subr_pool.c revision 1.94 1 /* $NetBSD: subr_pool.c,v 1.94 2004/04/25 16:42:41 simonb Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.94 2004/04/25 16:42:41 simonb Exp $");
42
43 #include "opt_pool.h"
44 #include "opt_poollog.h"
45 #include "opt_lockdebug.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/proc.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/lock.h>
54 #include <sys/pool.h>
55 #include <sys/syslog.h>
56
57 #include <uvm/uvm.h>
58
59 /*
60 * Pool resource management utility.
61 *
62 * Memory is allocated in pages which are split into pieces according to
63 * the pool item size. Each page is kept on one of three lists in the
64 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
65 * for empty, full and partially-full pages respectively. The individual
66 * pool items are on a linked list headed by `ph_itemlist' in each page
67 * header. The memory for building the page list is either taken from
68 * the allocated pages themselves (for small pool items) or taken from
69 * an internal pool of page headers (`phpool').
70 */
71
72 /* List of all pools */
73 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
74
75 /* Private pool for page header structures */
76 static struct pool phpool;
77
78 #ifdef POOL_SUBPAGE
79 /* Pool of subpages for use by normal pools. */
80 static struct pool psppool;
81 #endif
82
83 /* # of seconds to retain page after last use */
84 int pool_inactive_time = 10;
85
86 /* Next candidate for drainage (see pool_drain()) */
87 static struct pool *drainpp;
88
89 /* This spin lock protects both pool_head and drainpp. */
90 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
91
92 struct pool_item_header {
93 /* Page headers */
94 LIST_ENTRY(pool_item_header)
95 ph_pagelist; /* pool page list */
96 TAILQ_HEAD(,pool_item) ph_itemlist; /* chunk list for this page */
97 SPLAY_ENTRY(pool_item_header)
98 ph_node; /* Off-page page headers */
99 unsigned int ph_nmissing; /* # of chunks in use */
100 caddr_t ph_page; /* this page's address */
101 struct timeval ph_time; /* last referenced */
102 };
103
104 struct pool_item {
105 #ifdef DIAGNOSTIC
106 u_int pi_magic;
107 #endif
108 #define PI_MAGIC 0xdeadbeefU
109 /* Other entries use only this list entry */
110 TAILQ_ENTRY(pool_item) pi_list;
111 };
112
113 #define POOL_NEEDS_CATCHUP(pp) \
114 ((pp)->pr_nitems < (pp)->pr_minitems)
115
116 /*
117 * Pool cache management.
118 *
119 * Pool caches provide a way for constructed objects to be cached by the
120 * pool subsystem. This can lead to performance improvements by avoiding
121 * needless object construction/destruction; it is deferred until absolutely
122 * necessary.
123 *
124 * Caches are grouped into cache groups. Each cache group references
125 * up to 16 constructed objects. When a cache allocates an object
126 * from the pool, it calls the object's constructor and places it into
127 * a cache group. When a cache group frees an object back to the pool,
128 * it first calls the object's destructor. This allows the object to
129 * persist in constructed form while freed to the cache.
130 *
131 * Multiple caches may exist for each pool. This allows a single
132 * object type to have multiple constructed forms. The pool references
133 * each cache, so that when a pool is drained by the pagedaemon, it can
134 * drain each individual cache as well. Each time a cache is drained,
135 * the most idle cache group is freed to the pool in its entirety.
136 *
137 * Pool caches are layed on top of pools. By layering them, we can avoid
138 * the complexity of cache management for pools which would not benefit
139 * from it.
140 */
141
142 /* The cache group pool. */
143 static struct pool pcgpool;
144
145 static void pool_cache_reclaim(struct pool_cache *);
146
147 static int pool_catchup(struct pool *);
148 static void pool_prime_page(struct pool *, caddr_t,
149 struct pool_item_header *);
150 static void pool_update_curpage(struct pool *);
151
152 void *pool_allocator_alloc(struct pool *, int);
153 void pool_allocator_free(struct pool *, void *);
154
155 static void pool_print_pagelist(struct pool_pagelist *,
156 void (*)(const char *, ...));
157 static void pool_print1(struct pool *, const char *,
158 void (*)(const char *, ...));
159
160 static int pool_chk_page(struct pool *, const char *,
161 struct pool_item_header *);
162
163 /*
164 * Pool log entry. An array of these is allocated in pool_init().
165 */
166 struct pool_log {
167 const char *pl_file;
168 long pl_line;
169 int pl_action;
170 #define PRLOG_GET 1
171 #define PRLOG_PUT 2
172 void *pl_addr;
173 };
174
175 #ifdef POOL_DIAGNOSTIC
176 /* Number of entries in pool log buffers */
177 #ifndef POOL_LOGSIZE
178 #define POOL_LOGSIZE 10
179 #endif
180
181 int pool_logsize = POOL_LOGSIZE;
182
183 static __inline void
184 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
185 {
186 int n = pp->pr_curlogentry;
187 struct pool_log *pl;
188
189 if ((pp->pr_roflags & PR_LOGGING) == 0)
190 return;
191
192 /*
193 * Fill in the current entry. Wrap around and overwrite
194 * the oldest entry if necessary.
195 */
196 pl = &pp->pr_log[n];
197 pl->pl_file = file;
198 pl->pl_line = line;
199 pl->pl_action = action;
200 pl->pl_addr = v;
201 if (++n >= pp->pr_logsize)
202 n = 0;
203 pp->pr_curlogentry = n;
204 }
205
206 static void
207 pr_printlog(struct pool *pp, struct pool_item *pi,
208 void (*pr)(const char *, ...))
209 {
210 int i = pp->pr_logsize;
211 int n = pp->pr_curlogentry;
212
213 if ((pp->pr_roflags & PR_LOGGING) == 0)
214 return;
215
216 /*
217 * Print all entries in this pool's log.
218 */
219 while (i-- > 0) {
220 struct pool_log *pl = &pp->pr_log[n];
221 if (pl->pl_action != 0) {
222 if (pi == NULL || pi == pl->pl_addr) {
223 (*pr)("\tlog entry %d:\n", i);
224 (*pr)("\t\taction = %s, addr = %p\n",
225 pl->pl_action == PRLOG_GET ? "get" : "put",
226 pl->pl_addr);
227 (*pr)("\t\tfile: %s at line %lu\n",
228 pl->pl_file, pl->pl_line);
229 }
230 }
231 if (++n >= pp->pr_logsize)
232 n = 0;
233 }
234 }
235
236 static __inline void
237 pr_enter(struct pool *pp, const char *file, long line)
238 {
239
240 if (__predict_false(pp->pr_entered_file != NULL)) {
241 printf("pool %s: reentrancy at file %s line %ld\n",
242 pp->pr_wchan, file, line);
243 printf(" previous entry at file %s line %ld\n",
244 pp->pr_entered_file, pp->pr_entered_line);
245 panic("pr_enter");
246 }
247
248 pp->pr_entered_file = file;
249 pp->pr_entered_line = line;
250 }
251
252 static __inline void
253 pr_leave(struct pool *pp)
254 {
255
256 if (__predict_false(pp->pr_entered_file == NULL)) {
257 printf("pool %s not entered?\n", pp->pr_wchan);
258 panic("pr_leave");
259 }
260
261 pp->pr_entered_file = NULL;
262 pp->pr_entered_line = 0;
263 }
264
265 static __inline void
266 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
267 {
268
269 if (pp->pr_entered_file != NULL)
270 (*pr)("\n\tcurrently entered from file %s line %ld\n",
271 pp->pr_entered_file, pp->pr_entered_line);
272 }
273 #else
274 #define pr_log(pp, v, action, file, line)
275 #define pr_printlog(pp, pi, pr)
276 #define pr_enter(pp, file, line)
277 #define pr_leave(pp)
278 #define pr_enter_check(pp, pr)
279 #endif /* POOL_DIAGNOSTIC */
280
281 static __inline int
282 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
283 {
284 if (a->ph_page < b->ph_page)
285 return (-1);
286 else if (a->ph_page > b->ph_page)
287 return (1);
288 else
289 return (0);
290 }
291
292 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
293 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
294
295 /*
296 * Return the pool page header based on page address.
297 */
298 static __inline struct pool_item_header *
299 pr_find_pagehead(struct pool *pp, caddr_t page)
300 {
301 struct pool_item_header *ph, tmp;
302
303 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
304 return ((struct pool_item_header *)(page + pp->pr_phoffset));
305
306 tmp.ph_page = page;
307 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
308 return ph;
309 }
310
311 /*
312 * Remove a page from the pool.
313 */
314 static __inline void
315 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
316 struct pool_pagelist *pq)
317 {
318 int s;
319
320 LOCK_ASSERT(!simple_lock_held(&pp->pr_slock) || pq != NULL);
321
322 /*
323 * If the page was idle, decrement the idle page count.
324 */
325 if (ph->ph_nmissing == 0) {
326 #ifdef DIAGNOSTIC
327 if (pp->pr_nidle == 0)
328 panic("pr_rmpage: nidle inconsistent");
329 if (pp->pr_nitems < pp->pr_itemsperpage)
330 panic("pr_rmpage: nitems inconsistent");
331 #endif
332 pp->pr_nidle--;
333 }
334
335 pp->pr_nitems -= pp->pr_itemsperpage;
336
337 /*
338 * Unlink a page from the pool and release it (or queue it for release).
339 */
340 LIST_REMOVE(ph, ph_pagelist);
341 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
342 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
343 if (pq) {
344 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
345 } else {
346 pool_allocator_free(pp, ph->ph_page);
347 if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
348 s = splvm();
349 pool_put(&phpool, ph);
350 splx(s);
351 }
352 }
353 pp->pr_npages--;
354 pp->pr_npagefree++;
355
356 pool_update_curpage(pp);
357 }
358
359 /*
360 * Initialize all the pools listed in the "pools" link set.
361 */
362 void
363 link_pool_init(void)
364 {
365 __link_set_decl(pools, struct link_pool_init);
366 struct link_pool_init * const *pi;
367
368 __link_set_foreach(pi, pools)
369 pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
370 (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
371 (*pi)->palloc);
372 }
373
374 /*
375 * Initialize the given pool resource structure.
376 *
377 * We export this routine to allow other kernel parts to declare
378 * static pools that must be initialized before malloc() is available.
379 */
380 void
381 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
382 const char *wchan, struct pool_allocator *palloc)
383 {
384 int off, slack;
385 size_t trysize, phsize;
386 int s;
387
388 #ifdef POOL_DIAGNOSTIC
389 /*
390 * Always log if POOL_DIAGNOSTIC is defined.
391 */
392 if (pool_logsize != 0)
393 flags |= PR_LOGGING;
394 #endif
395
396 #ifdef POOL_SUBPAGE
397 /*
398 * XXX We don't provide a real `nointr' back-end
399 * yet; all sub-pages come from a kmem back-end.
400 * maybe some day...
401 */
402 if (palloc == NULL) {
403 extern struct pool_allocator pool_allocator_kmem_subpage;
404 palloc = &pool_allocator_kmem_subpage;
405 }
406 /*
407 * We'll assume any user-specified back-end allocator
408 * will deal with sub-pages, or simply don't care.
409 */
410 #else
411 if (palloc == NULL)
412 palloc = &pool_allocator_kmem;
413 #endif /* POOL_SUBPAGE */
414 if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
415 if (palloc->pa_pagesz == 0) {
416 #ifdef POOL_SUBPAGE
417 if (palloc == &pool_allocator_kmem)
418 palloc->pa_pagesz = PAGE_SIZE;
419 else
420 palloc->pa_pagesz = POOL_SUBPAGE;
421 #else
422 palloc->pa_pagesz = PAGE_SIZE;
423 #endif /* POOL_SUBPAGE */
424 }
425
426 TAILQ_INIT(&palloc->pa_list);
427
428 simple_lock_init(&palloc->pa_slock);
429 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
430 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
431 palloc->pa_flags |= PA_INITIALIZED;
432 }
433
434 if (align == 0)
435 align = ALIGN(1);
436
437 if (size < sizeof(struct pool_item))
438 size = sizeof(struct pool_item);
439
440 size = roundup(size, align);
441 #ifdef DIAGNOSTIC
442 if (size > palloc->pa_pagesz)
443 panic("pool_init: pool item size (%lu) too large",
444 (u_long)size);
445 #endif
446
447 /*
448 * Initialize the pool structure.
449 */
450 LIST_INIT(&pp->pr_emptypages);
451 LIST_INIT(&pp->pr_fullpages);
452 LIST_INIT(&pp->pr_partpages);
453 TAILQ_INIT(&pp->pr_cachelist);
454 pp->pr_curpage = NULL;
455 pp->pr_npages = 0;
456 pp->pr_minitems = 0;
457 pp->pr_minpages = 0;
458 pp->pr_maxpages = UINT_MAX;
459 pp->pr_roflags = flags;
460 pp->pr_flags = 0;
461 pp->pr_size = size;
462 pp->pr_align = align;
463 pp->pr_wchan = wchan;
464 pp->pr_alloc = palloc;
465 pp->pr_nitems = 0;
466 pp->pr_nout = 0;
467 pp->pr_hardlimit = UINT_MAX;
468 pp->pr_hardlimit_warning = NULL;
469 pp->pr_hardlimit_ratecap.tv_sec = 0;
470 pp->pr_hardlimit_ratecap.tv_usec = 0;
471 pp->pr_hardlimit_warning_last.tv_sec = 0;
472 pp->pr_hardlimit_warning_last.tv_usec = 0;
473 pp->pr_drain_hook = NULL;
474 pp->pr_drain_hook_arg = NULL;
475
476 /*
477 * Decide whether to put the page header off page to avoid
478 * wasting too large a part of the page or too big item.
479 * Off-page page headers go on a hash table, so we can match
480 * a returned item with its header based on the page address.
481 * We use 1/16 of the page size and about 8 times of the item
482 * size as the threshold (XXX: tune)
483 *
484 * However, we'll put the header into the page if we can put
485 * it without wasting any items.
486 *
487 * Silently enforce `0 <= ioff < align'.
488 */
489 pp->pr_itemoffset = ioff %= align;
490 /* See the comment below about reserved bytes. */
491 trysize = palloc->pa_pagesz - ((align - ioff) % align);
492 phsize = ALIGN(sizeof(struct pool_item_header));
493 if (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
494 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size) {
495 /* Use the end of the page for the page header */
496 pp->pr_roflags |= PR_PHINPAGE;
497 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
498 } else {
499 /* The page header will be taken from our page header pool */
500 pp->pr_phoffset = 0;
501 off = palloc->pa_pagesz;
502 SPLAY_INIT(&pp->pr_phtree);
503 }
504
505 /*
506 * Alignment is to take place at `ioff' within the item. This means
507 * we must reserve up to `align - 1' bytes on the page to allow
508 * appropriate positioning of each item.
509 */
510 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
511 KASSERT(pp->pr_itemsperpage != 0);
512
513 /*
514 * Use the slack between the chunks and the page header
515 * for "cache coloring".
516 */
517 slack = off - pp->pr_itemsperpage * pp->pr_size;
518 pp->pr_maxcolor = (slack / align) * align;
519 pp->pr_curcolor = 0;
520
521 pp->pr_nget = 0;
522 pp->pr_nfail = 0;
523 pp->pr_nput = 0;
524 pp->pr_npagealloc = 0;
525 pp->pr_npagefree = 0;
526 pp->pr_hiwat = 0;
527 pp->pr_nidle = 0;
528
529 #ifdef POOL_DIAGNOSTIC
530 if (flags & PR_LOGGING) {
531 if (kmem_map == NULL ||
532 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
533 M_TEMP, M_NOWAIT)) == NULL)
534 pp->pr_roflags &= ~PR_LOGGING;
535 pp->pr_curlogentry = 0;
536 pp->pr_logsize = pool_logsize;
537 }
538 #endif
539
540 pp->pr_entered_file = NULL;
541 pp->pr_entered_line = 0;
542
543 simple_lock_init(&pp->pr_slock);
544
545 /*
546 * Initialize private page header pool and cache magazine pool if we
547 * haven't done so yet.
548 * XXX LOCKING.
549 */
550 if (phpool.pr_size == 0) {
551 #ifdef POOL_SUBPAGE
552 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0, 0,
553 "phpool", &pool_allocator_kmem);
554 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
555 PR_RECURSIVE, "psppool", &pool_allocator_kmem);
556 #else
557 pool_init(&phpool, sizeof(struct pool_item_header), 0, 0,
558 0, "phpool", NULL);
559 #endif
560 pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
561 0, "pcgpool", NULL);
562 }
563
564 /* Insert into the list of all pools. */
565 simple_lock(&pool_head_slock);
566 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
567 simple_unlock(&pool_head_slock);
568
569 /* Insert this into the list of pools using this allocator. */
570 s = splvm();
571 simple_lock(&palloc->pa_slock);
572 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
573 simple_unlock(&palloc->pa_slock);
574 splx(s);
575 }
576
577 /*
578 * De-commision a pool resource.
579 */
580 void
581 pool_destroy(struct pool *pp)
582 {
583 struct pool_item_header *ph;
584 struct pool_cache *pc;
585 int s;
586
587 /* Locking order: pool_allocator -> pool */
588 s = splvm();
589 simple_lock(&pp->pr_alloc->pa_slock);
590 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
591 simple_unlock(&pp->pr_alloc->pa_slock);
592 splx(s);
593
594 /* Destroy all caches for this pool. */
595 while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL)
596 pool_cache_destroy(pc);
597
598 #ifdef DIAGNOSTIC
599 if (pp->pr_nout != 0) {
600 pr_printlog(pp, NULL, printf);
601 panic("pool_destroy: pool busy: still out: %u",
602 pp->pr_nout);
603 }
604 #endif
605
606 /* Remove all pages */
607 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
608 pr_rmpage(pp, ph, NULL);
609 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
610 KASSERT(LIST_EMPTY(&pp->pr_partpages));
611
612 /* Remove from global pool list */
613 simple_lock(&pool_head_slock);
614 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
615 if (drainpp == pp) {
616 drainpp = NULL;
617 }
618 simple_unlock(&pool_head_slock);
619
620 #ifdef POOL_DIAGNOSTIC
621 if ((pp->pr_roflags & PR_LOGGING) != 0)
622 free(pp->pr_log, M_TEMP);
623 #endif
624 }
625
626 void
627 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
628 {
629
630 /* XXX no locking -- must be used just after pool_init() */
631 #ifdef DIAGNOSTIC
632 if (pp->pr_drain_hook != NULL)
633 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
634 #endif
635 pp->pr_drain_hook = fn;
636 pp->pr_drain_hook_arg = arg;
637 }
638
639 static struct pool_item_header *
640 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
641 {
642 struct pool_item_header *ph;
643 int s;
644
645 LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
646
647 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
648 ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
649 else {
650 s = splvm();
651 ph = pool_get(&phpool, flags);
652 splx(s);
653 }
654
655 return (ph);
656 }
657
658 /*
659 * Grab an item from the pool; must be called at appropriate spl level
660 */
661 void *
662 #ifdef POOL_DIAGNOSTIC
663 _pool_get(struct pool *pp, int flags, const char *file, long line)
664 #else
665 pool_get(struct pool *pp, int flags)
666 #endif
667 {
668 struct pool_item *pi;
669 struct pool_item_header *ph;
670 void *v;
671
672 #ifdef DIAGNOSTIC
673 if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
674 (flags & PR_WAITOK) != 0))
675 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
676
677 #ifdef LOCKDEBUG
678 if (flags & PR_WAITOK)
679 simple_lock_only_held(NULL, "pool_get(PR_WAITOK)");
680 #endif
681 #endif /* DIAGNOSTIC */
682
683 simple_lock(&pp->pr_slock);
684 pr_enter(pp, file, line);
685
686 startover:
687 /*
688 * Check to see if we've reached the hard limit. If we have,
689 * and we can wait, then wait until an item has been returned to
690 * the pool.
691 */
692 #ifdef DIAGNOSTIC
693 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
694 pr_leave(pp);
695 simple_unlock(&pp->pr_slock);
696 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
697 }
698 #endif
699 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
700 if (pp->pr_drain_hook != NULL) {
701 /*
702 * Since the drain hook is going to free things
703 * back to the pool, unlock, call the hook, re-lock,
704 * and check the hardlimit condition again.
705 */
706 pr_leave(pp);
707 simple_unlock(&pp->pr_slock);
708 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
709 simple_lock(&pp->pr_slock);
710 pr_enter(pp, file, line);
711 if (pp->pr_nout < pp->pr_hardlimit)
712 goto startover;
713 }
714
715 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
716 /*
717 * XXX: A warning isn't logged in this case. Should
718 * it be?
719 */
720 pp->pr_flags |= PR_WANTED;
721 pr_leave(pp);
722 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
723 pr_enter(pp, file, line);
724 goto startover;
725 }
726
727 /*
728 * Log a message that the hard limit has been hit.
729 */
730 if (pp->pr_hardlimit_warning != NULL &&
731 ratecheck(&pp->pr_hardlimit_warning_last,
732 &pp->pr_hardlimit_ratecap))
733 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
734
735 pp->pr_nfail++;
736
737 pr_leave(pp);
738 simple_unlock(&pp->pr_slock);
739 return (NULL);
740 }
741
742 /*
743 * The convention we use is that if `curpage' is not NULL, then
744 * it points at a non-empty bucket. In particular, `curpage'
745 * never points at a page header which has PR_PHINPAGE set and
746 * has no items in its bucket.
747 */
748 if ((ph = pp->pr_curpage) == NULL) {
749 #ifdef DIAGNOSTIC
750 if (pp->pr_nitems != 0) {
751 simple_unlock(&pp->pr_slock);
752 printf("pool_get: %s: curpage NULL, nitems %u\n",
753 pp->pr_wchan, pp->pr_nitems);
754 panic("pool_get: nitems inconsistent");
755 }
756 #endif
757
758 /*
759 * Call the back-end page allocator for more memory.
760 * Release the pool lock, as the back-end page allocator
761 * may block.
762 */
763 pr_leave(pp);
764 simple_unlock(&pp->pr_slock);
765 v = pool_allocator_alloc(pp, flags);
766 if (__predict_true(v != NULL))
767 ph = pool_alloc_item_header(pp, v, flags);
768
769 if (__predict_false(v == NULL || ph == NULL)) {
770 if (v != NULL)
771 pool_allocator_free(pp, v);
772
773 simple_lock(&pp->pr_slock);
774 pr_enter(pp, file, line);
775
776 /*
777 * We were unable to allocate a page or item
778 * header, but we released the lock during
779 * allocation, so perhaps items were freed
780 * back to the pool. Check for this case.
781 */
782 if (pp->pr_curpage != NULL)
783 goto startover;
784
785 if ((flags & PR_WAITOK) == 0) {
786 pp->pr_nfail++;
787 pr_leave(pp);
788 simple_unlock(&pp->pr_slock);
789 return (NULL);
790 }
791
792 /*
793 * Wait for items to be returned to this pool.
794 *
795 * XXX: maybe we should wake up once a second and
796 * try again?
797 */
798 pp->pr_flags |= PR_WANTED;
799 /* PA_WANTED is already set on the allocator. */
800 pr_leave(pp);
801 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
802 pr_enter(pp, file, line);
803 goto startover;
804 }
805
806 /* We have more memory; add it to the pool */
807 simple_lock(&pp->pr_slock);
808 pr_enter(pp, file, line);
809 pool_prime_page(pp, v, ph);
810 pp->pr_npagealloc++;
811
812 /* Start the allocation process over. */
813 goto startover;
814 }
815 if (__predict_false((v = pi = TAILQ_FIRST(&ph->ph_itemlist)) == NULL)) {
816 pr_leave(pp);
817 simple_unlock(&pp->pr_slock);
818 panic("pool_get: %s: page empty", pp->pr_wchan);
819 }
820 #ifdef DIAGNOSTIC
821 if (__predict_false(pp->pr_nitems == 0)) {
822 pr_leave(pp);
823 simple_unlock(&pp->pr_slock);
824 printf("pool_get: %s: items on itemlist, nitems %u\n",
825 pp->pr_wchan, pp->pr_nitems);
826 panic("pool_get: nitems inconsistent");
827 }
828 #endif
829
830 #ifdef POOL_DIAGNOSTIC
831 pr_log(pp, v, PRLOG_GET, file, line);
832 #endif
833
834 #ifdef DIAGNOSTIC
835 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
836 pr_printlog(pp, pi, printf);
837 panic("pool_get(%s): free list modified: magic=%x; page %p;"
838 " item addr %p\n",
839 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
840 }
841 #endif
842
843 /*
844 * Remove from item list.
845 */
846 TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
847 pp->pr_nitems--;
848 pp->pr_nout++;
849 if (ph->ph_nmissing == 0) {
850 #ifdef DIAGNOSTIC
851 if (__predict_false(pp->pr_nidle == 0))
852 panic("pool_get: nidle inconsistent");
853 #endif
854 pp->pr_nidle--;
855
856 /*
857 * This page was previously empty. Move it to the list of
858 * partially-full pages. This page is already curpage.
859 */
860 LIST_REMOVE(ph, ph_pagelist);
861 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
862 }
863 ph->ph_nmissing++;
864 if (TAILQ_EMPTY(&ph->ph_itemlist)) {
865 #ifdef DIAGNOSTIC
866 if (__predict_false(ph->ph_nmissing != pp->pr_itemsperpage)) {
867 pr_leave(pp);
868 simple_unlock(&pp->pr_slock);
869 panic("pool_get: %s: nmissing inconsistent",
870 pp->pr_wchan);
871 }
872 #endif
873 /*
874 * This page is now full. Move it to the full list
875 * and select a new current page.
876 */
877 LIST_REMOVE(ph, ph_pagelist);
878 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
879 pool_update_curpage(pp);
880 }
881
882 pp->pr_nget++;
883
884 /*
885 * If we have a low water mark and we are now below that low
886 * water mark, add more items to the pool.
887 */
888 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
889 /*
890 * XXX: Should we log a warning? Should we set up a timeout
891 * to try again in a second or so? The latter could break
892 * a caller's assumptions about interrupt protection, etc.
893 */
894 }
895
896 pr_leave(pp);
897 simple_unlock(&pp->pr_slock);
898 return (v);
899 }
900
901 /*
902 * Internal version of pool_put(). Pool is already locked/entered.
903 */
904 static void
905 pool_do_put(struct pool *pp, void *v)
906 {
907 struct pool_item *pi = v;
908 struct pool_item_header *ph;
909 caddr_t page;
910 int s;
911
912 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
913
914 page = (caddr_t)((u_long)v & pp->pr_alloc->pa_pagemask);
915
916 #ifdef DIAGNOSTIC
917 if (__predict_false(pp->pr_nout == 0)) {
918 printf("pool %s: putting with none out\n",
919 pp->pr_wchan);
920 panic("pool_put");
921 }
922 #endif
923
924 if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
925 pr_printlog(pp, NULL, printf);
926 panic("pool_put: %s: page header missing", pp->pr_wchan);
927 }
928
929 #ifdef LOCKDEBUG
930 /*
931 * Check if we're freeing a locked simple lock.
932 */
933 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
934 #endif
935
936 /*
937 * Return to item list.
938 */
939 #ifdef DIAGNOSTIC
940 pi->pi_magic = PI_MAGIC;
941 #endif
942 #ifdef DEBUG
943 {
944 int i, *ip = v;
945
946 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
947 *ip++ = PI_MAGIC;
948 }
949 }
950 #endif
951
952 TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
953 KDASSERT(ph->ph_nmissing != 0);
954 ph->ph_nmissing--;
955 pp->pr_nput++;
956 pp->pr_nitems++;
957 pp->pr_nout--;
958
959 /* Cancel "pool empty" condition if it exists */
960 if (pp->pr_curpage == NULL)
961 pp->pr_curpage = ph;
962
963 if (pp->pr_flags & PR_WANTED) {
964 pp->pr_flags &= ~PR_WANTED;
965 if (ph->ph_nmissing == 0)
966 pp->pr_nidle++;
967 wakeup((caddr_t)pp);
968 return;
969 }
970
971 /*
972 * If this page is now empty, do one of two things:
973 *
974 * (1) If we have more pages than the page high water mark,
975 * or if we are flagged as immediately freeing back idle
976 * pages, free the page back to the system. ONLY CONSIDER
977 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
978 * CLAIM.
979 *
980 * (2) Otherwise, move the page to the empty page list.
981 *
982 * Either way, select a new current page (so we use a partially-full
983 * page if one is available).
984 */
985 if (ph->ph_nmissing == 0) {
986 pp->pr_nidle++;
987 if (pp->pr_npages > pp->pr_minpages &&
988 (pp->pr_npages > pp->pr_maxpages ||
989 (pp->pr_roflags & PR_IMMEDRELEASE) != 0 ||
990 (pp->pr_alloc->pa_flags & PA_WANT) != 0)) {
991 simple_unlock(&pp->pr_slock);
992 pr_rmpage(pp, ph, NULL);
993 simple_lock(&pp->pr_slock);
994 } else {
995 LIST_REMOVE(ph, ph_pagelist);
996 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
997
998 /*
999 * Update the timestamp on the page. A page must
1000 * be idle for some period of time before it can
1001 * be reclaimed by the pagedaemon. This minimizes
1002 * ping-pong'ing for memory.
1003 */
1004 s = splclock();
1005 ph->ph_time = mono_time;
1006 splx(s);
1007 }
1008 pool_update_curpage(pp);
1009 }
1010
1011 /*
1012 * If the page was previously completely full, move it to the
1013 * partially-full list and make it the current page. The next
1014 * allocation will get the item from this page, instead of
1015 * further fragmenting the pool.
1016 */
1017 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1018 LIST_REMOVE(ph, ph_pagelist);
1019 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1020 pp->pr_curpage = ph;
1021 }
1022 }
1023
1024 /*
1025 * Return resource to the pool; must be called at appropriate spl level
1026 */
1027 #ifdef POOL_DIAGNOSTIC
1028 void
1029 _pool_put(struct pool *pp, void *v, const char *file, long line)
1030 {
1031
1032 simple_lock(&pp->pr_slock);
1033 pr_enter(pp, file, line);
1034
1035 pr_log(pp, v, PRLOG_PUT, file, line);
1036
1037 pool_do_put(pp, v);
1038
1039 pr_leave(pp);
1040 simple_unlock(&pp->pr_slock);
1041 }
1042 #undef pool_put
1043 #endif /* POOL_DIAGNOSTIC */
1044
1045 void
1046 pool_put(struct pool *pp, void *v)
1047 {
1048
1049 simple_lock(&pp->pr_slock);
1050
1051 pool_do_put(pp, v);
1052
1053 simple_unlock(&pp->pr_slock);
1054 }
1055
1056 #ifdef POOL_DIAGNOSTIC
1057 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1058 #endif
1059
1060 /*
1061 * Add N items to the pool.
1062 */
1063 int
1064 pool_prime(struct pool *pp, int n)
1065 {
1066 struct pool_item_header *ph = NULL;
1067 caddr_t cp;
1068 int newpages;
1069
1070 simple_lock(&pp->pr_slock);
1071
1072 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1073
1074 while (newpages-- > 0) {
1075 simple_unlock(&pp->pr_slock);
1076 cp = pool_allocator_alloc(pp, PR_NOWAIT);
1077 if (__predict_true(cp != NULL))
1078 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1079
1080 if (__predict_false(cp == NULL || ph == NULL)) {
1081 if (cp != NULL)
1082 pool_allocator_free(pp, cp);
1083 simple_lock(&pp->pr_slock);
1084 break;
1085 }
1086
1087 simple_lock(&pp->pr_slock);
1088 pool_prime_page(pp, cp, ph);
1089 pp->pr_npagealloc++;
1090 pp->pr_minpages++;
1091 }
1092
1093 if (pp->pr_minpages >= pp->pr_maxpages)
1094 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1095
1096 simple_unlock(&pp->pr_slock);
1097 return (0);
1098 }
1099
1100 /*
1101 * Add a page worth of items to the pool.
1102 *
1103 * Note, we must be called with the pool descriptor LOCKED.
1104 */
1105 static void
1106 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
1107 {
1108 struct pool_item *pi;
1109 caddr_t cp = storage;
1110 unsigned int align = pp->pr_align;
1111 unsigned int ioff = pp->pr_itemoffset;
1112 int n;
1113 int s;
1114
1115 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
1116
1117 #ifdef DIAGNOSTIC
1118 if (((u_long)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1119 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1120 #endif
1121
1122 /*
1123 * Insert page header.
1124 */
1125 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1126 TAILQ_INIT(&ph->ph_itemlist);
1127 ph->ph_page = storage;
1128 ph->ph_nmissing = 0;
1129 s = splclock();
1130 ph->ph_time = mono_time;
1131 splx(s);
1132 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1133 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1134
1135 pp->pr_nidle++;
1136
1137 /*
1138 * Color this page.
1139 */
1140 cp = (caddr_t)(cp + pp->pr_curcolor);
1141 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1142 pp->pr_curcolor = 0;
1143
1144 /*
1145 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1146 */
1147 if (ioff != 0)
1148 cp = (caddr_t)(cp + (align - ioff));
1149
1150 /*
1151 * Insert remaining chunks on the bucket list.
1152 */
1153 n = pp->pr_itemsperpage;
1154 pp->pr_nitems += n;
1155
1156 while (n--) {
1157 pi = (struct pool_item *)cp;
1158
1159 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1160
1161 /* Insert on page list */
1162 TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
1163 #ifdef DIAGNOSTIC
1164 pi->pi_magic = PI_MAGIC;
1165 #endif
1166 cp = (caddr_t)(cp + pp->pr_size);
1167 }
1168
1169 /*
1170 * If the pool was depleted, point at the new page.
1171 */
1172 if (pp->pr_curpage == NULL)
1173 pp->pr_curpage = ph;
1174
1175 if (++pp->pr_npages > pp->pr_hiwat)
1176 pp->pr_hiwat = pp->pr_npages;
1177 }
1178
1179 /*
1180 * Used by pool_get() when nitems drops below the low water mark. This
1181 * is used to catch up pr_nitems with the low water mark.
1182 *
1183 * Note 1, we never wait for memory here, we let the caller decide what to do.
1184 *
1185 * Note 2, we must be called with the pool already locked, and we return
1186 * with it locked.
1187 */
1188 static int
1189 pool_catchup(struct pool *pp)
1190 {
1191 struct pool_item_header *ph = NULL;
1192 caddr_t cp;
1193 int error = 0;
1194
1195 while (POOL_NEEDS_CATCHUP(pp)) {
1196 /*
1197 * Call the page back-end allocator for more memory.
1198 *
1199 * XXX: We never wait, so should we bother unlocking
1200 * the pool descriptor?
1201 */
1202 simple_unlock(&pp->pr_slock);
1203 cp = pool_allocator_alloc(pp, PR_NOWAIT);
1204 if (__predict_true(cp != NULL))
1205 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1206 if (__predict_false(cp == NULL || ph == NULL)) {
1207 if (cp != NULL)
1208 pool_allocator_free(pp, cp);
1209 error = ENOMEM;
1210 simple_lock(&pp->pr_slock);
1211 break;
1212 }
1213 simple_lock(&pp->pr_slock);
1214 pool_prime_page(pp, cp, ph);
1215 pp->pr_npagealloc++;
1216 }
1217
1218 return (error);
1219 }
1220
1221 static void
1222 pool_update_curpage(struct pool *pp)
1223 {
1224
1225 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1226 if (pp->pr_curpage == NULL) {
1227 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1228 }
1229 }
1230
1231 void
1232 pool_setlowat(struct pool *pp, int n)
1233 {
1234
1235 simple_lock(&pp->pr_slock);
1236
1237 pp->pr_minitems = n;
1238 pp->pr_minpages = (n == 0)
1239 ? 0
1240 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1241
1242 /* Make sure we're caught up with the newly-set low water mark. */
1243 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1244 /*
1245 * XXX: Should we log a warning? Should we set up a timeout
1246 * to try again in a second or so? The latter could break
1247 * a caller's assumptions about interrupt protection, etc.
1248 */
1249 }
1250
1251 simple_unlock(&pp->pr_slock);
1252 }
1253
1254 void
1255 pool_sethiwat(struct pool *pp, int n)
1256 {
1257
1258 simple_lock(&pp->pr_slock);
1259
1260 pp->pr_maxpages = (n == 0)
1261 ? 0
1262 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1263
1264 simple_unlock(&pp->pr_slock);
1265 }
1266
1267 void
1268 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1269 {
1270
1271 simple_lock(&pp->pr_slock);
1272
1273 pp->pr_hardlimit = n;
1274 pp->pr_hardlimit_warning = warnmess;
1275 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1276 pp->pr_hardlimit_warning_last.tv_sec = 0;
1277 pp->pr_hardlimit_warning_last.tv_usec = 0;
1278
1279 /*
1280 * In-line version of pool_sethiwat(), because we don't want to
1281 * release the lock.
1282 */
1283 pp->pr_maxpages = (n == 0)
1284 ? 0
1285 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1286
1287 simple_unlock(&pp->pr_slock);
1288 }
1289
1290 /*
1291 * Release all complete pages that have not been used recently.
1292 */
1293 int
1294 #ifdef POOL_DIAGNOSTIC
1295 _pool_reclaim(struct pool *pp, const char *file, long line)
1296 #else
1297 pool_reclaim(struct pool *pp)
1298 #endif
1299 {
1300 struct pool_item_header *ph, *phnext;
1301 struct pool_cache *pc;
1302 struct timeval curtime;
1303 struct pool_pagelist pq;
1304 struct timeval diff;
1305 int s;
1306
1307 if (pp->pr_drain_hook != NULL) {
1308 /*
1309 * The drain hook must be called with the pool unlocked.
1310 */
1311 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1312 }
1313
1314 if (simple_lock_try(&pp->pr_slock) == 0)
1315 return (0);
1316 pr_enter(pp, file, line);
1317
1318 LIST_INIT(&pq);
1319
1320 /*
1321 * Reclaim items from the pool's caches.
1322 */
1323 TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
1324 pool_cache_reclaim(pc);
1325
1326 s = splclock();
1327 curtime = mono_time;
1328 splx(s);
1329
1330 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1331 phnext = LIST_NEXT(ph, ph_pagelist);
1332
1333 /* Check our minimum page claim */
1334 if (pp->pr_npages <= pp->pr_minpages)
1335 break;
1336
1337 KASSERT(ph->ph_nmissing == 0);
1338 timersub(&curtime, &ph->ph_time, &diff);
1339 if (diff.tv_sec < pool_inactive_time)
1340 continue;
1341
1342 /*
1343 * If freeing this page would put us below
1344 * the low water mark, stop now.
1345 */
1346 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1347 pp->pr_minitems)
1348 break;
1349
1350 pr_rmpage(pp, ph, &pq);
1351 }
1352
1353 pr_leave(pp);
1354 simple_unlock(&pp->pr_slock);
1355 if (LIST_EMPTY(&pq))
1356 return (0);
1357
1358 while ((ph = LIST_FIRST(&pq)) != NULL) {
1359 LIST_REMOVE(ph, ph_pagelist);
1360 pool_allocator_free(pp, ph->ph_page);
1361 if (pp->pr_roflags & PR_PHINPAGE) {
1362 continue;
1363 }
1364 s = splvm();
1365 pool_put(&phpool, ph);
1366 splx(s);
1367 }
1368
1369 return (1);
1370 }
1371
1372 /*
1373 * Drain pools, one at a time.
1374 *
1375 * Note, we must never be called from an interrupt context.
1376 */
1377 void
1378 pool_drain(void *arg)
1379 {
1380 struct pool *pp;
1381 int s;
1382
1383 pp = NULL;
1384 s = splvm();
1385 simple_lock(&pool_head_slock);
1386 if (drainpp == NULL) {
1387 drainpp = TAILQ_FIRST(&pool_head);
1388 }
1389 if (drainpp) {
1390 pp = drainpp;
1391 drainpp = TAILQ_NEXT(pp, pr_poollist);
1392 }
1393 simple_unlock(&pool_head_slock);
1394 pool_reclaim(pp);
1395 splx(s);
1396 }
1397
1398 /*
1399 * Diagnostic helpers.
1400 */
1401 void
1402 pool_print(struct pool *pp, const char *modif)
1403 {
1404 int s;
1405
1406 s = splvm();
1407 if (simple_lock_try(&pp->pr_slock) == 0) {
1408 printf("pool %s is locked; try again later\n",
1409 pp->pr_wchan);
1410 splx(s);
1411 return;
1412 }
1413 pool_print1(pp, modif, printf);
1414 simple_unlock(&pp->pr_slock);
1415 splx(s);
1416 }
1417
1418 void
1419 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1420 {
1421 int didlock = 0;
1422
1423 if (pp == NULL) {
1424 (*pr)("Must specify a pool to print.\n");
1425 return;
1426 }
1427
1428 /*
1429 * Called from DDB; interrupts should be blocked, and all
1430 * other processors should be paused. We can skip locking
1431 * the pool in this case.
1432 *
1433 * We do a simple_lock_try() just to print the lock
1434 * status, however.
1435 */
1436
1437 if (simple_lock_try(&pp->pr_slock) == 0)
1438 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1439 else
1440 didlock = 1;
1441
1442 pool_print1(pp, modif, pr);
1443
1444 if (didlock)
1445 simple_unlock(&pp->pr_slock);
1446 }
1447
1448 static void
1449 pool_print_pagelist(struct pool_pagelist *pl, void (*pr)(const char *, ...))
1450 {
1451 struct pool_item_header *ph;
1452 #ifdef DIAGNOSTIC
1453 struct pool_item *pi;
1454 #endif
1455
1456 LIST_FOREACH(ph, pl, ph_pagelist) {
1457 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1458 ph->ph_page, ph->ph_nmissing,
1459 (u_long)ph->ph_time.tv_sec,
1460 (u_long)ph->ph_time.tv_usec);
1461 #ifdef DIAGNOSTIC
1462 TAILQ_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1463 if (pi->pi_magic != PI_MAGIC) {
1464 (*pr)("\t\t\titem %p, magic 0x%x\n",
1465 pi, pi->pi_magic);
1466 }
1467 }
1468 #endif
1469 }
1470 }
1471
1472 static void
1473 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1474 {
1475 struct pool_item_header *ph;
1476 struct pool_cache *pc;
1477 struct pool_cache_group *pcg;
1478 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1479 char c;
1480
1481 while ((c = *modif++) != '\0') {
1482 if (c == 'l')
1483 print_log = 1;
1484 if (c == 'p')
1485 print_pagelist = 1;
1486 if (c == 'c')
1487 print_cache = 1;
1488 }
1489
1490 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1491 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1492 pp->pr_roflags);
1493 (*pr)("\talloc %p\n", pp->pr_alloc);
1494 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1495 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1496 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1497 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1498
1499 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1500 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1501 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1502 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1503
1504 if (print_pagelist == 0)
1505 goto skip_pagelist;
1506
1507 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1508 (*pr)("\n\tempty page list:\n");
1509 pool_print_pagelist(&pp->pr_emptypages, pr);
1510 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1511 (*pr)("\n\tfull page list:\n");
1512 pool_print_pagelist(&pp->pr_fullpages, pr);
1513 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1514 (*pr)("\n\tpartial-page list:\n");
1515 pool_print_pagelist(&pp->pr_partpages, pr);
1516
1517 if (pp->pr_curpage == NULL)
1518 (*pr)("\tno current page\n");
1519 else
1520 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1521
1522 skip_pagelist:
1523 if (print_log == 0)
1524 goto skip_log;
1525
1526 (*pr)("\n");
1527 if ((pp->pr_roflags & PR_LOGGING) == 0)
1528 (*pr)("\tno log\n");
1529 else
1530 pr_printlog(pp, NULL, pr);
1531
1532 skip_log:
1533 if (print_cache == 0)
1534 goto skip_cache;
1535
1536 TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
1537 (*pr)("\tcache %p: allocfrom %p freeto %p\n", pc,
1538 pc->pc_allocfrom, pc->pc_freeto);
1539 (*pr)("\t hits %lu misses %lu ngroups %lu nitems %lu\n",
1540 pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
1541 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1542 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);
1543 for (i = 0; i < PCG_NOBJECTS; i++) {
1544 if (pcg->pcg_objects[i].pcgo_pa !=
1545 POOL_PADDR_INVALID) {
1546 (*pr)("\t\t\t%p, 0x%llx\n",
1547 pcg->pcg_objects[i].pcgo_va,
1548 (unsigned long long)
1549 pcg->pcg_objects[i].pcgo_pa);
1550 } else {
1551 (*pr)("\t\t\t%p\n",
1552 pcg->pcg_objects[i].pcgo_va);
1553 }
1554 }
1555 }
1556 }
1557
1558 skip_cache:
1559 pr_enter_check(pp, pr);
1560 }
1561
1562 static int
1563 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1564 {
1565 struct pool_item *pi;
1566 caddr_t page;
1567 int n;
1568
1569 page = (caddr_t)((u_long)ph & pp->pr_alloc->pa_pagemask);
1570 if (page != ph->ph_page &&
1571 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1572 if (label != NULL)
1573 printf("%s: ", label);
1574 printf("pool(%p:%s): page inconsistency: page %p;"
1575 " at page head addr %p (p %p)\n", pp,
1576 pp->pr_wchan, ph->ph_page,
1577 ph, page);
1578 return 1;
1579 }
1580
1581 for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
1582 pi != NULL;
1583 pi = TAILQ_NEXT(pi,pi_list), n++) {
1584
1585 #ifdef DIAGNOSTIC
1586 if (pi->pi_magic != PI_MAGIC) {
1587 if (label != NULL)
1588 printf("%s: ", label);
1589 printf("pool(%s): free list modified: magic=%x;"
1590 " page %p; item ordinal %d;"
1591 " addr %p (p %p)\n",
1592 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1593 n, pi, page);
1594 panic("pool");
1595 }
1596 #endif
1597 page =
1598 (caddr_t)((u_long)pi & pp->pr_alloc->pa_pagemask);
1599 if (page == ph->ph_page)
1600 continue;
1601
1602 if (label != NULL)
1603 printf("%s: ", label);
1604 printf("pool(%p:%s): page inconsistency: page %p;"
1605 " item ordinal %d; addr %p (p %p)\n", pp,
1606 pp->pr_wchan, ph->ph_page,
1607 n, pi, page);
1608 return 1;
1609 }
1610 return 0;
1611 }
1612
1613
1614 int
1615 pool_chk(struct pool *pp, const char *label)
1616 {
1617 struct pool_item_header *ph;
1618 int r = 0;
1619
1620 simple_lock(&pp->pr_slock);
1621 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1622 r = pool_chk_page(pp, label, ph);
1623 if (r) {
1624 goto out;
1625 }
1626 }
1627 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1628 r = pool_chk_page(pp, label, ph);
1629 if (r) {
1630 goto out;
1631 }
1632 }
1633 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1634 r = pool_chk_page(pp, label, ph);
1635 if (r) {
1636 goto out;
1637 }
1638 }
1639
1640 out:
1641 simple_unlock(&pp->pr_slock);
1642 return (r);
1643 }
1644
1645 /*
1646 * pool_cache_init:
1647 *
1648 * Initialize a pool cache.
1649 *
1650 * NOTE: If the pool must be protected from interrupts, we expect
1651 * to be called at the appropriate interrupt priority level.
1652 */
1653 void
1654 pool_cache_init(struct pool_cache *pc, struct pool *pp,
1655 int (*ctor)(void *, void *, int),
1656 void (*dtor)(void *, void *),
1657 void *arg)
1658 {
1659
1660 TAILQ_INIT(&pc->pc_grouplist);
1661 simple_lock_init(&pc->pc_slock);
1662
1663 pc->pc_allocfrom = NULL;
1664 pc->pc_freeto = NULL;
1665 pc->pc_pool = pp;
1666
1667 pc->pc_ctor = ctor;
1668 pc->pc_dtor = dtor;
1669 pc->pc_arg = arg;
1670
1671 pc->pc_hits = 0;
1672 pc->pc_misses = 0;
1673
1674 pc->pc_ngroups = 0;
1675
1676 pc->pc_nitems = 0;
1677
1678 simple_lock(&pp->pr_slock);
1679 TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist);
1680 simple_unlock(&pp->pr_slock);
1681 }
1682
1683 /*
1684 * pool_cache_destroy:
1685 *
1686 * Destroy a pool cache.
1687 */
1688 void
1689 pool_cache_destroy(struct pool_cache *pc)
1690 {
1691 struct pool *pp = pc->pc_pool;
1692
1693 /* First, invalidate the entire cache. */
1694 pool_cache_invalidate(pc);
1695
1696 /* ...and remove it from the pool's cache list. */
1697 simple_lock(&pp->pr_slock);
1698 TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist);
1699 simple_unlock(&pp->pr_slock);
1700 }
1701
1702 static __inline void *
1703 pcg_get(struct pool_cache_group *pcg, paddr_t *pap)
1704 {
1705 void *object;
1706 u_int idx;
1707
1708 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
1709 KASSERT(pcg->pcg_avail != 0);
1710 idx = --pcg->pcg_avail;
1711
1712 KASSERT(pcg->pcg_objects[idx].pcgo_va != NULL);
1713 object = pcg->pcg_objects[idx].pcgo_va;
1714 if (pap != NULL)
1715 *pap = pcg->pcg_objects[idx].pcgo_pa;
1716 pcg->pcg_objects[idx].pcgo_va = NULL;
1717
1718 return (object);
1719 }
1720
1721 static __inline void
1722 pcg_put(struct pool_cache_group *pcg, void *object, paddr_t pa)
1723 {
1724 u_int idx;
1725
1726 KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
1727 idx = pcg->pcg_avail++;
1728
1729 KASSERT(pcg->pcg_objects[idx].pcgo_va == NULL);
1730 pcg->pcg_objects[idx].pcgo_va = object;
1731 pcg->pcg_objects[idx].pcgo_pa = pa;
1732 }
1733
1734 /*
1735 * pool_cache_get{,_paddr}:
1736 *
1737 * Get an object from a pool cache (optionally returning
1738 * the physical address of the object).
1739 */
1740 void *
1741 pool_cache_get_paddr(struct pool_cache *pc, int flags, paddr_t *pap)
1742 {
1743 struct pool_cache_group *pcg;
1744 void *object;
1745
1746 #ifdef LOCKDEBUG
1747 if (flags & PR_WAITOK)
1748 simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)");
1749 #endif
1750
1751 simple_lock(&pc->pc_slock);
1752
1753 if ((pcg = pc->pc_allocfrom) == NULL) {
1754 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1755 if (pcg->pcg_avail != 0) {
1756 pc->pc_allocfrom = pcg;
1757 goto have_group;
1758 }
1759 }
1760
1761 /*
1762 * No groups with any available objects. Allocate
1763 * a new object, construct it, and return it to
1764 * the caller. We will allocate a group, if necessary,
1765 * when the object is freed back to the cache.
1766 */
1767 pc->pc_misses++;
1768 simple_unlock(&pc->pc_slock);
1769 object = pool_get(pc->pc_pool, flags);
1770 if (object != NULL && pc->pc_ctor != NULL) {
1771 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
1772 pool_put(pc->pc_pool, object);
1773 return (NULL);
1774 }
1775 }
1776 if (object != NULL && pap != NULL) {
1777 #ifdef POOL_VTOPHYS
1778 *pap = POOL_VTOPHYS(object);
1779 #else
1780 *pap = POOL_PADDR_INVALID;
1781 #endif
1782 }
1783 return (object);
1784 }
1785
1786 have_group:
1787 pc->pc_hits++;
1788 pc->pc_nitems--;
1789 object = pcg_get(pcg, pap);
1790
1791 if (pcg->pcg_avail == 0)
1792 pc->pc_allocfrom = NULL;
1793
1794 simple_unlock(&pc->pc_slock);
1795
1796 return (object);
1797 }
1798
1799 /*
1800 * pool_cache_put{,_paddr}:
1801 *
1802 * Put an object back to the pool cache (optionally caching the
1803 * physical address of the object).
1804 */
1805 void
1806 pool_cache_put_paddr(struct pool_cache *pc, void *object, paddr_t pa)
1807 {
1808 struct pool_cache_group *pcg;
1809 int s;
1810
1811 simple_lock(&pc->pc_slock);
1812
1813 if ((pcg = pc->pc_freeto) == NULL) {
1814 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1815 if (pcg->pcg_avail != PCG_NOBJECTS) {
1816 pc->pc_freeto = pcg;
1817 goto have_group;
1818 }
1819 }
1820
1821 /*
1822 * No empty groups to free the object to. Attempt to
1823 * allocate one.
1824 */
1825 simple_unlock(&pc->pc_slock);
1826 s = splvm();
1827 pcg = pool_get(&pcgpool, PR_NOWAIT);
1828 splx(s);
1829 if (pcg != NULL) {
1830 memset(pcg, 0, sizeof(*pcg));
1831 simple_lock(&pc->pc_slock);
1832 pc->pc_ngroups++;
1833 TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list);
1834 if (pc->pc_freeto == NULL)
1835 pc->pc_freeto = pcg;
1836 goto have_group;
1837 }
1838
1839 /*
1840 * Unable to allocate a cache group; destruct the object
1841 * and free it back to the pool.
1842 */
1843 pool_cache_destruct_object(pc, object);
1844 return;
1845 }
1846
1847 have_group:
1848 pc->pc_nitems++;
1849 pcg_put(pcg, object, pa);
1850
1851 if (pcg->pcg_avail == PCG_NOBJECTS)
1852 pc->pc_freeto = NULL;
1853
1854 simple_unlock(&pc->pc_slock);
1855 }
1856
1857 /*
1858 * pool_cache_destruct_object:
1859 *
1860 * Force destruction of an object and its release back into
1861 * the pool.
1862 */
1863 void
1864 pool_cache_destruct_object(struct pool_cache *pc, void *object)
1865 {
1866
1867 if (pc->pc_dtor != NULL)
1868 (*pc->pc_dtor)(pc->pc_arg, object);
1869 pool_put(pc->pc_pool, object);
1870 }
1871
1872 /*
1873 * pool_cache_do_invalidate:
1874 *
1875 * This internal function implements pool_cache_invalidate() and
1876 * pool_cache_reclaim().
1877 */
1878 static void
1879 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups,
1880 void (*putit)(struct pool *, void *))
1881 {
1882 struct pool_cache_group *pcg, *npcg;
1883 void *object;
1884 int s;
1885
1886 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
1887 pcg = npcg) {
1888 npcg = TAILQ_NEXT(pcg, pcg_list);
1889 while (pcg->pcg_avail != 0) {
1890 pc->pc_nitems--;
1891 object = pcg_get(pcg, NULL);
1892 if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg)
1893 pc->pc_allocfrom = NULL;
1894 if (pc->pc_dtor != NULL)
1895 (*pc->pc_dtor)(pc->pc_arg, object);
1896 (*putit)(pc->pc_pool, object);
1897 }
1898 if (free_groups) {
1899 pc->pc_ngroups--;
1900 TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list);
1901 if (pc->pc_freeto == pcg)
1902 pc->pc_freeto = NULL;
1903 s = splvm();
1904 pool_put(&pcgpool, pcg);
1905 splx(s);
1906 }
1907 }
1908 }
1909
1910 /*
1911 * pool_cache_invalidate:
1912 *
1913 * Invalidate a pool cache (destruct and release all of the
1914 * cached objects).
1915 */
1916 void
1917 pool_cache_invalidate(struct pool_cache *pc)
1918 {
1919
1920 simple_lock(&pc->pc_slock);
1921 pool_cache_do_invalidate(pc, 0, pool_put);
1922 simple_unlock(&pc->pc_slock);
1923 }
1924
1925 /*
1926 * pool_cache_reclaim:
1927 *
1928 * Reclaim a pool cache for pool_reclaim().
1929 */
1930 static void
1931 pool_cache_reclaim(struct pool_cache *pc)
1932 {
1933
1934 simple_lock(&pc->pc_slock);
1935 pool_cache_do_invalidate(pc, 1, pool_do_put);
1936 simple_unlock(&pc->pc_slock);
1937 }
1938
1939 /*
1940 * Pool backend allocators.
1941 *
1942 * Each pool has a backend allocator that handles allocation, deallocation,
1943 * and any additional draining that might be needed.
1944 *
1945 * We provide two standard allocators:
1946 *
1947 * pool_allocator_kmem - the default when no allocator is specified
1948 *
1949 * pool_allocator_nointr - used for pools that will not be accessed
1950 * in interrupt context.
1951 */
1952 void *pool_page_alloc(struct pool *, int);
1953 void pool_page_free(struct pool *, void *);
1954
1955 struct pool_allocator pool_allocator_kmem = {
1956 pool_page_alloc, pool_page_free, 0,
1957 };
1958
1959 void *pool_page_alloc_nointr(struct pool *, int);
1960 void pool_page_free_nointr(struct pool *, void *);
1961
1962 struct pool_allocator pool_allocator_nointr = {
1963 pool_page_alloc_nointr, pool_page_free_nointr, 0,
1964 };
1965
1966 #ifdef POOL_SUBPAGE
1967 void *pool_subpage_alloc(struct pool *, int);
1968 void pool_subpage_free(struct pool *, void *);
1969
1970 struct pool_allocator pool_allocator_kmem_subpage = {
1971 pool_subpage_alloc, pool_subpage_free, 0,
1972 };
1973 #endif /* POOL_SUBPAGE */
1974
1975 /*
1976 * We have at least three different resources for the same allocation and
1977 * each resource can be depleted. First, we have the ready elements in the
1978 * pool. Then we have the resource (typically a vm_map) for this allocator.
1979 * Finally, we have physical memory. Waiting for any of these can be
1980 * unnecessary when any other is freed, but the kernel doesn't support
1981 * sleeping on multiple wait channels, so we have to employ another strategy.
1982 *
1983 * The caller sleeps on the pool (so that it can be awakened when an item
1984 * is returned to the pool), but we set PA_WANT on the allocator. When a
1985 * page is returned to the allocator and PA_WANT is set, pool_allocator_free
1986 * will wake up all sleeping pools belonging to this allocator.
1987 *
1988 * XXX Thundering herd.
1989 */
1990 void *
1991 pool_allocator_alloc(struct pool *org, int flags)
1992 {
1993 struct pool_allocator *pa = org->pr_alloc;
1994 struct pool *pp, *start;
1995 int s, freed;
1996 void *res;
1997
1998 LOCK_ASSERT(!simple_lock_held(&org->pr_slock));
1999
2000 do {
2001 if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
2002 return (res);
2003 if ((flags & PR_WAITOK) == 0) {
2004 /*
2005 * We only run the drain hookhere if PR_NOWAIT.
2006 * In other cases, the hook will be run in
2007 * pool_reclaim().
2008 */
2009 if (org->pr_drain_hook != NULL) {
2010 (*org->pr_drain_hook)(org->pr_drain_hook_arg,
2011 flags);
2012 if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
2013 return (res);
2014 }
2015 break;
2016 }
2017
2018 /*
2019 * Drain all pools, except "org", that use this
2020 * allocator. We do this to reclaim VA space.
2021 * pa_alloc is responsible for waiting for
2022 * physical memory.
2023 *
2024 * XXX We risk looping forever if start if someone
2025 * calls pool_destroy on "start". But there is no
2026 * other way to have potentially sleeping pool_reclaim,
2027 * non-sleeping locks on pool_allocator, and some
2028 * stirring of drained pools in the allocator.
2029 *
2030 * XXX Maybe we should use pool_head_slock for locking
2031 * the allocators?
2032 */
2033 freed = 0;
2034
2035 s = splvm();
2036 simple_lock(&pa->pa_slock);
2037 pp = start = TAILQ_FIRST(&pa->pa_list);
2038 do {
2039 TAILQ_REMOVE(&pa->pa_list, pp, pr_alloc_list);
2040 TAILQ_INSERT_TAIL(&pa->pa_list, pp, pr_alloc_list);
2041 if (pp == org)
2042 continue;
2043 simple_unlock(&pa->pa_slock);
2044 freed = pool_reclaim(pp);
2045 simple_lock(&pa->pa_slock);
2046 } while ((pp = TAILQ_FIRST(&pa->pa_list)) != start &&
2047 freed == 0);
2048
2049 if (freed == 0) {
2050 /*
2051 * We set PA_WANT here, the caller will most likely
2052 * sleep waiting for pages (if not, this won't hurt
2053 * that much), and there is no way to set this in
2054 * the caller without violating locking order.
2055 */
2056 pa->pa_flags |= PA_WANT;
2057 }
2058 simple_unlock(&pa->pa_slock);
2059 splx(s);
2060 } while (freed);
2061 return (NULL);
2062 }
2063
2064 void
2065 pool_allocator_free(struct pool *pp, void *v)
2066 {
2067 struct pool_allocator *pa = pp->pr_alloc;
2068 int s;
2069
2070 LOCK_ASSERT(!simple_lock_held(&pp->pr_slock));
2071
2072 (*pa->pa_free)(pp, v);
2073
2074 s = splvm();
2075 simple_lock(&pa->pa_slock);
2076 if ((pa->pa_flags & PA_WANT) == 0) {
2077 simple_unlock(&pa->pa_slock);
2078 splx(s);
2079 return;
2080 }
2081
2082 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
2083 simple_lock(&pp->pr_slock);
2084 if ((pp->pr_flags & PR_WANTED) != 0) {
2085 pp->pr_flags &= ~PR_WANTED;
2086 wakeup(pp);
2087 }
2088 simple_unlock(&pp->pr_slock);
2089 }
2090 pa->pa_flags &= ~PA_WANT;
2091 simple_unlock(&pa->pa_slock);
2092 splx(s);
2093 }
2094
2095 void *
2096 pool_page_alloc(struct pool *pp, int flags)
2097 {
2098 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2099
2100 return ((void *) uvm_km_alloc_poolpage(waitok));
2101 }
2102
2103 void
2104 pool_page_free(struct pool *pp, void *v)
2105 {
2106
2107 uvm_km_free_poolpage((vaddr_t) v);
2108 }
2109
2110 #ifdef POOL_SUBPAGE
2111 /* Sub-page allocator, for machines with large hardware pages. */
2112 void *
2113 pool_subpage_alloc(struct pool *pp, int flags)
2114 {
2115 void *v;
2116 int s;
2117 s = splvm();
2118 v = pool_get(&psppool, flags);
2119 splx(s);
2120 return v;
2121 }
2122
2123 void
2124 pool_subpage_free(struct pool *pp, void *v)
2125 {
2126 int s;
2127 s = splvm();
2128 pool_put(&psppool, v);
2129 splx(s);
2130 }
2131
2132 /* We don't provide a real nointr allocator. Maybe later. */
2133 void *
2134 pool_page_alloc_nointr(struct pool *pp, int flags)
2135 {
2136
2137 return (pool_subpage_alloc(pp, flags));
2138 }
2139
2140 void
2141 pool_page_free_nointr(struct pool *pp, void *v)
2142 {
2143
2144 pool_subpage_free(pp, v);
2145 }
2146 #else
2147 void *
2148 pool_page_alloc_nointr(struct pool *pp, int flags)
2149 {
2150 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2151
2152 return ((void *) uvm_km_alloc_poolpage1(kernel_map,
2153 uvm.kernel_object, waitok));
2154 }
2155
2156 void
2157 pool_page_free_nointr(struct pool *pp, void *v)
2158 {
2159
2160 uvm_km_free_poolpage1(kernel_map, (vaddr_t) v);
2161 }
2162 #endif /* POOL_SUBPAGE */
2163