subr_pool.c revision 1.91 1 /* $NetBSD: subr_pool.c,v 1.91 2004/01/16 12:47:37 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.91 2004/01/16 12:47:37 yamt Exp $");
42
43 #include "opt_pool.h"
44 #include "opt_poollog.h"
45 #include "opt_lockdebug.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/proc.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/lock.h>
54 #include <sys/pool.h>
55 #include <sys/syslog.h>
56
57 #include <uvm/uvm.h>
58
59 /*
60 * Pool resource management utility.
61 *
62 * Memory is allocated in pages which are split into pieces according to
63 * the pool item size. Each page is kept on one of three lists in the
64 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
65 * for empty, full and partially-full pages respectively. The individual
66 * pool items are on a linked list headed by `ph_itemlist' in each page
67 * header. The memory for building the page list is either taken from
68 * the allocated pages themselves (for small pool items) or taken from
69 * an internal pool of page headers (`phpool').
70 */
71
72 /* List of all pools */
73 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
74
75 /* Private pool for page header structures */
76 static struct pool phpool;
77
78 #ifdef POOL_SUBPAGE
79 /* Pool of subpages for use by normal pools. */
80 static struct pool psppool;
81 #endif
82
83 /* # of seconds to retain page after last use */
84 int pool_inactive_time = 10;
85
86 /* Next candidate for drainage (see pool_drain()) */
87 static struct pool *drainpp;
88
89 /* This spin lock protects both pool_head and drainpp. */
90 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
91
92 struct pool_item_header {
93 /* Page headers */
94 LIST_ENTRY(pool_item_header)
95 ph_pagelist; /* pool page list */
96 TAILQ_HEAD(,pool_item) ph_itemlist; /* chunk list for this page */
97 SPLAY_ENTRY(pool_item_header)
98 ph_node; /* Off-page page headers */
99 unsigned int ph_nmissing; /* # of chunks in use */
100 caddr_t ph_page; /* this page's address */
101 struct timeval ph_time; /* last referenced */
102 };
103
104 struct pool_item {
105 #ifdef DIAGNOSTIC
106 u_int pi_magic;
107 #endif
108 #define PI_MAGIC 0xdeadbeefU
109 /* Other entries use only this list entry */
110 TAILQ_ENTRY(pool_item) pi_list;
111 };
112
113 #define POOL_NEEDS_CATCHUP(pp) \
114 ((pp)->pr_nitems < (pp)->pr_minitems)
115
116 /*
117 * Pool cache management.
118 *
119 * Pool caches provide a way for constructed objects to be cached by the
120 * pool subsystem. This can lead to performance improvements by avoiding
121 * needless object construction/destruction; it is deferred until absolutely
122 * necessary.
123 *
124 * Caches are grouped into cache groups. Each cache group references
125 * up to 16 constructed objects. When a cache allocates an object
126 * from the pool, it calls the object's constructor and places it into
127 * a cache group. When a cache group frees an object back to the pool,
128 * it first calls the object's destructor. This allows the object to
129 * persist in constructed form while freed to the cache.
130 *
131 * Multiple caches may exist for each pool. This allows a single
132 * object type to have multiple constructed forms. The pool references
133 * each cache, so that when a pool is drained by the pagedaemon, it can
134 * drain each individual cache as well. Each time a cache is drained,
135 * the most idle cache group is freed to the pool in its entirety.
136 *
137 * Pool caches are layed on top of pools. By layering them, we can avoid
138 * the complexity of cache management for pools which would not benefit
139 * from it.
140 */
141
142 /* The cache group pool. */
143 static struct pool pcgpool;
144
145 static void pool_cache_reclaim(struct pool_cache *);
146
147 static int pool_catchup(struct pool *);
148 static void pool_prime_page(struct pool *, caddr_t,
149 struct pool_item_header *);
150 static void pool_update_curpage(struct pool *);
151
152 void *pool_allocator_alloc(struct pool *, int);
153 void pool_allocator_free(struct pool *, void *);
154
155 static void pool_print_pagelist(struct pool_pagelist *,
156 void (*)(const char *, ...));
157 static void pool_print1(struct pool *, const char *,
158 void (*)(const char *, ...));
159
160 static int pool_chk_page(struct pool *, const char *,
161 struct pool_item_header *);
162
163 /*
164 * Pool log entry. An array of these is allocated in pool_init().
165 */
166 struct pool_log {
167 const char *pl_file;
168 long pl_line;
169 int pl_action;
170 #define PRLOG_GET 1
171 #define PRLOG_PUT 2
172 void *pl_addr;
173 };
174
175 #ifdef POOL_DIAGNOSTIC
176 /* Number of entries in pool log buffers */
177 #ifndef POOL_LOGSIZE
178 #define POOL_LOGSIZE 10
179 #endif
180
181 int pool_logsize = POOL_LOGSIZE;
182
183 static __inline void
184 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
185 {
186 int n = pp->pr_curlogentry;
187 struct pool_log *pl;
188
189 if ((pp->pr_roflags & PR_LOGGING) == 0)
190 return;
191
192 /*
193 * Fill in the current entry. Wrap around and overwrite
194 * the oldest entry if necessary.
195 */
196 pl = &pp->pr_log[n];
197 pl->pl_file = file;
198 pl->pl_line = line;
199 pl->pl_action = action;
200 pl->pl_addr = v;
201 if (++n >= pp->pr_logsize)
202 n = 0;
203 pp->pr_curlogentry = n;
204 }
205
206 static void
207 pr_printlog(struct pool *pp, struct pool_item *pi,
208 void (*pr)(const char *, ...))
209 {
210 int i = pp->pr_logsize;
211 int n = pp->pr_curlogentry;
212
213 if ((pp->pr_roflags & PR_LOGGING) == 0)
214 return;
215
216 /*
217 * Print all entries in this pool's log.
218 */
219 while (i-- > 0) {
220 struct pool_log *pl = &pp->pr_log[n];
221 if (pl->pl_action != 0) {
222 if (pi == NULL || pi == pl->pl_addr) {
223 (*pr)("\tlog entry %d:\n", i);
224 (*pr)("\t\taction = %s, addr = %p\n",
225 pl->pl_action == PRLOG_GET ? "get" : "put",
226 pl->pl_addr);
227 (*pr)("\t\tfile: %s at line %lu\n",
228 pl->pl_file, pl->pl_line);
229 }
230 }
231 if (++n >= pp->pr_logsize)
232 n = 0;
233 }
234 }
235
236 static __inline void
237 pr_enter(struct pool *pp, const char *file, long line)
238 {
239
240 if (__predict_false(pp->pr_entered_file != NULL)) {
241 printf("pool %s: reentrancy at file %s line %ld\n",
242 pp->pr_wchan, file, line);
243 printf(" previous entry at file %s line %ld\n",
244 pp->pr_entered_file, pp->pr_entered_line);
245 panic("pr_enter");
246 }
247
248 pp->pr_entered_file = file;
249 pp->pr_entered_line = line;
250 }
251
252 static __inline void
253 pr_leave(struct pool *pp)
254 {
255
256 if (__predict_false(pp->pr_entered_file == NULL)) {
257 printf("pool %s not entered?\n", pp->pr_wchan);
258 panic("pr_leave");
259 }
260
261 pp->pr_entered_file = NULL;
262 pp->pr_entered_line = 0;
263 }
264
265 static __inline void
266 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
267 {
268
269 if (pp->pr_entered_file != NULL)
270 (*pr)("\n\tcurrently entered from file %s line %ld\n",
271 pp->pr_entered_file, pp->pr_entered_line);
272 }
273 #else
274 #define pr_log(pp, v, action, file, line)
275 #define pr_printlog(pp, pi, pr)
276 #define pr_enter(pp, file, line)
277 #define pr_leave(pp)
278 #define pr_enter_check(pp, pr)
279 #endif /* POOL_DIAGNOSTIC */
280
281 static __inline int
282 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
283 {
284 if (a->ph_page < b->ph_page)
285 return (-1);
286 else if (a->ph_page > b->ph_page)
287 return (1);
288 else
289 return (0);
290 }
291
292 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
293 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
294
295 /*
296 * Return the pool page header based on page address.
297 */
298 static __inline struct pool_item_header *
299 pr_find_pagehead(struct pool *pp, caddr_t page)
300 {
301 struct pool_item_header *ph, tmp;
302
303 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
304 return ((struct pool_item_header *)(page + pp->pr_phoffset));
305
306 tmp.ph_page = page;
307 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
308 return ph;
309 }
310
311 /*
312 * Remove a page from the pool.
313 */
314 static __inline void
315 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
316 struct pool_pagelist *pq)
317 {
318 int s;
319
320 LOCK_ASSERT(!simple_lock_held(&pp->pr_slock) || pq != NULL);
321
322 /*
323 * If the page was idle, decrement the idle page count.
324 */
325 if (ph->ph_nmissing == 0) {
326 #ifdef DIAGNOSTIC
327 if (pp->pr_nidle == 0)
328 panic("pr_rmpage: nidle inconsistent");
329 if (pp->pr_nitems < pp->pr_itemsperpage)
330 panic("pr_rmpage: nitems inconsistent");
331 #endif
332 pp->pr_nidle--;
333 }
334
335 pp->pr_nitems -= pp->pr_itemsperpage;
336
337 /*
338 * Unlink a page from the pool and release it (or queue it for release).
339 */
340 LIST_REMOVE(ph, ph_pagelist);
341 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
342 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
343 if (pq) {
344 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
345 } else {
346 pool_allocator_free(pp, ph->ph_page);
347 if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
348 s = splvm();
349 pool_put(&phpool, ph);
350 splx(s);
351 }
352 }
353 pp->pr_npages--;
354 pp->pr_npagefree++;
355
356 pool_update_curpage(pp);
357 }
358
359 /*
360 * Initialize the given pool resource structure.
361 *
362 * We export this routine to allow other kernel parts to declare
363 * static pools that must be initialized before malloc() is available.
364 */
365 void
366 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
367 const char *wchan, struct pool_allocator *palloc)
368 {
369 int off, slack;
370
371 #ifdef POOL_DIAGNOSTIC
372 /*
373 * Always log if POOL_DIAGNOSTIC is defined.
374 */
375 if (pool_logsize != 0)
376 flags |= PR_LOGGING;
377 #endif
378
379 #ifdef POOL_SUBPAGE
380 /*
381 * XXX We don't provide a real `nointr' back-end
382 * yet; all sub-pages come from a kmem back-end.
383 * maybe some day...
384 */
385 if (palloc == NULL) {
386 extern struct pool_allocator pool_allocator_kmem_subpage;
387 palloc = &pool_allocator_kmem_subpage;
388 }
389 /*
390 * We'll assume any user-specified back-end allocator
391 * will deal with sub-pages, or simply don't care.
392 */
393 #else
394 if (palloc == NULL)
395 palloc = &pool_allocator_kmem;
396 #endif /* POOL_SUBPAGE */
397 if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
398 if (palloc->pa_pagesz == 0) {
399 #ifdef POOL_SUBPAGE
400 if (palloc == &pool_allocator_kmem)
401 palloc->pa_pagesz = PAGE_SIZE;
402 else
403 palloc->pa_pagesz = POOL_SUBPAGE;
404 #else
405 palloc->pa_pagesz = PAGE_SIZE;
406 #endif /* POOL_SUBPAGE */
407 }
408
409 TAILQ_INIT(&palloc->pa_list);
410
411 simple_lock_init(&palloc->pa_slock);
412 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
413 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
414 palloc->pa_flags |= PA_INITIALIZED;
415 }
416
417 if (align == 0)
418 align = ALIGN(1);
419
420 if (size < sizeof(struct pool_item))
421 size = sizeof(struct pool_item);
422
423 size = roundup(size, align);
424 #ifdef DIAGNOSTIC
425 if (size > palloc->pa_pagesz)
426 panic("pool_init: pool item size (%lu) too large",
427 (u_long)size);
428 #endif
429
430 /*
431 * Initialize the pool structure.
432 */
433 LIST_INIT(&pp->pr_emptypages);
434 LIST_INIT(&pp->pr_fullpages);
435 LIST_INIT(&pp->pr_partpages);
436 TAILQ_INIT(&pp->pr_cachelist);
437 pp->pr_curpage = NULL;
438 pp->pr_npages = 0;
439 pp->pr_minitems = 0;
440 pp->pr_minpages = 0;
441 pp->pr_maxpages = UINT_MAX;
442 pp->pr_roflags = flags;
443 pp->pr_flags = 0;
444 pp->pr_size = size;
445 pp->pr_align = align;
446 pp->pr_wchan = wchan;
447 pp->pr_alloc = palloc;
448 pp->pr_nitems = 0;
449 pp->pr_nout = 0;
450 pp->pr_hardlimit = UINT_MAX;
451 pp->pr_hardlimit_warning = NULL;
452 pp->pr_hardlimit_ratecap.tv_sec = 0;
453 pp->pr_hardlimit_ratecap.tv_usec = 0;
454 pp->pr_hardlimit_warning_last.tv_sec = 0;
455 pp->pr_hardlimit_warning_last.tv_usec = 0;
456 pp->pr_drain_hook = NULL;
457 pp->pr_drain_hook_arg = NULL;
458
459 /*
460 * Decide whether to put the page header off page to avoid
461 * wasting too large a part of the page. Off-page page headers
462 * go on a hash table, so we can match a returned item
463 * with its header based on the page address.
464 * We use 1/16 of the page size as the threshold (XXX: tune)
465 */
466 if (pp->pr_size < palloc->pa_pagesz/16) {
467 /* Use the end of the page for the page header */
468 pp->pr_roflags |= PR_PHINPAGE;
469 pp->pr_phoffset = off = palloc->pa_pagesz -
470 ALIGN(sizeof(struct pool_item_header));
471 } else {
472 /* The page header will be taken from our page header pool */
473 pp->pr_phoffset = 0;
474 off = palloc->pa_pagesz;
475 SPLAY_INIT(&pp->pr_phtree);
476 }
477
478 /*
479 * Alignment is to take place at `ioff' within the item. This means
480 * we must reserve up to `align - 1' bytes on the page to allow
481 * appropriate positioning of each item.
482 *
483 * Silently enforce `0 <= ioff < align'.
484 */
485 pp->pr_itemoffset = ioff = ioff % align;
486 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
487 KASSERT(pp->pr_itemsperpage != 0);
488
489 /*
490 * Use the slack between the chunks and the page header
491 * for "cache coloring".
492 */
493 slack = off - pp->pr_itemsperpage * pp->pr_size;
494 pp->pr_maxcolor = (slack / align) * align;
495 pp->pr_curcolor = 0;
496
497 pp->pr_nget = 0;
498 pp->pr_nfail = 0;
499 pp->pr_nput = 0;
500 pp->pr_npagealloc = 0;
501 pp->pr_npagefree = 0;
502 pp->pr_hiwat = 0;
503 pp->pr_nidle = 0;
504
505 #ifdef POOL_DIAGNOSTIC
506 if (flags & PR_LOGGING) {
507 if (kmem_map == NULL ||
508 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
509 M_TEMP, M_NOWAIT)) == NULL)
510 pp->pr_roflags &= ~PR_LOGGING;
511 pp->pr_curlogentry = 0;
512 pp->pr_logsize = pool_logsize;
513 }
514 #endif
515
516 pp->pr_entered_file = NULL;
517 pp->pr_entered_line = 0;
518
519 simple_lock_init(&pp->pr_slock);
520
521 /*
522 * Initialize private page header pool and cache magazine pool if we
523 * haven't done so yet.
524 * XXX LOCKING.
525 */
526 if (phpool.pr_size == 0) {
527 #ifdef POOL_SUBPAGE
528 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0, 0,
529 "phpool", &pool_allocator_kmem);
530 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
531 PR_RECURSIVE, "psppool", &pool_allocator_kmem);
532 #else
533 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
534 0, "phpool", NULL);
535 #endif
536 pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
537 0, "pcgpool", NULL);
538 }
539
540 /* Insert into the list of all pools. */
541 simple_lock(&pool_head_slock);
542 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
543 simple_unlock(&pool_head_slock);
544
545 /* Insert this into the list of pools using this allocator. */
546 simple_lock(&palloc->pa_slock);
547 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
548 simple_unlock(&palloc->pa_slock);
549 }
550
551 /*
552 * De-commision a pool resource.
553 */
554 void
555 pool_destroy(struct pool *pp)
556 {
557 struct pool_item_header *ph;
558 struct pool_cache *pc;
559
560 /* Locking order: pool_allocator -> pool */
561 simple_lock(&pp->pr_alloc->pa_slock);
562 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
563 simple_unlock(&pp->pr_alloc->pa_slock);
564
565 /* Destroy all caches for this pool. */
566 while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL)
567 pool_cache_destroy(pc);
568
569 #ifdef DIAGNOSTIC
570 if (pp->pr_nout != 0) {
571 pr_printlog(pp, NULL, printf);
572 panic("pool_destroy: pool busy: still out: %u",
573 pp->pr_nout);
574 }
575 #endif
576
577 /* Remove all pages */
578 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
579 pr_rmpage(pp, ph, NULL);
580 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
581 KASSERT(LIST_EMPTY(&pp->pr_partpages));
582
583 /* Remove from global pool list */
584 simple_lock(&pool_head_slock);
585 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
586 if (drainpp == pp) {
587 drainpp = NULL;
588 }
589 simple_unlock(&pool_head_slock);
590
591 #ifdef POOL_DIAGNOSTIC
592 if ((pp->pr_roflags & PR_LOGGING) != 0)
593 free(pp->pr_log, M_TEMP);
594 #endif
595 }
596
597 void
598 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
599 {
600
601 /* XXX no locking -- must be used just after pool_init() */
602 #ifdef DIAGNOSTIC
603 if (pp->pr_drain_hook != NULL)
604 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
605 #endif
606 pp->pr_drain_hook = fn;
607 pp->pr_drain_hook_arg = arg;
608 }
609
610 static struct pool_item_header *
611 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
612 {
613 struct pool_item_header *ph;
614 int s;
615
616 LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
617
618 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
619 ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
620 else {
621 s = splvm();
622 ph = pool_get(&phpool, flags);
623 splx(s);
624 }
625
626 return (ph);
627 }
628
629 /*
630 * Grab an item from the pool; must be called at appropriate spl level
631 */
632 void *
633 #ifdef POOL_DIAGNOSTIC
634 _pool_get(struct pool *pp, int flags, const char *file, long line)
635 #else
636 pool_get(struct pool *pp, int flags)
637 #endif
638 {
639 struct pool_item *pi;
640 struct pool_item_header *ph;
641 void *v;
642
643 #ifdef DIAGNOSTIC
644 if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
645 (flags & PR_WAITOK) != 0))
646 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
647
648 #ifdef LOCKDEBUG
649 if (flags & PR_WAITOK)
650 simple_lock_only_held(NULL, "pool_get(PR_WAITOK)");
651 #endif
652 #endif /* DIAGNOSTIC */
653
654 simple_lock(&pp->pr_slock);
655 pr_enter(pp, file, line);
656
657 startover:
658 /*
659 * Check to see if we've reached the hard limit. If we have,
660 * and we can wait, then wait until an item has been returned to
661 * the pool.
662 */
663 #ifdef DIAGNOSTIC
664 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
665 pr_leave(pp);
666 simple_unlock(&pp->pr_slock);
667 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
668 }
669 #endif
670 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
671 if (pp->pr_drain_hook != NULL) {
672 /*
673 * Since the drain hook is going to free things
674 * back to the pool, unlock, call the hook, re-lock,
675 * and check the hardlimit condition again.
676 */
677 pr_leave(pp);
678 simple_unlock(&pp->pr_slock);
679 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
680 simple_lock(&pp->pr_slock);
681 pr_enter(pp, file, line);
682 if (pp->pr_nout < pp->pr_hardlimit)
683 goto startover;
684 }
685
686 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
687 /*
688 * XXX: A warning isn't logged in this case. Should
689 * it be?
690 */
691 pp->pr_flags |= PR_WANTED;
692 pr_leave(pp);
693 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
694 pr_enter(pp, file, line);
695 goto startover;
696 }
697
698 /*
699 * Log a message that the hard limit has been hit.
700 */
701 if (pp->pr_hardlimit_warning != NULL &&
702 ratecheck(&pp->pr_hardlimit_warning_last,
703 &pp->pr_hardlimit_ratecap))
704 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
705
706 pp->pr_nfail++;
707
708 pr_leave(pp);
709 simple_unlock(&pp->pr_slock);
710 return (NULL);
711 }
712
713 /*
714 * The convention we use is that if `curpage' is not NULL, then
715 * it points at a non-empty bucket. In particular, `curpage'
716 * never points at a page header which has PR_PHINPAGE set and
717 * has no items in its bucket.
718 */
719 if ((ph = pp->pr_curpage) == NULL) {
720 #ifdef DIAGNOSTIC
721 if (pp->pr_nitems != 0) {
722 simple_unlock(&pp->pr_slock);
723 printf("pool_get: %s: curpage NULL, nitems %u\n",
724 pp->pr_wchan, pp->pr_nitems);
725 panic("pool_get: nitems inconsistent");
726 }
727 #endif
728
729 /*
730 * Call the back-end page allocator for more memory.
731 * Release the pool lock, as the back-end page allocator
732 * may block.
733 */
734 pr_leave(pp);
735 simple_unlock(&pp->pr_slock);
736 v = pool_allocator_alloc(pp, flags);
737 if (__predict_true(v != NULL))
738 ph = pool_alloc_item_header(pp, v, flags);
739
740 if (__predict_false(v == NULL || ph == NULL)) {
741 if (v != NULL)
742 pool_allocator_free(pp, v);
743
744 simple_lock(&pp->pr_slock);
745 pr_enter(pp, file, line);
746
747 /*
748 * We were unable to allocate a page or item
749 * header, but we released the lock during
750 * allocation, so perhaps items were freed
751 * back to the pool. Check for this case.
752 */
753 if (pp->pr_curpage != NULL)
754 goto startover;
755
756 if ((flags & PR_WAITOK) == 0) {
757 pp->pr_nfail++;
758 pr_leave(pp);
759 simple_unlock(&pp->pr_slock);
760 return (NULL);
761 }
762
763 /*
764 * Wait for items to be returned to this pool.
765 *
766 * XXX: maybe we should wake up once a second and
767 * try again?
768 */
769 pp->pr_flags |= PR_WANTED;
770 /* PA_WANTED is already set on the allocator. */
771 pr_leave(pp);
772 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
773 pr_enter(pp, file, line);
774 goto startover;
775 }
776
777 /* We have more memory; add it to the pool */
778 simple_lock(&pp->pr_slock);
779 pr_enter(pp, file, line);
780 pool_prime_page(pp, v, ph);
781 pp->pr_npagealloc++;
782
783 /* Start the allocation process over. */
784 goto startover;
785 }
786 if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
787 pr_leave(pp);
788 simple_unlock(&pp->pr_slock);
789 panic("pool_get: %s: page empty", pp->pr_wchan);
790 }
791 #ifdef DIAGNOSTIC
792 if (__predict_false(pp->pr_nitems == 0)) {
793 pr_leave(pp);
794 simple_unlock(&pp->pr_slock);
795 printf("pool_get: %s: items on itemlist, nitems %u\n",
796 pp->pr_wchan, pp->pr_nitems);
797 panic("pool_get: nitems inconsistent");
798 }
799 #endif
800
801 #ifdef POOL_DIAGNOSTIC
802 pr_log(pp, v, PRLOG_GET, file, line);
803 #endif
804
805 #ifdef DIAGNOSTIC
806 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
807 pr_printlog(pp, pi, printf);
808 panic("pool_get(%s): free list modified: magic=%x; page %p;"
809 " item addr %p\n",
810 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
811 }
812 #endif
813
814 /*
815 * Remove from item list.
816 */
817 TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
818 pp->pr_nitems--;
819 pp->pr_nout++;
820 if (ph->ph_nmissing == 0) {
821 #ifdef DIAGNOSTIC
822 if (__predict_false(pp->pr_nidle == 0))
823 panic("pool_get: nidle inconsistent");
824 #endif
825 pp->pr_nidle--;
826
827 /*
828 * This page was previously empty. Move it to the list of
829 * partially-full pages. This page is already curpage.
830 */
831 LIST_REMOVE(ph, ph_pagelist);
832 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
833 }
834 ph->ph_nmissing++;
835 if (TAILQ_EMPTY(&ph->ph_itemlist)) {
836 #ifdef DIAGNOSTIC
837 if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
838 pr_leave(pp);
839 simple_unlock(&pp->pr_slock);
840 panic("pool_get: %s: nmissing inconsistent",
841 pp->pr_wchan);
842 }
843 #endif
844 /*
845 * This page is now full. Move it to the full list
846 * and select a new current page.
847 */
848 LIST_REMOVE(ph, ph_pagelist);
849 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
850 pool_update_curpage(pp);
851 }
852
853 pp->pr_nget++;
854
855 /*
856 * If we have a low water mark and we are now below that low
857 * water mark, add more items to the pool.
858 */
859 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
860 /*
861 * XXX: Should we log a warning? Should we set up a timeout
862 * to try again in a second or so? The latter could break
863 * a caller's assumptions about interrupt protection, etc.
864 */
865 }
866
867 pr_leave(pp);
868 simple_unlock(&pp->pr_slock);
869 return (v);
870 }
871
872 /*
873 * Internal version of pool_put(). Pool is already locked/entered.
874 */
875 static void
876 pool_do_put(struct pool *pp, void *v)
877 {
878 struct pool_item *pi = v;
879 struct pool_item_header *ph;
880 caddr_t page;
881 int s;
882
883 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
884
885 page = (caddr_t)((u_long)v & pp->pr_alloc->pa_pagemask);
886
887 #ifdef DIAGNOSTIC
888 if (__predict_false(pp->pr_nout == 0)) {
889 printf("pool %s: putting with none out\n",
890 pp->pr_wchan);
891 panic("pool_put");
892 }
893 #endif
894
895 if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
896 pr_printlog(pp, NULL, printf);
897 panic("pool_put: %s: page header missing", pp->pr_wchan);
898 }
899
900 #ifdef LOCKDEBUG
901 /*
902 * Check if we're freeing a locked simple lock.
903 */
904 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
905 #endif
906
907 /*
908 * Return to item list.
909 */
910 #ifdef DIAGNOSTIC
911 pi->pi_magic = PI_MAGIC;
912 #endif
913 #ifdef DEBUG
914 {
915 int i, *ip = v;
916
917 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
918 *ip++ = PI_MAGIC;
919 }
920 }
921 #endif
922
923 TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
924 KDASSERT(ph->ph_nmissing != 0);
925 ph->ph_nmissing--;
926 pp->pr_nput++;
927 pp->pr_nitems++;
928 pp->pr_nout--;
929
930 /* Cancel "pool empty" condition if it exists */
931 if (pp->pr_curpage == NULL)
932 pp->pr_curpage = ph;
933
934 if (pp->pr_flags & PR_WANTED) {
935 pp->pr_flags &= ~PR_WANTED;
936 if (ph->ph_nmissing == 0)
937 pp->pr_nidle++;
938 wakeup((caddr_t)pp);
939 return;
940 }
941
942 /*
943 * If this page is now empty, do one of two things:
944 *
945 * (1) If we have more pages than the page high water mark,
946 * or if we are flagged as immediately freeing back idle
947 * pages, free the page back to the system. ONLY CONSIDER
948 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
949 * CLAIM.
950 *
951 * (2) Otherwise, move the page to the empty page list.
952 *
953 * Either way, select a new current page (so we use a partially-full
954 * page if one is available).
955 */
956 if (ph->ph_nmissing == 0) {
957 pp->pr_nidle++;
958 if (pp->pr_npages > pp->pr_minpages &&
959 (pp->pr_npages > pp->pr_maxpages ||
960 (pp->pr_roflags & PR_IMMEDRELEASE) != 0 ||
961 (pp->pr_alloc->pa_flags & PA_WANT) != 0)) {
962 simple_unlock(&pp->pr_slock);
963 pr_rmpage(pp, ph, NULL);
964 simple_lock(&pp->pr_slock);
965 } else {
966 LIST_REMOVE(ph, ph_pagelist);
967 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
968
969 /*
970 * Update the timestamp on the page. A page must
971 * be idle for some period of time before it can
972 * be reclaimed by the pagedaemon. This minimizes
973 * ping-pong'ing for memory.
974 */
975 s = splclock();
976 ph->ph_time = mono_time;
977 splx(s);
978 }
979 pool_update_curpage(pp);
980 }
981
982 /*
983 * If the page was previously completely full, move it to the
984 * partially-full list and make it the current page. The next
985 * allocation will get the item from this page, instead of
986 * further fragmenting the pool.
987 */
988 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
989 LIST_REMOVE(ph, ph_pagelist);
990 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
991 pp->pr_curpage = ph;
992 }
993 }
994
995 /*
996 * Return resource to the pool; must be called at appropriate spl level
997 */
998 #ifdef POOL_DIAGNOSTIC
999 void
1000 _pool_put(struct pool *pp, void *v, const char *file, long line)
1001 {
1002
1003 simple_lock(&pp->pr_slock);
1004 pr_enter(pp, file, line);
1005
1006 pr_log(pp, v, PRLOG_PUT, file, line);
1007
1008 pool_do_put(pp, v);
1009
1010 pr_leave(pp);
1011 simple_unlock(&pp->pr_slock);
1012 }
1013 #undef pool_put
1014 #endif /* POOL_DIAGNOSTIC */
1015
1016 void
1017 pool_put(struct pool *pp, void *v)
1018 {
1019
1020 simple_lock(&pp->pr_slock);
1021
1022 pool_do_put(pp, v);
1023
1024 simple_unlock(&pp->pr_slock);
1025 }
1026
1027 #ifdef POOL_DIAGNOSTIC
1028 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1029 #endif
1030
1031 /*
1032 * Add N items to the pool.
1033 */
1034 int
1035 pool_prime(struct pool *pp, int n)
1036 {
1037 struct pool_item_header *ph = NULL;
1038 caddr_t cp;
1039 int newpages;
1040
1041 simple_lock(&pp->pr_slock);
1042
1043 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1044
1045 while (newpages-- > 0) {
1046 simple_unlock(&pp->pr_slock);
1047 cp = pool_allocator_alloc(pp, PR_NOWAIT);
1048 if (__predict_true(cp != NULL))
1049 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1050
1051 if (__predict_false(cp == NULL || ph == NULL)) {
1052 if (cp != NULL)
1053 pool_allocator_free(pp, cp);
1054 simple_lock(&pp->pr_slock);
1055 break;
1056 }
1057
1058 simple_lock(&pp->pr_slock);
1059 pool_prime_page(pp, cp, ph);
1060 pp->pr_npagealloc++;
1061 pp->pr_minpages++;
1062 }
1063
1064 if (pp->pr_minpages >= pp->pr_maxpages)
1065 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1066
1067 simple_unlock(&pp->pr_slock);
1068 return (0);
1069 }
1070
1071 /*
1072 * Add a page worth of items to the pool.
1073 *
1074 * Note, we must be called with the pool descriptor LOCKED.
1075 */
1076 static void
1077 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
1078 {
1079 struct pool_item *pi;
1080 caddr_t cp = storage;
1081 unsigned int align = pp->pr_align;
1082 unsigned int ioff = pp->pr_itemoffset;
1083 int n;
1084 int s;
1085
1086 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
1087
1088 #ifdef DIAGNOSTIC
1089 if (((u_long)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1090 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1091 #endif
1092
1093 /*
1094 * Insert page header.
1095 */
1096 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1097 TAILQ_INIT(&ph->ph_itemlist);
1098 ph->ph_page = storage;
1099 ph->ph_nmissing = 0;
1100 s = splclock();
1101 ph->ph_time = mono_time;
1102 splx(s);
1103 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1104 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1105
1106 pp->pr_nidle++;
1107
1108 /*
1109 * Color this page.
1110 */
1111 cp = (caddr_t)(cp + pp->pr_curcolor);
1112 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1113 pp->pr_curcolor = 0;
1114
1115 /*
1116 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1117 */
1118 if (ioff != 0)
1119 cp = (caddr_t)(cp + (align - ioff));
1120
1121 /*
1122 * Insert remaining chunks on the bucket list.
1123 */
1124 n = pp->pr_itemsperpage;
1125 pp->pr_nitems += n;
1126
1127 while (n--) {
1128 pi = (struct pool_item *)cp;
1129
1130 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1131
1132 /* Insert on page list */
1133 TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
1134 #ifdef DIAGNOSTIC
1135 pi->pi_magic = PI_MAGIC;
1136 #endif
1137 cp = (caddr_t)(cp + pp->pr_size);
1138 }
1139
1140 /*
1141 * If the pool was depleted, point at the new page.
1142 */
1143 if (pp->pr_curpage == NULL)
1144 pp->pr_curpage = ph;
1145
1146 if (++pp->pr_npages > pp->pr_hiwat)
1147 pp->pr_hiwat = pp->pr_npages;
1148 }
1149
1150 /*
1151 * Used by pool_get() when nitems drops below the low water mark. This
1152 * is used to catch up pr_nitems with the low water mark.
1153 *
1154 * Note 1, we never wait for memory here, we let the caller decide what to do.
1155 *
1156 * Note 2, we must be called with the pool already locked, and we return
1157 * with it locked.
1158 */
1159 static int
1160 pool_catchup(struct pool *pp)
1161 {
1162 struct pool_item_header *ph = NULL;
1163 caddr_t cp;
1164 int error = 0;
1165
1166 while (POOL_NEEDS_CATCHUP(pp)) {
1167 /*
1168 * Call the page back-end allocator for more memory.
1169 *
1170 * XXX: We never wait, so should we bother unlocking
1171 * the pool descriptor?
1172 */
1173 simple_unlock(&pp->pr_slock);
1174 cp = pool_allocator_alloc(pp, PR_NOWAIT);
1175 if (__predict_true(cp != NULL))
1176 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1177 if (__predict_false(cp == NULL || ph == NULL)) {
1178 if (cp != NULL)
1179 pool_allocator_free(pp, cp);
1180 error = ENOMEM;
1181 simple_lock(&pp->pr_slock);
1182 break;
1183 }
1184 simple_lock(&pp->pr_slock);
1185 pool_prime_page(pp, cp, ph);
1186 pp->pr_npagealloc++;
1187 }
1188
1189 return (error);
1190 }
1191
1192 static void
1193 pool_update_curpage(struct pool *pp)
1194 {
1195
1196 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1197 if (pp->pr_curpage == NULL) {
1198 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1199 }
1200 }
1201
1202 void
1203 pool_setlowat(struct pool *pp, int n)
1204 {
1205
1206 simple_lock(&pp->pr_slock);
1207
1208 pp->pr_minitems = n;
1209 pp->pr_minpages = (n == 0)
1210 ? 0
1211 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1212
1213 /* Make sure we're caught up with the newly-set low water mark. */
1214 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1215 /*
1216 * XXX: Should we log a warning? Should we set up a timeout
1217 * to try again in a second or so? The latter could break
1218 * a caller's assumptions about interrupt protection, etc.
1219 */
1220 }
1221
1222 simple_unlock(&pp->pr_slock);
1223 }
1224
1225 void
1226 pool_sethiwat(struct pool *pp, int n)
1227 {
1228
1229 simple_lock(&pp->pr_slock);
1230
1231 pp->pr_maxpages = (n == 0)
1232 ? 0
1233 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1234
1235 simple_unlock(&pp->pr_slock);
1236 }
1237
1238 void
1239 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1240 {
1241
1242 simple_lock(&pp->pr_slock);
1243
1244 pp->pr_hardlimit = n;
1245 pp->pr_hardlimit_warning = warnmess;
1246 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1247 pp->pr_hardlimit_warning_last.tv_sec = 0;
1248 pp->pr_hardlimit_warning_last.tv_usec = 0;
1249
1250 /*
1251 * In-line version of pool_sethiwat(), because we don't want to
1252 * release the lock.
1253 */
1254 pp->pr_maxpages = (n == 0)
1255 ? 0
1256 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1257
1258 simple_unlock(&pp->pr_slock);
1259 }
1260
1261 /*
1262 * Release all complete pages that have not been used recently.
1263 */
1264 int
1265 #ifdef POOL_DIAGNOSTIC
1266 _pool_reclaim(struct pool *pp, const char *file, long line)
1267 #else
1268 pool_reclaim(struct pool *pp)
1269 #endif
1270 {
1271 struct pool_item_header *ph, *phnext;
1272 struct pool_cache *pc;
1273 struct timeval curtime;
1274 struct pool_pagelist pq;
1275 struct timeval diff;
1276 int s;
1277
1278 if (pp->pr_drain_hook != NULL) {
1279 /*
1280 * The drain hook must be called with the pool unlocked.
1281 */
1282 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1283 }
1284
1285 if (simple_lock_try(&pp->pr_slock) == 0)
1286 return (0);
1287 pr_enter(pp, file, line);
1288
1289 LIST_INIT(&pq);
1290
1291 /*
1292 * Reclaim items from the pool's caches.
1293 */
1294 TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
1295 pool_cache_reclaim(pc);
1296
1297 s = splclock();
1298 curtime = mono_time;
1299 splx(s);
1300
1301 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1302 phnext = LIST_NEXT(ph, ph_pagelist);
1303
1304 /* Check our minimum page claim */
1305 if (pp->pr_npages <= pp->pr_minpages)
1306 break;
1307
1308 KASSERT(ph->ph_nmissing == 0);
1309 timersub(&curtime, &ph->ph_time, &diff);
1310 if (diff.tv_sec < pool_inactive_time)
1311 continue;
1312
1313 /*
1314 * If freeing this page would put us below
1315 * the low water mark, stop now.
1316 */
1317 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1318 pp->pr_minitems)
1319 break;
1320
1321 pr_rmpage(pp, ph, &pq);
1322 }
1323
1324 pr_leave(pp);
1325 simple_unlock(&pp->pr_slock);
1326 if (LIST_EMPTY(&pq))
1327 return (0);
1328
1329 while ((ph = LIST_FIRST(&pq)) != NULL) {
1330 LIST_REMOVE(ph, ph_pagelist);
1331 pool_allocator_free(pp, ph->ph_page);
1332 if (pp->pr_roflags & PR_PHINPAGE) {
1333 continue;
1334 }
1335 s = splvm();
1336 pool_put(&phpool, ph);
1337 splx(s);
1338 }
1339
1340 return (1);
1341 }
1342
1343 /*
1344 * Drain pools, one at a time.
1345 *
1346 * Note, we must never be called from an interrupt context.
1347 */
1348 void
1349 pool_drain(void *arg)
1350 {
1351 struct pool *pp;
1352 int s;
1353
1354 pp = NULL;
1355 s = splvm();
1356 simple_lock(&pool_head_slock);
1357 if (drainpp == NULL) {
1358 drainpp = TAILQ_FIRST(&pool_head);
1359 }
1360 if (drainpp) {
1361 pp = drainpp;
1362 drainpp = TAILQ_NEXT(pp, pr_poollist);
1363 }
1364 simple_unlock(&pool_head_slock);
1365 pool_reclaim(pp);
1366 splx(s);
1367 }
1368
1369 /*
1370 * Diagnostic helpers.
1371 */
1372 void
1373 pool_print(struct pool *pp, const char *modif)
1374 {
1375 int s;
1376
1377 s = splvm();
1378 if (simple_lock_try(&pp->pr_slock) == 0) {
1379 printf("pool %s is locked; try again later\n",
1380 pp->pr_wchan);
1381 splx(s);
1382 return;
1383 }
1384 pool_print1(pp, modif, printf);
1385 simple_unlock(&pp->pr_slock);
1386 splx(s);
1387 }
1388
1389 void
1390 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1391 {
1392 int didlock = 0;
1393
1394 if (pp == NULL) {
1395 (*pr)("Must specify a pool to print.\n");
1396 return;
1397 }
1398
1399 /*
1400 * Called from DDB; interrupts should be blocked, and all
1401 * other processors should be paused. We can skip locking
1402 * the pool in this case.
1403 *
1404 * We do a simple_lock_try() just to print the lock
1405 * status, however.
1406 */
1407
1408 if (simple_lock_try(&pp->pr_slock) == 0)
1409 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1410 else
1411 didlock = 1;
1412
1413 pool_print1(pp, modif, pr);
1414
1415 if (didlock)
1416 simple_unlock(&pp->pr_slock);
1417 }
1418
1419 static void
1420 pool_print_pagelist(struct pool_pagelist *pl, void (*pr)(const char *, ...))
1421 {
1422 struct pool_item_header *ph;
1423 #ifdef DIAGNOSTIC
1424 struct pool_item *pi;
1425 #endif
1426
1427 LIST_FOREACH(ph, pl, ph_pagelist) {
1428 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1429 ph->ph_page, ph->ph_nmissing,
1430 (u_long)ph->ph_time.tv_sec,
1431 (u_long)ph->ph_time.tv_usec);
1432 #ifdef DIAGNOSTIC
1433 TAILQ_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1434 if (pi->pi_magic != PI_MAGIC) {
1435 (*pr)("\t\t\titem %p, magic 0x%x\n",
1436 pi, pi->pi_magic);
1437 }
1438 }
1439 #endif
1440 }
1441 }
1442
1443 static void
1444 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1445 {
1446 struct pool_item_header *ph;
1447 struct pool_cache *pc;
1448 struct pool_cache_group *pcg;
1449 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1450 char c;
1451
1452 while ((c = *modif++) != '\0') {
1453 if (c == 'l')
1454 print_log = 1;
1455 if (c == 'p')
1456 print_pagelist = 1;
1457 if (c == 'c')
1458 print_cache = 1;
1459 }
1460
1461 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1462 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1463 pp->pr_roflags);
1464 (*pr)("\talloc %p\n", pp->pr_alloc);
1465 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1466 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1467 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1468 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1469
1470 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1471 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1472 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1473 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1474
1475 if (print_pagelist == 0)
1476 goto skip_pagelist;
1477
1478 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1479 (*pr)("\n\tempty page list:\n");
1480 pool_print_pagelist(&pp->pr_emptypages, pr);
1481 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1482 (*pr)("\n\tfull page list:\n");
1483 pool_print_pagelist(&pp->pr_fullpages, pr);
1484 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1485 (*pr)("\n\tpartial-page list:\n");
1486 pool_print_pagelist(&pp->pr_partpages, pr);
1487
1488 if (pp->pr_curpage == NULL)
1489 (*pr)("\tno current page\n");
1490 else
1491 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1492
1493 skip_pagelist:
1494 if (print_log == 0)
1495 goto skip_log;
1496
1497 (*pr)("\n");
1498 if ((pp->pr_roflags & PR_LOGGING) == 0)
1499 (*pr)("\tno log\n");
1500 else
1501 pr_printlog(pp, NULL, pr);
1502
1503 skip_log:
1504 if (print_cache == 0)
1505 goto skip_cache;
1506
1507 TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
1508 (*pr)("\tcache %p: allocfrom %p freeto %p\n", pc,
1509 pc->pc_allocfrom, pc->pc_freeto);
1510 (*pr)("\t hits %lu misses %lu ngroups %lu nitems %lu\n",
1511 pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
1512 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1513 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);
1514 for (i = 0; i < PCG_NOBJECTS; i++) {
1515 if (pcg->pcg_objects[i].pcgo_pa !=
1516 POOL_PADDR_INVALID) {
1517 (*pr)("\t\t\t%p, 0x%llx\n",
1518 pcg->pcg_objects[i].pcgo_va,
1519 (unsigned long long)
1520 pcg->pcg_objects[i].pcgo_pa);
1521 } else {
1522 (*pr)("\t\t\t%p\n",
1523 pcg->pcg_objects[i].pcgo_va);
1524 }
1525 }
1526 }
1527 }
1528
1529 skip_cache:
1530 pr_enter_check(pp, pr);
1531 }
1532
1533 static int
1534 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1535 {
1536 struct pool_item *pi;
1537 caddr_t page;
1538 int n;
1539
1540 page = (caddr_t)((u_long)ph & pp->pr_alloc->pa_pagemask);
1541 if (page != ph->ph_page &&
1542 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1543 if (label != NULL)
1544 printf("%s: ", label);
1545 printf("pool(%p:%s): page inconsistency: page %p;"
1546 " at page head addr %p (p %p)\n", pp,
1547 pp->pr_wchan, ph->ph_page,
1548 ph, page);
1549 return 1;
1550 }
1551
1552 for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
1553 pi != NULL;
1554 pi = TAILQ_NEXT(pi,pi_list), n++) {
1555
1556 #ifdef DIAGNOSTIC
1557 if (pi->pi_magic != PI_MAGIC) {
1558 if (label != NULL)
1559 printf("%s: ", label);
1560 printf("pool(%s): free list modified: magic=%x;"
1561 " page %p; item ordinal %d;"
1562 " addr %p (p %p)\n",
1563 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1564 n, pi, page);
1565 panic("pool");
1566 }
1567 #endif
1568 page =
1569 (caddr_t)((u_long)pi & pp->pr_alloc->pa_pagemask);
1570 if (page == ph->ph_page)
1571 continue;
1572
1573 if (label != NULL)
1574 printf("%s: ", label);
1575 printf("pool(%p:%s): page inconsistency: page %p;"
1576 " item ordinal %d; addr %p (p %p)\n", pp,
1577 pp->pr_wchan, ph->ph_page,
1578 n, pi, page);
1579 return 1;
1580 }
1581 return 0;
1582 }
1583
1584
1585 int
1586 pool_chk(struct pool *pp, const char *label)
1587 {
1588 struct pool_item_header *ph;
1589 int r = 0;
1590
1591 simple_lock(&pp->pr_slock);
1592 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1593 r = pool_chk_page(pp, label, ph);
1594 if (r) {
1595 goto out;
1596 }
1597 }
1598 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1599 r = pool_chk_page(pp, label, ph);
1600 if (r) {
1601 goto out;
1602 }
1603 }
1604 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1605 r = pool_chk_page(pp, label, ph);
1606 if (r) {
1607 goto out;
1608 }
1609 }
1610
1611 out:
1612 simple_unlock(&pp->pr_slock);
1613 return (r);
1614 }
1615
1616 /*
1617 * pool_cache_init:
1618 *
1619 * Initialize a pool cache.
1620 *
1621 * NOTE: If the pool must be protected from interrupts, we expect
1622 * to be called at the appropriate interrupt priority level.
1623 */
1624 void
1625 pool_cache_init(struct pool_cache *pc, struct pool *pp,
1626 int (*ctor)(void *, void *, int),
1627 void (*dtor)(void *, void *),
1628 void *arg)
1629 {
1630
1631 TAILQ_INIT(&pc->pc_grouplist);
1632 simple_lock_init(&pc->pc_slock);
1633
1634 pc->pc_allocfrom = NULL;
1635 pc->pc_freeto = NULL;
1636 pc->pc_pool = pp;
1637
1638 pc->pc_ctor = ctor;
1639 pc->pc_dtor = dtor;
1640 pc->pc_arg = arg;
1641
1642 pc->pc_hits = 0;
1643 pc->pc_misses = 0;
1644
1645 pc->pc_ngroups = 0;
1646
1647 pc->pc_nitems = 0;
1648
1649 simple_lock(&pp->pr_slock);
1650 TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist);
1651 simple_unlock(&pp->pr_slock);
1652 }
1653
1654 /*
1655 * pool_cache_destroy:
1656 *
1657 * Destroy a pool cache.
1658 */
1659 void
1660 pool_cache_destroy(struct pool_cache *pc)
1661 {
1662 struct pool *pp = pc->pc_pool;
1663
1664 /* First, invalidate the entire cache. */
1665 pool_cache_invalidate(pc);
1666
1667 /* ...and remove it from the pool's cache list. */
1668 simple_lock(&pp->pr_slock);
1669 TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist);
1670 simple_unlock(&pp->pr_slock);
1671 }
1672
1673 static __inline void *
1674 pcg_get(struct pool_cache_group *pcg, paddr_t *pap)
1675 {
1676 void *object;
1677 u_int idx;
1678
1679 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
1680 KASSERT(pcg->pcg_avail != 0);
1681 idx = --pcg->pcg_avail;
1682
1683 KASSERT(pcg->pcg_objects[idx].pcgo_va != NULL);
1684 object = pcg->pcg_objects[idx].pcgo_va;
1685 if (pap != NULL)
1686 *pap = pcg->pcg_objects[idx].pcgo_pa;
1687 pcg->pcg_objects[idx].pcgo_va = NULL;
1688
1689 return (object);
1690 }
1691
1692 static __inline void
1693 pcg_put(struct pool_cache_group *pcg, void *object, paddr_t pa)
1694 {
1695 u_int idx;
1696
1697 KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
1698 idx = pcg->pcg_avail++;
1699
1700 KASSERT(pcg->pcg_objects[idx].pcgo_va == NULL);
1701 pcg->pcg_objects[idx].pcgo_va = object;
1702 pcg->pcg_objects[idx].pcgo_pa = pa;
1703 }
1704
1705 /*
1706 * pool_cache_get{,_paddr}:
1707 *
1708 * Get an object from a pool cache (optionally returning
1709 * the physical address of the object).
1710 */
1711 void *
1712 pool_cache_get_paddr(struct pool_cache *pc, int flags, paddr_t *pap)
1713 {
1714 struct pool_cache_group *pcg;
1715 void *object;
1716
1717 #ifdef LOCKDEBUG
1718 if (flags & PR_WAITOK)
1719 simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)");
1720 #endif
1721
1722 simple_lock(&pc->pc_slock);
1723
1724 if ((pcg = pc->pc_allocfrom) == NULL) {
1725 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1726 if (pcg->pcg_avail != 0) {
1727 pc->pc_allocfrom = pcg;
1728 goto have_group;
1729 }
1730 }
1731
1732 /*
1733 * No groups with any available objects. Allocate
1734 * a new object, construct it, and return it to
1735 * the caller. We will allocate a group, if necessary,
1736 * when the object is freed back to the cache.
1737 */
1738 pc->pc_misses++;
1739 simple_unlock(&pc->pc_slock);
1740 object = pool_get(pc->pc_pool, flags);
1741 if (object != NULL && pc->pc_ctor != NULL) {
1742 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
1743 pool_put(pc->pc_pool, object);
1744 return (NULL);
1745 }
1746 }
1747 if (object != NULL && pap != NULL) {
1748 #ifdef POOL_VTOPHYS
1749 *pap = POOL_VTOPHYS(object);
1750 #else
1751 *pap = POOL_PADDR_INVALID;
1752 #endif
1753 }
1754 return (object);
1755 }
1756
1757 have_group:
1758 pc->pc_hits++;
1759 pc->pc_nitems--;
1760 object = pcg_get(pcg, pap);
1761
1762 if (pcg->pcg_avail == 0)
1763 pc->pc_allocfrom = NULL;
1764
1765 simple_unlock(&pc->pc_slock);
1766
1767 return (object);
1768 }
1769
1770 /*
1771 * pool_cache_put{,_paddr}:
1772 *
1773 * Put an object back to the pool cache (optionally caching the
1774 * physical address of the object).
1775 */
1776 void
1777 pool_cache_put_paddr(struct pool_cache *pc, void *object, paddr_t pa)
1778 {
1779 struct pool_cache_group *pcg;
1780 int s;
1781
1782 simple_lock(&pc->pc_slock);
1783
1784 if ((pcg = pc->pc_freeto) == NULL) {
1785 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1786 if (pcg->pcg_avail != PCG_NOBJECTS) {
1787 pc->pc_freeto = pcg;
1788 goto have_group;
1789 }
1790 }
1791
1792 /*
1793 * No empty groups to free the object to. Attempt to
1794 * allocate one.
1795 */
1796 simple_unlock(&pc->pc_slock);
1797 s = splvm();
1798 pcg = pool_get(&pcgpool, PR_NOWAIT);
1799 splx(s);
1800 if (pcg != NULL) {
1801 memset(pcg, 0, sizeof(*pcg));
1802 simple_lock(&pc->pc_slock);
1803 pc->pc_ngroups++;
1804 TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list);
1805 if (pc->pc_freeto == NULL)
1806 pc->pc_freeto = pcg;
1807 goto have_group;
1808 }
1809
1810 /*
1811 * Unable to allocate a cache group; destruct the object
1812 * and free it back to the pool.
1813 */
1814 pool_cache_destruct_object(pc, object);
1815 return;
1816 }
1817
1818 have_group:
1819 pc->pc_nitems++;
1820 pcg_put(pcg, object, pa);
1821
1822 if (pcg->pcg_avail == PCG_NOBJECTS)
1823 pc->pc_freeto = NULL;
1824
1825 simple_unlock(&pc->pc_slock);
1826 }
1827
1828 /*
1829 * pool_cache_destruct_object:
1830 *
1831 * Force destruction of an object and its release back into
1832 * the pool.
1833 */
1834 void
1835 pool_cache_destruct_object(struct pool_cache *pc, void *object)
1836 {
1837
1838 if (pc->pc_dtor != NULL)
1839 (*pc->pc_dtor)(pc->pc_arg, object);
1840 pool_put(pc->pc_pool, object);
1841 }
1842
1843 /*
1844 * pool_cache_do_invalidate:
1845 *
1846 * This internal function implements pool_cache_invalidate() and
1847 * pool_cache_reclaim().
1848 */
1849 static void
1850 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups,
1851 void (*putit)(struct pool *, void *))
1852 {
1853 struct pool_cache_group *pcg, *npcg;
1854 void *object;
1855 int s;
1856
1857 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1858 pcg = npcg) {
1859 npcg = TAILQ_NEXT(pcg, pcg_list);
1860 while (pcg->pcg_avail != 0) {
1861 pc->pc_nitems--;
1862 object = pcg_get(pcg, NULL);
1863 if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg)
1864 pc->pc_allocfrom = NULL;
1865 if (pc->pc_dtor != NULL)
1866 (*pc->pc_dtor)(pc->pc_arg, object);
1867 (*putit)(pc->pc_pool, object);
1868 }
1869 if (free_groups) {
1870 pc->pc_ngroups--;
1871 TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list);
1872 if (pc->pc_freeto == pcg)
1873 pc->pc_freeto = NULL;
1874 s = splvm();
1875 pool_put(&pcgpool, pcg);
1876 splx(s);
1877 }
1878 }
1879 }
1880
1881 /*
1882 * pool_cache_invalidate:
1883 *
1884 * Invalidate a pool cache (destruct and release all of the
1885 * cached objects).
1886 */
1887 void
1888 pool_cache_invalidate(struct pool_cache *pc)
1889 {
1890
1891 simple_lock(&pc->pc_slock);
1892 pool_cache_do_invalidate(pc, 0, pool_put);
1893 simple_unlock(&pc->pc_slock);
1894 }
1895
1896 /*
1897 * pool_cache_reclaim:
1898 *
1899 * Reclaim a pool cache for pool_reclaim().
1900 */
1901 static void
1902 pool_cache_reclaim(struct pool_cache *pc)
1903 {
1904
1905 simple_lock(&pc->pc_slock);
1906 pool_cache_do_invalidate(pc, 1, pool_do_put);
1907 simple_unlock(&pc->pc_slock);
1908 }
1909
1910 /*
1911 * Pool backend allocators.
1912 *
1913 * Each pool has a backend allocator that handles allocation, deallocation,
1914 * and any additional draining that might be needed.
1915 *
1916 * We provide two standard allocators:
1917 *
1918 * pool_allocator_kmem - the default when no allocator is specified
1919 *
1920 * pool_allocator_nointr - used for pools that will not be accessed
1921 * in interrupt context.
1922 */
1923 void *pool_page_alloc(struct pool *, int);
1924 void pool_page_free(struct pool *, void *);
1925
1926 struct pool_allocator pool_allocator_kmem = {
1927 pool_page_alloc, pool_page_free, 0,
1928 };
1929
1930 void *pool_page_alloc_nointr(struct pool *, int);
1931 void pool_page_free_nointr(struct pool *, void *);
1932
1933 struct pool_allocator pool_allocator_nointr = {
1934 pool_page_alloc_nointr, pool_page_free_nointr, 0,
1935 };
1936
1937 #ifdef POOL_SUBPAGE
1938 void *pool_subpage_alloc(struct pool *, int);
1939 void pool_subpage_free(struct pool *, void *);
1940
1941 struct pool_allocator pool_allocator_kmem_subpage = {
1942 pool_subpage_alloc, pool_subpage_free, 0,
1943 };
1944 #endif /* POOL_SUBPAGE */
1945
1946 /*
1947 * We have at least three different resources for the same allocation and
1948 * each resource can be depleted. First, we have the ready elements in the
1949 * pool. Then we have the resource (typically a vm_map) for this allocator.
1950 * Finally, we have physical memory. Waiting for any of these can be
1951 * unnecessary when any other is freed, but the kernel doesn't support
1952 * sleeping on multiple wait channels, so we have to employ another strategy.
1953 *
1954 * The caller sleeps on the pool (so that it can be awakened when an item
1955 * is returned to the pool), but we set PA_WANT on the allocator. When a
1956 * page is returned to the allocator and PA_WANT is set, pool_allocator_free
1957 * will wake up all sleeping pools belonging to this allocator.
1958 *
1959 * XXX Thundering herd.
1960 */
1961 void *
1962 pool_allocator_alloc(struct pool *org, int flags)
1963 {
1964 struct pool_allocator *pa = org->pr_alloc;
1965 struct pool *pp, *start;
1966 int s, freed;
1967 void *res;
1968
1969 LOCK_ASSERT(!simple_lock_held(&org->pr_slock));
1970
1971 do {
1972 if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
1973 return (res);
1974 if ((flags & PR_WAITOK) == 0) {
1975 /*
1976 * We only run the drain hookhere if PR_NOWAIT.
1977 * In other cases, the hook will be run in
1978 * pool_reclaim().
1979 */
1980 if (org->pr_drain_hook != NULL) {
1981 (*org->pr_drain_hook)(org->pr_drain_hook_arg,
1982 flags);
1983 if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
1984 return (res);
1985 }
1986 break;
1987 }
1988
1989 /*
1990 * Drain all pools, except "org", that use this
1991 * allocator. We do this to reclaim VA space.
1992 * pa_alloc is responsible for waiting for
1993 * physical memory.
1994 *
1995 * XXX We risk looping forever if start if someone
1996 * calls pool_destroy on "start". But there is no
1997 * other way to have potentially sleeping pool_reclaim,
1998 * non-sleeping locks on pool_allocator, and some
1999 * stirring of drained pools in the allocator.
2000 *
2001 * XXX Maybe we should use pool_head_slock for locking
2002 * the allocators?
2003 */
2004 freed = 0;
2005
2006 s = splvm();
2007 simple_lock(&pa->pa_slock);
2008 pp = start = TAILQ_FIRST(&pa->pa_list);
2009 do {
2010 TAILQ_REMOVE(&pa->pa_list, pp, pr_alloc_list);
2011 TAILQ_INSERT_TAIL(&pa->pa_list, pp, pr_alloc_list);
2012 if (pp == org)
2013 continue;
2014 simple_unlock(&pa->pa_slock);
2015 freed = pool_reclaim(pp);
2016 simple_lock(&pa->pa_slock);
2017 } while ((pp = TAILQ_FIRST(&pa->pa_list)) != start &&
2018 freed == 0);
2019
2020 if (freed == 0) {
2021 /*
2022 * We set PA_WANT here, the caller will most likely
2023 * sleep waiting for pages (if not, this won't hurt
2024 * that much), and there is no way to set this in
2025 * the caller without violating locking order.
2026 */
2027 pa->pa_flags |= PA_WANT;
2028 }
2029 simple_unlock(&pa->pa_slock);
2030 splx(s);
2031 } while (freed);
2032 return (NULL);
2033 }
2034
2035 void
2036 pool_allocator_free(struct pool *pp, void *v)
2037 {
2038 struct pool_allocator *pa = pp->pr_alloc;
2039 int s;
2040
2041 LOCK_ASSERT(!simple_lock_held(&pp->pr_slock));
2042
2043 (*pa->pa_free)(pp, v);
2044
2045 s = splvm();
2046 simple_lock(&pa->pa_slock);
2047 if ((pa->pa_flags & PA_WANT) == 0) {
2048 simple_unlock(&pa->pa_slock);
2049 splx(s);
2050 return;
2051 }
2052
2053 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
2054 simple_lock(&pp->pr_slock);
2055 if ((pp->pr_flags & PR_WANTED) != 0) {
2056 pp->pr_flags &= ~PR_WANTED;
2057 wakeup(pp);
2058 }
2059 simple_unlock(&pp->pr_slock);
2060 }
2061 pa->pa_flags &= ~PA_WANT;
2062 simple_unlock(&pa->pa_slock);
2063 splx(s);
2064 }
2065
2066 void *
2067 pool_page_alloc(struct pool *pp, int flags)
2068 {
2069 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2070
2071 return ((void *) uvm_km_alloc_poolpage(waitok));
2072 }
2073
2074 void
2075 pool_page_free(struct pool *pp, void *v)
2076 {
2077
2078 uvm_km_free_poolpage((vaddr_t) v);
2079 }
2080
2081 #ifdef POOL_SUBPAGE
2082 /* Sub-page allocator, for machines with large hardware pages. */
2083 void *
2084 pool_subpage_alloc(struct pool *pp, int flags)
2085 {
2086
2087 return (pool_get(&psppool, flags));
2088 }
2089
2090 void
2091 pool_subpage_free(struct pool *pp, void *v)
2092 {
2093
2094 pool_put(&psppool, v);
2095 }
2096
2097 /* We don't provide a real nointr allocator. Maybe later. */
2098 void *
2099 pool_page_alloc_nointr(struct pool *pp, int flags)
2100 {
2101
2102 return (pool_subpage_alloc(pp, flags));
2103 }
2104
2105 void
2106 pool_page_free_nointr(struct pool *pp, void *v)
2107 {
2108
2109 pool_subpage_free(pp, v);
2110 }
2111 #else
2112 void *
2113 pool_page_alloc_nointr(struct pool *pp, int flags)
2114 {
2115 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2116
2117 return ((void *) uvm_km_alloc_poolpage1(kernel_map,
2118 uvm.kernel_object, waitok));
2119 }
2120
2121 void
2122 pool_page_free_nointr(struct pool *pp, void *v)
2123 {
2124
2125 uvm_km_free_poolpage1(kernel_map, (vaddr_t) v);
2126 }
2127 #endif /* POOL_SUBPAGE */
2128