define	POOL_LOGSIZE	10
    179 #endif
    180 
    181 int pool_logsize = POOL_LOGSIZE;
    182 
    183 static __inline void
    184 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    185 {
    186 	int n = pp->pr_curlogentry;
    187 	struct pool_log *pl;
    188 
    189 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    190 		return;
    191 
    192 	/*
    193 	 * Fill in the current entry. Wrap around and overwrite
    194 	 * the oldest entry if necessary.
    195 	 */
    196 	pl = &pp->pr_log[n];
    197 	pl->pl_file = file;
    198 	pl->pl_line = line;
    199 	pl->pl_action = action;
    200 	pl->pl_addr = v;
    201 	if (++n >= pp->pr_logsize)
    202 		n = 0;
    203 	pp->pr_curlogentry = n;
    204 }
    205 
    206 static void
    207 pr_printlog(struct pool *pp, struct pool_item *pi,
    208     void (*pr)(const char *, ...))
    209 {
    210 	int i = pp->pr_logsize;
    211 	int n = pp->pr_curlogentry;
    212 
    213 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    214 		return;
    215 
    216 	/*
    217 	 * Print all entries in this pool's log.
    218 	 */
    219 	while (i-- > 0) {
    220 		struct pool_log *pl = &pp->pr_log[n];
    221 		if (pl->pl_action != 0) {
    222 			if (pi == NULL || pi == pl->pl_addr) {
    223 				(*pr)("\tlog entry %d:\n", i);
    224 				(*pr)("\t\taction = %s, addr = %p\n",
    225 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    226 				    pl->pl_addr);
    227 				(*pr)("\t\tfile: %s at line %lu\n",
    228 				    pl->pl_file, pl->pl_line);
    229 			}
    230 		}
    231 		if (++n >= pp->pr_logsize)
    232 			n = 0;
    233 	}
    234 }
    235 
    236 static __inline void
    237 pr_enter(struct pool *pp, const char *file, long line)
    238 {
    239 
    240 	if (__predict_false(pp->pr_entered_file != NULL)) {
    241 		printf("pool %s: reentrancy at file %s line %ld\n",
    242 		    pp->pr_wchan, file, line);
    243 		printf("         previous entry at file %s line %ld\n",
    244 		    pp->pr_entered_file, pp->pr_entered_line);
    245 		panic("pr_enter");
    246 	}
    247 
    248 	pp->pr_entered_file = file;
    249 	pp->pr_entered_line = line;
    250 }
    251 
    252 static __inline void
    253 pr_leave(struct pool *pp)
    254 {
    255 
    256 	if (__predict_false(pp->pr_entered_file == NULL)) {
    257 		printf("pool %s not entered?\n", pp->pr_wchan);
    258 		panic("pr_leave");
    259 	}
    260 
    261 	pp->pr_entered_file = NULL;
    262 	pp->pr_entered_line = 0;
    263 }
    264 
    265 static __inline void
    266 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    267 {
    268 
    269 	if (pp->pr_entered_file != NULL)
    270 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    271 		    pp->pr_entered_file, pp->pr_entered_line);
    272 }
    273 #else
    274 #define	pr_log(pp, v, action, file, line)
    275 #define	pr_printlog(pp, pi, pr)
    276 #define	pr_enter(pp, file, line)
    277 #define	pr_leave(pp)
    278 #define	pr_enter_check(pp, pr)
    279 #endif /* POOL_DIAGNOSTIC */
    280 
    281 static __inline int
    282 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    283 {
    284 	if (a->ph_page < b->ph_page)
    285 		return (-1);
    286 	else if (a->ph_page > b->ph_page)
    287 		return (1);
    288 	else
    289 		return (0);
    290 }
    291 
    292 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    293 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    294 
    295 /*
    296  * Return the pool page header based on page address.
    297  */
    298 static __inline struct pool_item_header *
    299 pr_find_pagehead(struct pool *pp, caddr_t page)
    300 {
    301 	struct pool_item_header *ph, tmp;
    302 
    303 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    304 		return ((struct pool_item_header *)(page + pp->pr_phoffset));
    305 
    306 	tmp.ph_page = page;
    307 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    308 	return ph;
    309 }
    310 
    311 /*
    312  * Remove a page from the pool.
    313  */
    314 static __inline void
    315 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    316      struct pool_pagelist *pq)
    317 {
    318 	int s;
    319 
    320 	/*
    321 	 * If the page was idle, decrement the idle page count.
    322 	 */
    323 	if (ph->ph_nmissing == 0) {
    324 #ifdef DIAGNOSTIC
    325 		if (pp->pr_nidle == 0)
    326 			panic("pr_rmpage: nidle inconsistent");
    327 		if (pp->pr_nitems < pp->pr_itemsperpage)
    328 			panic("pr_rmpage: nitems inconsistent");
    329 #endif
    330 		pp->pr_nidle--;
    331 	}
    332 
    333 	pp->pr_nitems -= pp->pr_itemsperpage;
    334 
    335 	/*
    336 	 * Unlink a page from the pool and release it (or queue it for release).
    337 	 */
    338 	LIST_REMOVE(ph, ph_pagelist);
    339 	if (pq) {
    340 		LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    341 	} else {
    342 		pool_allocator_free(pp, ph->ph_page);
    343 		if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    344 			SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    345 			s = splvm();
    346 			pool_put(&phpool, ph);
    347 			splx(s);
    348 		}
    349 	}
    350 	pp->pr_npages--;
    351 	pp->pr_npagefree++;
    352 
    353 	pool_update_curpage(pp);
    354 }
    355 
    356 /*
    357  * Initialize the given pool resource structure.
    358  *
    359  * We export this routine to allow other kernel parts to declare
    360  * static pools that must be initialized before malloc() is available.
    361  */
    362 void
    363 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    364     const char *wchan, struct pool_allocator *palloc)
    365 {
    366 	int off, slack;
    367 
    368 #ifdef POOL_DIAGNOSTIC
    369 	/*
    370 	 * Always log if POOL_DIAGNOSTIC is defined.
    371 	 */
    372 	if (pool_logsize != 0)
    373 		flags |= PR_LOGGING;
    374 #endif
    375 
    376 #ifdef POOL_SUBPAGE
    377 	/*
    378 	 * XXX We don't provide a real `nointr' back-end
    379 	 * yet; all sub-pages come from a kmem back-end.
    380 	 * maybe some day...
    381 	 */
    382 	if (palloc == NULL) {
    383 		extern struct pool_allocator pool_allocator_kmem_subpage;
    384 		palloc = &pool_allocator_kmem_subpage;
    385 	}
    386 	/*
    387 	 * We'll assume any user-specified back-end allocator
    388 	 * will deal with sub-pages, or simply don't care.
    389 	 */
    390 #else
    391 	if (palloc == NULL)
    392 		palloc = &pool_allocator_kmem;
    393 #endif /* POOL_SUBPAGE */
    394 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
    395 		if (palloc->pa_pagesz == 0) {
    396 #ifdef POOL_SUBPAGE
    397 			if (palloc == &pool_allocator_kmem)
    398 				palloc->pa_pagesz = PAGE_SIZE;
    399 			else
    400 				palloc->pa_pagesz = POOL_SUBPAGE;
    401 #else
    402 			palloc->pa_pagesz = PAGE_SIZE;
    403 #endif /* POOL_SUBPAGE */
    404 		}
    405 
    406 		TAILQ_INIT(&palloc->pa_list);
    407 
    408 		simple_lock_init(&palloc->pa_slock);
    409 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    410 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    411 		palloc->pa_flags |= PA_INITIALIZED;
    412 	}
    413 
    414 	if (align == 0)
    415 		align = ALIGN(1);
    416 
    417 	if (size < sizeof(struct pool_item))
    418 		size = sizeof(struct pool_item);
    419 
    420 	size = roundup(size, align);
    421 #ifdef DIAGNOSTIC
    422 	if (size > palloc->pa_pagesz)
    423 		panic("pool_init: pool item size (%lu) too large",
    424 		      (u_long)size);
    425 #endif
    426 
    427 	/*
    428 	 * Initialize the pool structure.
    429 	 */
    430 	LIST_INIT(&pp->pr_emptypages);
    431 	LIST_INIT(&pp->pr_fullpages);
    432 	LIST_INIT(&pp->pr_partpages);
    433 	TAILQ_INIT(&pp->pr_cachelist);
    434 	pp->pr_curpage = NULL;
    435 	pp->pr_npages = 0;
    436 	pp->pr_minitems = 0;
    437 	pp->pr_minpages = 0;
    438 	pp->pr_maxpages = UINT_MAX;
    439 	pp->pr_roflags = flags;
    440 	pp->pr_flags = 0;
    441 	pp->pr_size = size;
    442 	pp->pr_align = align;
    443 	pp->pr_wchan = wchan;
    444 	pp->pr_alloc = palloc;
    445 	pp->pr_nitems = 0;
    446 	pp->pr_nout = 0;
    447 	pp->pr_hardlimit = UINT_MAX;
    448 	pp->pr_hardlimit_warning = NULL;
    449 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    450 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    451 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    452 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    453 	pp->pr_drain_hook = NULL;
    454 	pp->pr_drain_hook_arg = NULL;
    455 
    456 	/*
    457 	 * Decide whether to put the page header off page to avoid
    458 	 * wasting too large a part of the page. Off-page page headers
    459 	 * go on a hash table, so we can match a returned item
    460 	 * with its header based on the page address.
    461 	 * We use 1/16 of the page size as the threshold (XXX: tune)
    462 	 */
    463 	if (pp->pr_size < palloc->pa_pagesz/16) {
    464 		/* Use the end of the page for the page header */
    465 		pp->pr_roflags |= PR_PHINPAGE;
    466 		pp->pr_phoffset = off = palloc->pa_pagesz -
    467 		    ALIGN(sizeof(struct pool_item_header));
    468 	} else {
    469 		/* The page header will be taken from our page header pool */
    470 		pp->pr_phoffset = 0;
    471 		off = palloc->pa_pagesz;
    472 		SPLAY_INIT(&pp->pr_phtree);
    473 	}
    474 
    475 	/*
    476 	 * Alignment is to take place at `ioff' within the item. This means
    477 	 * we must reserve up to `align - 1' bytes on the page to allow
    478 	 * appropriate positioning of each item.
    479 	 *
    480 	 * Silently enforce `0 <= ioff < align'.
    481 	 */
    482 	pp->pr_itemoffset = ioff = ioff % align;
    483 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    484 	KASSERT(pp->pr_itemsperpage != 0);
    485 
    486 	/*
    487 	 * Use the slack between the chunks and the page header
    488 	 * for "cache coloring".
    489 	 */
    490 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    491 	pp->pr_maxcolor = (slack / align) * align;
    492 	pp->pr_curcolor = 0;
    493 
    494 	pp->pr_nget = 0;
    495 	pp->pr_nfail = 0;
    496 	pp->pr_nput = 0;
    497 	pp->pr_npagealloc = 0;
    498 	pp->pr_npagefree = 0;
    499 	pp->pr_hiwat = 0;
    500 	pp->pr_nidle = 0;
    501 
    502 #ifdef POOL_DIAGNOSTIC
    503 	if (flags & PR_LOGGING) {
    504 		if (kmem_map == NULL ||
    505 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    506 		     M_TEMP, M_NOWAIT)) == NULL)
    507 			pp->pr_roflags &= ~PR_LOGGING;
    508 		pp->pr_curlogentry = 0;
    509 		pp->pr_logsize = pool_logsize;
    510 	}
    511 #endif
    512 
    513 	pp->pr_entered_file = NULL;
    514 	pp->pr_entered_line = 0;
    515 
    516 	simple_lock_init(&pp->pr_slock);
    517 
    518 	/*
    519 	 * Initialize private page header pool and cache magazine pool if we
    520 	 * haven't done so yet.
    521 	 * XXX LOCKING.
    522 	 */
    523 	if (phpool.pr_size == 0) {
    524 #ifdef POOL_SUBPAGE
    525 		pool_init(&phpool, sizeof(struct pool_item_header), 0, 0, 0,
    526 		    "phpool", &pool_allocator_kmem);
    527 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    528 		    PR_RECURSIVE, "psppool", &pool_allocator_kmem);
    529 #else
    530 		pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
    531 		    0, "phpool", NULL);
    532 #endif
    533 		pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
    534 		    0, "pcgpool", NULL);
    535 	}
    536 
    537 	/* Insert into the list of all pools. */
    538 	simple_lock(&pool_head_slock);
    539 	TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    540 	simple_unlock(&pool_head_slock);
    541 
    542 	/* Insert this into the list of pools using this allocator. */
    543 	simple_lock(&palloc->pa_slock);
    544 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    545 	simple_unlock(&palloc->pa_slock);
    546 }
    547 
    548 /*
    549  * De-commision a pool resource.
    550  */
    551 void
    552 pool_destroy(struct pool *pp)
    553 {
    554 	struct pool_item_header *ph;
    555 	struct pool_cache *pc;
    556 
    557 	/* Locking order: pool_allocator -> pool */
    558 	simple_lock(&pp->pr_alloc->pa_slock);
    559 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    560 	simple_unlock(&pp->pr_alloc->pa_slock);
    561 
    562 	/* Destroy all caches for this pool. */
    563 	while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL)
    564 		pool_cache_destroy(pc);
    565 
    566 #ifdef DIAGNOSTIC
    567 	if (pp->pr_nout != 0) {
    568 		pr_printlog(pp, NULL, printf);
    569 		panic("pool_destroy: pool busy: still out: %u",
    570 		    pp->pr_nout);
    571 	}
    572 #endif
    573 
    574 	/* Remove all pages */
    575 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    576 		pr_rmpage(pp, ph, NULL);
    577 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    578 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    579 
    580 	/* Remove from global pool list */
    581 	simple_lock(&pool_head_slock);
    582 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    583 	if (drainpp == pp) {
    584 		drainpp = NULL;
    585 	}
    586 	simple_unlock(&pool_head_slock);
    587 
    588 #ifdef POOL_DIAGNOSTIC
    589 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    590 		free(pp->pr_log, M_TEMP);
    591 #endif
    592 }
    593 
    594 void
    595 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    596 {
    597 
    598 	/* XXX no locking -- must be used just after pool_init() */
    599 #ifdef DIAGNOSTIC
    600 	if (pp->pr_drain_hook != NULL)
    601 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    602 #endif
    603 	pp->pr_drain_hook = fn;
    604 	pp->pr_drain_hook_arg = arg;
    605 }
    606 
    607 static struct pool_item_header *
    608 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
    609 {
    610 	struct pool_item_header *ph;
    611 	int s;
    612 
    613 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
    614 
    615 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    616 		ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
    617 	else {
    618 		s = splvm();
    619 		ph = pool_get(&phpool, flags);
    620 		splx(s);
    621 	}
    622 
    623 	return (ph);
    624 }
    625 
    626 /*
    627  * Grab an item from the pool; must be called at appropriate spl level
    628  */
    629 void *
    630 #ifdef POOL_DIAGNOSTIC
    631 _pool_get(struct pool *pp, int flags, const char *file, long line)
    632 #else
    633 pool_get(struct pool *pp, int flags)
    634 #endif
    635 {
    636 	struct pool_item *pi;
    637 	struct pool_item_header *ph;
    638 	void *v;
    639 
    640 #ifdef DIAGNOSTIC
    641 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
    642 			    (flags & PR_WAITOK) != 0))
    643 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
    644 
    645 #ifdef LOCKDEBUG
    646 	if (flags & PR_WAITOK)
    647 		simple_lock_only_held(NULL, "pool_get(PR_WAITOK)");
    648 #endif
    649 #endif /* DIAGNOSTIC */
    650 
    651 	simple_lock(&pp->pr_slock);
    652 	pr_enter(pp, file, line);
    653 
    654  startover:
    655 	/*
    656 	 * Check to see if we've reached the hard limit.  If we have,
    657 	 * and we can wait, then wait until an item has been returned to
    658 	 * the pool.
    659 	 */
    660 #ifdef DIAGNOSTIC
    661 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
    662 		pr_leave(pp);
    663 		simple_unlock(&pp->pr_slock);
    664 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
    665 	}
    666 #endif
    667 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    668 		if (pp->pr_drain_hook != NULL) {
    669 			/*
    670 			 * Since the drain hook is going to free things
    671 			 * back to the pool, unlock, call the hook, re-lock,
    672 			 * and check the hardlimit condition again.
    673 			 */
    674 			pr_leave(pp);
    675 			simple_unlock(&pp->pr_slock);
    676 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    677 			simple_lock(&pp->pr_slock);
    678 			pr_enter(pp, file, line);
    679 			if (pp->pr_nout < pp->pr_hardlimit)
    680 				goto startover;
    681 		}
    682 
    683 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    684 			/*
    685 			 * XXX: A warning isn't logged in this case.  Should
    686 			 * it be?
    687 			 */
    688 			pp->pr_flags |= PR_WANTED;
    689 			pr_leave(pp);
    690 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
    691 			pr_enter(pp, file, line);
    692 			goto startover;
    693 		}
    694 
    695 		/*
    696 		 * Log a message that the hard limit has been hit.
    697 		 */
    698 		if (pp->pr_hardlimit_warning != NULL &&
    699 		    ratecheck(&pp->pr_hardlimit_warning_last,
    700 			      &pp->pr_hardlimit_ratecap))
    701 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    702 
    703 		pp->pr_nfail++;
    704 
    705 		pr_leave(pp);
    706 		simple_unlock(&pp->pr_slock);
    707 		return (NULL);
    708 	}
    709 
    710 	/*
    711 	 * The convention we use is that if `curpage' is not NULL, then
    712 	 * it points at a non-empty bucket. In particular, `curpage'
    713 	 * never points at a page header which has PR_PHINPAGE set and
    714 	 * has no items in its bucket.
    715 	 */
    716 	if ((ph = pp->pr_curpage) == NULL) {
    717 #ifdef DIAGNOSTIC
    718 		if (pp->pr_nitems != 0) {
    719 			simple_unlock(&pp->pr_slock);
    720 			printf("pool_get: %s: curpage NULL, nitems %u\n",
    721 			    pp->pr_wchan, pp->pr_nitems);
    722 			panic("pool_get: nitems inconsistent");
    723 		}
    724 #endif
    725 
    726 		/*
    727 		 * Call the back-end page allocator for more memory.
    728 		 * Release the pool lock, as the back-end page allocator
    729 		 * may block.
    730 		 */
    731 		pr_leave(pp);
    732 		simple_unlock(&pp->pr_slock);
    733 		v = pool_allocator_alloc(pp, flags);
    734 		if (__predict_true(v != NULL))
    735 			ph = pool_alloc_item_header(pp, v, flags);
    736 		simple_lock(&pp->pr_slock);
    737 		pr_enter(pp, file, line);
    738 
    739 		if (__predict_false(v == NULL || ph == NULL)) {
    740 			if (v != NULL)
    741 				pool_allocator_free(pp, v);
    742 
    743 			/*
    744 			 * We were unable to allocate a page or item
    745 			 * header, but we released the lock during
    746 			 * allocation, so perhaps items were freed
    747 			 * back to the pool.  Check for this case.
    748 			 */
    749 			if (pp->pr_curpage != NULL)
    750 				goto startover;
    751 
    752 			if ((flags & PR_WAITOK) == 0) {
    753 				pp->pr_nfail++;
    754 				pr_leave(pp);
    755 				simple_unlock(&pp->pr_slock);
    756 				return (NULL);
    757 			}
    758 
    759 			/*
    760 			 * Wait for items to be returned to this pool.
    761 			 *
    762 			 * XXX: maybe we should wake up once a second and
    763 			 * try again?
    764 			 */
    765 			pp->pr_flags |= PR_WANTED;
    766 			/* PA_WANTED is already set on the allocator. */
    767 			pr_leave(pp);
    768 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
    769 			pr_enter(pp, file, line);
    770 			goto startover;
    771 		}
    772 
    773 		/* We have more memory; add it to the pool */
    774 		pool_prime_page(pp, v, ph);
    775 		pp->pr_npagealloc++;
    776 
    777 		/* Start the allocation process over. */
    778 		goto startover;
    779 	}
    780 	if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
    781 		pr_leave(pp);
    782 		simple_unlock(&pp->pr_slock);
    783 		panic("pool_get: %s: page empty", pp->pr_wchan);
    784 	}
    785 #ifdef DIAGNOSTIC
    786 	if (__predict_false(pp->pr_nitems == 0)) {
    787 		pr_leave(pp);
    788 		simple_unlock(&pp->pr_slock);
    789 		printf("pool_get: %s: items on itemlist, nitems %u\n",
    790 		    pp->pr_wchan, pp->pr_nitems);
    791 		panic("pool_get: nitems inconsistent");
    792 	}
    793 #endif
    794 
    795 #ifdef POOL_DIAGNOSTIC
    796 	pr_log(pp, v, PRLOG_GET, file, line);
    797 #endif
    798 
    799 #ifdef DIAGNOSTIC
    800 	if (__predict_false(pi->pi_magic != PI_MAGIC)) {
    801 		pr_printlog(pp, pi, printf);
    802 		panic("pool_get(%s): free list modified: magic=%x; page %p;"
    803 		       " item addr %p\n",
    804 			pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    805 	}
    806 #endif
    807 
    808 	/*
    809 	 * Remove from item list.
    810 	 */
    811 	TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
    812 	pp->pr_nitems--;
    813 	pp->pr_nout++;
    814 	if (ph->ph_nmissing == 0) {
    815 #ifdef DIAGNOSTIC
    816 		if (__predict_false(pp->pr_nidle == 0))
    817 			panic("pool_get: nidle inconsistent");
    818 #endif
    819 		pp->pr_nidle--;
    820 
    821 		/*
    822 		 * This page was previously empty.  Move it to the list of
    823 		 * partially-full pages.  This page is already curpage.
    824 		 */
    825 		LIST_REMOVE(ph, ph_pagelist);
    826 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
    827 	}
    828 	ph->ph_nmissing++;
    829 	if (TAILQ_EMPTY(&ph->ph_itemlist)) {
    830 #ifdef DIAGNOSTIC
    831 		if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
    832 			pr_leave(pp);
    833 			simple_unlock(&pp->pr_slock);
    834 			panic("pool_get: %s: nmissing inconsistent",
    835 			    pp->pr_wchan);
    836 		}
    837 #endif
    838 		/*
    839 		 * This page is now full.  Move it to the full list
    840 		 * and select a new current page.
    841 		 */
    842 		LIST_REMOVE(ph, ph_pagelist);
    843 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
    844 		pool_update_curpage(pp);
    845 	}
    846 
    847 	pp->pr_nget++;
    848 
    849 	/*
    850 	 * If we have a low water mark and we are now below that low
    851 	 * water mark, add more items to the pool.
    852 	 */
    853 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
    854 		/*
    855 		 * XXX: Should we log a warning?  Should we set up a timeout
    856 		 * to try again in a second or so?  The latter could break
    857 		 * a caller's assumptions about interrupt protection, etc.
    858 		 */
    859 	}
    860 
    861 	pr_leave(pp);
    862 	simple_unlock(&pp->pr_slock);
    863 	return (v);
    864 }
    865 
    866 /*
    867  * Internal version of pool_put().  Pool is already locked/entered.
    868  */
    869 static void
    870 pool_do_put(struct pool *pp, void *v)
    871 {
    872 	struct pool_item *pi = v;
    873 	struct pool_item_header *ph;
    874 	caddr_t page;
    875 	int s;
    876 
    877 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
    878 
    879 	page = (caddr_t)((u_long)v & pp->pr_alloc->pa_pagemask);
    880 
    881 #ifdef DIAGNOSTIC
    882 	if (__predict_false(pp->pr_nout == 0)) {
    883 		printf("pool %s: putting with none out\n",
    884 		    pp->pr_wchan);
    885 		panic("pool_put");
    886 	}
    887 #endif
    888 
    889 	if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
    890 		pr_printlog(pp, NULL, printf);
    891 		panic("pool_put: %s: page header missing", pp->pr_wchan);
    892 	}
    893 
    894 #ifdef LOCKDEBUG
    895 	/*
    896 	 * Check if we're freeing a locked simple lock.
    897 	 */
    898 	simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
    899 #endif
    900 
    901 	/*
    902 	 * Return to item list.
    903 	 */
    904 #ifdef DIAGNOSTIC
    905 	pi->pi_magic = PI_MAGIC;
    906 #endif
    907 #ifdef DEBUG
    908 	{
    909 		int i, *ip = v;
    910 
    911 		for (i = 0; i < pp->pr_size / sizeof(int); i++) {
    912 			*ip++ = PI_MAGIC;
    913 		}
    914 	}
    915 #endif
    916 
    917 	TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
    918 	KDASSERT(ph->ph_nmissing != 0);
    919 	ph->ph_nmissing--;
    920 	pp->pr_nput++;
    921 	pp->pr_nitems++;
    922 	pp->pr_nout--;
    923 
    924 	/* Cancel "pool empty" condition if it exists */
    925 	if (pp->pr_curpage == NULL)
    926 		pp->pr_curpage = ph;
    927 
    928 	if (pp->pr_flags & PR_WANTED) {
    929 		pp->pr_flags &= ~PR_WANTED;
    930 		if (ph->ph_nmissing == 0)
    931 			pp->pr_nidle++;
    932 		wakeup((caddr_t)pp);
    933 		return;
    934 	}
    935 
    936 	/*
    937 	 * If this page is now empty, do one of two things:
    938 	 *
    939 	 *	(1) If we have more pages than the page high water mark,
    940 	 *	    or if we are flagged as immediately freeing back idle
    941 	 *	    pages, free the page back to the system.  ONLY CONSIDER
    942 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
    943 	 *	    CLAIM.
    944 	 *
    945 	 *	(2) Otherwise, move the page to the empty page list.
    946 	 *
    947 	 * Either way, select a new current page (so we use a partially-full
    948 	 * page if one is available).
    949 	 */
    950 	if (ph->ph_nmissing == 0) {
    951 		pp->pr_nidle++;
    952 		if (pp->pr_npages > pp->pr_minpages &&
    953 		    (pp->pr_npages > pp->pr_maxpages ||
    954 		     (pp->pr_roflags & PR_IMMEDRELEASE) != 0 ||
    955 		     (pp->pr_alloc->pa_flags & PA_WANT) != 0)) {
    956 			pr_rmpage(pp, ph, NULL);
    957 		} else {
    958 			LIST_REMOVE(ph, ph_pagelist);
    959 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
    960 
    961 			/*
    962 			 * Update the timestamp on the page.  A page must
    963 			 * be idle for some period of time before it can
    964 			 * be reclaimed by the pagedaemon.  This minimizes
    965 			 * ping-pong'ing for memory.
    966 			 */
    967 			s = splclock();
    968 			ph->ph_time = mono_time;
    969 			splx(s);
    970 		}
    971 		pool_update_curpage(pp);
    972 	}
    973 
    974 	/*
    975 	 * If the page was previously completely full, move it to the
    976 	 * partially-full list and make it the current page.  The next
    977 	 * allocation will get the item from this page, instead of
    978 	 * further fragmenting the pool.
    979 	 */
    980 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
    981 		LIST_REMOVE(ph, ph_pagelist);
    982 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
    983 		pp->pr_curpage = ph;
    984 	}
    985 }
    986 
    987 /*
    988  * Return resource to the pool; must be called at appropriate spl level
    989  */
    990 #ifdef POOL_DIAGNOSTIC
    991 void
    992 _pool_put(struct pool *pp, void *v, const char *file, long line)
    993 {
    994 
    995 	simple_lock(&pp->pr_slock);
    996 	pr_enter(pp, file, line);
    997 
    998 	pr_log(pp, v, PRLOG_PUT, file, line);
    999 
   1000 	pool_do_put(pp, v);
   1001 
   1002 	pr_leave(pp);
   1003 	simple_unlock(&pp->pr_slock);
   1004 }
   1005 #undef pool_put
   1006 #endif /* POOL_DIAGNOSTIC */
   1007 
   1008 void
   1009 pool_put(struct pool *pp, void *v)
   1010 {
   1011 
   1012 	simple_lock(&pp->pr_slock);
   1013 
   1014 	pool_do_put(pp, v);
   1015 
   1016 	simple_unlock(&pp->pr_slock);
   1017 }
   1018 
   1019 #ifdef POOL_DIAGNOSTIC
   1020 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1021 #endif
   1022 
   1023 /*
   1024  * Add N items to the pool.
   1025  */
   1026 int
   1027 pool_prime(struct pool *pp, int n)
   1028 {
   1029 	struct pool_item_header *ph = NULL;
   1030 	caddr_t cp;
   1031 	int newpages;
   1032 
   1033 	simple_lock(&pp->pr_slock);
   1034 
   1035 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1036 
   1037 	while (newpages-- > 0) {
   1038 		simple_unlock(&pp->pr_slock);
   1039 		cp = pool_allocator_alloc(pp, PR_NOWAIT);
   1040 		if (__predict_true(cp != NULL))
   1041 			ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
   1042 		simple_lock(&pp->pr_slock);
   1043 
   1044 		if (__predict_false(cp == NULL || ph == NULL)) {
   1045 			if (cp != NULL)
   1046 				pool_allocator_free(pp, cp);
   1047 			break;
   1048 		}
   1049 
   1050 		pool_prime_page(pp, cp, ph);
   1051 		pp->pr_npagealloc++;
   1052 		pp->pr_minpages++;
   1053 	}
   1054 
   1055 	if (pp->pr_minpages >= pp->pr_maxpages)
   1056 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1057 
   1058 	simple_unlock(&pp->pr_slock);
   1059 	return (0);
   1060 }
   1061 
   1062 /*
   1063  * Add a page worth of items to the pool.
   1064  *
   1065  * Note, we must be called with the pool descriptor LOCKED.
   1066  */
   1067 static void
   1068 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
   1069 {
   1070 	struct pool_item *pi;
   1071 	caddr_t cp = storage;
   1072 	unsigned int align = pp->pr_align;
   1073 	unsigned int ioff = pp->pr_itemoffset;
   1074 	int n;
   1075 	int s;
   1076 
   1077 #ifdef DIAGNOSTIC
   1078 	if (((u_long)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1079 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1080 #endif
   1081 
   1082 	/*
   1083 	 * Insert page header.
   1084 	 */
   1085 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1086 	TAILQ_INIT(&ph->ph_itemlist);
   1087 	ph->ph_page = storage;
   1088 	ph->ph_nmissing = 0;
   1089 	s = splclock();
   1090 	ph->ph_time = mono_time;
   1091 	splx(s);
   1092 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1093 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1094 
   1095 	pp->pr_nidle++;
   1096 
   1097 	/*
   1098 	 * Color this page.
   1099 	 */
   1100 	cp = (caddr_t)(cp + pp->pr_curcolor);
   1101 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1102 		pp->pr_curcolor = 0;
   1103 
   1104 	/*
   1105 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1106 	 */
   1107 	if (ioff != 0)
   1108 		cp = (caddr_t)(cp + (align - ioff));
   1109 
   1110 	/*
   1111 	 * Insert remaining chunks on the bucket list.
   1112 	 */
   1113 	n = pp->pr_itemsperpage;
   1114 	pp->pr_nitems += n;
   1115 
   1116 	while (n--) {
   1117 		pi = (struct pool_item *)cp;
   1118 
   1119 		KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1120 
   1121 		/* Insert on page list */
   1122 		TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
   1123 #ifdef DIAGNOSTIC
   1124 		pi->pi_magic = PI_MAGIC;
   1125 #endif
   1126 		cp = (caddr_t)(cp + pp->pr_size);
   1127 	}
   1128 
   1129 	/*
   1130 	 * If the pool was depleted, point at the new page.
   1131 	 */
   1132 	if (pp->pr_curpage == NULL)
   1133 		pp->pr_curpage = ph;
   1134 
   1135 	if (++pp->pr_npages > pp->pr_hiwat)
   1136 		pp->pr_hiwat = pp->pr_npages;
   1137 }
   1138 
   1139 /*
   1140  * Used by pool_get() when nitems drops below the low water mark.  This
   1141  * is used to catch up pr_nitems with the low water mark.
   1142  *
   1143  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1144  *
   1145  * Note 2, we must be called with the pool already locked, and we return
   1146  * with it locked.
   1147  */
   1148 static int
   1149 pool_catchup(struct pool *pp)
   1150 {
   1151 	struct pool_item_header *ph = NULL;
   1152 	caddr_t cp;
   1153 	int error = 0;
   1154 
   1155 	while (POOL_NEEDS_CATCHUP(pp)) {
   1156 		/*
   1157 		 * Call the page back-end allocator for more memory.
   1158 		 *
   1159 		 * XXX: We never wait, so should we bother unlocking
   1160 		 * the pool descriptor?
   1161 		 */
   1162 		simple_unlock(&pp->pr_slock);
   1163 		cp = pool_allocator_alloc(pp, PR_NOWAIT);
   1164 		if (__predict_true(cp != NULL))
   1165 			ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
   1166 		simple_lock(&pp->pr_slock);
   1167 		if (__predict_false(cp == NULL || ph == NULL)) {
   1168 			if (cp != NULL)
   1169 				pool_allocator_free(pp, cp);
   1170 			error = ENOMEM;
   1171 			break;
   1172 		}
   1173 		pool_prime_page(pp, cp, ph);
   1174 		pp->pr_npagealloc++;
   1175 	}
   1176 
   1177 	return (error);
   1178 }
   1179 
   1180 static void
   1181 pool_update_curpage(struct pool *pp)
   1182 {
   1183 
   1184 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1185 	if (pp->pr_curpage == NULL) {
   1186 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1187 	}
   1188 }
   1189 
   1190 void
   1191 pool_setlowat(struct pool *pp, int n)
   1192 {
   1193 
   1194 	simple_lock(&pp->pr_slock);
   1195 
   1196 	pp->pr_minitems = n;
   1197 	pp->pr_minpages = (n == 0)
   1198 		? 0
   1199 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1200 
   1201 	/* Make sure we're caught up with the newly-set low water mark. */
   1202 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1203 		/*
   1204 		 * XXX: Should we log a warning?  Should we set up a timeout
   1205 		 * to try again in a second or so?  The latter could break
   1206 		 * a caller's assumptions about interrupt protection, etc.
   1207 		 */
   1208 	}
   1209 
   1210 	simple_unlock(&pp->pr_slock);
   1211 }
   1212 
   1213 void
   1214 pool_sethiwat(struct pool *pp, int n)
   1215 {
   1216 
   1217 	simple_lock(&pp->pr_slock);
   1218 
   1219 	pp->pr_maxpages = (n == 0)
   1220 		? 0
   1221 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1222 
   1223 	simple_unlock(&pp->pr_slock);
   1224 }
   1225 
   1226 void
   1227 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1228 {
   1229 
   1230 	simple_lock(&pp->pr_slock);
   1231 
   1232 	pp->pr_hardlimit = n;
   1233 	pp->pr_hardlimit_warning = warnmess;
   1234 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1235 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1236 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1237 
   1238 	/*
   1239 	 * In-line version of pool_sethiwat(), because we don't want to
   1240 	 * release the lock.
   1241 	 */
   1242 	pp->pr_maxpages = (n == 0)
   1243 		? 0
   1244 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1245 
   1246 	simple_unlock(&pp->pr_slock);
   1247 }
   1248 
   1249 /*
   1250  * Release all complete pages that have not been used recently.
   1251  */
   1252 int
   1253 #ifdef POOL_DIAGNOSTIC
   1254 _pool_reclaim(struct pool *pp, const char *file, long line)
   1255 #else
   1256 pool_reclaim(struct pool *pp)
   1257 #endif
   1258 {
   1259 	struct pool_item_header *ph, *phnext;
   1260 	struct pool_cache *pc;
   1261 	struct timeval curtime;
   1262 	struct pool_pagelist pq;
   1263 	struct timeval diff;
   1264 	int s;
   1265 
   1266 	if (pp->pr_drain_hook != NULL) {
   1267 		/*
   1268 		 * The drain hook must be called with the pool unlocked.
   1269 		 */
   1270 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1271 	}
   1272 
   1273 	if (simple_lock_try(&pp->pr_slock) == 0)
   1274 		return (0);
   1275 	pr_enter(pp, file, line);
   1276 
   1277 	LIST_INIT(&pq);
   1278 
   1279 	/*
   1280 	 * Reclaim items from the pool's caches.
   1281 	 */
   1282 	TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
   1283 		pool_cache_reclaim(pc);
   1284 
   1285 	s = splclock();
   1286 	curtime = mono_time;
   1287 	splx(s);
   1288 
   1289 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1290 		phnext = LIST_NEXT(ph, ph_pagelist);
   1291 
   1292 		/* Check our minimum page claim */
   1293 		if (pp->pr_npages <= pp->pr_minpages)
   1294 			break;
   1295 
   1296 		KASSERT(ph->ph_nmissing == 0);
   1297 		timersub(&curtime, &ph->ph_time, &diff);
   1298 		if (diff.tv_sec < pool_inactive_time)
   1299 			continue;
   1300 
   1301 		/*
   1302 		 * If freeing this page would put us below
   1303 		 * the low water mark, stop now.
   1304 		 */
   1305 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1306 		    pp->pr_minitems)
   1307 			break;
   1308 
   1309 		pr_rmpage(pp, ph, &pq);
   1310 	}
   1311 
   1312 	pr_leave(pp);
   1313 	simple_unlock(&pp->pr_slock);
   1314 	if (LIST_EMPTY(&pq))
   1315 		return (0);
   1316 
   1317 	while ((ph = LIST_FIRST(&pq)) != NULL) {
   1318 		LIST_REMOVE(ph, ph_pagelist);
   1319 		pool_allocator_free(pp, ph->ph_page);
   1320 		if (pp->pr_roflags & PR_PHINPAGE) {
   1321 			continue;
   1322 		}
   1323 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
   1324 		s = splvm();
   1325 		pool_put(&phpool, ph);
   1326 		splx(s);
   1327 	}
   1328 
   1329 	return (1);
   1330 }
   1331 
   1332 /*
   1333  * Drain pools, one at a time.
   1334  *
   1335  * Note, we must never be called from an interrupt context.
   1336  */
   1337 void
   1338 pool_drain(void *arg)
   1339 {
   1340 	struct pool *pp;
   1341 	int s;
   1342 
   1343 	pp = NULL;
   1344 	s = splvm();
   1345 	simple_lock(&pool_head_slock);
   1346 	if (drainpp == NULL) {
   1347 		drainpp = TAILQ_FIRST(&pool_head);
   1348 	}
   1349 	if (drainpp) {
   1350 		pp = drainpp;
   1351 		drainpp = TAILQ_NEXT(pp, pr_poollist);
   1352 	}
   1353 	simple_unlock(&pool_head_slock);
   1354 	pool_reclaim(pp);
   1355 	splx(s);
   1356 }
   1357 
   1358 /*
   1359  * Diagnostic helpers.
   1360  */
   1361 void
   1362 pool_print(struct pool *pp, const char *modif)
   1363 {
   1364 	int s;
   1365 
   1366 	s = splvm();
   1367 	if (simple_lock_try(&pp->pr_slock) == 0) {
   1368 		printf("pool %s is locked; try again later\n",
   1369 		    pp->pr_wchan);
   1370 		splx(s);
   1371 		return;
   1372 	}
   1373 	pool_print1(pp, modif, printf);
   1374 	simple_unlock(&pp->pr_slock);
   1375 	splx(s);
   1376 }
   1377 
   1378 void
   1379 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1380 {
   1381 	int didlock = 0;
   1382 
   1383 	if (pp == NULL) {
   1384 		(*pr)("Must specify a pool to print.\n");
   1385 		return;
   1386 	}
   1387 
   1388 	/*
   1389 	 * Called from DDB; interrupts should be blocked, and all
   1390 	 * other processors should be paused.  We can skip locking
   1391 	 * the pool in this case.
   1392 	 *
   1393 	 * We do a simple_lock_try() just to print the lock
   1394 	 * status, however.
   1395 	 */
   1396 
   1397 	if (simple_lock_try(&pp->pr_slock) == 0)
   1398 		(*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
   1399 	else
   1400 		didlock = 1;
   1401 
   1402 	pool_print1(pp, modif, pr);
   1403 
   1404 	if (didlock)
   1405 		simple_unlock(&pp->pr_slock);
   1406 }
   1407 
   1408 static void
   1409 pool_print_pagelist(struct pool_pagelist *pl, void (*pr)(const char *, ...))
   1410 {
   1411 	struct pool_item_header *ph;
   1412 #ifdef DIAGNOSTIC
   1413 	struct pool_item *pi;
   1414 #endif
   1415 
   1416 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1417 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
   1418 		    ph->ph_page, ph->ph_nmissing,
   1419 		    (u_long)ph->ph_time.tv_sec,
   1420 		    (u_long)ph->ph_time.tv_usec);
   1421 #ifdef DIAGNOSTIC
   1422 		TAILQ_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1423 			if (pi->pi_magic != PI_MAGIC) {
   1424 				(*pr)("\t\t\titem %p, magic 0x%x\n",
   1425 				    pi, pi->pi_magic);
   1426 			}
   1427 		}
   1428 #endif
   1429 	}
   1430 }
   1431 
   1432 static void
   1433 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1434 {
   1435 	struct pool_item_header *ph;
   1436 	struct pool_cache *pc;
   1437 	struct pool_cache_group *pcg;
   1438 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1439 	char c;
   1440 
   1441 	while ((c = *modif++) != '\0') {
   1442 		if (c == 'l')
   1443 			print_log = 1;
   1444 		if (c == 'p')
   1445 			print_pagelist = 1;
   1446 		if (c == 'c')
   1447 			print_cache = 1;
   1448 	}
   1449 
   1450 	(*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1451 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1452 	    pp->pr_roflags);
   1453 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1454 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1455 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1456 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1457 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1458 
   1459 	(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
   1460 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1461 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1462 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1463 
   1464 	if (print_pagelist == 0)
   1465 		goto skip_pagelist;
   1466 
   1467 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1468 		(*pr)("\n\tempty page list:\n");
   1469 	pool_print_pagelist(&pp->pr_emptypages, pr);
   1470 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1471 		(*pr)("\n\tfull page list:\n");
   1472 	pool_print_pagelist(&pp->pr_fullpages, pr);
   1473 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1474 		(*pr)("\n\tpartial-page list:\n");
   1475 	pool_print_pagelist(&pp->pr_partpages, pr);
   1476 
   1477 	if (pp->pr_curpage == NULL)
   1478 		(*pr)("\tno current page\n");
   1479 	else
   1480 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1481 
   1482  skip_pagelist:
   1483 	if (print_log == 0)
   1484 		goto skip_log;
   1485 
   1486 	(*pr)("\n");
   1487 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1488 		(*pr)("\tno log\n");
   1489 	else
   1490 		pr_printlog(pp, NULL, pr);
   1491 
   1492  skip_log:
   1493 	if (print_cache == 0)
   1494 		goto skip_cache;
   1495 
   1496 	TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
   1497 		(*pr)("\tcache %p: allocfrom %p freeto %p\n", pc,
   1498 		    pc->pc_allocfrom, pc->pc_freeto);
   1499 		(*pr)("\t    hits %lu misses %lu ngroups %lu nitems %lu\n",
   1500 		    pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
   1501 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
   1502 			(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);
   1503 			for (i = 0; i < PCG_NOBJECTS; i++) {
   1504 				if (pcg->pcg_objects[i].pcgo_pa !=
   1505 				    POOL_PADDR_INVALID) {
   1506 					(*pr)("\t\t\t%p, 0x%llx\n",
   1507 					    pcg->pcg_objects[i].pcgo_va,
   1508 					    (unsigned long long)
   1509 					    pcg->pcg_objects[i].pcgo_pa);
   1510 				} else {
   1511 					(*pr)("\t\t\t%p\n",
   1512 					    pcg->pcg_objects[i].pcgo_va);
   1513 				}
   1514 			}
   1515 		}
   1516 	}
   1517 
   1518  skip_cache:
   1519 	pr_enter_check(pp, pr);
   1520 }
   1521 
   1522 static int
   1523 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1524 {
   1525 	struct pool_item *pi;
   1526 	caddr_t page;
   1527 	int n;
   1528 
   1529 	page = (caddr_t)((u_long)ph & pp->pr_alloc->pa_pagemask);
   1530 	if (page != ph->ph_page &&
   1531 	    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1532 		if (label != NULL)
   1533 			printf("%s: ", label);
   1534 		printf("pool(%p:%s): page inconsistency: page %p;"
   1535 		       " at page head addr %p (p %p)\n", pp,
   1536 			pp->pr_wchan, ph->ph_page,
   1537 			ph, page);
   1538 		return 1;
   1539 	}
   1540 
   1541 	for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
   1542 	     pi != NULL;
   1543 	     pi = TAILQ_NEXT(pi,pi_list), n++) {
   1544 
   1545 #ifdef DIAGNOSTIC
   1546 		if (pi->pi_magic != PI_MAGIC) {
   1547 			if (label != NULL)
   1548 				printf("%s: ", label);
   1549 			printf("pool(%s): free list modified: magic=%x;"
   1550 			       " page %p; item ordinal %d;"
   1551 			       " addr %p (p %p)\n",
   1552 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1553 				n, pi, page);
   1554 			panic("pool");
   1555 		}
   1556 #endif
   1557 		page =
   1558 		    (caddr_t)((u_long)pi & pp->pr_alloc->pa_pagemask);
   1559 		if (page == ph->ph_page)
   1560 			continue;
   1561 
   1562 		if (label != NULL)
   1563 			printf("%s: ", label);
   1564 		printf("pool(%p:%s): page inconsistency: page %p;"
   1565 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1566 			pp->pr_wchan, ph->ph_page,
   1567 			n, pi, page);
   1568 		return 1;
   1569 	}
   1570 	return 0;
   1571 }
   1572 
   1573 
   1574 int
   1575 pool_chk(struct pool *pp, const char *label)
   1576 {
   1577 	struct pool_item_header *ph;
   1578 	int r = 0;
   1579 
   1580 	simple_lock(&pp->pr_slock);
   1581 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1582 		r = pool_chk_page(pp, label, ph);
   1583 		if (r) {
   1584 			goto out;
   1585 		}
   1586 	}
   1587 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1588 		r = pool_chk_page(pp, label, ph);
   1589 		if (r) {
   1590 			goto out;
   1591 		}
   1592 	}
   1593 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1594 		r = pool_chk_page(pp, label, ph);
   1595 		if (r) {
   1596 			goto out;
   1597 		}
   1598 	}
   1599 
   1600 out:
   1601 	simple_unlock(&pp->pr_slock);
   1602 	return (r);
   1603 }
   1604 
   1605 /*
   1606  * pool_cache_init:
   1607  *
   1608  *	Initialize a pool cache.
   1609  *
   1610  *	NOTE: If the pool must be protected from interrupts, we expect
   1611  *	to be called at the appropriate interrupt priority level.
   1612  */
   1613 void
   1614 pool_cache_init(struct pool_cache *pc, struct pool *pp,
   1615     int (*ctor)(void *, void *, int),
   1616     void (*dtor)(void *, void *),
   1617     void *arg)
   1618 {
   1619 
   1620 	TAILQ_INIT(&pc->pc_grouplist);
   1621 	simple_lock_init(&pc->pc_slock);
   1622 
   1623 	pc->pc_allocfrom = NULL;
   1624 	pc->pc_freeto = NULL;
   1625 	pc->pc_pool = pp;
   1626 
   1627 	pc->pc_ctor = ctor;
   1628 	pc->pc_dtor = dtor;
   1629 	pc->pc_arg  = arg;
   1630 
   1631 	pc->pc_hits   = 0;
   1632 	pc->pc_misses = 0;
   1633 
   1634 	pc->pc_ngroups = 0;
   1635 
   1636 	pc->pc_nitems = 0;
   1637 
   1638 	simple_lock(&pp->pr_slock);
   1639 	TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist);
   1640 	simple_unlock(&pp->pr_slock);
   1641 }
   1642 
   1643 /*
   1644  * pool_cache_destroy:
   1645  *
   1646  *	Destroy a pool cache.
   1647  */
   1648 void
   1649 pool_cache_destroy(struct pool_cache *pc)
   1650 {
   1651 	struct pool *pp = pc->pc_pool;
   1652 
   1653 	/* First, invalidate the entire cache. */
   1654 	pool_cache_invalidate(pc);
   1655 
   1656 	/* ...and remove it from the pool's cache list. */
   1657 	simple_lock(&pp->pr_slock);
   1658 	TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist);
   1659 	simple_unlock(&pp->pr_slock);
   1660 }
   1661 
   1662 static __inline void *
   1663 pcg_get(struct pool_cache_group *pcg, paddr_t *pap)
   1664 {
   1665 	void *object;
   1666 	u_int idx;
   1667 
   1668 	KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
   1669 	KASSERT(pcg->pcg_avail != 0);
   1670 	idx = --pcg->pcg_avail;
   1671 
   1672 	KASSERT(pcg->pcg_objects[idx].pcgo_va != NULL);
   1673 	object = pcg->pcg_objects[idx].pcgo_va;
   1674 	if (pap != NULL)
   1675 		*pap = pcg->pcg_objects[idx].pcgo_pa;
   1676 	pcg->pcg_objects[idx].pcgo_va = NULL;
   1677 
   1678 	return (object);
   1679 }
   1680 
   1681 static __inline void
   1682 pcg_put(struct pool_cache_group *pcg, void *object, paddr_t pa)
   1683 {
   1684 	u_int idx;
   1685 
   1686 	KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
   1687 	idx = pcg->pcg_avail++;
   1688 
   1689 	KASSERT(pcg->pcg_objects[idx].pcgo_va == NULL);
   1690 	pcg->pcg_objects[idx].pcgo_va = object;
   1691 	pcg->pcg_objects[idx].pcgo_pa = pa;
   1692 }
   1693 
   1694 /*
   1695  * pool_cache_get{,_paddr}:
   1696  *
   1697  *	Get an object from a pool cache (optionally returning
   1698  *	the physical address of the object).
   1699  */
   1700 void *
   1701 pool_cache_get_paddr(struct pool_cache *pc, int flags, paddr_t *pap)
   1702 {
   1703 	struct pool_cache_group *pcg;
   1704 	void *object;
   1705 
   1706 #ifdef LOCKDEBUG
   1707 	if (flags & PR_WAITOK)
   1708 		simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)");
   1709 #endif
   1710 
   1711 	simple_lock(&pc->pc_slock);
   1712 
   1713 	if ((pcg = pc->pc_allocfrom) == NULL) {
   1714 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
   1715 			if (pcg->pcg_avail != 0) {
   1716 				pc->pc_allocfrom = pcg;
   1717 				goto have_group;
   1718 			}
   1719 		}
   1720 
   1721 		/*
   1722 		 * No groups with any available objects.  Allocate
   1723 		 * a new object, construct it, and return it to
   1724 		 * the caller.  We will allocate a group, if necessary,
   1725 		 * when the object is freed back to the cache.
   1726 		 */
   1727 		pc->pc_misses++;
   1728 		simple_unlock(&pc->pc_slock);
   1729 		object = pool_get(pc->pc_pool, flags);
   1730 		if (object != NULL && pc->pc_ctor != NULL) {
   1731 			if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
   1732 				pool_put(pc->pc_pool, object);
   1733 				return (NULL);
   1734 			}
   1735 		}
   1736 		if (object != NULL && pap != NULL) {
   1737 #ifdef POOL_VTOPHYS
   1738 			*pap = POOL_VTOPHYS(object);
   1739 #else
   1740 			*pap = POOL_PADDR_INVALID;
   1741 #endif
   1742 		}
   1743 		return (object);
   1744 	}
   1745 
   1746  have_group:
   1747 	pc->pc_hits++;
   1748 	pc->pc_nitems--;
   1749 	object = pcg_get(pcg, pap);
   1750 
   1751 	if (pcg->pcg_avail == 0)
   1752 		pc->pc_allocfrom = NULL;
   1753 
   1754 	simple_unlock(&pc->pc_slock);
   1755 
   1756 	return (object);
   1757 }
   1758 
   1759 /*
   1760  * pool_cache_put{,_paddr}:
   1761  *
   1762  *	Put an object back to the pool cache (optionally caching the
   1763  *	physical address of the object).
   1764  */
   1765 void
   1766 pool_cache_put_paddr(struct pool_cache *pc, void *object, paddr_t pa)
   1767 {
   1768 	struct pool_cache_group *pcg;
   1769 	int s;
   1770 
   1771 	simple_lock(&pc->pc_slock);
   1772 
   1773 	if ((pcg = pc->pc_freeto) == NULL) {
   1774 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
   1775 			if (pcg->pcg_avail != PCG_NOBJECTS) {
   1776 				pc->pc_freeto = pcg;
   1777 				goto have_group;
   1778 			}
   1779 		}
   1780 
   1781 		/*
   1782 		 * No empty groups to free the object to.  Attempt to
   1783 		 * allocate one.
   1784 		 */
   1785 		simple_unlock(&pc->pc_slock);
   1786 		s = splvm();
   1787 		pcg = pool_get(&pcgpool, PR_NOWAIT);
   1788 		splx(s);
   1789 		if (pcg != NULL) {
   1790 			memset(pcg, 0, sizeof(*pcg));
   1791 			simple_lock(&pc->pc_slock);
   1792 			pc->pc_ngroups++;
   1793 			TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list);
   1794 			if (pc->pc_freeto == NULL)
   1795 				pc->pc_freeto = pcg;
   1796 			goto have_group;
   1797 		}
   1798 
   1799 		/*
   1800 		 * Unable to allocate a cache group; destruct the object
   1801 		 * and free it back to the pool.
   1802 		 */
   1803 		pool_cache_destruct_object(pc, object);
   1804 		return;
   1805 	}
   1806 
   1807  have_group:
   1808 	pc->pc_nitems++;
   1809 	pcg_put(pcg, object, pa);
   1810 
   1811 	if (pcg->pcg_avail == PCG_NOBJECTS)
   1812 		pc->pc_freeto = NULL;
   1813 
   1814 	simple_unlock(&pc->pc_slock);
   1815 }
   1816 
   1817 /*
   1818  * pool_cache_destruct_object:
   1819  *
   1820  *	Force destruction of an object and its release back into
   1821  *	the pool.
   1822  */
   1823 void
   1824 pool_cache_destruct_object(struct pool_cache *pc, void *object)
   1825 {
   1826 
   1827 	if (pc->pc_dtor != NULL)
   1828 		(*pc->pc_dtor)(pc->pc_arg, object);
   1829 	pool_put(pc->pc_pool, object);
   1830 }
   1831 
   1832 /*
   1833  * pool_cache_do_invalidate:
   1834  *
   1835  *	This internal function implements pool_cache_invalidate() and
   1836  *	pool_cache_reclaim().
   1837  */
   1838 static void
   1839 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups,
   1840     void (*putit)(struct pool *, void *))
   1841 {
   1842 	struct pool_cache_group *pcg, *npcg;
   1843 	void *object;
   1844 	int s;
   1845 
   1846 	for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
   1847 	     pcg = npcg) {
   1848 		npcg = TAILQ_NEXT(pcg, pcg_list);
   1849 		while (pcg->pcg_avail != 0) {
   1850 			pc->pc_nitems--;
   1851 			object = pcg_get(pcg, NULL);
   1852 			if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg)
   1853 				pc->pc_allocfrom = NULL;
   1854 			if (pc->pc_dtor != NULL)
   1855 				(*pc->pc_dtor)(pc->pc_arg, object);
   1856 			(*putit)(pc->pc_pool, object);
   1857 		}
   1858 		if (free_groups) {
   1859 			pc->pc_ngroups--;
   1860 			TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list);
   1861 			if (pc->pc_freeto == pcg)
   1862 				pc->pc_freeto = NULL;
   1863 			s = splvm();
   1864 			pool_put(&pcgpool, pcg);
   1865 			splx(s);
   1866 		}
   1867 	}
   1868 }
   1869 
   1870 /*
   1871  * pool_cache_invalidate:
   1872  *
   1873  *	Invalidate a pool cache (destruct and release all of the
   1874  *	cached objects).
   1875  */
   1876 void
   1877 pool_cache_invalidate(struct pool_cache *pc)
   1878 {
   1879 
   1880 	simple_lock(&pc->pc_slock);
   1881 	pool_cache_do_invalidate(pc, 0, pool_put);
   1882 	simple_unlock(&pc->pc_slock);
   1883 }
   1884 
   1885 /*
   1886  * pool_cache_reclaim:
   1887  *
   1888  *	Reclaim a pool cache for pool_reclaim().
   1889  */
   1890 static void
   1891 pool_cache_reclaim(struct pool_cache *pc)
   1892 {
   1893 
   1894 	simple_lock(&pc->pc_slock);
   1895 	pool_cache_do_invalidate(pc, 1, pool_do_put);
   1896 	simple_unlock(&pc->pc_slock);
   1897 }
   1898 
   1899 /*
   1900  * Pool backend allocators.
   1901  *
   1902  * Each pool has a backend allocator that handles allocation, deallocation,
   1903  * and any additional draining that might be needed.
   1904  *
   1905  * We provide two standard allocators:
   1906  *
   1907  *	pool_allocator_kmem - the default when no allocator is specified
   1908  *
   1909  *	pool_allocator_nointr - used for pools that will not be accessed
   1910  *	in interrupt context.
   1911  */
   1912 void	*pool_page_alloc(struct pool *, int);
   1913 void	pool_page_free(struct pool *, void *);
   1914 
   1915 struct pool_allocator pool_allocator_kmem = {
   1916 	pool_page_alloc, pool_page_free, 0,
   1917 };
   1918 
   1919 void	*pool_page_alloc_nointr(struct pool *, int);
   1920 void	pool_page_free_nointr(struct pool *, void *);
   1921 
   1922 struct pool_allocator pool_allocator_nointr = {
   1923 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   1924 };
   1925 
   1926 #ifdef POOL_SUBPAGE
   1927 void	*pool_subpage_alloc(struct pool *, int);
   1928 void	pool_subpage_free(struct pool *, void *);
   1929 
   1930 struct pool_allocator pool_allocator_kmem_subpage = {
   1931 	pool_subpage_alloc, pool_subpage_free, 0,
   1932 };
   1933 #endif /* POOL_SUBPAGE */
   1934 
   1935 /*
   1936  * We have at least three different resources for the same allocation and
   1937  * each resource can be depleted.  First, we have the ready elements in the
   1938  * pool.  Then we have the resource (typically a vm_map) for this allocator.
   1939  * Finally, we have physical memory.  Waiting for any of these can be
   1940  * unnecessary when any other is freed, but the kernel doesn't support
   1941  * sleeping on multiple wait channels, so we have to employ another strategy.
   1942  *
   1943  * The caller sleeps on the pool (so that it can be awakened when an item
   1944  * is returned to the pool), but we set PA_WANT on the allocator.  When a
   1945  * page is returned to the allocator and PA_WANT is set, pool_allocator_free
   1946  * will wake up all sleeping pools belonging to this allocator.
   1947  *
   1948  * XXX Thundering herd.
   1949  */
   1950 void *
   1951 pool_allocator_alloc(struct pool *org, int flags)
   1952 {
   1953 	struct pool_allocator *pa = org->pr_alloc;
   1954 	struct pool *pp, *start;
   1955 	int s, freed;
   1956 	void *res;
   1957 
   1958 	do {
   1959 		if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
   1960 			return (res);
   1961 		if ((flags & PR_WAITOK) == 0) {
   1962 			/*
   1963 			 * We only run the drain hookhere if PR_NOWAIT.
   1964 			 * In other cases, the hook will be run in
   1965 			 * pool_reclaim().
   1966 			 */
   1967 			if (org->pr_drain_hook != NULL) {
   1968 				(*org->pr_drain_hook)(org->pr_drain_hook_arg,
   1969 				    flags);
   1970 				if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
   1971 					return (res);
   1972 			}
   1973 			break;
   1974 		}
   1975 
   1976 		/*
   1977 		 * Drain all pools, except "org", that use this
   1978 		 * allocator.  We do this to reclaim VA space.
   1979 		 * pa_alloc is responsible for waiting for
   1980 		 * physical memory.
   1981 		 *
   1982 		 * XXX We risk looping forever if start if someone
   1983 		 * calls pool_destroy on "start".  But there is no
   1984 		 * other way to have potentially sleeping pool_reclaim,
   1985 		 * non-sleeping locks on pool_allocator, and some
   1986 		 * stirring of drained pools in the allocator.
   1987 		 *
   1988 		 * XXX Maybe we should use pool_head_slock for locking
   1989 		 * the allocators?
   1990 		 */
   1991 		freed = 0;
   1992 
   1993 		s = splvm();
   1994 		simple_lock(&pa->pa_slock);
   1995 		pp = start = TAILQ_FIRST(&pa->pa_list);
   1996 		do {
   1997 			TAILQ_REMOVE(&pa->pa_list, pp, pr_alloc_list);
   1998 			TAILQ_INSERT_TAIL(&pa->pa_list, pp, pr_alloc_list);
   1999 			if (pp == org)
   2000 				continue;
   2001 			simple_unlock(&pa->pa_slock);
   2002 			freed = pool_reclaim(pp);
   2003 			simple_lock(&pa->pa_slock);
   2004 		} while ((pp = TAILQ_FIRST(&pa->pa_list)) != start &&
   2005 			 freed == 0);
   2006 
   2007 		if (freed == 0) {
   2008 			/*
   2009 			 * We set PA_WANT here, the caller will most likely
   2010 			 * sleep waiting for pages (if not, this won't hurt
   2011 			 * that much), and there is no way to set this in
   2012 			 * the caller without violating locking order.
   2013 			 */
   2014 			pa->pa_flags |= PA_WANT;
   2015 		}
   2016 		simple_unlock(&pa->pa_slock);
   2017 		splx(s);
   2018 	} while (freed);
   2019 	return (NULL);
   2020 }
   2021 
   2022 void
   2023 pool_allocator_free(struct pool *pp, void *v)
   2024 {
   2025 	struct pool_allocator *pa = pp->pr_alloc;
   2026 	int s;
   2027 
   2028 	(*pa->pa_free)(pp, v);
   2029 
   2030 	s = splvm();
   2031 	simple_lock(&pa->pa_slock);
   2032 	if ((pa->pa_flags & PA_WANT) == 0) {
   2033 		simple_unlock(&pa->pa_slock);
   2034 		splx(s);
   2035 		return;
   2036 	}
   2037 
   2038 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
   2039 		simple_lock(&pp->pr_slock);
   2040 		if ((pp->pr_flags & PR_WANTED) != 0) {
   2041 			pp->pr_flags &= ~PR_WANTED;
   2042 			wakeup(pp);
   2043 		}
   2044 		simple_unlock(&pp->pr_slock);
   2045 	}
   2046 	pa->pa_flags &= ~PA_WANT;
   2047 	simple_unlock(&pa->pa_slock);
   2048 	splx(s);
   2049 }
   2050 
   2051 void *
   2052 pool_page_alloc(struct pool *pp, int flags)
   2053 {
   2054 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   2055 
   2056 	return ((void *) uvm_km_alloc_poolpage(waitok));
   2057 }
   2058 
   2059 void
   2060 pool_page_free(struct pool *pp, void *v)
   2061 {
   2062 
   2063 	uvm_km_free_poolpage((vaddr_t) v);
   2064 }
   2065 
   2066 #ifdef POOL_SUBPAGE
   2067 /* Sub-page allocator, for machines with large hardware pages. */
   2068 void *
   2069 pool_subpage_alloc(struct pool *pp, int flags)
   2070 {
   2071 
   2072 	return (pool_get(&psppool, flags));
   2073 }
   2074 
   2075 void
   2076 pool_subpage_free(struct pool *pp, void *v)
   2077 {
   2078 
   2079 	pool_put(&psppool, v);
   2080 }
   2081 
   2082 /* We don't provide a real nointr allocator.  Maybe later. */
   2083 void *
   2084 pool_page_alloc_nointr(struct pool *pp, int flags)
   2085 {
   2086 
   2087 	return (pool_subpage_alloc(pp, flags));
   2088 }
   2089 
   2090 void
   2091 pool_page_free_nointr(struct pool *pp, void *v)
   2092 {
   2093 
   2094 	pool_subpage_free(pp, v);
   2095 }
   2096 #else
   2097 void *
   2098 pool_page_alloc_nointr(struct pool *pp, int flags)
   2099 {
   2100 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   2101 
   2102 	return ((void *) uvm_km_alloc_poolpage1(kernel_map,
   2103 	    uvm.kernel_object, waitok));
   2104 }
   2105 
   2106 void
   2107 pool_page_free_nointr(struct pool *pp, void *v)
   2108 {
   2109 
   2110 	uvm_km_free_poolpage1(kernel_map, (vaddr_t) v);
   2111 }
   2112 #endif /* POOL_SUBPAGE */
   2113