subr_pool.c revision 1.93 1 /* $NetBSD: subr_pool.c,v 1.93 2004/03/08 22:48:09 dbj Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.93 2004/03/08 22:48:09 dbj Exp $");
42
43 #include "opt_pool.h"
44 #include "opt_poollog.h"
45 #include "opt_lockdebug.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/proc.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/lock.h>
54 #include <sys/pool.h>
55 #include <sys/syslog.h>
56
57 #include <uvm/uvm.h>
58
59 /*
60 * Pool resource management utility.
61 *
62 * Memory is allocated in pages which are split into pieces according to
63 * the pool item size. Each page is kept on one of three lists in the
64 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
65 * for empty, full and partially-full pages respectively. The individual
66 * pool items are on a linked list headed by `ph_itemlist' in each page
67 * header. The memory for building the page list is either taken from
68 * the allocated pages themselves (for small pool items) or taken from
69 * an internal pool of page headers (`phpool').
70 */
71
72 /* List of all pools */
73 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
74
75 /* Private pool for page header structures */
76 static struct pool phpool;
77
78 #ifdef POOL_SUBPAGE
79 /* Pool of subpages for use by normal pools. */
80 static struct pool psppool;
81 #endif
82
83 /* # of seconds to retain page after last use */
84 int pool_inactive_time = 10;
85
86 /* Next candidate for drainage (see pool_drain()) */
87 static struct pool *drainpp;
88
89 /* This spin lock protects both pool_head and drainpp. */
90 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
91
92 struct pool_item_header {
93 /* Page headers */
94 LIST_ENTRY(pool_item_header)
95 ph_pagelist; /* pool page list */
96 TAILQ_HEAD(,pool_item) ph_itemlist; /* chunk list for this page */
97 SPLAY_ENTRY(pool_item_header)
98 ph_node; /* Off-page page headers */
99 unsigned int ph_nmissing; /* # of chunks in use */
100 caddr_t ph_page; /* this page's address */
101 struct timeval ph_time; /* last referenced */
102 };
103
104 struct pool_item {
105 #ifdef DIAGNOSTIC
106 u_int pi_magic;
107 #endif
108 #define PI_MAGIC 0xdeadbeefU
109 /* Other entries use only this list entry */
110 TAILQ_ENTRY(pool_item) pi_list;
111 };
112
113 #define POOL_NEEDS_CATCHUP(pp) \
114 ((pp)->pr_nitems < (pp)->pr_minitems)
115
116 /*
117 * Pool cache management.
118 *
119 * Pool caches provide a way for constructed objects to be cached by the
120 * pool subsystem. This can lead to performance improvements by avoiding
121 * needless object construction/destruction; it is deferred until absolutely
122 * necessary.
123 *
124 * Caches are grouped into cache groups. Each cache group references
125 * up to 16 constructed objects. When a cache allocates an object
126 * from the pool, it calls the object's constructor and places it into
127 * a cache group. When a cache group frees an object back to the pool,
128 * it first calls the object's destructor. This allows the object to
129 * persist in constructed form while freed to the cache.
130 *
131 * Multiple caches may exist for each pool. This allows a single
132 * object type to have multiple constructed forms. The pool references
133 * each cache, so that when a pool is drained by the pagedaemon, it can
134 * drain each individual cache as well. Each time a cache is drained,
135 * the most idle cache group is freed to the pool in its entirety.
136 *
137 * Pool caches are layed on top of pools. By layering them, we can avoid
138 * the complexity of cache management for pools which would not benefit
139 * from it.
140 */
141
142 /* The cache group pool. */
143 static struct pool pcgpool;
144
145 static void pool_cache_reclaim(struct pool_cache *);
146
147 static int pool_catchup(struct pool *);
148 static void pool_prime_page(struct pool *, caddr_t,
149 struct pool_item_header *);
150 static void pool_update_curpage(struct pool *);
151
152 void *pool_allocator_alloc(struct pool *, int);
153 void pool_allocator_free(struct pool *, void *);
154
155 static void pool_print_pagelist(struct pool_pagelist *,
156 void (*)(const char *, ...));
157 static void pool_print1(struct pool *, const char *,
158 void (*)(const char *, ...));
159
160 static int pool_chk_page(struct pool *, const char *,
161 struct pool_item_header *);
162
163 /*
164 * Pool log entry. An array of these is allocated in pool_init().
165 */
166 struct pool_log {
167 const char *pl_file;
168 long pl_line;
169 int pl_action;
170 #define PRLOG_GET 1
171 #define PRLOG_PUT 2
172 void *pl_addr;
173 };
174
175 #ifdef POOL_DIAGNOSTIC
176 /* Number of entries in pool log buffers */
177 #ifndef POOL_LOGSIZE
178 #define POOL_LOGSIZE 10
179 #endif
180
181 int pool_logsize = POOL_LOGSIZE;
182
183 static __inline void
184 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
185 {
186 int n = pp->pr_curlogentry;
187 struct pool_log *pl;
188
189 if ((pp->pr_roflags & PR_LOGGING) == 0)
190 return;
191
192 /*
193 * Fill in the current entry. Wrap around and overwrite
194 * the oldest entry if necessary.
195 */
196 pl = &pp->pr_log[n];
197 pl->pl_file = file;
198 pl->pl_line = line;
199 pl->pl_action = action;
200 pl->pl_addr = v;
201 if (++n >= pp->pr_logsize)
202 n = 0;
203 pp->pr_curlogentry = n;
204 }
205
206 static void
207 pr_printlog(struct pool *pp, struct pool_item *pi,
208 void (*pr)(const char *, ...))
209 {
210 int i = pp->pr_logsize;
211 int n = pp->pr_curlogentry;
212
213 if ((pp->pr_roflags & PR_LOGGING) == 0)
214 return;
215
216 /*
217 * Print all entries in this pool's log.
218 */
219 while (i-- > 0) {
220 struct pool_log *pl = &pp->pr_log[n];
221 if (pl->pl_action != 0) {
222 if (pi == NULL || pi == pl->pl_addr) {
223 (*pr)("\tlog entry %d:\n", i);
224 (*pr)("\t\taction = %s, addr = %p\n",
225 pl->pl_action == PRLOG_GET ? "get" : "put",
226 pl->pl_addr);
227 (*pr)("\t\tfile: %s at line %lu\n",
228 pl->pl_file, pl->pl_line);
229 }
230 }
231 if (++n >= pp->pr_logsize)
232 n = 0;
233 }
234 }
235
236 static __inline void
237 pr_enter(struct pool *pp, const char *file, long line)
238 {
239
240 if (__predict_false(pp->pr_entered_file != NULL)) {
241 printf("pool %s: reentrancy at file %s line %ld\n",
242 pp->pr_wchan, file, line);
243 printf(" previous entry at file %s line %ld\n",
244 pp->pr_entered_file, pp->pr_entered_line);
245 panic("pr_enter");
246 }
247
248 pp->pr_entered_file = file;
249 pp->pr_entered_line = line;
250 }
251
252 static __inline void
253 pr_leave(struct pool *pp)
254 {
255
256 if (__predict_false(pp->pr_entered_file == NULL)) {
257 printf("pool %s not entered?\n", pp->pr_wchan);
258 panic("pr_leave");
259 }
260
261 pp->pr_entered_file = NULL;
262 pp->pr_entered_line = 0;
263 }
264
265 static __inline void
266 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
267 {
268
269 if (pp->pr_entered_file != NULL)
270 (*pr)("\n\tcurrently entered from file %s line %ld\n",
271 pp->pr_entered_file, pp->pr_entered_line);
272 }
273 #else
274 #define pr_log(pp, v, action, file, line)
275 #define pr_printlog(pp, pi, pr)
276 #define pr_enter(pp, file, line)
277 #define pr_leave(pp)
278 #define pr_enter_check(pp, pr)
279 #endif /* POOL_DIAGNOSTIC */
280
281 static __inline int
282 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
283 {
284 if (a->ph_page < b->ph_page)
285 return (-1);
286 else if (a->ph_page > b->ph_page)
287 return (1);
288 else
289 return (0);
290 }
291
292 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
293 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
294
295 /*
296 * Return the pool page header based on page address.
297 */
298 static __inline struct pool_item_header *
299 pr_find_pagehead(struct pool *pp, caddr_t page)
300 {
301 struct pool_item_header *ph, tmp;
302
303 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
304 return ((struct pool_item_header *)(page + pp->pr_phoffset));
305
306 tmp.ph_page = page;
307 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
308 return ph;
309 }
310
311 /*
312 * Remove a page from the pool.
313 */
314 static __inline void
315 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
316 struct pool_pagelist *pq)
317 {
318 int s;
319
320 LOCK_ASSERT(!simple_lock_held(&pp->pr_slock) || pq != NULL);
321
322 /*
323 * If the page was idle, decrement the idle page count.
324 */
325 if (ph->ph_nmissing == 0) {
326 #ifdef DIAGNOSTIC
327 if (pp->pr_nidle == 0)
328 panic("pr_rmpage: nidle inconsistent");
329 if (pp->pr_nitems < pp->pr_itemsperpage)
330 panic("pr_rmpage: nitems inconsistent");
331 #endif
332 pp->pr_nidle--;
333 }
334
335 pp->pr_nitems -= pp->pr_itemsperpage;
336
337 /*
338 * Unlink a page from the pool and release it (or queue it for release).
339 */
340 LIST_REMOVE(ph, ph_pagelist);
341 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
342 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
343 if (pq) {
344 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
345 } else {
346 pool_allocator_free(pp, ph->ph_page);
347 if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
348 s = splvm();
349 pool_put(&phpool, ph);
350 splx(s);
351 }
352 }
353 pp->pr_npages--;
354 pp->pr_npagefree++;
355
356 pool_update_curpage(pp);
357 }
358
359 /*
360 * Initialize the given pool resource structure.
361 *
362 * We export this routine to allow other kernel parts to declare
363 * static pools that must be initialized before malloc() is available.
364 */
365 void
366 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
367 const char *wchan, struct pool_allocator *palloc)
368 {
369 int off, slack;
370 size_t trysize, phsize;
371 int s;
372
373 #ifdef POOL_DIAGNOSTIC
374 /*
375 * Always log if POOL_DIAGNOSTIC is defined.
376 */
377 if (pool_logsize != 0)
378 flags |= PR_LOGGING;
379 #endif
380
381 #ifdef POOL_SUBPAGE
382 /*
383 * XXX We don't provide a real `nointr' back-end
384 * yet; all sub-pages come from a kmem back-end.
385 * maybe some day...
386 */
387 if (palloc == NULL) {
388 extern struct pool_allocator pool_allocator_kmem_subpage;
389 palloc = &pool_allocator_kmem_subpage;
390 }
391 /*
392 * We'll assume any user-specified back-end allocator
393 * will deal with sub-pages, or simply don't care.
394 */
395 #else
396 if (palloc == NULL)
397 palloc = &pool_allocator_kmem;
398 #endif /* POOL_SUBPAGE */
399 if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
400 if (palloc->pa_pagesz == 0) {
401 #ifdef POOL_SUBPAGE
402 if (palloc == &pool_allocator_kmem)
403 palloc->pa_pagesz = PAGE_SIZE;
404 else
405 palloc->pa_pagesz = POOL_SUBPAGE;
406 #else
407 palloc->pa_pagesz = PAGE_SIZE;
408 #endif /* POOL_SUBPAGE */
409 }
410
411 TAILQ_INIT(&palloc->pa_list);
412
413 simple_lock_init(&palloc->pa_slock);
414 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
415 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
416 palloc->pa_flags |= PA_INITIALIZED;
417 }
418
419 if (align == 0)
420 align = ALIGN(1);
421
422 if (size < sizeof(struct pool_item))
423 size = sizeof(struct pool_item);
424
425 size = roundup(size, align);
426 #ifdef DIAGNOSTIC
427 if (size > palloc->pa_pagesz)
428 panic("pool_init: pool item size (%lu) too large",
429 (u_long)size);
430 #endif
431
432 /*
433 * Initialize the pool structure.
434 */
435 LIST_INIT(&pp->pr_emptypages);
436 LIST_INIT(&pp->pr_fullpages);
437 LIST_INIT(&pp->pr_partpages);
438 TAILQ_INIT(&pp->pr_cachelist);
439 pp->pr_curpage = NULL;
440 pp->pr_npages = 0;
441 pp->pr_minitems = 0;
442 pp->pr_minpages = 0;
443 pp->pr_maxpages = UINT_MAX;
444 pp->pr_roflags = flags;
445 pp->pr_flags = 0;
446 pp->pr_size = size;
447 pp->pr_align = align;
448 pp->pr_wchan = wchan;
449 pp->pr_alloc = palloc;
450 pp->pr_nitems = 0;
451 pp->pr_nout = 0;
452 pp->pr_hardlimit = UINT_MAX;
453 pp->pr_hardlimit_warning = NULL;
454 pp->pr_hardlimit_ratecap.tv_sec = 0;
455 pp->pr_hardlimit_ratecap.tv_usec = 0;
456 pp->pr_hardlimit_warning_last.tv_sec = 0;
457 pp->pr_hardlimit_warning_last.tv_usec = 0;
458 pp->pr_drain_hook = NULL;
459 pp->pr_drain_hook_arg = NULL;
460
461 /*
462 * Decide whether to put the page header off page to avoid
463 * wasting too large a part of the page or too big item.
464 * Off-page page headers go on a hash table, so we can match
465 * a returned item with its header based on the page address.
466 * We use 1/16 of the page size and about 8 times of the item
467 * size as the threshold (XXX: tune)
468 *
469 * However, we'll put the header into the page if we can put
470 * it without wasting any items.
471 *
472 * Silently enforce `0 <= ioff < align'.
473 */
474 pp->pr_itemoffset = ioff %= align;
475 /* See the comment below about reserved bytes. */
476 trysize = palloc->pa_pagesz - ((align - ioff) % align);
477 phsize = ALIGN(sizeof(struct pool_item_header));
478 if (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
479 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size) {
480 /* Use the end of the page for the page header */
481 pp->pr_roflags |= PR_PHINPAGE;
482 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
483 } else {
484 /* The page header will be taken from our page header pool */
485 pp->pr_phoffset = 0;
486 off = palloc->pa_pagesz;
487 SPLAY_INIT(&pp->pr_phtree);
488 }
489
490 /*
491 * Alignment is to take place at `ioff' within the item. This means
492 * we must reserve up to `align - 1' bytes on the page to allow
493 * appropriate positioning of each item.
494 */
495 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
496 KASSERT(pp->pr_itemsperpage != 0);
497
498 /*
499 * Use the slack between the chunks and the page header
500 * for "cache coloring".
501 */
502 slack = off - pp->pr_itemsperpage * pp->pr_size;
503 pp->pr_maxcolor = (slack / align) * align;
504 pp->pr_curcolor = 0;
505
506 pp->pr_nget = 0;
507 pp->pr_nfail = 0;
508 pp->pr_nput = 0;
509 pp->pr_npagealloc = 0;
510 pp->pr_npagefree = 0;
511 pp->pr_hiwat = 0;
512 pp->pr_nidle = 0;
513
514 #ifdef POOL_DIAGNOSTIC
515 if (flags & PR_LOGGING) {
516 if (kmem_map == NULL ||
517 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
518 M_TEMP, M_NOWAIT)) == NULL)
519 pp->pr_roflags &= ~PR_LOGGING;
520 pp->pr_curlogentry = 0;
521 pp->pr_logsize = pool_logsize;
522 }
523 #endif
524
525 pp->pr_entered_file = NULL;
526 pp->pr_entered_line = 0;
527
528 simple_lock_init(&pp->pr_slock);
529
530 /*
531 * Initialize private page header pool and cache magazine pool if we
532 * haven't done so yet.
533 * XXX LOCKING.
534 */
535 if (phpool.pr_size == 0) {
536 #ifdef POOL_SUBPAGE
537 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0, 0,
538 "phpool", &pool_allocator_kmem);
539 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
540 PR_RECURSIVE, "psppool", &pool_allocator_kmem);
541 #else
542 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
543 0, "phpool", NULL);
544 #endif
545 pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
546 0, "pcgpool", NULL);
547 }
548
549 /* Insert into the list of all pools. */
550 simple_lock(&pool_head_slock);
551 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
552 simple_unlock(&pool_head_slock);
553
554 /* Insert this into the list of pools using this allocator. */
555 s = splvm();
556 simple_lock(&palloc->pa_slock);
557 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
558 simple_unlock(&palloc->pa_slock);
559 splx(s);
560 }
561
562 /*
563 * De-commision a pool resource.
564 */
565 void
566 pool_destroy(struct pool *pp)
567 {
568 struct pool_item_header *ph;
569 struct pool_cache *pc;
570 int s;
571
572 /* Locking order: pool_allocator -> pool */
573 s = splvm();
574 simple_lock(&pp->pr_alloc->pa_slock);
575 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
576 simple_unlock(&pp->pr_alloc->pa_slock);
577 splx(s);
578
579 /* Destroy all caches for this pool. */
580 while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL)
581 pool_cache_destroy(pc);
582
583 #ifdef DIAGNOSTIC
584 if (pp->pr_nout != 0) {
585 pr_printlog(pp, NULL, printf);
586 panic("pool_destroy: pool busy: still out: %u",
587 pp->pr_nout);
588 }
589 #endif
590
591 /* Remove all pages */
592 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
593 pr_rmpage(pp, ph, NULL);
594 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
595 KASSERT(LIST_EMPTY(&pp->pr_partpages));
596
597 /* Remove from global pool list */
598 simple_lock(&pool_head_slock);
599 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
600 if (drainpp == pp) {
601 drainpp = NULL;
602 }
603 simple_unlock(&pool_head_slock);
604
605 #ifdef POOL_DIAGNOSTIC
606 if ((pp->pr_roflags & PR_LOGGING) != 0)
607 free(pp->pr_log, M_TEMP);
608 #endif
609 }
610
611 void
612 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
613 {
614
615 /* XXX no locking -- must be used just after pool_init() */
616 #ifdef DIAGNOSTIC
617 if (pp->pr_drain_hook != NULL)
618 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
619 #endif
620 pp->pr_drain_hook = fn;
621 pp->pr_drain_hook_arg = arg;
622 }
623
624 static struct pool_item_header *
625 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
626 {
627 struct pool_item_header *ph;
628 int s;
629
630 LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
631
632 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
633 ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
634 else {
635 s = splvm();
636 ph = pool_get(&phpool, flags);
637 splx(s);
638 }
639
640 return (ph);
641 }
642
643 /*
644 * Grab an item from the pool; must be called at appropriate spl level
645 */
646 void *
647 #ifdef POOL_DIAGNOSTIC
648 _pool_get(struct pool *pp, int flags, const char *file, long line)
649 #else
650 pool_get(struct pool *pp, int flags)
651 #endif
652 {
653 struct pool_item *pi;
654 struct pool_item_header *ph;
655 void *v;
656
657 #ifdef DIAGNOSTIC
658 if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
659 (flags & PR_WAITOK) != 0))
660 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
661
662 #ifdef LOCKDEBUG
663 if (flags & PR_WAITOK)
664 simple_lock_only_held(NULL, "pool_get(PR_WAITOK)");
665 #endif
666 #endif /* DIAGNOSTIC */
667
668 simple_lock(&pp->pr_slock);
669 pr_enter(pp, file, line);
670
671 startover:
672 /*
673 * Check to see if we've reached the hard limit. If we have,
674 * and we can wait, then wait until an item has been returned to
675 * the pool.
676 */
677 #ifdef DIAGNOSTIC
678 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
679 pr_leave(pp);
680 simple_unlock(&pp->pr_slock);
681 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
682 }
683 #endif
684 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
685 if (pp->pr_drain_hook != NULL) {
686 /*
687 * Since the drain hook is going to free things
688 * back to the pool, unlock, call the hook, re-lock,
689 * and check the hardlimit condition again.
690 */
691 pr_leave(pp);
692 simple_unlock(&pp->pr_slock);
693 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
694 simple_lock(&pp->pr_slock);
695 pr_enter(pp, file, line);
696 if (pp->pr_nout < pp->pr_hardlimit)
697 goto startover;
698 }
699
700 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
701 /*
702 * XXX: A warning isn't logged in this case. Should
703 * it be?
704 */
705 pp->pr_flags |= PR_WANTED;
706 pr_leave(pp);
707 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
708 pr_enter(pp, file, line);
709 goto startover;
710 }
711
712 /*
713 * Log a message that the hard limit has been hit.
714 */
715 if (pp->pr_hardlimit_warning != NULL &&
716 ratecheck(&pp->pr_hardlimit_warning_last,
717 &pp->pr_hardlimit_ratecap))
718 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
719
720 pp->pr_nfail++;
721
722 pr_leave(pp);
723 simple_unlock(&pp->pr_slock);
724 return (NULL);
725 }
726
727 /*
728 * The convention we use is that if `curpage' is not NULL, then
729 * it points at a non-empty bucket. In particular, `curpage'
730 * never points at a page header which has PR_PHINPAGE set and
731 * has no items in its bucket.
732 */
733 if ((ph = pp->pr_curpage) == NULL) {
734 #ifdef DIAGNOSTIC
735 if (pp->pr_nitems != 0) {
736 simple_unlock(&pp->pr_slock);
737 printf("pool_get: %s: curpage NULL, nitems %u\n",
738 pp->pr_wchan, pp->pr_nitems);
739 panic("pool_get: nitems inconsistent");
740 }
741 #endif
742
743 /*
744 * Call the back-end page allocator for more memory.
745 * Release the pool lock, as the back-end page allocator
746 * may block.
747 */
748 pr_leave(pp);
749 simple_unlock(&pp->pr_slock);
750 v = pool_allocator_alloc(pp, flags);
751 if (__predict_true(v != NULL))
752 ph = pool_alloc_item_header(pp, v, flags);
753
754 if (__predict_false(v == NULL || ph == NULL)) {
755 if (v != NULL)
756 pool_allocator_free(pp, v);
757
758 simple_lock(&pp->pr_slock);
759 pr_enter(pp, file, line);
760
761 /*
762 * We were unable to allocate a page or item
763 * header, but we released the lock during
764 * allocation, so perhaps items were freed
765 * back to the pool. Check for this case.
766 */
767 if (pp->pr_curpage != NULL)
768 goto startover;
769
770 if ((flags & PR_WAITOK) == 0) {
771 pp->pr_nfail++;
772 pr_leave(pp);
773 simple_unlock(&pp->pr_slock);
774 return (NULL);
775 }
776
777 /*
778 * Wait for items to be returned to this pool.
779 *
780 * XXX: maybe we should wake up once a second and
781 * try again?
782 */
783 pp->pr_flags |= PR_WANTED;
784 /* PA_WANTED is already set on the allocator. */
785 pr_leave(pp);
786 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
787 pr_enter(pp, file, line);
788 goto startover;
789 }
790
791 /* We have more memory; add it to the pool */
792 simple_lock(&pp->pr_slock);
793 pr_enter(pp, file, line);
794 pool_prime_page(pp, v, ph);
795 pp->pr_npagealloc++;
796
797 /* Start the allocation process over. */
798 goto startover;
799 }
800 if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
801 pr_leave(pp);
802 simple_unlock(&pp->pr_slock);
803 panic("pool_get: %s: page empty", pp->pr_wchan);
804 }
805 #ifdef DIAGNOSTIC
806 if (__predict_false(pp->pr_nitems == 0)) {
807 pr_leave(pp);
808 simple_unlock(&pp->pr_slock);
809 printf("pool_get: %s: items on itemlist, nitems %u\n",
810 pp->pr_wchan, pp->pr_nitems);
811 panic("pool_get: nitems inconsistent");
812 }
813 #endif
814
815 #ifdef POOL_DIAGNOSTIC
816 pr_log(pp, v, PRLOG_GET, file, line);
817 #endif
818
819 #ifdef DIAGNOSTIC
820 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
821 pr_printlog(pp, pi, printf);
822 panic("pool_get(%s): free list modified: magic=%x; page %p;"
823 " item addr %p\n",
824 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
825 }
826 #endif
827
828 /*
829 * Remove from item list.
830 */
831 TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
832 pp->pr_nitems--;
833 pp->pr_nout++;
834 if (ph->ph_nmissing == 0) {
835 #ifdef DIAGNOSTIC
836 if (__predict_false(pp->pr_nidle == 0))
837 panic("pool_get: nidle inconsistent");
838 #endif
839 pp->pr_nidle--;
840
841 /*
842 * This page was previously empty. Move it to the list of
843 * partially-full pages. This page is already curpage.
844 */
845 LIST_REMOVE(ph, ph_pagelist);
846 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
847 }
848 ph->ph_nmissing++;
849 if (TAILQ_EMPTY(&ph->ph_itemlist)) {
850 #ifdef DIAGNOSTIC
851 if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
852 pr_leave(pp);
853 simple_unlock(&pp->pr_slock);
854 panic("pool_get: %s: nmissing inconsistent",
855 pp->pr_wchan);
856 }
857 #endif
858 /*
859 * This page is now full. Move it to the full list
860 * and select a new current page.
861 */
862 LIST_REMOVE(ph, ph_pagelist);
863 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
864 pool_update_curpage(pp);
865 }
866
867 pp->pr_nget++;
868
869 /*
870 * If we have a low water mark and we are now below that low
871 * water mark, add more items to the pool.
872 */
873 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
874 /*
875 * XXX: Should we log a warning? Should we set up a timeout
876 * to try again in a second or so? The latter could break
877 * a caller's assumptions about interrupt protection, etc.
878 */
879 }
880
881 pr_leave(pp);
882 simple_unlock(&pp->pr_slock);
883 return (v);
884 }
885
886 /*
887 * Internal version of pool_put(). Pool is already locked/entered.
888 */
889 static void
890 pool_do_put(struct pool *pp, void *v)
891 {
892 struct pool_item *pi = v;
893 struct pool_item_header *ph;
894 caddr_t page;
895 int s;
896
897 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
898
899 page = (caddr_t)((u_long)v & pp->pr_alloc->pa_pagemask);
900
901 #ifdef DIAGNOSTIC
902 if (__predict_false(pp->pr_nout == 0)) {
903 printf("pool %s: putting with none out\n",
904 pp->pr_wchan);
905 panic("pool_put");
906 }
907 #endif
908
909 if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
910 pr_printlog(pp, NULL, printf);
911 panic("pool_put: %s: page header missing", pp->pr_wchan);
912 }
913
914 #ifdef LOCKDEBUG
915 /*
916 * Check if we're freeing a locked simple lock.
917 */
918 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
919 #endif
920
921 /*
922 * Return to item list.
923 */
924 #ifdef DIAGNOSTIC
925 pi->pi_magic = PI_MAGIC;
926 #endif
927 #ifdef DEBUG
928 {
929 int i, *ip = v;
930
931 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
932 *ip++ = PI_MAGIC;
933 }
934 }
935 #endif
936
937 TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
938 KDASSERT(ph->ph_nmissing != 0);
939 ph->ph_nmissing--;
940 pp->pr_nput++;
941 pp->pr_nitems++;
942 pp->pr_nout--;
943
944 /* Cancel "pool empty" condition if it exists */
945 if (pp->pr_curpage == NULL)
946 pp->pr_curpage = ph;
947
948 if (pp->pr_flags & PR_WANTED) {
949 pp->pr_flags &= ~PR_WANTED;
950 if (ph->ph_nmissing == 0)
951 pp->pr_nidle++;
952 wakeup((caddr_t)pp);
953 return;
954 }
955
956 /*
957 * If this page is now empty, do one of two things:
958 *
959 * (1) If we have more pages than the page high water mark,
960 * or if we are flagged as immediately freeing back idle
961 * pages, free the page back to the system. ONLY CONSIDER
962 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
963 * CLAIM.
964 *
965 * (2) Otherwise, move the page to the empty page list.
966 *
967 * Either way, select a new current page (so we use a partially-full
968 * page if one is available).
969 */
970 if (ph->ph_nmissing == 0) {
971 pp->pr_nidle++;
972 if (pp->pr_npages > pp->pr_minpages &&
973 (pp->pr_npages > pp->pr_maxpages ||
974 (pp->pr_roflags & PR_IMMEDRELEASE) != 0 ||
975 (pp->pr_alloc->pa_flags & PA_WANT) != 0)) {
976 simple_unlock(&pp->pr_slock);
977 pr_rmpage(pp, ph, NULL);
978 simple_lock(&pp->pr_slock);
979 } else {
980 LIST_REMOVE(ph, ph_pagelist);
981 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
982
983 /*
984 * Update the timestamp on the page. A page must
985 * be idle for some period of time before it can
986 * be reclaimed by the pagedaemon. This minimizes
987 * ping-pong'ing for memory.
988 */
989 s = splclock();
990 ph->ph_time = mono_time;
991 splx(s);
992 }
993 pool_update_curpage(pp);
994 }
995
996 /*
997 * If the page was previously completely full, move it to the
998 * partially-full list and make it the current page. The next
999 * allocation will get the item from this page, instead of
1000 * further fragmenting the pool.
1001 */
1002 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1003 LIST_REMOVE(ph, ph_pagelist);
1004 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1005 pp->pr_curpage = ph;
1006 }
1007 }
1008
1009 /*
1010 * Return resource to the pool; must be called at appropriate spl level
1011 */
1012 #ifdef POOL_DIAGNOSTIC
1013 void
1014 _pool_put(struct pool *pp, void *v, const char *file, long line)
1015 {
1016
1017 simple_lock(&pp->pr_slock);
1018 pr_enter(pp, file, line);
1019
1020 pr_log(pp, v, PRLOG_PUT, file, line);
1021
1022 pool_do_put(pp, v);
1023
1024 pr_leave(pp);
1025 simple_unlock(&pp->pr_slock);
1026 }
1027 #undef pool_put
1028 #endif /* POOL_DIAGNOSTIC */
1029
1030 void
1031 pool_put(struct pool *pp, void *v)
1032 {
1033
1034 simple_lock(&pp->pr_slock);
1035
1036 pool_do_put(pp, v);
1037
1038 simple_unlock(&pp->pr_slock);
1039 }
1040
1041 #ifdef POOL_DIAGNOSTIC
1042 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1043 #endif
1044
1045 /*
1046 * Add N items to the pool.
1047 */
1048 int
1049 pool_prime(struct pool *pp, int n)
1050 {
1051 struct pool_item_header *ph = NULL;
1052 caddr_t cp;
1053 int newpages;
1054
1055 simple_lock(&pp->pr_slock);
1056
1057 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1058
1059 while (newpages-- > 0) {
1060 simple_unlock(&pp->pr_slock);
1061 cp = pool_allocator_alloc(pp, PR_NOWAIT);
1062 if (__predict_true(cp != NULL))
1063 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1064
1065 if (__predict_false(cp == NULL || ph == NULL)) {
1066 if (cp != NULL)
1067 pool_allocator_free(pp, cp);
1068 simple_lock(&pp->pr_slock);
1069 break;
1070 }
1071
1072 simple_lock(&pp->pr_slock);
1073 pool_prime_page(pp, cp, ph);
1074 pp->pr_npagealloc++;
1075 pp->pr_minpages++;
1076 }
1077
1078 if (pp->pr_minpages >= pp->pr_maxpages)
1079 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1080
1081 simple_unlock(&pp->pr_slock);
1082 return (0);
1083 }
1084
1085 /*
1086 * Add a page worth of items to the pool.
1087 *
1088 * Note, we must be called with the pool descriptor LOCKED.
1089 */
1090 static void
1091 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
1092 {
1093 struct pool_item *pi;
1094 caddr_t cp = storage;
1095 unsigned int align = pp->pr_align;
1096 unsigned int ioff = pp->pr_itemoffset;
1097 int n;
1098 int s;
1099
1100 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
1101
1102 #ifdef DIAGNOSTIC
1103 if (((u_long)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1104 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1105 #endif
1106
1107 /*
1108 * Insert page header.
1109 */
1110 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1111 TAILQ_INIT(&ph->ph_itemlist);
1112 ph->ph_page = storage;
1113 ph->ph_nmissing = 0;
1114 s = splclock();
1115 ph->ph_time = mono_time;
1116 splx(s);
1117 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1118 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1119
1120 pp->pr_nidle++;
1121
1122 /*
1123 * Color this page.
1124 */
1125 cp = (caddr_t)(cp + pp->pr_curcolor);
1126 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1127 pp->pr_curcolor = 0;
1128
1129 /*
1130 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1131 */
1132 if (ioff != 0)
1133 cp = (caddr_t)(cp + (align - ioff));
1134
1135 /*
1136 * Insert remaining chunks on the bucket list.
1137 */
1138 n = pp->pr_itemsperpage;
1139 pp->pr_nitems += n;
1140
1141 while (n--) {
1142 pi = (struct pool_item *)cp;
1143
1144 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1145
1146 /* Insert on page list */
1147 TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
1148 #ifdef DIAGNOSTIC
1149 pi->pi_magic = PI_MAGIC;
1150 #endif
1151 cp = (caddr_t)(cp + pp->pr_size);
1152 }
1153
1154 /*
1155 * If the pool was depleted, point at the new page.
1156 */
1157 if (pp->pr_curpage == NULL)
1158 pp->pr_curpage = ph;
1159
1160 if (++pp->pr_npages > pp->pr_hiwat)
1161 pp->pr_hiwat = pp->pr_npages;
1162 }
1163
1164 /*
1165 * Used by pool_get() when nitems drops below the low water mark. This
1166 * is used to catch up pr_nitems with the low water mark.
1167 *
1168 * Note 1, we never wait for memory here, we let the caller decide what to do.
1169 *
1170 * Note 2, we must be called with the pool already locked, and we return
1171 * with it locked.
1172 */
1173 static int
1174 pool_catchup(struct pool *pp)
1175 {
1176 struct pool_item_header *ph = NULL;
1177 caddr_t cp;
1178 int error = 0;
1179
1180 while (POOL_NEEDS_CATCHUP(pp)) {
1181 /*
1182 * Call the page back-end allocator for more memory.
1183 *
1184 * XXX: We never wait, so should we bother unlocking
1185 * the pool descriptor?
1186 */
1187 simple_unlock(&pp->pr_slock);
1188 cp = pool_allocator_alloc(pp, PR_NOWAIT);
1189 if (__predict_true(cp != NULL))
1190 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1191 if (__predict_false(cp == NULL || ph == NULL)) {
1192 if (cp != NULL)
1193 pool_allocator_free(pp, cp);
1194 error = ENOMEM;
1195 simple_lock(&pp->pr_slock);
1196 break;
1197 }
1198 simple_lock(&pp->pr_slock);
1199 pool_prime_page(pp, cp, ph);
1200 pp->pr_npagealloc++;
1201 }
1202
1203 return (error);
1204 }
1205
1206 static void
1207 pool_update_curpage(struct pool *pp)
1208 {
1209
1210 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1211 if (pp->pr_curpage == NULL) {
1212 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1213 }
1214 }
1215
1216 void
1217 pool_setlowat(struct pool *pp, int n)
1218 {
1219
1220 simple_lock(&pp->pr_slock);
1221
1222 pp->pr_minitems = n;
1223 pp->pr_minpages = (n == 0)
1224 ? 0
1225 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1226
1227 /* Make sure we're caught up with the newly-set low water mark. */
1228 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1229 /*
1230 * XXX: Should we log a warning? Should we set up a timeout
1231 * to try again in a second or so? The latter could break
1232 * a caller's assumptions about interrupt protection, etc.
1233 */
1234 }
1235
1236 simple_unlock(&pp->pr_slock);
1237 }
1238
1239 void
1240 pool_sethiwat(struct pool *pp, int n)
1241 {
1242
1243 simple_lock(&pp->pr_slock);
1244
1245 pp->pr_maxpages = (n == 0)
1246 ? 0
1247 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1248
1249 simple_unlock(&pp->pr_slock);
1250 }
1251
1252 void
1253 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1254 {
1255
1256 simple_lock(&pp->pr_slock);
1257
1258 pp->pr_hardlimit = n;
1259 pp->pr_hardlimit_warning = warnmess;
1260 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1261 pp->pr_hardlimit_warning_last.tv_sec = 0;
1262 pp->pr_hardlimit_warning_last.tv_usec = 0;
1263
1264 /*
1265 * In-line version of pool_sethiwat(), because we don't want to
1266 * release the lock.
1267 */
1268 pp->pr_maxpages = (n == 0)
1269 ? 0
1270 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1271
1272 simple_unlock(&pp->pr_slock);
1273 }
1274
1275 /*
1276 * Release all complete pages that have not been used recently.
1277 */
1278 int
1279 #ifdef POOL_DIAGNOSTIC
1280 _pool_reclaim(struct pool *pp, const char *file, long line)
1281 #else
1282 pool_reclaim(struct pool *pp)
1283 #endif
1284 {
1285 struct pool_item_header *ph, *phnext;
1286 struct pool_cache *pc;
1287 struct timeval curtime;
1288 struct pool_pagelist pq;
1289 struct timeval diff;
1290 int s;
1291
1292 if (pp->pr_drain_hook != NULL) {
1293 /*
1294 * The drain hook must be called with the pool unlocked.
1295 */
1296 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1297 }
1298
1299 if (simple_lock_try(&pp->pr_slock) == 0)
1300 return (0);
1301 pr_enter(pp, file, line);
1302
1303 LIST_INIT(&pq);
1304
1305 /*
1306 * Reclaim items from the pool's caches.
1307 */
1308 TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
1309 pool_cache_reclaim(pc);
1310
1311 s = splclock();
1312 curtime = mono_time;
1313 splx(s);
1314
1315 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1316 phnext = LIST_NEXT(ph, ph_pagelist);
1317
1318 /* Check our minimum page claim */
1319 if (pp->pr_npages <= pp->pr_minpages)
1320 break;
1321
1322 KASSERT(ph->ph_nmissing == 0);
1323 timersub(&curtime, &ph->ph_time, &diff);
1324 if (diff.tv_sec < pool_inactive_time)
1325 continue;
1326
1327 /*
1328 * If freeing this page would put us below
1329 * the low water mark, stop now.
1330 */
1331 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1332 pp->pr_minitems)
1333 break;
1334
1335 pr_rmpage(pp, ph, &pq);
1336 }
1337
1338 pr_leave(pp);
1339 simple_unlock(&pp->pr_slock);
1340 if (LIST_EMPTY(&pq))
1341 return (0);
1342
1343 while ((ph = LIST_FIRST(&pq)) != NULL) {
1344 LIST_REMOVE(ph, ph_pagelist);
1345 pool_allocator_free(pp, ph->ph_page);
1346 if (pp->pr_roflags & PR_PHINPAGE) {
1347 continue;
1348 }
1349 s = splvm();
1350 pool_put(&phpool, ph);
1351 splx(s);
1352 }
1353
1354 return (1);
1355 }
1356
1357 /*
1358 * Drain pools, one at a time.
1359 *
1360 * Note, we must never be called from an interrupt context.
1361 */
1362 void
1363 pool_drain(void *arg)
1364 {
1365 struct pool *pp;
1366 int s;
1367
1368 pp = NULL;
1369 s = splvm();
1370 simple_lock(&pool_head_slock);
1371 if (drainpp == NULL) {
1372 drainpp = TAILQ_FIRST(&pool_head);
1373 }
1374 if (drainpp) {
1375 pp = drainpp;
1376 drainpp = TAILQ_NEXT(pp, pr_poollist);
1377 }
1378 simple_unlock(&pool_head_slock);
1379 pool_reclaim(pp);
1380 splx(s);
1381 }
1382
1383 /*
1384 * Diagnostic helpers.
1385 */
1386 void
1387 pool_print(struct pool *pp, const char *modif)
1388 {
1389 int s;
1390
1391 s = splvm();
1392 if (simple_lock_try(&pp->pr_slock) == 0) {
1393 printf("pool %s is locked; try again later\n",
1394 pp->pr_wchan);
1395 splx(s);
1396 return;
1397 }
1398 pool_print1(pp, modif, printf);
1399 simple_unlock(&pp->pr_slock);
1400 splx(s);
1401 }
1402
1403 void
1404 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1405 {
1406 int didlock = 0;
1407
1408 if (pp == NULL) {
1409 (*pr)("Must specify a pool to print.\n");
1410 return;
1411 }
1412
1413 /*
1414 * Called from DDB; interrupts should be blocked, and all
1415 * other processors should be paused. We can skip locking
1416 * the pool in this case.
1417 *
1418 * We do a simple_lock_try() just to print the lock
1419 * status, however.
1420 */
1421
1422 if (simple_lock_try(&pp->pr_slock) == 0)
1423 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1424 else
1425 didlock = 1;
1426
1427 pool_print1(pp, modif, pr);
1428
1429 if (didlock)
1430 simple_unlock(&pp->pr_slock);
1431 }
1432
1433 static void
1434 pool_print_pagelist(struct pool_pagelist *pl, void (*pr)(const char *, ...))
1435 {
1436 struct pool_item_header *ph;
1437 #ifdef DIAGNOSTIC
1438 struct pool_item *pi;
1439 #endif
1440
1441 LIST_FOREACH(ph, pl, ph_pagelist) {
1442 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1443 ph->ph_page, ph->ph_nmissing,
1444 (u_long)ph->ph_time.tv_sec,
1445 (u_long)ph->ph_time.tv_usec);
1446 #ifdef DIAGNOSTIC
1447 TAILQ_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1448 if (pi->pi_magic != PI_MAGIC) {
1449 (*pr)("\t\t\titem %p, magic 0x%x\n",
1450 pi, pi->pi_magic);
1451 }
1452 }
1453 #endif
1454 }
1455 }
1456
1457 static void
1458 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1459 {
1460 struct pool_item_header *ph;
1461 struct pool_cache *pc;
1462 struct pool_cache_group *pcg;
1463 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1464 char c;
1465
1466 while ((c = *modif++) != '\0') {
1467 if (c == 'l')
1468 print_log = 1;
1469 if (c == 'p')
1470 print_pagelist = 1;
1471 if (c == 'c')
1472 print_cache = 1;
1473 }
1474
1475 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1476 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1477 pp->pr_roflags);
1478 (*pr)("\talloc %p\n", pp->pr_alloc);
1479 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1480 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1481 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1482 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1483
1484 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1485 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1486 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1487 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1488
1489 if (print_pagelist == 0)
1490 goto skip_pagelist;
1491
1492 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1493 (*pr)("\n\tempty page list:\n");
1494 pool_print_pagelist(&pp->pr_emptypages, pr);
1495 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1496 (*pr)("\n\tfull page list:\n");
1497 pool_print_pagelist(&pp->pr_fullpages, pr);
1498 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1499 (*pr)("\n\tpartial-page list:\n");
1500 pool_print_pagelist(&pp->pr_partpages, pr);
1501
1502 if (pp->pr_curpage == NULL)
1503 (*pr)("\tno current page\n");
1504 else
1505 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1506
1507 skip_pagelist:
1508 if (print_log == 0)
1509 goto skip_log;
1510
1511 (*pr)("\n");
1512 if ((pp->pr_roflags & PR_LOGGING) == 0)
1513 (*pr)("\tno log\n");
1514 else
1515 pr_printlog(pp, NULL, pr);
1516
1517 skip_log:
1518 if (print_cache == 0)
1519 goto skip_cache;
1520
1521 TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
1522 (*pr)("\tcache %p: allocfrom %p freeto %p\n", pc,
1523 pc->pc_allocfrom, pc->pc_freeto);
1524 (*pr)("\t hits %lu misses %lu ngroups %lu nitems %lu\n",
1525 pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
1526 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1527 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);
1528 for (i = 0; i < PCG_NOBJECTS; i++) {
1529 if (pcg->pcg_objects[i].pcgo_pa !=
1530 POOL_PADDR_INVALID) {
1531 (*pr)("\t\t\t%p, 0x%llx\n",
1532 pcg->pcg_objects[i].pcgo_va,
1533 (unsigned long long)
1534 pcg->pcg_objects[i].pcgo_pa);
1535 } else {
1536 (*pr)("\t\t\t%p\n",
1537 pcg->pcg_objects[i].pcgo_va);
1538 }
1539 }
1540 }
1541 }
1542
1543 skip_cache:
1544 pr_enter_check(pp, pr);
1545 }
1546
1547 static int
1548 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1549 {
1550 struct pool_item *pi;
1551 caddr_t page;
1552 int n;
1553
1554 page = (caddr_t)((u_long)ph & pp->pr_alloc->pa_pagemask);
1555 if (page != ph->ph_page &&
1556 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1557 if (label != NULL)
1558 printf("%s: ", label);
1559 printf("pool(%p:%s): page inconsistency: page %p;"
1560 " at page head addr %p (p %p)\n", pp,
1561 pp->pr_wchan, ph->ph_page,
1562 ph, page);
1563 return 1;
1564 }
1565
1566 for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
1567 pi != NULL;
1568 pi = TAILQ_NEXT(pi,pi_list), n++) {
1569
1570 #ifdef DIAGNOSTIC
1571 if (pi->pi_magic != PI_MAGIC) {
1572 if (label != NULL)
1573 printf("%s: ", label);
1574 printf("pool(%s): free list modified: magic=%x;"
1575 " page %p; item ordinal %d;"
1576 " addr %p (p %p)\n",
1577 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1578 n, pi, page);
1579 panic("pool");
1580 }
1581 #endif
1582 page =
1583 (caddr_t)((u_long)pi & pp->pr_alloc->pa_pagemask);
1584 if (page == ph->ph_page)
1585 continue;
1586
1587 if (label != NULL)
1588 printf("%s: ", label);
1589 printf("pool(%p:%s): page inconsistency: page %p;"
1590 " item ordinal %d; addr %p (p %p)\n", pp,
1591 pp->pr_wchan, ph->ph_page,
1592 n, pi, page);
1593 return 1;
1594 }
1595 return 0;
1596 }
1597
1598
1599 int
1600 pool_chk(struct pool *pp, const char *label)
1601 {
1602 struct pool_item_header *ph;
1603 int r = 0;
1604
1605 simple_lock(&pp->pr_slock);
1606 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1607 r = pool_chk_page(pp, label, ph);
1608 if (r) {
1609 goto out;
1610 }
1611 }
1612 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1613 r = pool_chk_page(pp, label, ph);
1614 if (r) {
1615 goto out;
1616 }
1617 }
1618 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1619 r = pool_chk_page(pp, label, ph);
1620 if (r) {
1621 goto out;
1622 }
1623 }
1624
1625 out:
1626 simple_unlock(&pp->pr_slock);
1627 return (r);
1628 }
1629
1630 /*
1631 * pool_cache_init:
1632 *
1633 * Initialize a pool cache.
1634 *
1635 * NOTE: If the pool must be protected from interrupts, we expect
1636 * to be called at the appropriate interrupt priority level.
1637 */
1638 void
1639 pool_cache_init(struct pool_cache *pc, struct pool *pp,
1640 int (*ctor)(void *, void *, int),
1641 void (*dtor)(void *, void *),
1642 void *arg)
1643 {
1644
1645 TAILQ_INIT(&pc->pc_grouplist);
1646 simple_lock_init(&pc->pc_slock);
1647
1648 pc->pc_allocfrom = NULL;
1649 pc->pc_freeto = NULL;
1650 pc->pc_pool = pp;
1651
1652 pc->pc_ctor = ctor;
1653 pc->pc_dtor = dtor;
1654 pc->pc_arg = arg;
1655
1656 pc->pc_hits = 0;
1657 pc->pc_misses = 0;
1658
1659 pc->pc_ngroups = 0;
1660
1661 pc->pc_nitems = 0;
1662
1663 simple_lock(&pp->pr_slock);
1664 TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist);
1665 simple_unlock(&pp->pr_slock);
1666 }
1667
1668 /*
1669 * pool_cache_destroy:
1670 *
1671 * Destroy a pool cache.
1672 */
1673 void
1674 pool_cache_destroy(struct pool_cache *pc)
1675 {
1676 struct pool *pp = pc->pc_pool;
1677
1678 /* First, invalidate the entire cache. */
1679 pool_cache_invalidate(pc);
1680
1681 /* ...and remove it from the pool's cache list. */
1682 simple_lock(&pp->pr_slock);
1683 TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist);
1684 simple_unlock(&pp->pr_slock);
1685 }
1686
1687 static __inline void *
1688 pcg_get(struct pool_cache_group *pcg, paddr_t *pap)
1689 {
1690 void *object;
1691 u_int idx;
1692
1693 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
1694 KASSERT(pcg->pcg_avail != 0);
1695 idx = --pcg->pcg_avail;
1696
1697 KASSERT(pcg->pcg_objects[idx].pcgo_va != NULL);
1698 object = pcg->pcg_objects[idx].pcgo_va;
1699 if (pap != NULL)
1700 *pap = pcg->pcg_objects[idx].pcgo_pa;
1701 pcg->pcg_objects[idx].pcgo_va = NULL;
1702
1703 return (object);
1704 }
1705
1706 static __inline void
1707 pcg_put(struct pool_cache_group *pcg, void *object, paddr_t pa)
1708 {
1709 u_int idx;
1710
1711 KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
1712 idx = pcg->pcg_avail++;
1713
1714 KASSERT(pcg->pcg_objects[idx].pcgo_va == NULL);
1715 pcg->pcg_objects[idx].pcgo_va = object;
1716 pcg->pcg_objects[idx].pcgo_pa = pa;
1717 }
1718
1719 /*
1720 * pool_cache_get{,_paddr}:
1721 *
1722 * Get an object from a pool cache (optionally returning
1723 * the physical address of the object).
1724 */
1725 void *
1726 pool_cache_get_paddr(struct pool_cache *pc, int flags, paddr_t *pap)
1727 {
1728 struct pool_cache_group *pcg;
1729 void *object;
1730
1731 #ifdef LOCKDEBUG
1732 if (flags & PR_WAITOK)
1733 simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)");
1734 #endif
1735
1736 simple_lock(&pc->pc_slock);
1737
1738 if ((pcg = pc->pc_allocfrom) == NULL) {
1739 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1740 if (pcg->pcg_avail != 0) {
1741 pc->pc_allocfrom = pcg;
1742 goto have_group;
1743 }
1744 }
1745
1746 /*
1747 * No groups with any available objects. Allocate
1748 * a new object, construct it, and return it to
1749 * the caller. We will allocate a group, if necessary,
1750 * when the object is freed back to the cache.
1751 */
1752 pc->pc_misses++;
1753 simple_unlock(&pc->pc_slock);
1754 object = pool_get(pc->pc_pool, flags);
1755 if (object != NULL && pc->pc_ctor != NULL) {
1756 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
1757 pool_put(pc->pc_pool, object);
1758 return (NULL);
1759 }
1760 }
1761 if (object != NULL && pap != NULL) {
1762 #ifdef POOL_VTOPHYS
1763 *pap = POOL_VTOPHYS(object);
1764 #else
1765 *pap = POOL_PADDR_INVALID;
1766 #endif
1767 }
1768 return (object);
1769 }
1770
1771 have_group:
1772 pc->pc_hits++;
1773 pc->pc_nitems--;
1774 object = pcg_get(pcg, pap);
1775
1776 if (pcg->pcg_avail == 0)
1777 pc->pc_allocfrom = NULL;
1778
1779 simple_unlock(&pc->pc_slock);
1780
1781 return (object);
1782 }
1783
1784 /*
1785 * pool_cache_put{,_paddr}:
1786 *
1787 * Put an object back to the pool cache (optionally caching the
1788 * physical address of the object).
1789 */
1790 void
1791 pool_cache_put_paddr(struct pool_cache *pc, void *object, paddr_t pa)
1792 {
1793 struct pool_cache_group *pcg;
1794 int s;
1795
1796 simple_lock(&pc->pc_slock);
1797
1798 if ((pcg = pc->pc_freeto) == NULL) {
1799 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1800 if (pcg->pcg_avail != PCG_NOBJECTS) {
1801 pc->pc_freeto = pcg;
1802 goto have_group;
1803 }
1804 }
1805
1806 /*
1807 * No empty groups to free the object to. Attempt to
1808 * allocate one.
1809 */
1810 simple_unlock(&pc->pc_slock);
1811 s = splvm();
1812 pcg = pool_get(&pcgpool, PR_NOWAIT);
1813 splx(s);
1814 if (pcg != NULL) {
1815 memset(pcg, 0, sizeof(*pcg));
1816 simple_lock(&pc->pc_slock);
1817 pc->pc_ngroups++;
1818 TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list);
1819 if (pc->pc_freeto == NULL)
1820 pc->pc_freeto = pcg;
1821 goto have_group;
1822 }
1823
1824 /*
1825 * Unable to allocate a cache group; destruct the object
1826 * and free it back to the pool.
1827 */
1828 pool_cache_destruct_object(pc, object);
1829 return;
1830 }
1831
1832 have_group:
1833 pc->pc_nitems++;
1834 pcg_put(pcg, object, pa);
1835
1836 if (pcg->pcg_avail == PCG_NOBJECTS)
1837 pc->pc_freeto = NULL;
1838
1839 simple_unlock(&pc->pc_slock);
1840 }
1841
1842 /*
1843 * pool_cache_destruct_object:
1844 *
1845 * Force destruction of an object and its release back into
1846 * the pool.
1847 */
1848 void
1849 pool_cache_destruct_object(struct pool_cache *pc, void *object)
1850 {
1851
1852 if (pc->pc_dtor != NULL)
1853 (*pc->pc_dtor)(pc->pc_arg, object);
1854 pool_put(pc->pc_pool, object);
1855 }
1856
1857 /*
1858 * pool_cache_do_invalidate:
1859 *
1860 * This internal function implements pool_cache_invalidate() and
1861 * pool_cache_reclaim().
1862 */
1863 static void
1864 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups,
1865 void (*putit)(struct pool *, void *))
1866 {
1867 struct pool_cache_group *pcg, *npcg;
1868 void *object;
1869 int s;
1870
1871 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1872 pcg = npcg) {
1873 npcg = TAILQ_NEXT(pcg, pcg_list);
1874 while (pcg->pcg_avail != 0) {
1875 pc->pc_nitems--;
1876 object = pcg_get(pcg, NULL);
1877 if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg)
1878 pc->pc_allocfrom = NULL;
1879 if (pc->pc_dtor != NULL)
1880 (*pc->pc_dtor)(pc->pc_arg, object);
1881 (*putit)(pc->pc_pool, object);
1882 }
1883 if (free_groups) {
1884 pc->pc_ngroups--;
1885 TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list);
1886 if (pc->pc_freeto == pcg)
1887 pc->pc_freeto = NULL;
1888 s = splvm();
1889 pool_put(&pcgpool, pcg);
1890 splx(s);
1891 }
1892 }
1893 }
1894
1895 /*
1896 * pool_cache_invalidate:
1897 *
1898 * Invalidate a pool cache (destruct and release all of the
1899 * cached objects).
1900 */
1901 void
1902 pool_cache_invalidate(struct pool_cache *pc)
1903 {
1904
1905 simple_lock(&pc->pc_slock);
1906 pool_cache_do_invalidate(pc, 0, pool_put);
1907 simple_unlock(&pc->pc_slock);
1908 }
1909
1910 /*
1911 * pool_cache_reclaim:
1912 *
1913 * Reclaim a pool cache for pool_reclaim().
1914 */
1915 static void
1916 pool_cache_reclaim(struct pool_cache *pc)
1917 {
1918
1919 simple_lock(&pc->pc_slock);
1920 pool_cache_do_invalidate(pc, 1, pool_do_put);
1921 simple_unlock(&pc->pc_slock);
1922 }
1923
1924 /*
1925 * Pool backend allocators.
1926 *
1927 * Each pool has a backend allocator that handles allocation, deallocation,
1928 * and any additional draining that might be needed.
1929 *
1930 * We provide two standard allocators:
1931 *
1932 * pool_allocator_kmem - the default when no allocator is specified
1933 *
1934 * pool_allocator_nointr - used for pools that will not be accessed
1935 * in interrupt context.
1936 */
1937 void *pool_page_alloc(struct pool *, int);
1938 void pool_page_free(struct pool *, void *);
1939
1940 struct pool_allocator pool_allocator_kmem = {
1941 pool_page_alloc, pool_page_free, 0,
1942 };
1943
1944 void *pool_page_alloc_nointr(struct pool *, int);
1945 void pool_page_free_nointr(struct pool *, void *);
1946
1947 struct pool_allocator pool_allocator_nointr = {
1948 pool_page_alloc_nointr, pool_page_free_nointr, 0,
1949 };
1950
1951 #ifdef POOL_SUBPAGE
1952 void *pool_subpage_alloc(struct pool *, int);
1953 void pool_subpage_free(struct pool *, void *);
1954
1955 struct pool_allocator pool_allocator_kmem_subpage = {
1956 pool_subpage_alloc, pool_subpage_free, 0,
1957 };
1958 #endif /* POOL_SUBPAGE */
1959
1960 /*
1961 * We have at least three different resources for the same allocation and
1962 * each resource can be depleted. First, we have the ready elements in the
1963 * pool. Then we have the resource (typically a vm_map) for this allocator.
1964 * Finally, we have physical memory. Waiting for any of these can be
1965 * unnecessary when any other is freed, but the kernel doesn't support
1966 * sleeping on multiple wait channels, so we have to employ another strategy.
1967 *
1968 * The caller sleeps on the pool (so that it can be awakened when an item
1969 * is returned to the pool), but we set PA_WANT on the allocator. When a
1970 * page is returned to the allocator and PA_WANT is set, pool_allocator_free
1971 * will wake up all sleeping pools belonging to this allocator.
1972 *
1973 * XXX Thundering herd.
1974 */
1975 void *
1976 pool_allocator_alloc(struct pool *org, int flags)
1977 {
1978 struct pool_allocator *pa = org->pr_alloc;
1979 struct pool *pp, *start;
1980 int s, freed;
1981 void *res;
1982
1983 LOCK_ASSERT(!simple_lock_held(&org->pr_slock));
1984
1985 do {
1986 if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
1987 return (res);
1988 if ((flags & PR_WAITOK) == 0) {
1989 /*
1990 * We only run the drain hookhere if PR_NOWAIT.
1991 * In other cases, the hook will be run in
1992 * pool_reclaim().
1993 */
1994 if (org->pr_drain_hook != NULL) {
1995 (*org->pr_drain_hook)(org->pr_drain_hook_arg,
1996 flags);
1997 if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
1998 return (res);
1999 }
2000 break;
2001 }
2002
2003 /*
2004 * Drain all pools, except "org", that use this
2005 * allocator. We do this to reclaim VA space.
2006 * pa_alloc is responsible for waiting for
2007 * physical memory.
2008 *
2009 * XXX We risk looping forever if start if someone
2010 * calls pool_destroy on "start". But there is no
2011 * other way to have potentially sleeping pool_reclaim,
2012 * non-sleeping locks on pool_allocator, and some
2013 * stirring of drained pools in the allocator.
2014 *
2015 * XXX Maybe we should use pool_head_slock for locking
2016 * the allocators?
2017 */
2018 freed = 0;
2019
2020 s = splvm();
2021 simple_lock(&pa->pa_slock);
2022 pp = start = TAILQ_FIRST(&pa->pa_list);
2023 do {
2024 TAILQ_REMOVE(&pa->pa_list, pp, pr_alloc_list);
2025 TAILQ_INSERT_TAIL(&pa->pa_list, pp, pr_alloc_list);
2026 if (pp == org)
2027 continue;
2028 simple_unlock(&pa->pa_slock);
2029 freed = pool_reclaim(pp);
2030 simple_lock(&pa->pa_slock);
2031 } while ((pp = TAILQ_FIRST(&pa->pa_list)) != start &&
2032 freed == 0);
2033
2034 if (freed == 0) {
2035 /*
2036 * We set PA_WANT here, the caller will most likely
2037 * sleep waiting for pages (if not, this won't hurt
2038 * that much), and there is no way to set this in
2039 * the caller without violating locking order.
2040 */
2041 pa->pa_flags |= PA_WANT;
2042 }
2043 simple_unlock(&pa->pa_slock);
2044 splx(s);
2045 } while (freed);
2046 return (NULL);
2047 }
2048
2049 void
2050 pool_allocator_free(struct pool *pp, void *v)
2051 {
2052 struct pool_allocator *pa = pp->pr_alloc;
2053 int s;
2054
2055 LOCK_ASSERT(!simple_lock_held(&pp->pr_slock));
2056
2057 (*pa->pa_free)(pp, v);
2058
2059 s = splvm();
2060 simple_lock(&pa->pa_slock);
2061 if ((pa->pa_flags & PA_WANT) == 0) {
2062 simple_unlock(&pa->pa_slock);
2063 splx(s);
2064 return;
2065 }
2066
2067 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
2068 simple_lock(&pp->pr_slock);
2069 if ((pp->pr_flags & PR_WANTED) != 0) {
2070 pp->pr_flags &= ~PR_WANTED;
2071 wakeup(pp);
2072 }
2073 simple_unlock(&pp->pr_slock);
2074 }
2075 pa->pa_flags &= ~PA_WANT;
2076 simple_unlock(&pa->pa_slock);
2077 splx(s);
2078 }
2079
2080 void *
2081 pool_page_alloc(struct pool *pp, int flags)
2082 {
2083 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2084
2085 return ((void *) uvm_km_alloc_poolpage(waitok));
2086 }
2087
2088 void
2089 pool_page_free(struct pool *pp, void *v)
2090 {
2091
2092 uvm_km_free_poolpage((vaddr_t) v);
2093 }
2094
2095 #ifdef POOL_SUBPAGE
2096 /* Sub-page allocator, for machines with large hardware pages. */
2097 void *
2098 pool_subpage_alloc(struct pool *pp, int flags)
2099 {
2100 void *v;
2101 int s;
2102 s = splvm();
2103 v = pool_get(&psppool, flags);
2104 splx(s);
2105 return v;
2106 }
2107
2108 void
2109 pool_subpage_free(struct pool *pp, void *v)
2110 {
2111 int s;
2112 s = splvm();
2113 pool_put(&psppool, v);
2114 splx(s);
2115 }
2116
2117 /* We don't provide a real nointr allocator. Maybe later. */
2118 void *
2119 pool_page_alloc_nointr(struct pool *pp, int flags)
2120 {
2121
2122 return (pool_subpage_alloc(pp, flags));
2123 }
2124
2125 void
2126 pool_page_free_nointr(struct pool *pp, void *v)
2127 {
2128
2129 pool_subpage_free(pp, v);
2130 }
2131 #else
2132 void *
2133 pool_page_alloc_nointr(struct pool *pp, int flags)
2134 {
2135 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2136
2137 return ((void *) uvm_km_alloc_poolpage1(kernel_map,
2138 uvm.kernel_object, waitok));
2139 }
2140
2141 void
2142 pool_page_free_nointr(struct pool *pp, void *v)
2143 {
2144
2145 uvm_km_free_poolpage1(kernel_map, (vaddr_t) v);
2146 }
2147 #endif /* POOL_SUBPAGE */
2148