subr_pool.c revision 1.90 1 /* $NetBSD: subr_pool.c,v 1.90 2004/01/09 19:00:16 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.90 2004/01/09 19:00:16 thorpej Exp $");
42
43 #include "opt_pool.h"
44 #include "opt_poollog.h"
45 #include "opt_lockdebug.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/proc.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/lock.h>
54 #include <sys/pool.h>
55 #include <sys/syslog.h>
56
57 #include <uvm/uvm.h>
58
59 /*
60 * Pool resource management utility.
61 *
62 * Memory is allocated in pages which are split into pieces according to
63 * the pool item size. Each page is kept on one of three lists in the
64 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
65 * for empty, full and partially-full pages respectively. The individual
66 * pool items are on a linked list headed by `ph_itemlist' in each page
67 * header. The memory for building the page list is either taken from
68 * the allocated pages themselves (for small pool items) or taken from
69 * an internal pool of page headers (`phpool').
70 */
71
72 /* List of all pools */
73 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
74
75 /* Private pool for page header structures */
76 static struct pool phpool;
77
78 #ifdef POOL_SUBPAGE
79 /* Pool of subpages for use by normal pools. */
80 static struct pool psppool;
81 #endif
82
83 /* # of seconds to retain page after last use */
84 int pool_inactive_time = 10;
85
86 /* Next candidate for drainage (see pool_drain()) */
87 static struct pool *drainpp;
88
89 /* This spin lock protects both pool_head and drainpp. */
90 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
91
92 struct pool_item_header {
93 /* Page headers */
94 LIST_ENTRY(pool_item_header)
95 ph_pagelist; /* pool page list */
96 TAILQ_HEAD(,pool_item) ph_itemlist; /* chunk list for this page */
97 SPLAY_ENTRY(pool_item_header)
98 ph_node; /* Off-page page headers */
99 unsigned int ph_nmissing; /* # of chunks in use */
100 caddr_t ph_page; /* this page's address */
101 struct timeval ph_time; /* last referenced */
102 };
103
104 struct pool_item {
105 #ifdef DIAGNOSTIC
106 u_int pi_magic;
107 #endif
108 #define PI_MAGIC 0xdeadbeefU
109 /* Other entries use only this list entry */
110 TAILQ_ENTRY(pool_item) pi_list;
111 };
112
113 #define POOL_NEEDS_CATCHUP(pp) \
114 ((pp)->pr_nitems < (pp)->pr_minitems)
115
116 /*
117 * Pool cache management.
118 *
119 * Pool caches provide a way for constructed objects to be cached by the
120 * pool subsystem. This can lead to performance improvements by avoiding
121 * needless object construction/destruction; it is deferred until absolutely
122 * necessary.
123 *
124 * Caches are grouped into cache groups. Each cache group references
125 * up to 16 constructed objects. When a cache allocates an object
126 * from the pool, it calls the object's constructor and places it into
127 * a cache group. When a cache group frees an object back to the pool,
128 * it first calls the object's destructor. This allows the object to
129 * persist in constructed form while freed to the cache.
130 *
131 * Multiple caches may exist for each pool. This allows a single
132 * object type to have multiple constructed forms. The pool references
133 * each cache, so that when a pool is drained by the pagedaemon, it can
134 * drain each individual cache as well. Each time a cache is drained,
135 * the most idle cache group is freed to the pool in its entirety.
136 *
137 * Pool caches are layed on top of pools. By layering them, we can avoid
138 * the complexity of cache management for pools which would not benefit
139 * from it.
140 */
141
142 /* The cache group pool. */
143 static struct pool pcgpool;
144
145 static void pool_cache_reclaim(struct pool_cache *);
146
147 static int pool_catchup(struct pool *);
148 static void pool_prime_page(struct pool *, caddr_t,
149 struct pool_item_header *);
150 static void pool_update_curpage(struct pool *);
151
152 void *pool_allocator_alloc(struct pool *, int);
153 void pool_allocator_free(struct pool *, void *);
154
155 static void pool_print_pagelist(struct pool_pagelist *,
156 void (*)(const char *, ...));
157 static void pool_print1(struct pool *, const char *,
158 void (*)(const char *, ...));
159
160 static int pool_chk_page(struct pool *, const char *,
161 struct pool_item_header *);
162
163 /*
164 * Pool log entry. An array of these is allocated in pool_init().
165 */
166 struct pool_log {
167 const char *pl_file;
168 long pl_line;
169 int pl_action;
170 #define PRLOG_GET 1
171 #define PRLOG_PUT 2
172 void *pl_addr;
173 };
174
175 #ifdef POOL_DIAGNOSTIC
176 /* Number of entries in pool log buffers */
177 #ifndef POOL_LOGSIZE
178 #define POOL_LOGSIZE 10
179 #endif
180
181 int pool_logsize = POOL_LOGSIZE;
182
183 static __inline void
184 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
185 {
186 int n = pp->pr_curlogentry;
187 struct pool_log *pl;
188
189 if ((pp->pr_roflags & PR_LOGGING) == 0)
190 return;
191
192 /*
193 * Fill in the current entry. Wrap around and overwrite
194 * the oldest entry if necessary.
195 */
196 pl = &pp->pr_log[n];
197 pl->pl_file = file;
198 pl->pl_line = line;
199 pl->pl_action = action;
200 pl->pl_addr = v;
201 if (++n >= pp->pr_logsize)
202 n = 0;
203 pp->pr_curlogentry = n;
204 }
205
206 static void
207 pr_printlog(struct pool *pp, struct pool_item *pi,
208 void (*pr)(const char *, ...))
209 {
210 int i = pp->pr_logsize;
211 int n = pp->pr_curlogentry;
212
213 if ((pp->pr_roflags & PR_LOGGING) == 0)
214 return;
215
216 /*
217 * Print all entries in this pool's log.
218 */
219 while (i-- > 0) {
220 struct pool_log *pl = &pp->pr_log[n];
221 if (pl->pl_action != 0) {
222 if (pi == NULL || pi == pl->pl_addr) {
223 (*pr)("\tlog entry %d:\n", i);
224 (*pr)("\t\taction = %s, addr = %p\n",
225 pl->pl_action == PRLOG_GET ? "get" : "put",
226 pl->pl_addr);
227 (*pr)("\t\tfile: %s at line %lu\n",
228 pl->pl_file, pl->pl_line);
229 }
230 }
231 if (++n >= pp->pr_logsize)
232 n = 0;
233 }
234 }
235
236 static __inline void
237 pr_enter(struct pool *pp, const char *file, long line)
238 {
239
240 if (__predict_false(pp->pr_entered_file != NULL)) {
241 printf("pool %s: reentrancy at file %s line %ld\n",
242 pp->pr_wchan, file, line);
243 printf(" previous entry at file %s line %ld\n",
244 pp->pr_entered_file, pp->pr_entered_line);
245 panic("pr_enter");
246 }
247
248 pp->pr_entered_file = file;
249 pp->pr_entered_line = line;
250 }
251
252 static __inline void
253 pr_leave(struct pool *pp)
254 {
255
256 if (__predict_false(pp->pr_entered_file == NULL)) {
257 printf("pool %s not entered?\n", pp->pr_wchan);
258 panic("pr_leave");
259 }
260
261 pp->pr_entered_file = NULL;
262 pp->pr_entered_line = 0;
263 }
264
265 static __inline void
266 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
267 {
268
269 if (pp->pr_entered_file != NULL)
270 (*pr)("\n\tcurrently entered from file %s line %ld\n",
271 pp->pr_entered_file, pp->pr_entered_line);
272 }
273 #else
274 #define pr_log(pp, v, action, file, line)
275 #define pr_printlog(pp, pi, pr)
276 #define pr_enter(pp, file, line)
277 #define pr_leave(pp)
278 #define pr_enter_check(pp, pr)
279 #endif /* POOL_DIAGNOSTIC */
280
281 static __inline int
282 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
283 {
284 if (a->ph_page < b->ph_page)
285 return (-1);
286 else if (a->ph_page > b->ph_page)
287 return (1);
288 else
289 return (0);
290 }
291
292 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
293 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
294
295 /*
296 * Return the pool page header based on page address.
297 */
298 static __inline struct pool_item_header *
299 pr_find_pagehead(struct pool *pp, caddr_t page)
300 {
301 struct pool_item_header *ph, tmp;
302
303 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
304 return ((struct pool_item_header *)(page + pp->pr_phoffset));
305
306 tmp.ph_page = page;
307 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
308 return ph;
309 }
310
311 /*
312 * Remove a page from the pool.
313 */
314 static __inline void
315 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
316 struct pool_pagelist *pq)
317 {
318 int s;
319
320 /*
321 * If the page was idle, decrement the idle page count.
322 */
323 if (ph->ph_nmissing == 0) {
324 #ifdef DIAGNOSTIC
325 if (pp->pr_nidle == 0)
326 panic("pr_rmpage: nidle inconsistent");
327 if (pp->pr_nitems < pp->pr_itemsperpage)
328 panic("pr_rmpage: nitems inconsistent");
329 #endif
330 pp->pr_nidle--;
331 }
332
333 pp->pr_nitems -= pp->pr_itemsperpage;
334
335 /*
336 * Unlink a page from the pool and release it (or queue it for release).
337 */
338 LIST_REMOVE(ph, ph_pagelist);
339 if (pq) {
340 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
341 } else {
342 pool_allocator_free(pp, ph->ph_page);
343 if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
344 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
345 s = splvm();
346 pool_put(&phpool, ph);
347 splx(s);
348 }
349 }
350 pp->pr_npages--;
351 pp->pr_npagefree++;
352
353 pool_update_curpage(pp);
354 }
355
356 /*
357 * Initialize the given pool resource structure.
358 *
359 * We export this routine to allow other kernel parts to declare
360 * static pools that must be initialized before malloc() is available.
361 */
362 void
363 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
364 const char *wchan, struct pool_allocator *palloc)
365 {
366 int off, slack;
367
368 #ifdef POOL_DIAGNOSTIC
369 /*
370 * Always log if POOL_DIAGNOSTIC is defined.
371 */
372 if (pool_logsize != 0)
373 flags |= PR_LOGGING;
374 #endif
375
376 #ifdef POOL_SUBPAGE
377 /*
378 * XXX We don't provide a real `nointr' back-end
379 * yet; all sub-pages come from a kmem back-end.
380 * maybe some day...
381 */
382 if (palloc == NULL) {
383 extern struct pool_allocator pool_allocator_kmem_subpage;
384 palloc = &pool_allocator_kmem_subpage;
385 }
386 /*
387 * We'll assume any user-specified back-end allocator
388 * will deal with sub-pages, or simply don't care.
389 */
390 #else
391 if (palloc == NULL)
392 palloc = &pool_allocator_kmem;
393 #endif /* POOL_SUBPAGE */
394 if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
395 if (palloc->pa_pagesz == 0) {
396 #ifdef POOL_SUBPAGE
397 if (palloc == &pool_allocator_kmem)
398 palloc->pa_pagesz = PAGE_SIZE;
399 else
400 palloc->pa_pagesz = POOL_SUBPAGE;
401 #else
402 palloc->pa_pagesz = PAGE_SIZE;
403 #endif /* POOL_SUBPAGE */
404 }
405
406 TAILQ_INIT(&palloc->pa_list);
407
408 simple_lock_init(&palloc->pa_slock);
409 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
410 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
411 palloc->pa_flags |= PA_INITIALIZED;
412 }
413
414 if (align == 0)
415 align = ALIGN(1);
416
417 if (size < sizeof(struct pool_item))
418 size = sizeof(struct pool_item);
419
420 size = roundup(size, align);
421 #ifdef DIAGNOSTIC
422 if (size > palloc->pa_pagesz)
423 panic("pool_init: pool item size (%lu) too large",
424 (u_long)size);
425 #endif
426
427 /*
428 * Initialize the pool structure.
429 */
430 LIST_INIT(&pp->pr_emptypages);
431 LIST_INIT(&pp->pr_fullpages);
432 LIST_INIT(&pp->pr_partpages);
433 TAILQ_INIT(&pp->pr_cachelist);
434 pp->pr_curpage = NULL;
435 pp->pr_npages = 0;
436 pp->pr_minitems = 0;
437 pp->pr_minpages = 0;
438 pp->pr_maxpages = UINT_MAX;
439 pp->pr_roflags = flags;
440 pp->pr_flags = 0;
441 pp->pr_size = size;
442 pp->pr_align = align;
443 pp->pr_wchan = wchan;
444 pp->pr_alloc = palloc;
445 pp->pr_nitems = 0;
446 pp->pr_nout = 0;
447 pp->pr_hardlimit = UINT_MAX;
448 pp->pr_hardlimit_warning = NULL;
449 pp->pr_hardlimit_ratecap.tv_sec = 0;
450 pp->pr_hardlimit_ratecap.tv_usec = 0;
451 pp->pr_hardlimit_warning_last.tv_sec = 0;
452 pp->pr_hardlimit_warning_last.tv_usec = 0;
453 pp->pr_drain_hook = NULL;
454 pp->pr_drain_hook_arg = NULL;
455
456 /*
457 * Decide whether to put the page header off page to avoid
458 * wasting too large a part of the page. Off-page page headers
459 * go on a hash table, so we can match a returned item
460 * with its header based on the page address.
461 * We use 1/16 of the page size as the threshold (XXX: tune)
462 */
463 if (pp->pr_size < palloc->pa_pagesz/16) {
464 /* Use the end of the page for the page header */
465 pp->pr_roflags |= PR_PHINPAGE;
466 pp->pr_phoffset = off = palloc->pa_pagesz -
467 ALIGN(sizeof(struct pool_item_header));
468 } else {
469 /* The page header will be taken from our page header pool */
470 pp->pr_phoffset = 0;
471 off = palloc->pa_pagesz;
472 SPLAY_INIT(&pp->pr_phtree);
473 }
474
475 /*
476 * Alignment is to take place at `ioff' within the item. This means
477 * we must reserve up to `align - 1' bytes on the page to allow
478 * appropriate positioning of each item.
479 *
480 * Silently enforce `0 <= ioff < align'.
481 */
482 pp->pr_itemoffset = ioff = ioff % align;
483 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
484 KASSERT(pp->pr_itemsperpage != 0);
485
486 /*
487 * Use the slack between the chunks and the page header
488 * for "cache coloring".
489 */
490 slack = off - pp->pr_itemsperpage * pp->pr_size;
491 pp->pr_maxcolor = (slack / align) * align;
492 pp->pr_curcolor = 0;
493
494 pp->pr_nget = 0;
495 pp->pr_nfail = 0;
496 pp->pr_nput = 0;
497 pp->pr_npagealloc = 0;
498 pp->pr_npagefree = 0;
499 pp->pr_hiwat = 0;
500 pp->pr_nidle = 0;
501
502 #ifdef POOL_DIAGNOSTIC
503 if (flags & PR_LOGGING) {
504 if (kmem_map == NULL ||
505 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
506 M_TEMP, M_NOWAIT)) == NULL)
507 pp->pr_roflags &= ~PR_LOGGING;
508 pp->pr_curlogentry = 0;
509 pp->pr_logsize = pool_logsize;
510 }
511 #endif
512
513 pp->pr_entered_file = NULL;
514 pp->pr_entered_line = 0;
515
516 simple_lock_init(&pp->pr_slock);
517
518 /*
519 * Initialize private page header pool and cache magazine pool if we
520 * haven't done so yet.
521 * XXX LOCKING.
522 */
523 if (phpool.pr_size == 0) {
524 #ifdef POOL_SUBPAGE
525 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0, 0,
526 "phpool", &pool_allocator_kmem);
527 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
528 PR_RECURSIVE, "psppool", &pool_allocator_kmem);
529 #else
530 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
531 0, "phpool", NULL);
532 #endif
533 pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
534 0, "pcgpool", NULL);
535 }
536
537 /* Insert into the list of all pools. */
538 simple_lock(&pool_head_slock);
539 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
540 simple_unlock(&pool_head_slock);
541
542 /* Insert this into the list of pools using this allocator. */
543 simple_lock(&palloc->pa_slock);
544 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
545 simple_unlock(&palloc->pa_slock);
546 }
547
548 /*
549 * De-commision a pool resource.
550 */
551 void
552 pool_destroy(struct pool *pp)
553 {
554 struct pool_item_header *ph;
555 struct pool_cache *pc;
556
557 /* Locking order: pool_allocator -> pool */
558 simple_lock(&pp->pr_alloc->pa_slock);
559 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
560 simple_unlock(&pp->pr_alloc->pa_slock);
561
562 /* Destroy all caches for this pool. */
563 while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL)
564 pool_cache_destroy(pc);
565
566 #ifdef DIAGNOSTIC
567 if (pp->pr_nout != 0) {
568 pr_printlog(pp, NULL, printf);
569 panic("pool_destroy: pool busy: still out: %u",
570 pp->pr_nout);
571 }
572 #endif
573
574 /* Remove all pages */
575 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
576 pr_rmpage(pp, ph, NULL);
577 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
578 KASSERT(LIST_EMPTY(&pp->pr_partpages));
579
580 /* Remove from global pool list */
581 simple_lock(&pool_head_slock);
582 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
583 if (drainpp == pp) {
584 drainpp = NULL;
585 }
586 simple_unlock(&pool_head_slock);
587
588 #ifdef POOL_DIAGNOSTIC
589 if ((pp->pr_roflags & PR_LOGGING) != 0)
590 free(pp->pr_log, M_TEMP);
591 #endif
592 }
593
594 void
595 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
596 {
597
598 /* XXX no locking -- must be used just after pool_init() */
599 #ifdef DIAGNOSTIC
600 if (pp->pr_drain_hook != NULL)
601 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
602 #endif
603 pp->pr_drain_hook = fn;
604 pp->pr_drain_hook_arg = arg;
605 }
606
607 static struct pool_item_header *
608 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
609 {
610 struct pool_item_header *ph;
611 int s;
612
613 LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
614
615 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
616 ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
617 else {
618 s = splvm();
619 ph = pool_get(&phpool, flags);
620 splx(s);
621 }
622
623 return (ph);
624 }
625
626 /*
627 * Grab an item from the pool; must be called at appropriate spl level
628 */
629 void *
630 #ifdef POOL_DIAGNOSTIC
631 _pool_get(struct pool *pp, int flags, const char *file, long line)
632 #else
633 pool_get(struct pool *pp, int flags)
634 #endif
635 {
636 struct pool_item *pi;
637 struct pool_item_header *ph;
638 void *v;
639
640 #ifdef DIAGNOSTIC
641 if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
642 (flags & PR_WAITOK) != 0))
643 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
644
645 #ifdef LOCKDEBUG
646 if (flags & PR_WAITOK)
647 simple_lock_only_held(NULL, "pool_get(PR_WAITOK)");
648 #endif
649 #endif /* DIAGNOSTIC */
650
651 simple_lock(&pp->pr_slock);
652 pr_enter(pp, file, line);
653
654 startover:
655 /*
656 * Check to see if we've reached the hard limit. If we have,
657 * and we can wait, then wait until an item has been returned to
658 * the pool.
659 */
660 #ifdef DIAGNOSTIC
661 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
662 pr_leave(pp);
663 simple_unlock(&pp->pr_slock);
664 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
665 }
666 #endif
667 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
668 if (pp->pr_drain_hook != NULL) {
669 /*
670 * Since the drain hook is going to free things
671 * back to the pool, unlock, call the hook, re-lock,
672 * and check the hardlimit condition again.
673 */
674 pr_leave(pp);
675 simple_unlock(&pp->pr_slock);
676 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
677 simple_lock(&pp->pr_slock);
678 pr_enter(pp, file, line);
679 if (pp->pr_nout < pp->pr_hardlimit)
680 goto startover;
681 }
682
683 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
684 /*
685 * XXX: A warning isn't logged in this case. Should
686 * it be?
687 */
688 pp->pr_flags |= PR_WANTED;
689 pr_leave(pp);
690 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
691 pr_enter(pp, file, line);
692 goto startover;
693 }
694
695 /*
696 * Log a message that the hard limit has been hit.
697 */
698 if (pp->pr_hardlimit_warning != NULL &&
699 ratecheck(&pp->pr_hardlimit_warning_last,
700 &pp->pr_hardlimit_ratecap))
701 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
702
703 pp->pr_nfail++;
704
705 pr_leave(pp);
706 simple_unlock(&pp->pr_slock);
707 return (NULL);
708 }
709
710 /*
711 * The convention we use is that if `curpage' is not NULL, then
712 * it points at a non-empty bucket. In particular, `curpage'
713 * never points at a page header which has PR_PHINPAGE set and
714 * has no items in its bucket.
715 */
716 if ((ph = pp->pr_curpage) == NULL) {
717 #ifdef DIAGNOSTIC
718 if (pp->pr_nitems != 0) {
719 simple_unlock(&pp->pr_slock);
720 printf("pool_get: %s: curpage NULL, nitems %u\n",
721 pp->pr_wchan, pp->pr_nitems);
722 panic("pool_get: nitems inconsistent");
723 }
724 #endif
725
726 /*
727 * Call the back-end page allocator for more memory.
728 * Release the pool lock, as the back-end page allocator
729 * may block.
730 */
731 pr_leave(pp);
732 simple_unlock(&pp->pr_slock);
733 v = pool_allocator_alloc(pp, flags);
734 if (__predict_true(v != NULL))
735 ph = pool_alloc_item_header(pp, v, flags);
736 simple_lock(&pp->pr_slock);
737 pr_enter(pp, file, line);
738
739 if (__predict_false(v == NULL || ph == NULL)) {
740 if (v != NULL)
741 pool_allocator_free(pp, v);
742
743 /*
744 * We were unable to allocate a page or item
745 * header, but we released the lock during
746 * allocation, so perhaps items were freed
747 * back to the pool. Check for this case.
748 */
749 if (pp->pr_curpage != NULL)
750 goto startover;
751
752 if ((flags & PR_WAITOK) == 0) {
753 pp->pr_nfail++;
754 pr_leave(pp);
755 simple_unlock(&pp->pr_slock);
756 return (NULL);
757 }
758
759 /*
760 * Wait for items to be returned to this pool.
761 *
762 * XXX: maybe we should wake up once a second and
763 * try again?
764 */
765 pp->pr_flags |= PR_WANTED;
766 /* PA_WANTED is already set on the allocator. */
767 pr_leave(pp);
768 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
769 pr_enter(pp, file, line);
770 goto startover;
771 }
772
773 /* We have more memory; add it to the pool */
774 pool_prime_page(pp, v, ph);
775 pp->pr_npagealloc++;
776
777 /* Start the allocation process over. */
778 goto startover;
779 }
780 if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
781 pr_leave(pp);
782 simple_unlock(&pp->pr_slock);
783 panic("pool_get: %s: page empty", pp->pr_wchan);
784 }
785 #ifdef DIAGNOSTIC
786 if (__predict_false(pp->pr_nitems == 0)) {
787 pr_leave(pp);
788 simple_unlock(&pp->pr_slock);
789 printf("pool_get: %s: items on itemlist, nitems %u\n",
790 pp->pr_wchan, pp->pr_nitems);
791 panic("pool_get: nitems inconsistent");
792 }
793 #endif
794
795 #ifdef POOL_DIAGNOSTIC
796 pr_log(pp, v, PRLOG_GET, file, line);
797 #endif
798
799 #ifdef DIAGNOSTIC
800 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
801 pr_printlog(pp, pi, printf);
802 panic("pool_get(%s): free list modified: magic=%x; page %p;"
803 " item addr %p\n",
804 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
805 }
806 #endif
807
808 /*
809 * Remove from item list.
810 */
811 TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
812 pp->pr_nitems--;
813 pp->pr_nout++;
814 if (ph->ph_nmissing == 0) {
815 #ifdef DIAGNOSTIC
816 if (__predict_false(pp->pr_nidle == 0))
817 panic("pool_get: nidle inconsistent");
818 #endif
819 pp->pr_nidle--;
820
821 /*
822 * This page was previously empty. Move it to the list of
823 * partially-full pages. This page is already curpage.
824 */
825 LIST_REMOVE(ph, ph_pagelist);
826 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
827 }
828 ph->ph_nmissing++;
829 if (TAILQ_EMPTY(&ph->ph_itemlist)) {
830 #ifdef DIAGNOSTIC
831 if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
832 pr_leave(pp);
833 simple_unlock(&pp->pr_slock);
834 panic("pool_get: %s: nmissing inconsistent",
835 pp->pr_wchan);
836 }
837 #endif
838 /*
839 * This page is now full. Move it to the full list
840 * and select a new current page.
841 */
842 LIST_REMOVE(ph, ph_pagelist);
843 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
844 pool_update_curpage(pp);
845 }
846
847 pp->pr_nget++;
848
849 /*
850 * If we have a low water mark and we are now below that low
851 * water mark, add more items to the pool.
852 */
853 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
854 /*
855 * XXX: Should we log a warning? Should we set up a timeout
856 * to try again in a second or so? The latter could break
857 * a caller's assumptions about interrupt protection, etc.
858 */
859 }
860
861 pr_leave(pp);
862 simple_unlock(&pp->pr_slock);
863 return (v);
864 }
865
866 /*
867 * Internal version of pool_put(). Pool is already locked/entered.
868 */
869 static void
870 pool_do_put(struct pool *pp, void *v)
871 {
872 struct pool_item *pi = v;
873 struct pool_item_header *ph;
874 caddr_t page;
875 int s;
876
877 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
878
879 page = (caddr_t)((u_long)v & pp->pr_alloc->pa_pagemask);
880
881 #ifdef DIAGNOSTIC
882 if (__predict_false(pp->pr_nout == 0)) {
883 printf("pool %s: putting with none out\n",
884 pp->pr_wchan);
885 panic("pool_put");
886 }
887 #endif
888
889 if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
890 pr_printlog(pp, NULL, printf);
891 panic("pool_put: %s: page header missing", pp->pr_wchan);
892 }
893
894 #ifdef LOCKDEBUG
895 /*
896 * Check if we're freeing a locked simple lock.
897 */
898 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
899 #endif
900
901 /*
902 * Return to item list.
903 */
904 #ifdef DIAGNOSTIC
905 pi->pi_magic = PI_MAGIC;
906 #endif
907 #ifdef DEBUG
908 {
909 int i, *ip = v;
910
911 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
912 *ip++ = PI_MAGIC;
913 }
914 }
915 #endif
916
917 TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
918 KDASSERT(ph->ph_nmissing != 0);
919 ph->ph_nmissing--;
920 pp->pr_nput++;
921 pp->pr_nitems++;
922 pp->pr_nout--;
923
924 /* Cancel "pool empty" condition if it exists */
925 if (pp->pr_curpage == NULL)
926 pp->pr_curpage = ph;
927
928 if (pp->pr_flags & PR_WANTED) {
929 pp->pr_flags &= ~PR_WANTED;
930 if (ph->ph_nmissing == 0)
931 pp->pr_nidle++;
932 wakeup((caddr_t)pp);
933 return;
934 }
935
936 /*
937 * If this page is now empty, do one of two things:
938 *
939 * (1) If we have more pages than the page high water mark,
940 * or if we are flagged as immediately freeing back idle
941 * pages, free the page back to the system. ONLY CONSIDER
942 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
943 * CLAIM.
944 *
945 * (2) Otherwise, move the page to the empty page list.
946 *
947 * Either way, select a new current page (so we use a partially-full
948 * page if one is available).
949 */
950 if (ph->ph_nmissing == 0) {
951 pp->pr_nidle++;
952 if (pp->pr_npages > pp->pr_minpages &&
953 (pp->pr_npages > pp->pr_maxpages ||
954 (pp->pr_roflags & PR_IMMEDRELEASE) != 0 ||
955 (pp->pr_alloc->pa_flags & PA_WANT) != 0)) {
956 pr_rmpage(pp, ph, NULL);
957 } else {
958 LIST_REMOVE(ph, ph_pagelist);
959 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
960
961 /*
962 * Update the timestamp on the page. A page must
963 * be idle for some period of time before it can
964 * be reclaimed by the pagedaemon. This minimizes
965 * ping-pong'ing for memory.
966 */
967 s = splclock();
968 ph->ph_time = mono_time;
969 splx(s);
970 }
971 pool_update_curpage(pp);
972 }
973
974 /*
975 * If the page was previously completely full, move it to the
976 * partially-full list and make it the current page. The next
977 * allocation will get the item from this page, instead of
978 * further fragmenting the pool.
979 */
980 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
981 LIST_REMOVE(ph, ph_pagelist);
982 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
983 pp->pr_curpage = ph;
984 }
985 }
986
987 /*
988 * Return resource to the pool; must be called at appropriate spl level
989 */
990 #ifdef POOL_DIAGNOSTIC
991 void
992 _pool_put(struct pool *pp, void *v, const char *file, long line)
993 {
994
995 simple_lock(&pp->pr_slock);
996 pr_enter(pp, file, line);
997
998 pr_log(pp, v, PRLOG_PUT, file, line);
999
1000 pool_do_put(pp, v);
1001
1002 pr_leave(pp);
1003 simple_unlock(&pp->pr_slock);
1004 }
1005 #undef pool_put
1006 #endif /* POOL_DIAGNOSTIC */
1007
1008 void
1009 pool_put(struct pool *pp, void *v)
1010 {
1011
1012 simple_lock(&pp->pr_slock);
1013
1014 pool_do_put(pp, v);
1015
1016 simple_unlock(&pp->pr_slock);
1017 }
1018
1019 #ifdef POOL_DIAGNOSTIC
1020 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1021 #endif
1022
1023 /*
1024 * Add N items to the pool.
1025 */
1026 int
1027 pool_prime(struct pool *pp, int n)
1028 {
1029 struct pool_item_header *ph = NULL;
1030 caddr_t cp;
1031 int newpages;
1032
1033 simple_lock(&pp->pr_slock);
1034
1035 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1036
1037 while (newpages-- > 0) {
1038 simple_unlock(&pp->pr_slock);
1039 cp = pool_allocator_alloc(pp, PR_NOWAIT);
1040 if (__predict_true(cp != NULL))
1041 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1042 simple_lock(&pp->pr_slock);
1043
1044 if (__predict_false(cp == NULL || ph == NULL)) {
1045 if (cp != NULL)
1046 pool_allocator_free(pp, cp);
1047 break;
1048 }
1049
1050 pool_prime_page(pp, cp, ph);
1051 pp->pr_npagealloc++;
1052 pp->pr_minpages++;
1053 }
1054
1055 if (pp->pr_minpages >= pp->pr_maxpages)
1056 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1057
1058 simple_unlock(&pp->pr_slock);
1059 return (0);
1060 }
1061
1062 /*
1063 * Add a page worth of items to the pool.
1064 *
1065 * Note, we must be called with the pool descriptor LOCKED.
1066 */
1067 static void
1068 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
1069 {
1070 struct pool_item *pi;
1071 caddr_t cp = storage;
1072 unsigned int align = pp->pr_align;
1073 unsigned int ioff = pp->pr_itemoffset;
1074 int n;
1075 int s;
1076
1077 #ifdef DIAGNOSTIC
1078 if (((u_long)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1079 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1080 #endif
1081
1082 /*
1083 * Insert page header.
1084 */
1085 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1086 TAILQ_INIT(&ph->ph_itemlist);
1087 ph->ph_page = storage;
1088 ph->ph_nmissing = 0;
1089 s = splclock();
1090 ph->ph_time = mono_time;
1091 splx(s);
1092 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1093 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1094
1095 pp->pr_nidle++;
1096
1097 /*
1098 * Color this page.
1099 */
1100 cp = (caddr_t)(cp + pp->pr_curcolor);
1101 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1102 pp->pr_curcolor = 0;
1103
1104 /*
1105 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1106 */
1107 if (ioff != 0)
1108 cp = (caddr_t)(cp + (align - ioff));
1109
1110 /*
1111 * Insert remaining chunks on the bucket list.
1112 */
1113 n = pp->pr_itemsperpage;
1114 pp->pr_nitems += n;
1115
1116 while (n--) {
1117 pi = (struct pool_item *)cp;
1118
1119 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1120
1121 /* Insert on page list */
1122 TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
1123 #ifdef DIAGNOSTIC
1124 pi->pi_magic = PI_MAGIC;
1125 #endif
1126 cp = (caddr_t)(cp + pp->pr_size);
1127 }
1128
1129 /*
1130 * If the pool was depleted, point at the new page.
1131 */
1132 if (pp->pr_curpage == NULL)
1133 pp->pr_curpage = ph;
1134
1135 if (++pp->pr_npages > pp->pr_hiwat)
1136 pp->pr_hiwat = pp->pr_npages;
1137 }
1138
1139 /*
1140 * Used by pool_get() when nitems drops below the low water mark. This
1141 * is used to catch up pr_nitems with the low water mark.
1142 *
1143 * Note 1, we never wait for memory here, we let the caller decide what to do.
1144 *
1145 * Note 2, we must be called with the pool already locked, and we return
1146 * with it locked.
1147 */
1148 static int
1149 pool_catchup(struct pool *pp)
1150 {
1151 struct pool_item_header *ph = NULL;
1152 caddr_t cp;
1153 int error = 0;
1154
1155 while (POOL_NEEDS_CATCHUP(pp)) {
1156 /*
1157 * Call the page back-end allocator for more memory.
1158 *
1159 * XXX: We never wait, so should we bother unlocking
1160 * the pool descriptor?
1161 */
1162 simple_unlock(&pp->pr_slock);
1163 cp = pool_allocator_alloc(pp, PR_NOWAIT);
1164 if (__predict_true(cp != NULL))
1165 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1166 simple_lock(&pp->pr_slock);
1167 if (__predict_false(cp == NULL || ph == NULL)) {
1168 if (cp != NULL)
1169 pool_allocator_free(pp, cp);
1170 error = ENOMEM;
1171 break;
1172 }
1173 pool_prime_page(pp, cp, ph);
1174 pp->pr_npagealloc++;
1175 }
1176
1177 return (error);
1178 }
1179
1180 static void
1181 pool_update_curpage(struct pool *pp)
1182 {
1183
1184 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1185 if (pp->pr_curpage == NULL) {
1186 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1187 }
1188 }
1189
1190 void
1191 pool_setlowat(struct pool *pp, int n)
1192 {
1193
1194 simple_lock(&pp->pr_slock);
1195
1196 pp->pr_minitems = n;
1197 pp->pr_minpages = (n == 0)
1198 ? 0
1199 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1200
1201 /* Make sure we're caught up with the newly-set low water mark. */
1202 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1203 /*
1204 * XXX: Should we log a warning? Should we set up a timeout
1205 * to try again in a second or so? The latter could break
1206 * a caller's assumptions about interrupt protection, etc.
1207 */
1208 }
1209
1210 simple_unlock(&pp->pr_slock);
1211 }
1212
1213 void
1214 pool_sethiwat(struct pool *pp, int n)
1215 {
1216
1217 simple_lock(&pp->pr_slock);
1218
1219 pp->pr_maxpages = (n == 0)
1220 ? 0
1221 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1222
1223 simple_unlock(&pp->pr_slock);
1224 }
1225
1226 void
1227 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1228 {
1229
1230 simple_lock(&pp->pr_slock);
1231
1232 pp->pr_hardlimit = n;
1233 pp->pr_hardlimit_warning = warnmess;
1234 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1235 pp->pr_hardlimit_warning_last.tv_sec = 0;
1236 pp->pr_hardlimit_warning_last.tv_usec = 0;
1237
1238 /*
1239 * In-line version of pool_sethiwat(), because we don't want to
1240 * release the lock.
1241 */
1242 pp->pr_maxpages = (n == 0)
1243 ? 0
1244 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1245
1246 simple_unlock(&pp->pr_slock);
1247 }
1248
1249 /*
1250 * Release all complete pages that have not been used recently.
1251 */
1252 int
1253 #ifdef POOL_DIAGNOSTIC
1254 _pool_reclaim(struct pool *pp, const char *file, long line)
1255 #else
1256 pool_reclaim(struct pool *pp)
1257 #endif
1258 {
1259 struct pool_item_header *ph, *phnext;
1260 struct pool_cache *pc;
1261 struct timeval curtime;
1262 struct pool_pagelist pq;
1263 struct timeval diff;
1264 int s;
1265
1266 if (pp->pr_drain_hook != NULL) {
1267 /*
1268 * The drain hook must be called with the pool unlocked.
1269 */
1270 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1271 }
1272
1273 if (simple_lock_try(&pp->pr_slock) == 0)
1274 return (0);
1275 pr_enter(pp, file, line);
1276
1277 LIST_INIT(&pq);
1278
1279 /*
1280 * Reclaim items from the pool's caches.
1281 */
1282 TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
1283 pool_cache_reclaim(pc);
1284
1285 s = splclock();
1286 curtime = mono_time;
1287 splx(s);
1288
1289 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1290 phnext = LIST_NEXT(ph, ph_pagelist);
1291
1292 /* Check our minimum page claim */
1293 if (pp->pr_npages <= pp->pr_minpages)
1294 break;
1295
1296 KASSERT(ph->ph_nmissing == 0);
1297 timersub(&curtime, &ph->ph_time, &diff);
1298 if (diff.tv_sec < pool_inactive_time)
1299 continue;
1300
1301 /*
1302 * If freeing this page would put us below
1303 * the low water mark, stop now.
1304 */
1305 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1306 pp->pr_minitems)
1307 break;
1308
1309 pr_rmpage(pp, ph, &pq);
1310 }
1311
1312 pr_leave(pp);
1313 simple_unlock(&pp->pr_slock);
1314 if (LIST_EMPTY(&pq))
1315 return (0);
1316
1317 while ((ph = LIST_FIRST(&pq)) != NULL) {
1318 LIST_REMOVE(ph, ph_pagelist);
1319 pool_allocator_free(pp, ph->ph_page);
1320 if (pp->pr_roflags & PR_PHINPAGE) {
1321 continue;
1322 }
1323 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
1324 s = splvm();
1325 pool_put(&phpool, ph);
1326 splx(s);
1327 }
1328
1329 return (1);
1330 }
1331
1332 /*
1333 * Drain pools, one at a time.
1334 *
1335 * Note, we must never be called from an interrupt context.
1336 */
1337 void
1338 pool_drain(void *arg)
1339 {
1340 struct pool *pp;
1341 int s;
1342
1343 pp = NULL;
1344 s = splvm();
1345 simple_lock(&pool_head_slock);
1346 if (drainpp == NULL) {
1347 drainpp = TAILQ_FIRST(&pool_head);
1348 }
1349 if (drainpp) {
1350 pp = drainpp;
1351 drainpp = TAILQ_NEXT(pp, pr_poollist);
1352 }
1353 simple_unlock(&pool_head_slock);
1354 pool_reclaim(pp);
1355 splx(s);
1356 }
1357
1358 /*
1359 * Diagnostic helpers.
1360 */
1361 void
1362 pool_print(struct pool *pp, const char *modif)
1363 {
1364 int s;
1365
1366 s = splvm();
1367 if (simple_lock_try(&pp->pr_slock) == 0) {
1368 printf("pool %s is locked; try again later\n",
1369 pp->pr_wchan);
1370 splx(s);
1371 return;
1372 }
1373 pool_print1(pp, modif, printf);
1374 simple_unlock(&pp->pr_slock);
1375 splx(s);
1376 }
1377
1378 void
1379 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1380 {
1381 int didlock = 0;
1382
1383 if (pp == NULL) {
1384 (*pr)("Must specify a pool to print.\n");
1385 return;
1386 }
1387
1388 /*
1389 * Called from DDB; interrupts should be blocked, and all
1390 * other processors should be paused. We can skip locking
1391 * the pool in this case.
1392 *
1393 * We do a simple_lock_try() just to print the lock
1394 * status, however.
1395 */
1396
1397 if (simple_lock_try(&pp->pr_slock) == 0)
1398 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1399 else
1400 didlock = 1;
1401
1402 pool_print1(pp, modif, pr);
1403
1404 if (didlock)
1405 simple_unlock(&pp->pr_slock);
1406 }
1407
1408 static void
1409 pool_print_pagelist(struct pool_pagelist *pl, void (*pr)(const char *, ...))
1410 {
1411 struct pool_item_header *ph;
1412 #ifdef DIAGNOSTIC
1413 struct pool_item *pi;
1414 #endif
1415
1416 LIST_FOREACH(ph, pl, ph_pagelist) {
1417 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1418 ph->ph_page, ph->ph_nmissing,
1419 (u_long)ph->ph_time.tv_sec,
1420 (u_long)ph->ph_time.tv_usec);
1421 #ifdef DIAGNOSTIC
1422 TAILQ_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1423 if (pi->pi_magic != PI_MAGIC) {
1424 (*pr)("\t\t\titem %p, magic 0x%x\n",
1425 pi, pi->pi_magic);
1426 }
1427 }
1428 #endif
1429 }
1430 }
1431
1432 static void
1433 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1434 {
1435 struct pool_item_header *ph;
1436 struct pool_cache *pc;
1437 struct pool_cache_group *pcg;
1438 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1439 char c;
1440
1441 while ((c = *modif++) != '\0') {
1442 if (c == 'l')
1443 print_log = 1;
1444 if (c == 'p')
1445 print_pagelist = 1;
1446 if (c == 'c')
1447 print_cache = 1;
1448 }
1449
1450 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1451 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1452 pp->pr_roflags);
1453 (*pr)("\talloc %p\n", pp->pr_alloc);
1454 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1455 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1456 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1457 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1458
1459 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1460 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1461 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1462 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1463
1464 if (print_pagelist == 0)
1465 goto skip_pagelist;
1466
1467 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1468 (*pr)("\n\tempty page list:\n");
1469 pool_print_pagelist(&pp->pr_emptypages, pr);
1470 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1471 (*pr)("\n\tfull page list:\n");
1472 pool_print_pagelist(&pp->pr_fullpages, pr);
1473 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1474 (*pr)("\n\tpartial-page list:\n");
1475 pool_print_pagelist(&pp->pr_partpages, pr);
1476
1477 if (pp->pr_curpage == NULL)
1478 (*pr)("\tno current page\n");
1479 else
1480 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1481
1482 skip_pagelist:
1483 if (print_log == 0)
1484 goto skip_log;
1485
1486 (*pr)("\n");
1487 if ((pp->pr_roflags & PR_LOGGING) == 0)
1488 (*pr)("\tno log\n");
1489 else
1490 pr_printlog(pp, NULL, pr);
1491
1492 skip_log:
1493 if (print_cache == 0)
1494 goto skip_cache;
1495
1496 TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
1497 (*pr)("\tcache %p: allocfrom %p freeto %p\n", pc,
1498 pc->pc_allocfrom, pc->pc_freeto);
1499 (*pr)("\t hits %lu misses %lu ngroups %lu nitems %lu\n",
1500 pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
1501 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1502 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);
1503 for (i = 0; i < PCG_NOBJECTS; i++) {
1504 if (pcg->pcg_objects[i].pcgo_pa !=
1505 POOL_PADDR_INVALID) {
1506 (*pr)("\t\t\t%p, 0x%llx\n",
1507 pcg->pcg_objects[i].pcgo_va,
1508 (unsigned long long)
1509 pcg->pcg_objects[i].pcgo_pa);
1510 } else {
1511 (*pr)("\t\t\t%p\n",
1512 pcg->pcg_objects[i].pcgo_va);
1513 }
1514 }
1515 }
1516 }
1517
1518 skip_cache:
1519 pr_enter_check(pp, pr);
1520 }
1521
1522 static int
1523 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1524 {
1525 struct pool_item *pi;
1526 caddr_t page;
1527 int n;
1528
1529 page = (caddr_t)((u_long)ph & pp->pr_alloc->pa_pagemask);
1530 if (page != ph->ph_page &&
1531 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1532 if (label != NULL)
1533 printf("%s: ", label);
1534 printf("pool(%p:%s): page inconsistency: page %p;"
1535 " at page head addr %p (p %p)\n", pp,
1536 pp->pr_wchan, ph->ph_page,
1537 ph, page);
1538 return 1;
1539 }
1540
1541 for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
1542 pi != NULL;
1543 pi = TAILQ_NEXT(pi,pi_list), n++) {
1544
1545 #ifdef DIAGNOSTIC
1546 if (pi->pi_magic != PI_MAGIC) {
1547 if (label != NULL)
1548 printf("%s: ", label);
1549 printf("pool(%s): free list modified: magic=%x;"
1550 " page %p; item ordinal %d;"
1551 " addr %p (p %p)\n",
1552 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1553 n, pi, page);
1554 panic("pool");
1555 }
1556 #endif
1557 page =
1558 (caddr_t)((u_long)pi & pp->pr_alloc->pa_pagemask);
1559 if (page == ph->ph_page)
1560 continue;
1561
1562 if (label != NULL)
1563 printf("%s: ", label);
1564 printf("pool(%p:%s): page inconsistency: page %p;"
1565 " item ordinal %d; addr %p (p %p)\n", pp,
1566 pp->pr_wchan, ph->ph_page,
1567 n, pi, page);
1568 return 1;
1569 }
1570 return 0;
1571 }
1572
1573
1574 int
1575 pool_chk(struct pool *pp, const char *label)
1576 {
1577 struct pool_item_header *ph;
1578 int r = 0;
1579
1580 simple_lock(&pp->pr_slock);
1581 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1582 r = pool_chk_page(pp, label, ph);
1583 if (r) {
1584 goto out;
1585 }
1586 }
1587 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1588 r = pool_chk_page(pp, label, ph);
1589 if (r) {
1590 goto out;
1591 }
1592 }
1593 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1594 r = pool_chk_page(pp, label, ph);
1595 if (r) {
1596 goto out;
1597 }
1598 }
1599
1600 out:
1601 simple_unlock(&pp->pr_slock);
1602 return (r);
1603 }
1604
1605 /*
1606 * pool_cache_init:
1607 *
1608 * Initialize a pool cache.
1609 *
1610 * NOTE: If the pool must be protected from interrupts, we expect
1611 * to be called at the appropriate interrupt priority level.
1612 */
1613 void
1614 pool_cache_init(struct pool_cache *pc, struct pool *pp,
1615 int (*ctor)(void *, void *, int),
1616 void (*dtor)(void *, void *),
1617 void *arg)
1618 {
1619
1620 TAILQ_INIT(&pc->pc_grouplist);
1621 simple_lock_init(&pc->pc_slock);
1622
1623 pc->pc_allocfrom = NULL;
1624 pc->pc_freeto = NULL;
1625 pc->pc_pool = pp;
1626
1627 pc->pc_ctor = ctor;
1628 pc->pc_dtor = dtor;
1629 pc->pc_arg = arg;
1630
1631 pc->pc_hits = 0;
1632 pc->pc_misses = 0;
1633
1634 pc->pc_ngroups = 0;
1635
1636 pc->pc_nitems = 0;
1637
1638 simple_lock(&pp->pr_slock);
1639 TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist);
1640 simple_unlock(&pp->pr_slock);
1641 }
1642
1643 /*
1644 * pool_cache_destroy:
1645 *
1646 * Destroy a pool cache.
1647 */
1648 void
1649 pool_cache_destroy(struct pool_cache *pc)
1650 {
1651 struct pool *pp = pc->pc_pool;
1652
1653 /* First, invalidate the entire cache. */
1654 pool_cache_invalidate(pc);
1655
1656 /* ...and remove it from the pool's cache list. */
1657 simple_lock(&pp->pr_slock);
1658 TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist);
1659 simple_unlock(&pp->pr_slock);
1660 }
1661
1662 static __inline void *
1663 pcg_get(struct pool_cache_group *pcg, paddr_t *pap)
1664 {
1665 void *object;
1666 u_int idx;
1667
1668 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
1669 KASSERT(pcg->pcg_avail != 0);
1670 idx = --pcg->pcg_avail;
1671
1672 KASSERT(pcg->pcg_objects[idx].pcgo_va != NULL);
1673 object = pcg->pcg_objects[idx].pcgo_va;
1674 if (pap != NULL)
1675 *pap = pcg->pcg_objects[idx].pcgo_pa;
1676 pcg->pcg_objects[idx].pcgo_va = NULL;
1677
1678 return (object);
1679 }
1680
1681 static __inline void
1682 pcg_put(struct pool_cache_group *pcg, void *object, paddr_t pa)
1683 {
1684 u_int idx;
1685
1686 KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
1687 idx = pcg->pcg_avail++;
1688
1689 KASSERT(pcg->pcg_objects[idx].pcgo_va == NULL);
1690 pcg->pcg_objects[idx].pcgo_va = object;
1691 pcg->pcg_objects[idx].pcgo_pa = pa;
1692 }
1693
1694 /*
1695 * pool_cache_get{,_paddr}:
1696 *
1697 * Get an object from a pool cache (optionally returning
1698 * the physical address of the object).
1699 */
1700 void *
1701 pool_cache_get_paddr(struct pool_cache *pc, int flags, paddr_t *pap)
1702 {
1703 struct pool_cache_group *pcg;
1704 void *object;
1705
1706 #ifdef LOCKDEBUG
1707 if (flags & PR_WAITOK)
1708 simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)");
1709 #endif
1710
1711 simple_lock(&pc->pc_slock);
1712
1713 if ((pcg = pc->pc_allocfrom) == NULL) {
1714 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1715 if (pcg->pcg_avail != 0) {
1716 pc->pc_allocfrom = pcg;
1717 goto have_group;
1718 }
1719 }
1720
1721 /*
1722 * No groups with any available objects. Allocate
1723 * a new object, construct it, and return it to
1724 * the caller. We will allocate a group, if necessary,
1725 * when the object is freed back to the cache.
1726 */
1727 pc->pc_misses++;
1728 simple_unlock(&pc->pc_slock);
1729 object = pool_get(pc->pc_pool, flags);
1730 if (object != NULL && pc->pc_ctor != NULL) {
1731 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
1732 pool_put(pc->pc_pool, object);
1733 return (NULL);
1734 }
1735 }
1736 if (object != NULL && pap != NULL) {
1737 #ifdef POOL_VTOPHYS
1738 *pap = POOL_VTOPHYS(object);
1739 #else
1740 *pap = POOL_PADDR_INVALID;
1741 #endif
1742 }
1743 return (object);
1744 }
1745
1746 have_group:
1747 pc->pc_hits++;
1748 pc->pc_nitems--;
1749 object = pcg_get(pcg, pap);
1750
1751 if (pcg->pcg_avail == 0)
1752 pc->pc_allocfrom = NULL;
1753
1754 simple_unlock(&pc->pc_slock);
1755
1756 return (object);
1757 }
1758
1759 /*
1760 * pool_cache_put{,_paddr}:
1761 *
1762 * Put an object back to the pool cache (optionally caching the
1763 * physical address of the object).
1764 */
1765 void
1766 pool_cache_put_paddr(struct pool_cache *pc, void *object, paddr_t pa)
1767 {
1768 struct pool_cache_group *pcg;
1769 int s;
1770
1771 simple_lock(&pc->pc_slock);
1772
1773 if ((pcg = pc->pc_freeto) == NULL) {
1774 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1775 if (pcg->pcg_avail != PCG_NOBJECTS) {
1776 pc->pc_freeto = pcg;
1777 goto have_group;
1778 }
1779 }
1780
1781 /*
1782 * No empty groups to free the object to. Attempt to
1783 * allocate one.
1784 */
1785 simple_unlock(&pc->pc_slock);
1786 s = splvm();
1787 pcg = pool_get(&pcgpool, PR_NOWAIT);
1788 splx(s);
1789 if (pcg != NULL) {
1790 memset(pcg, 0, sizeof(*pcg));
1791 simple_lock(&pc->pc_slock);
1792 pc->pc_ngroups++;
1793 TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list);
1794 if (pc->pc_freeto == NULL)
1795 pc->pc_freeto = pcg;
1796 goto have_group;
1797 }
1798
1799 /*
1800 * Unable to allocate a cache group; destruct the object
1801 * and free it back to the pool.
1802 */
1803 pool_cache_destruct_object(pc, object);
1804 return;
1805 }
1806
1807 have_group:
1808 pc->pc_nitems++;
1809 pcg_put(pcg, object, pa);
1810
1811 if (pcg->pcg_avail == PCG_NOBJECTS)
1812 pc->pc_freeto = NULL;
1813
1814 simple_unlock(&pc->pc_slock);
1815 }
1816
1817 /*
1818 * pool_cache_destruct_object:
1819 *
1820 * Force destruction of an object and its release back into
1821 * the pool.
1822 */
1823 void
1824 pool_cache_destruct_object(struct pool_cache *pc, void *object)
1825 {
1826
1827 if (pc->pc_dtor != NULL)
1828 (*pc->pc_dtor)(pc->pc_arg, object);
1829 pool_put(pc->pc_pool, object);
1830 }
1831
1832 /*
1833 * pool_cache_do_invalidate:
1834 *
1835 * This internal function implements pool_cache_invalidate() and
1836 * pool_cache_reclaim().
1837 */
1838 static void
1839 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups,
1840 void (*putit)(struct pool *, void *))
1841 {
1842 struct pool_cache_group *pcg, *npcg;
1843 void *object;
1844 int s;
1845
1846 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1847 pcg = npcg) {
1848 npcg = TAILQ_NEXT(pcg, pcg_list);
1849 while (pcg->pcg_avail != 0) {
1850 pc->pc_nitems--;
1851 object = pcg_get(pcg, NULL);
1852 if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg)
1853 pc->pc_allocfrom = NULL;
1854 if (pc->pc_dtor != NULL)
1855 (*pc->pc_dtor)(pc->pc_arg, object);
1856 (*putit)(pc->pc_pool, object);
1857 }
1858 if (free_groups) {
1859 pc->pc_ngroups--;
1860 TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list);
1861 if (pc->pc_freeto == pcg)
1862 pc->pc_freeto = NULL;
1863 s = splvm();
1864 pool_put(&pcgpool, pcg);
1865 splx(s);
1866 }
1867 }
1868 }
1869
1870 /*
1871 * pool_cache_invalidate:
1872 *
1873 * Invalidate a pool cache (destruct and release all of the
1874 * cached objects).
1875 */
1876 void
1877 pool_cache_invalidate(struct pool_cache *pc)
1878 {
1879
1880 simple_lock(&pc->pc_slock);
1881 pool_cache_do_invalidate(pc, 0, pool_put);
1882 simple_unlock(&pc->pc_slock);
1883 }
1884
1885 /*
1886 * pool_cache_reclaim:
1887 *
1888 * Reclaim a pool cache for pool_reclaim().
1889 */
1890 static void
1891 pool_cache_reclaim(struct pool_cache *pc)
1892 {
1893
1894 simple_lock(&pc->pc_slock);
1895 pool_cache_do_invalidate(pc, 1, pool_do_put);
1896 simple_unlock(&pc->pc_slock);
1897 }
1898
1899 /*
1900 * Pool backend allocators.
1901 *
1902 * Each pool has a backend allocator that handles allocation, deallocation,
1903 * and any additional draining that might be needed.
1904 *
1905 * We provide two standard allocators:
1906 *
1907 * pool_allocator_kmem - the default when no allocator is specified
1908 *
1909 * pool_allocator_nointr - used for pools that will not be accessed
1910 * in interrupt context.
1911 */
1912 void *pool_page_alloc(struct pool *, int);
1913 void pool_page_free(struct pool *, void *);
1914
1915 struct pool_allocator pool_allocator_kmem = {
1916 pool_page_alloc, pool_page_free, 0,
1917 };
1918
1919 void *pool_page_alloc_nointr(struct pool *, int);
1920 void pool_page_free_nointr(struct pool *, void *);
1921
1922 struct pool_allocator pool_allocator_nointr = {
1923 pool_page_alloc_nointr, pool_page_free_nointr, 0,
1924 };
1925
1926 #ifdef POOL_SUBPAGE
1927 void *pool_subpage_alloc(struct pool *, int);
1928 void pool_subpage_free(struct pool *, void *);
1929
1930 struct pool_allocator pool_allocator_kmem_subpage = {
1931 pool_subpage_alloc, pool_subpage_free, 0,
1932 };
1933 #endif /* POOL_SUBPAGE */
1934
1935 /*
1936 * We have at least three different resources for the same allocation and
1937 * each resource can be depleted. First, we have the ready elements in the
1938 * pool. Then we have the resource (typically a vm_map) for this allocator.
1939 * Finally, we have physical memory. Waiting for any of these can be
1940 * unnecessary when any other is freed, but the kernel doesn't support
1941 * sleeping on multiple wait channels, so we have to employ another strategy.
1942 *
1943 * The caller sleeps on the pool (so that it can be awakened when an item
1944 * is returned to the pool), but we set PA_WANT on the allocator. When a
1945 * page is returned to the allocator and PA_WANT is set, pool_allocator_free
1946 * will wake up all sleeping pools belonging to this allocator.
1947 *
1948 * XXX Thundering herd.
1949 */
1950 void *
1951 pool_allocator_alloc(struct pool *org, int flags)
1952 {
1953 struct pool_allocator *pa = org->pr_alloc;
1954 struct pool *pp, *start;
1955 int s, freed;
1956 void *res;
1957
1958 do {
1959 if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
1960 return (res);
1961 if ((flags & PR_WAITOK) == 0) {
1962 /*
1963 * We only run the drain hookhere if PR_NOWAIT.
1964 * In other cases, the hook will be run in
1965 * pool_reclaim().
1966 */
1967 if (org->pr_drain_hook != NULL) {
1968 (*org->pr_drain_hook)(org->pr_drain_hook_arg,
1969 flags);
1970 if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
1971 return (res);
1972 }
1973 break;
1974 }
1975
1976 /*
1977 * Drain all pools, except "org", that use this
1978 * allocator. We do this to reclaim VA space.
1979 * pa_alloc is responsible for waiting for
1980 * physical memory.
1981 *
1982 * XXX We risk looping forever if start if someone
1983 * calls pool_destroy on "start". But there is no
1984 * other way to have potentially sleeping pool_reclaim,
1985 * non-sleeping locks on pool_allocator, and some
1986 * stirring of drained pools in the allocator.
1987 *
1988 * XXX Maybe we should use pool_head_slock for locking
1989 * the allocators?
1990 */
1991 freed = 0;
1992
1993 s = splvm();
1994 simple_lock(&pa->pa_slock);
1995 pp = start = TAILQ_FIRST(&pa->pa_list);
1996 do {
1997 TAILQ_REMOVE(&pa->pa_list, pp, pr_alloc_list);
1998 TAILQ_INSERT_TAIL(&pa->pa_list, pp, pr_alloc_list);
1999 if (pp == org)
2000 continue;
2001 simple_unlock(&pa->pa_slock);
2002 freed = pool_reclaim(pp);
2003 simple_lock(&pa->pa_slock);
2004 } while ((pp = TAILQ_FIRST(&pa->pa_list)) != start &&
2005 freed == 0);
2006
2007 if (freed == 0) {
2008 /*
2009 * We set PA_WANT here, the caller will most likely
2010 * sleep waiting for pages (if not, this won't hurt
2011 * that much), and there is no way to set this in
2012 * the caller without violating locking order.
2013 */
2014 pa->pa_flags |= PA_WANT;
2015 }
2016 simple_unlock(&pa->pa_slock);
2017 splx(s);
2018 } while (freed);
2019 return (NULL);
2020 }
2021
2022 void
2023 pool_allocator_free(struct pool *pp, void *v)
2024 {
2025 struct pool_allocator *pa = pp->pr_alloc;
2026 int s;
2027
2028 (*pa->pa_free)(pp, v);
2029
2030 s = splvm();
2031 simple_lock(&pa->pa_slock);
2032 if ((pa->pa_flags & PA_WANT) == 0) {
2033 simple_unlock(&pa->pa_slock);
2034 splx(s);
2035 return;
2036 }
2037
2038 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
2039 simple_lock(&pp->pr_slock);
2040 if ((pp->pr_flags & PR_WANTED) != 0) {
2041 pp->pr_flags &= ~PR_WANTED;
2042 wakeup(pp);
2043 }
2044 simple_unlock(&pp->pr_slock);
2045 }
2046 pa->pa_flags &= ~PA_WANT;
2047 simple_unlock(&pa->pa_slock);
2048 splx(s);
2049 }
2050
2051 void *
2052 pool_page_alloc(struct pool *pp, int flags)
2053 {
2054 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2055
2056 return ((void *) uvm_km_alloc_poolpage(waitok));
2057 }
2058
2059 void
2060 pool_page_free(struct pool *pp, void *v)
2061 {
2062
2063 uvm_km_free_poolpage((vaddr_t) v);
2064 }
2065
2066 #ifdef POOL_SUBPAGE
2067 /* Sub-page allocator, for machines with large hardware pages. */
2068 void *
2069 pool_subpage_alloc(struct pool *pp, int flags)
2070 {
2071
2072 return (pool_get(&psppool, flags));
2073 }
2074
2075 void
2076 pool_subpage_free(struct pool *pp, void *v)
2077 {
2078
2079 pool_put(&psppool, v);
2080 }
2081
2082 /* We don't provide a real nointr allocator. Maybe later. */
2083 void *
2084 pool_page_alloc_nointr(struct pool *pp, int flags)
2085 {
2086
2087 return (pool_subpage_alloc(pp, flags));
2088 }
2089
2090 void
2091 pool_page_free_nointr(struct pool *pp, void *v)
2092 {
2093
2094 pool_subpage_free(pp, v);
2095 }
2096 #else
2097 void *
2098 pool_page_alloc_nointr(struct pool *pp, int flags)
2099 {
2100 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2101
2102 return ((void *) uvm_km_alloc_poolpage1(kernel_map,
2103 uvm.kernel_object, waitok));
2104 }
2105
2106 void
2107 pool_page_free_nointr(struct pool *pp, void *v)
2108 {
2109
2110 uvm_km_free_poolpage1(kernel_map, (vaddr_t) v);
2111 }
2112 #endif /* POOL_SUBPAGE */
2113