subr_pool.c revision 1.97 1 /* $NetBSD: subr_pool.c,v 1.97 2005/01/01 21:04:39 yamt Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
9 * Simulation Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.97 2005/01/01 21:04:39 yamt Exp $");
42
43 #include "opt_pool.h"
44 #include "opt_poollog.h"
45 #include "opt_lockdebug.h"
46
47 #include <sys/param.h>
48 #include <sys/systm.h>
49 #include <sys/proc.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/lock.h>
54 #include <sys/pool.h>
55 #include <sys/syslog.h>
56
57 #include <uvm/uvm.h>
58
59 /*
60 * Pool resource management utility.
61 *
62 * Memory is allocated in pages which are split into pieces according to
63 * the pool item size. Each page is kept on one of three lists in the
64 * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
65 * for empty, full and partially-full pages respectively. The individual
66 * pool items are on a linked list headed by `ph_itemlist' in each page
67 * header. The memory for building the page list is either taken from
68 * the allocated pages themselves (for small pool items) or taken from
69 * an internal pool of page headers (`phpool').
70 */
71
72 /* List of all pools */
73 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
74
75 /* Private pool for page header structures */
76 #define PHPOOL_MAX 8
77 static struct pool phpool[PHPOOL_MAX];
78 #define PHPOOL_FREELIST_NELEM(idx) (((idx) == 0) ? 0 : (1 << (idx)))
79
80 #ifdef POOL_SUBPAGE
81 /* Pool of subpages for use by normal pools. */
82 static struct pool psppool;
83 #endif
84
85 /* # of seconds to retain page after last use */
86 int pool_inactive_time = 10;
87
88 /* Next candidate for drainage (see pool_drain()) */
89 static struct pool *drainpp;
90
91 /* This spin lock protects both pool_head and drainpp. */
92 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
93
94 struct pool_item_header {
95 /* Page headers */
96 LIST_ENTRY(pool_item_header)
97 ph_pagelist; /* pool page list */
98 SPLAY_ENTRY(pool_item_header)
99 ph_node; /* Off-page page headers */
100 caddr_t ph_page; /* this page's address */
101 struct timeval ph_time; /* last referenced */
102 union {
103 /* !PR_NOTOUCH */
104 struct {
105 TAILQ_HEAD(, pool_item)
106 phu_itemlist; /* chunk list for this page */
107 } phu_normal;
108 /* PR_NOTOUCH */
109 struct {
110 uint16_t
111 phu_off; /* start offset in page */
112 uint16_t
113 phu_firstfree; /* first free item */
114 } phu_notouch;
115 } ph_u;
116 uint16_t ph_nmissing; /* # of chunks in use */
117 };
118 #define ph_itemlist ph_u.phu_normal.phu_itemlist
119 #define ph_off ph_u.phu_notouch.phu_off
120 #define ph_firstfree ph_u.phu_notouch.phu_firstfree
121
122 struct pool_item {
123 #ifdef DIAGNOSTIC
124 u_int pi_magic;
125 #endif
126 #define PI_MAGIC 0xdeadbeefU
127 /* Other entries use only this list entry */
128 TAILQ_ENTRY(pool_item) pi_list;
129 };
130
131 #define POOL_NEEDS_CATCHUP(pp) \
132 ((pp)->pr_nitems < (pp)->pr_minitems)
133
134 /*
135 * Pool cache management.
136 *
137 * Pool caches provide a way for constructed objects to be cached by the
138 * pool subsystem. This can lead to performance improvements by avoiding
139 * needless object construction/destruction; it is deferred until absolutely
140 * necessary.
141 *
142 * Caches are grouped into cache groups. Each cache group references
143 * up to 16 constructed objects. When a cache allocates an object
144 * from the pool, it calls the object's constructor and places it into
145 * a cache group. When a cache group frees an object back to the pool,
146 * it first calls the object's destructor. This allows the object to
147 * persist in constructed form while freed to the cache.
148 *
149 * Multiple caches may exist for each pool. This allows a single
150 * object type to have multiple constructed forms. The pool references
151 * each cache, so that when a pool is drained by the pagedaemon, it can
152 * drain each individual cache as well. Each time a cache is drained,
153 * the most idle cache group is freed to the pool in its entirety.
154 *
155 * Pool caches are layed on top of pools. By layering them, we can avoid
156 * the complexity of cache management for pools which would not benefit
157 * from it.
158 */
159
160 /* The cache group pool. */
161 static struct pool pcgpool;
162
163 static void pool_cache_reclaim(struct pool_cache *);
164
165 static int pool_catchup(struct pool *);
166 static void pool_prime_page(struct pool *, caddr_t,
167 struct pool_item_header *);
168 static void pool_update_curpage(struct pool *);
169
170 void *pool_allocator_alloc(struct pool *, int);
171 void pool_allocator_free(struct pool *, void *);
172
173 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
174 void (*)(const char *, ...));
175 static void pool_print1(struct pool *, const char *,
176 void (*)(const char *, ...));
177
178 static int pool_chk_page(struct pool *, const char *,
179 struct pool_item_header *);
180
181 /*
182 * Pool log entry. An array of these is allocated in pool_init().
183 */
184 struct pool_log {
185 const char *pl_file;
186 long pl_line;
187 int pl_action;
188 #define PRLOG_GET 1
189 #define PRLOG_PUT 2
190 void *pl_addr;
191 };
192
193 #ifdef POOL_DIAGNOSTIC
194 /* Number of entries in pool log buffers */
195 #ifndef POOL_LOGSIZE
196 #define POOL_LOGSIZE 10
197 #endif
198
199 int pool_logsize = POOL_LOGSIZE;
200
201 static __inline void
202 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
203 {
204 int n = pp->pr_curlogentry;
205 struct pool_log *pl;
206
207 if ((pp->pr_roflags & PR_LOGGING) == 0)
208 return;
209
210 /*
211 * Fill in the current entry. Wrap around and overwrite
212 * the oldest entry if necessary.
213 */
214 pl = &pp->pr_log[n];
215 pl->pl_file = file;
216 pl->pl_line = line;
217 pl->pl_action = action;
218 pl->pl_addr = v;
219 if (++n >= pp->pr_logsize)
220 n = 0;
221 pp->pr_curlogentry = n;
222 }
223
224 static void
225 pr_printlog(struct pool *pp, struct pool_item *pi,
226 void (*pr)(const char *, ...))
227 {
228 int i = pp->pr_logsize;
229 int n = pp->pr_curlogentry;
230
231 if ((pp->pr_roflags & PR_LOGGING) == 0)
232 return;
233
234 /*
235 * Print all entries in this pool's log.
236 */
237 while (i-- > 0) {
238 struct pool_log *pl = &pp->pr_log[n];
239 if (pl->pl_action != 0) {
240 if (pi == NULL || pi == pl->pl_addr) {
241 (*pr)("\tlog entry %d:\n", i);
242 (*pr)("\t\taction = %s, addr = %p\n",
243 pl->pl_action == PRLOG_GET ? "get" : "put",
244 pl->pl_addr);
245 (*pr)("\t\tfile: %s at line %lu\n",
246 pl->pl_file, pl->pl_line);
247 }
248 }
249 if (++n >= pp->pr_logsize)
250 n = 0;
251 }
252 }
253
254 static __inline void
255 pr_enter(struct pool *pp, const char *file, long line)
256 {
257
258 if (__predict_false(pp->pr_entered_file != NULL)) {
259 printf("pool %s: reentrancy at file %s line %ld\n",
260 pp->pr_wchan, file, line);
261 printf(" previous entry at file %s line %ld\n",
262 pp->pr_entered_file, pp->pr_entered_line);
263 panic("pr_enter");
264 }
265
266 pp->pr_entered_file = file;
267 pp->pr_entered_line = line;
268 }
269
270 static __inline void
271 pr_leave(struct pool *pp)
272 {
273
274 if (__predict_false(pp->pr_entered_file == NULL)) {
275 printf("pool %s not entered?\n", pp->pr_wchan);
276 panic("pr_leave");
277 }
278
279 pp->pr_entered_file = NULL;
280 pp->pr_entered_line = 0;
281 }
282
283 static __inline void
284 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
285 {
286
287 if (pp->pr_entered_file != NULL)
288 (*pr)("\n\tcurrently entered from file %s line %ld\n",
289 pp->pr_entered_file, pp->pr_entered_line);
290 }
291 #else
292 #define pr_log(pp, v, action, file, line)
293 #define pr_printlog(pp, pi, pr)
294 #define pr_enter(pp, file, line)
295 #define pr_leave(pp)
296 #define pr_enter_check(pp, pr)
297 #endif /* POOL_DIAGNOSTIC */
298
299 static __inline int
300 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
301 const void *v)
302 {
303 const char *cp = v;
304 int idx;
305
306 KASSERT(pp->pr_roflags & PR_NOTOUCH);
307 idx = (cp - ph->ph_page - ph->ph_off) / pp->pr_size;
308 KASSERT(idx < pp->pr_itemsperpage);
309 return idx;
310 }
311
312 #define PR_FREELIST_ALIGN(p) roundup((uintptr_t)(p), sizeof(uint16_t))
313 #define PR_FREELIST(ph) ((uint16_t *)PR_FREELIST_ALIGN((ph) + 1))
314 #define PR_INDEX_USED ((uint16_t)-1)
315 #define PR_INDEX_EOL ((uint16_t)-2)
316
317 static __inline void
318 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
319 void *obj)
320 {
321 int idx = pr_item_notouch_index(pp, ph, obj);
322 uint16_t *freelist = PR_FREELIST(ph);
323
324 KASSERT(freelist[idx] == PR_INDEX_USED);
325 freelist[idx] = ph->ph_firstfree;
326 ph->ph_firstfree = idx;
327 }
328
329 static __inline void *
330 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
331 {
332 int idx = ph->ph_firstfree;
333 uint16_t *freelist = PR_FREELIST(ph);
334
335 KASSERT(freelist[idx] != PR_INDEX_USED);
336 ph->ph_firstfree = freelist[idx];
337 freelist[idx] = PR_INDEX_USED;
338
339 return ph->ph_page + ph->ph_off + idx * pp->pr_size;
340 }
341
342 static __inline int
343 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
344 {
345 if (a->ph_page < b->ph_page)
346 return (-1);
347 else if (a->ph_page > b->ph_page)
348 return (1);
349 else
350 return (0);
351 }
352
353 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
354 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
355
356 /*
357 * Return the pool page header based on page address.
358 */
359 static __inline struct pool_item_header *
360 pr_find_pagehead(struct pool *pp, caddr_t page)
361 {
362 struct pool_item_header *ph, tmp;
363
364 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
365 return ((struct pool_item_header *)(page + pp->pr_phoffset));
366
367 tmp.ph_page = page;
368 ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
369 return ph;
370 }
371
372 /*
373 * Remove a page from the pool.
374 */
375 static __inline void
376 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
377 struct pool_pagelist *pq)
378 {
379 int s;
380
381 LOCK_ASSERT(!simple_lock_held(&pp->pr_slock) || pq != NULL);
382
383 /*
384 * If the page was idle, decrement the idle page count.
385 */
386 if (ph->ph_nmissing == 0) {
387 #ifdef DIAGNOSTIC
388 if (pp->pr_nidle == 0)
389 panic("pr_rmpage: nidle inconsistent");
390 if (pp->pr_nitems < pp->pr_itemsperpage)
391 panic("pr_rmpage: nitems inconsistent");
392 #endif
393 pp->pr_nidle--;
394 }
395
396 pp->pr_nitems -= pp->pr_itemsperpage;
397
398 /*
399 * Unlink a page from the pool and release it (or queue it for release).
400 */
401 LIST_REMOVE(ph, ph_pagelist);
402 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
403 SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
404 if (pq) {
405 LIST_INSERT_HEAD(pq, ph, ph_pagelist);
406 } else {
407 pool_allocator_free(pp, ph->ph_page);
408 if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
409 s = splvm();
410 pool_put(pp->pr_phpool, ph);
411 splx(s);
412 }
413 }
414 pp->pr_npages--;
415 pp->pr_npagefree++;
416
417 pool_update_curpage(pp);
418 }
419
420 /*
421 * Initialize all the pools listed in the "pools" link set.
422 */
423 void
424 link_pool_init(void)
425 {
426 __link_set_decl(pools, struct link_pool_init);
427 struct link_pool_init * const *pi;
428
429 __link_set_foreach(pi, pools)
430 pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
431 (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
432 (*pi)->palloc);
433 }
434
435 /*
436 * Initialize the given pool resource structure.
437 *
438 * We export this routine to allow other kernel parts to declare
439 * static pools that must be initialized before malloc() is available.
440 */
441 void
442 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
443 const char *wchan, struct pool_allocator *palloc)
444 {
445 int off, slack;
446 size_t trysize, phsize;
447 int s;
448
449 #ifdef POOL_DIAGNOSTIC
450 /*
451 * Always log if POOL_DIAGNOSTIC is defined.
452 */
453 if (pool_logsize != 0)
454 flags |= PR_LOGGING;
455 #endif
456
457 #ifdef POOL_SUBPAGE
458 /*
459 * XXX We don't provide a real `nointr' back-end
460 * yet; all sub-pages come from a kmem back-end.
461 * maybe some day...
462 */
463 if (palloc == NULL) {
464 extern struct pool_allocator pool_allocator_kmem_subpage;
465 palloc = &pool_allocator_kmem_subpage;
466 }
467 /*
468 * We'll assume any user-specified back-end allocator
469 * will deal with sub-pages, or simply don't care.
470 */
471 #else
472 if (palloc == NULL)
473 palloc = &pool_allocator_kmem;
474 #endif /* POOL_SUBPAGE */
475 if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
476 if (palloc->pa_pagesz == 0) {
477 #ifdef POOL_SUBPAGE
478 if (palloc == &pool_allocator_kmem)
479 palloc->pa_pagesz = PAGE_SIZE;
480 else
481 palloc->pa_pagesz = POOL_SUBPAGE;
482 #else
483 palloc->pa_pagesz = PAGE_SIZE;
484 #endif /* POOL_SUBPAGE */
485 }
486
487 TAILQ_INIT(&palloc->pa_list);
488
489 simple_lock_init(&palloc->pa_slock);
490 palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
491 palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
492 palloc->pa_flags |= PA_INITIALIZED;
493 }
494
495 if (align == 0)
496 align = ALIGN(1);
497
498 if (size < sizeof(struct pool_item))
499 size = sizeof(struct pool_item);
500
501 size = roundup(size, align);
502 #ifdef DIAGNOSTIC
503 if (size > palloc->pa_pagesz)
504 panic("pool_init: pool item size (%lu) too large",
505 (u_long)size);
506 #endif
507
508 /*
509 * Initialize the pool structure.
510 */
511 LIST_INIT(&pp->pr_emptypages);
512 LIST_INIT(&pp->pr_fullpages);
513 LIST_INIT(&pp->pr_partpages);
514 TAILQ_INIT(&pp->pr_cachelist);
515 pp->pr_curpage = NULL;
516 pp->pr_npages = 0;
517 pp->pr_minitems = 0;
518 pp->pr_minpages = 0;
519 pp->pr_maxpages = UINT_MAX;
520 pp->pr_roflags = flags;
521 pp->pr_flags = 0;
522 pp->pr_size = size;
523 pp->pr_align = align;
524 pp->pr_wchan = wchan;
525 pp->pr_alloc = palloc;
526 pp->pr_nitems = 0;
527 pp->pr_nout = 0;
528 pp->pr_hardlimit = UINT_MAX;
529 pp->pr_hardlimit_warning = NULL;
530 pp->pr_hardlimit_ratecap.tv_sec = 0;
531 pp->pr_hardlimit_ratecap.tv_usec = 0;
532 pp->pr_hardlimit_warning_last.tv_sec = 0;
533 pp->pr_hardlimit_warning_last.tv_usec = 0;
534 pp->pr_drain_hook = NULL;
535 pp->pr_drain_hook_arg = NULL;
536
537 /*
538 * Decide whether to put the page header off page to avoid
539 * wasting too large a part of the page or too big item.
540 * Off-page page headers go on a hash table, so we can match
541 * a returned item with its header based on the page address.
542 * We use 1/16 of the page size and about 8 times of the item
543 * size as the threshold (XXX: tune)
544 *
545 * However, we'll put the header into the page if we can put
546 * it without wasting any items.
547 *
548 * Silently enforce `0 <= ioff < align'.
549 */
550 pp->pr_itemoffset = ioff %= align;
551 /* See the comment below about reserved bytes. */
552 trysize = palloc->pa_pagesz - ((align - ioff) % align);
553 phsize = ALIGN(sizeof(struct pool_item_header));
554 if ((pp->pr_roflags & PR_NOTOUCH) == 0 &&
555 (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
556 trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
557 /* Use the end of the page for the page header */
558 pp->pr_roflags |= PR_PHINPAGE;
559 pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
560 } else {
561 /* The page header will be taken from our page header pool */
562 pp->pr_phoffset = 0;
563 off = palloc->pa_pagesz;
564 SPLAY_INIT(&pp->pr_phtree);
565 }
566
567 /*
568 * Alignment is to take place at `ioff' within the item. This means
569 * we must reserve up to `align - 1' bytes on the page to allow
570 * appropriate positioning of each item.
571 */
572 pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
573 KASSERT(pp->pr_itemsperpage != 0);
574 if ((pp->pr_roflags & PR_NOTOUCH)) {
575 int idx;
576
577 for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
578 idx++) {
579 /* nothing */
580 }
581 if (idx >= PHPOOL_MAX) {
582 /*
583 * if you see this panic, consider to tweak
584 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
585 */
586 panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
587 pp->pr_wchan, pp->pr_itemsperpage);
588 }
589 pp->pr_phpool = &phpool[idx];
590 } else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
591 pp->pr_phpool = &phpool[0];
592 }
593 #if defined(DIAGNOSTIC)
594 else {
595 pp->pr_phpool = NULL;
596 }
597 #endif
598
599 /*
600 * Use the slack between the chunks and the page header
601 * for "cache coloring".
602 */
603 slack = off - pp->pr_itemsperpage * pp->pr_size;
604 pp->pr_maxcolor = (slack / align) * align;
605 pp->pr_curcolor = 0;
606
607 pp->pr_nget = 0;
608 pp->pr_nfail = 0;
609 pp->pr_nput = 0;
610 pp->pr_npagealloc = 0;
611 pp->pr_npagefree = 0;
612 pp->pr_hiwat = 0;
613 pp->pr_nidle = 0;
614
615 #ifdef POOL_DIAGNOSTIC
616 if (flags & PR_LOGGING) {
617 if (kmem_map == NULL ||
618 (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
619 M_TEMP, M_NOWAIT)) == NULL)
620 pp->pr_roflags &= ~PR_LOGGING;
621 pp->pr_curlogentry = 0;
622 pp->pr_logsize = pool_logsize;
623 }
624 #endif
625
626 pp->pr_entered_file = NULL;
627 pp->pr_entered_line = 0;
628
629 simple_lock_init(&pp->pr_slock);
630
631 /*
632 * Initialize private page header pool and cache magazine pool if we
633 * haven't done so yet.
634 * XXX LOCKING.
635 */
636 if (phpool[0].pr_size == 0) {
637 struct pool_allocator *pa;
638 int idx;
639 #ifdef POOL_SUBPAGE
640 pa = &pool_allocator_kmem;
641 #else
642 pa = NULL;
643 #endif
644 for (idx = 0; idx < PHPOOL_MAX; idx++) {
645 static char phpool_names[PHPOOL_MAX][6+1+6+1];
646 int nelem;
647 size_t sz;
648
649 nelem = PHPOOL_FREELIST_NELEM(idx);
650 snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
651 "phpool-%d", nelem);
652 sz = sizeof(struct pool_item_header);
653 if (nelem) {
654 sz = PR_FREELIST_ALIGN(sz)
655 + nelem * sizeof(uint16_t);
656 }
657 pool_init(&phpool[idx], sz, 0, 0, 0,
658 phpool_names[idx], pa);
659 }
660 #ifdef POOL_SUBPAGE
661 pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
662 PR_RECURSIVE, "psppool", &pool_allocator_kmem);
663 #endif
664 pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
665 0, "pcgpool", NULL);
666 }
667
668 /* Insert into the list of all pools. */
669 simple_lock(&pool_head_slock);
670 TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
671 simple_unlock(&pool_head_slock);
672
673 /* Insert this into the list of pools using this allocator. */
674 s = splvm();
675 simple_lock(&palloc->pa_slock);
676 TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
677 simple_unlock(&palloc->pa_slock);
678 splx(s);
679 }
680
681 /*
682 * De-commision a pool resource.
683 */
684 void
685 pool_destroy(struct pool *pp)
686 {
687 struct pool_item_header *ph;
688 struct pool_cache *pc;
689 int s;
690
691 /* Locking order: pool_allocator -> pool */
692 s = splvm();
693 simple_lock(&pp->pr_alloc->pa_slock);
694 TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
695 simple_unlock(&pp->pr_alloc->pa_slock);
696 splx(s);
697
698 /* Destroy all caches for this pool. */
699 while ((pc = TAILQ_FIRST(&pp->pr_cachelist)) != NULL)
700 pool_cache_destroy(pc);
701
702 #ifdef DIAGNOSTIC
703 if (pp->pr_nout != 0) {
704 pr_printlog(pp, NULL, printf);
705 panic("pool_destroy: pool busy: still out: %u",
706 pp->pr_nout);
707 }
708 #endif
709
710 /* Remove all pages */
711 while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
712 pr_rmpage(pp, ph, NULL);
713 KASSERT(LIST_EMPTY(&pp->pr_fullpages));
714 KASSERT(LIST_EMPTY(&pp->pr_partpages));
715
716 /* Remove from global pool list */
717 simple_lock(&pool_head_slock);
718 TAILQ_REMOVE(&pool_head, pp, pr_poollist);
719 if (drainpp == pp) {
720 drainpp = NULL;
721 }
722 simple_unlock(&pool_head_slock);
723
724 #ifdef POOL_DIAGNOSTIC
725 if ((pp->pr_roflags & PR_LOGGING) != 0)
726 free(pp->pr_log, M_TEMP);
727 #endif
728 }
729
730 void
731 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
732 {
733
734 /* XXX no locking -- must be used just after pool_init() */
735 #ifdef DIAGNOSTIC
736 if (pp->pr_drain_hook != NULL)
737 panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
738 #endif
739 pp->pr_drain_hook = fn;
740 pp->pr_drain_hook_arg = arg;
741 }
742
743 static struct pool_item_header *
744 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
745 {
746 struct pool_item_header *ph;
747 int s;
748
749 LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
750
751 if ((pp->pr_roflags & PR_PHINPAGE) != 0)
752 ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
753 else {
754 s = splvm();
755 ph = pool_get(pp->pr_phpool, flags);
756 splx(s);
757 }
758
759 return (ph);
760 }
761
762 /*
763 * Grab an item from the pool; must be called at appropriate spl level
764 */
765 void *
766 #ifdef POOL_DIAGNOSTIC
767 _pool_get(struct pool *pp, int flags, const char *file, long line)
768 #else
769 pool_get(struct pool *pp, int flags)
770 #endif
771 {
772 struct pool_item *pi;
773 struct pool_item_header *ph;
774 void *v;
775
776 #ifdef DIAGNOSTIC
777 if (__predict_false(pp->pr_itemsperpage == 0))
778 panic("pool_get: pool %p: pr_itemsperpage is zero, "
779 "pool not initialized?", pp);
780 if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
781 (flags & PR_WAITOK) != 0))
782 panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
783
784 #ifdef LOCKDEBUG
785 if (flags & PR_WAITOK)
786 simple_lock_only_held(NULL, "pool_get(PR_WAITOK)");
787 #endif
788 #endif /* DIAGNOSTIC */
789
790 simple_lock(&pp->pr_slock);
791 pr_enter(pp, file, line);
792
793 startover:
794 /*
795 * Check to see if we've reached the hard limit. If we have,
796 * and we can wait, then wait until an item has been returned to
797 * the pool.
798 */
799 #ifdef DIAGNOSTIC
800 if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
801 pr_leave(pp);
802 simple_unlock(&pp->pr_slock);
803 panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
804 }
805 #endif
806 if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
807 if (pp->pr_drain_hook != NULL) {
808 /*
809 * Since the drain hook is going to free things
810 * back to the pool, unlock, call the hook, re-lock,
811 * and check the hardlimit condition again.
812 */
813 pr_leave(pp);
814 simple_unlock(&pp->pr_slock);
815 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
816 simple_lock(&pp->pr_slock);
817 pr_enter(pp, file, line);
818 if (pp->pr_nout < pp->pr_hardlimit)
819 goto startover;
820 }
821
822 if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
823 /*
824 * XXX: A warning isn't logged in this case. Should
825 * it be?
826 */
827 pp->pr_flags |= PR_WANTED;
828 pr_leave(pp);
829 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
830 pr_enter(pp, file, line);
831 goto startover;
832 }
833
834 /*
835 * Log a message that the hard limit has been hit.
836 */
837 if (pp->pr_hardlimit_warning != NULL &&
838 ratecheck(&pp->pr_hardlimit_warning_last,
839 &pp->pr_hardlimit_ratecap))
840 log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
841
842 pp->pr_nfail++;
843
844 pr_leave(pp);
845 simple_unlock(&pp->pr_slock);
846 return (NULL);
847 }
848
849 /*
850 * The convention we use is that if `curpage' is not NULL, then
851 * it points at a non-empty bucket. In particular, `curpage'
852 * never points at a page header which has PR_PHINPAGE set and
853 * has no items in its bucket.
854 */
855 if ((ph = pp->pr_curpage) == NULL) {
856 #ifdef DIAGNOSTIC
857 if (pp->pr_nitems != 0) {
858 simple_unlock(&pp->pr_slock);
859 printf("pool_get: %s: curpage NULL, nitems %u\n",
860 pp->pr_wchan, pp->pr_nitems);
861 panic("pool_get: nitems inconsistent");
862 }
863 #endif
864
865 /*
866 * Call the back-end page allocator for more memory.
867 * Release the pool lock, as the back-end page allocator
868 * may block.
869 */
870 pr_leave(pp);
871 simple_unlock(&pp->pr_slock);
872 v = pool_allocator_alloc(pp, flags);
873 if (__predict_true(v != NULL))
874 ph = pool_alloc_item_header(pp, v, flags);
875
876 if (__predict_false(v == NULL || ph == NULL)) {
877 if (v != NULL)
878 pool_allocator_free(pp, v);
879
880 simple_lock(&pp->pr_slock);
881 pr_enter(pp, file, line);
882
883 /*
884 * We were unable to allocate a page or item
885 * header, but we released the lock during
886 * allocation, so perhaps items were freed
887 * back to the pool. Check for this case.
888 */
889 if (pp->pr_curpage != NULL)
890 goto startover;
891
892 if ((flags & PR_WAITOK) == 0) {
893 pp->pr_nfail++;
894 pr_leave(pp);
895 simple_unlock(&pp->pr_slock);
896 return (NULL);
897 }
898
899 /*
900 * Wait for items to be returned to this pool.
901 *
902 * XXX: maybe we should wake up once a second and
903 * try again?
904 */
905 pp->pr_flags |= PR_WANTED;
906 /* PA_WANTED is already set on the allocator. */
907 pr_leave(pp);
908 ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
909 pr_enter(pp, file, line);
910 goto startover;
911 }
912
913 /* We have more memory; add it to the pool */
914 simple_lock(&pp->pr_slock);
915 pr_enter(pp, file, line);
916 pool_prime_page(pp, v, ph);
917 pp->pr_npagealloc++;
918
919 /* Start the allocation process over. */
920 goto startover;
921 }
922 if (pp->pr_roflags & PR_NOTOUCH) {
923 #ifdef DIAGNOSTIC
924 if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
925 pr_leave(pp);
926 simple_unlock(&pp->pr_slock);
927 panic("pool_get: %s: page empty", pp->pr_wchan);
928 }
929 #endif
930 v = pr_item_notouch_get(pp, ph);
931 #ifdef POOL_DIAGNOSTIC
932 pr_log(pp, v, PRLOG_GET, file, line);
933 #endif
934 } else {
935 v = pi = TAILQ_FIRST(&ph->ph_itemlist);
936 if (__predict_false(v == NULL)) {
937 pr_leave(pp);
938 simple_unlock(&pp->pr_slock);
939 panic("pool_get: %s: page empty", pp->pr_wchan);
940 }
941 #ifdef DIAGNOSTIC
942 if (__predict_false(pp->pr_nitems == 0)) {
943 pr_leave(pp);
944 simple_unlock(&pp->pr_slock);
945 printf("pool_get: %s: items on itemlist, nitems %u\n",
946 pp->pr_wchan, pp->pr_nitems);
947 panic("pool_get: nitems inconsistent");
948 }
949 #endif
950
951 #ifdef POOL_DIAGNOSTIC
952 pr_log(pp, v, PRLOG_GET, file, line);
953 #endif
954
955 #ifdef DIAGNOSTIC
956 if (__predict_false(pi->pi_magic != PI_MAGIC)) {
957 pr_printlog(pp, pi, printf);
958 panic("pool_get(%s): free list modified: "
959 "magic=%x; page %p; item addr %p\n",
960 pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
961 }
962 #endif
963
964 /*
965 * Remove from item list.
966 */
967 TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
968 }
969 pp->pr_nitems--;
970 pp->pr_nout++;
971 if (ph->ph_nmissing == 0) {
972 #ifdef DIAGNOSTIC
973 if (__predict_false(pp->pr_nidle == 0))
974 panic("pool_get: nidle inconsistent");
975 #endif
976 pp->pr_nidle--;
977
978 /*
979 * This page was previously empty. Move it to the list of
980 * partially-full pages. This page is already curpage.
981 */
982 LIST_REMOVE(ph, ph_pagelist);
983 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
984 }
985 ph->ph_nmissing++;
986 if (ph->ph_nmissing == pp->pr_itemsperpage) {
987 #ifdef DIAGNOSTIC
988 if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
989 !TAILQ_EMPTY(&ph->ph_itemlist))) {
990 pr_leave(pp);
991 simple_unlock(&pp->pr_slock);
992 panic("pool_get: %s: nmissing inconsistent",
993 pp->pr_wchan);
994 }
995 #endif
996 /*
997 * This page is now full. Move it to the full list
998 * and select a new current page.
999 */
1000 LIST_REMOVE(ph, ph_pagelist);
1001 LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
1002 pool_update_curpage(pp);
1003 }
1004
1005 pp->pr_nget++;
1006
1007 /*
1008 * If we have a low water mark and we are now below that low
1009 * water mark, add more items to the pool.
1010 */
1011 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1012 /*
1013 * XXX: Should we log a warning? Should we set up a timeout
1014 * to try again in a second or so? The latter could break
1015 * a caller's assumptions about interrupt protection, etc.
1016 */
1017 }
1018
1019 pr_leave(pp);
1020 simple_unlock(&pp->pr_slock);
1021 return (v);
1022 }
1023
1024 /*
1025 * Internal version of pool_put(). Pool is already locked/entered.
1026 */
1027 static void
1028 pool_do_put(struct pool *pp, void *v)
1029 {
1030 struct pool_item *pi = v;
1031 struct pool_item_header *ph;
1032 caddr_t page;
1033 int s;
1034
1035 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
1036
1037 page = (caddr_t)((u_long)v & pp->pr_alloc->pa_pagemask);
1038
1039 #ifdef DIAGNOSTIC
1040 if (__predict_false(pp->pr_nout == 0)) {
1041 printf("pool %s: putting with none out\n",
1042 pp->pr_wchan);
1043 panic("pool_put");
1044 }
1045 #endif
1046
1047 if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
1048 pr_printlog(pp, NULL, printf);
1049 panic("pool_put: %s: page header missing", pp->pr_wchan);
1050 }
1051
1052 #ifdef LOCKDEBUG
1053 /*
1054 * Check if we're freeing a locked simple lock.
1055 */
1056 simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
1057 #endif
1058
1059 /*
1060 * Return to item list.
1061 */
1062 if (pp->pr_roflags & PR_NOTOUCH) {
1063 pr_item_notouch_put(pp, ph, v);
1064 } else {
1065 #ifdef DIAGNOSTIC
1066 pi->pi_magic = PI_MAGIC;
1067 #endif
1068 #ifdef DEBUG
1069 {
1070 int i, *ip = v;
1071
1072 for (i = 0; i < pp->pr_size / sizeof(int); i++) {
1073 *ip++ = PI_MAGIC;
1074 }
1075 }
1076 #endif
1077
1078 TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
1079 }
1080 KDASSERT(ph->ph_nmissing != 0);
1081 ph->ph_nmissing--;
1082 pp->pr_nput++;
1083 pp->pr_nitems++;
1084 pp->pr_nout--;
1085
1086 /* Cancel "pool empty" condition if it exists */
1087 if (pp->pr_curpage == NULL)
1088 pp->pr_curpage = ph;
1089
1090 if (pp->pr_flags & PR_WANTED) {
1091 pp->pr_flags &= ~PR_WANTED;
1092 if (ph->ph_nmissing == 0)
1093 pp->pr_nidle++;
1094 wakeup((caddr_t)pp);
1095 return;
1096 }
1097
1098 /*
1099 * If this page is now empty, do one of two things:
1100 *
1101 * (1) If we have more pages than the page high water mark,
1102 * free the page back to the system. ONLY CONSIDER
1103 * FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
1104 * CLAIM.
1105 *
1106 * (2) Otherwise, move the page to the empty page list.
1107 *
1108 * Either way, select a new current page (so we use a partially-full
1109 * page if one is available).
1110 */
1111 if (ph->ph_nmissing == 0) {
1112 pp->pr_nidle++;
1113 if (pp->pr_npages > pp->pr_minpages &&
1114 (pp->pr_npages > pp->pr_maxpages ||
1115 (pp->pr_alloc->pa_flags & PA_WANT) != 0)) {
1116 simple_unlock(&pp->pr_slock);
1117 pr_rmpage(pp, ph, NULL);
1118 simple_lock(&pp->pr_slock);
1119 } else {
1120 LIST_REMOVE(ph, ph_pagelist);
1121 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1122
1123 /*
1124 * Update the timestamp on the page. A page must
1125 * be idle for some period of time before it can
1126 * be reclaimed by the pagedaemon. This minimizes
1127 * ping-pong'ing for memory.
1128 */
1129 s = splclock();
1130 ph->ph_time = mono_time;
1131 splx(s);
1132 }
1133 pool_update_curpage(pp);
1134 }
1135
1136 /*
1137 * If the page was previously completely full, move it to the
1138 * partially-full list and make it the current page. The next
1139 * allocation will get the item from this page, instead of
1140 * further fragmenting the pool.
1141 */
1142 else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
1143 LIST_REMOVE(ph, ph_pagelist);
1144 LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
1145 pp->pr_curpage = ph;
1146 }
1147 }
1148
1149 /*
1150 * Return resource to the pool; must be called at appropriate spl level
1151 */
1152 #ifdef POOL_DIAGNOSTIC
1153 void
1154 _pool_put(struct pool *pp, void *v, const char *file, long line)
1155 {
1156
1157 simple_lock(&pp->pr_slock);
1158 pr_enter(pp, file, line);
1159
1160 pr_log(pp, v, PRLOG_PUT, file, line);
1161
1162 pool_do_put(pp, v);
1163
1164 pr_leave(pp);
1165 simple_unlock(&pp->pr_slock);
1166 }
1167 #undef pool_put
1168 #endif /* POOL_DIAGNOSTIC */
1169
1170 void
1171 pool_put(struct pool *pp, void *v)
1172 {
1173
1174 simple_lock(&pp->pr_slock);
1175
1176 pool_do_put(pp, v);
1177
1178 simple_unlock(&pp->pr_slock);
1179 }
1180
1181 #ifdef POOL_DIAGNOSTIC
1182 #define pool_put(h, v) _pool_put((h), (v), __FILE__, __LINE__)
1183 #endif
1184
1185 /*
1186 * Add N items to the pool.
1187 */
1188 int
1189 pool_prime(struct pool *pp, int n)
1190 {
1191 struct pool_item_header *ph = NULL;
1192 caddr_t cp;
1193 int newpages;
1194
1195 simple_lock(&pp->pr_slock);
1196
1197 newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1198
1199 while (newpages-- > 0) {
1200 simple_unlock(&pp->pr_slock);
1201 cp = pool_allocator_alloc(pp, PR_NOWAIT);
1202 if (__predict_true(cp != NULL))
1203 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1204
1205 if (__predict_false(cp == NULL || ph == NULL)) {
1206 if (cp != NULL)
1207 pool_allocator_free(pp, cp);
1208 simple_lock(&pp->pr_slock);
1209 break;
1210 }
1211
1212 simple_lock(&pp->pr_slock);
1213 pool_prime_page(pp, cp, ph);
1214 pp->pr_npagealloc++;
1215 pp->pr_minpages++;
1216 }
1217
1218 if (pp->pr_minpages >= pp->pr_maxpages)
1219 pp->pr_maxpages = pp->pr_minpages + 1; /* XXX */
1220
1221 simple_unlock(&pp->pr_slock);
1222 return (0);
1223 }
1224
1225 /*
1226 * Add a page worth of items to the pool.
1227 *
1228 * Note, we must be called with the pool descriptor LOCKED.
1229 */
1230 static void
1231 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
1232 {
1233 struct pool_item *pi;
1234 caddr_t cp = storage;
1235 unsigned int align = pp->pr_align;
1236 unsigned int ioff = pp->pr_itemoffset;
1237 int n;
1238 int s;
1239
1240 LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
1241
1242 #ifdef DIAGNOSTIC
1243 if (((u_long)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
1244 panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
1245 #endif
1246
1247 /*
1248 * Insert page header.
1249 */
1250 LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
1251 TAILQ_INIT(&ph->ph_itemlist);
1252 ph->ph_page = storage;
1253 ph->ph_nmissing = 0;
1254 s = splclock();
1255 ph->ph_time = mono_time;
1256 splx(s);
1257 if ((pp->pr_roflags & PR_PHINPAGE) == 0)
1258 SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
1259
1260 pp->pr_nidle++;
1261
1262 /*
1263 * Color this page.
1264 */
1265 cp = (caddr_t)(cp + pp->pr_curcolor);
1266 if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
1267 pp->pr_curcolor = 0;
1268
1269 /*
1270 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
1271 */
1272 if (ioff != 0)
1273 cp = (caddr_t)(cp + (align - ioff));
1274
1275 /*
1276 * Insert remaining chunks on the bucket list.
1277 */
1278 n = pp->pr_itemsperpage;
1279 pp->pr_nitems += n;
1280
1281 ph->ph_off = cp - storage;
1282
1283 if (pp->pr_roflags & PR_NOTOUCH) {
1284 uint16_t *freelist = PR_FREELIST(ph);
1285 int i;
1286
1287 ph->ph_firstfree = 0;
1288 for (i = 0; i < n - 1; i++)
1289 freelist[i] = i + 1;
1290 freelist[n - 1] = PR_INDEX_EOL;
1291 } else {
1292 while (n--) {
1293 pi = (struct pool_item *)cp;
1294
1295 KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
1296
1297 /* Insert on page list */
1298 TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
1299 #ifdef DIAGNOSTIC
1300 pi->pi_magic = PI_MAGIC;
1301 #endif
1302 cp = (caddr_t)(cp + pp->pr_size);
1303 }
1304 }
1305
1306 /*
1307 * If the pool was depleted, point at the new page.
1308 */
1309 if (pp->pr_curpage == NULL)
1310 pp->pr_curpage = ph;
1311
1312 if (++pp->pr_npages > pp->pr_hiwat)
1313 pp->pr_hiwat = pp->pr_npages;
1314 }
1315
1316 /*
1317 * Used by pool_get() when nitems drops below the low water mark. This
1318 * is used to catch up pr_nitems with the low water mark.
1319 *
1320 * Note 1, we never wait for memory here, we let the caller decide what to do.
1321 *
1322 * Note 2, we must be called with the pool already locked, and we return
1323 * with it locked.
1324 */
1325 static int
1326 pool_catchup(struct pool *pp)
1327 {
1328 struct pool_item_header *ph = NULL;
1329 caddr_t cp;
1330 int error = 0;
1331
1332 while (POOL_NEEDS_CATCHUP(pp)) {
1333 /*
1334 * Call the page back-end allocator for more memory.
1335 *
1336 * XXX: We never wait, so should we bother unlocking
1337 * the pool descriptor?
1338 */
1339 simple_unlock(&pp->pr_slock);
1340 cp = pool_allocator_alloc(pp, PR_NOWAIT);
1341 if (__predict_true(cp != NULL))
1342 ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
1343 if (__predict_false(cp == NULL || ph == NULL)) {
1344 if (cp != NULL)
1345 pool_allocator_free(pp, cp);
1346 error = ENOMEM;
1347 simple_lock(&pp->pr_slock);
1348 break;
1349 }
1350 simple_lock(&pp->pr_slock);
1351 pool_prime_page(pp, cp, ph);
1352 pp->pr_npagealloc++;
1353 }
1354
1355 return (error);
1356 }
1357
1358 static void
1359 pool_update_curpage(struct pool *pp)
1360 {
1361
1362 pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
1363 if (pp->pr_curpage == NULL) {
1364 pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
1365 }
1366 }
1367
1368 void
1369 pool_setlowat(struct pool *pp, int n)
1370 {
1371
1372 simple_lock(&pp->pr_slock);
1373
1374 pp->pr_minitems = n;
1375 pp->pr_minpages = (n == 0)
1376 ? 0
1377 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1378
1379 /* Make sure we're caught up with the newly-set low water mark. */
1380 if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
1381 /*
1382 * XXX: Should we log a warning? Should we set up a timeout
1383 * to try again in a second or so? The latter could break
1384 * a caller's assumptions about interrupt protection, etc.
1385 */
1386 }
1387
1388 simple_unlock(&pp->pr_slock);
1389 }
1390
1391 void
1392 pool_sethiwat(struct pool *pp, int n)
1393 {
1394
1395 simple_lock(&pp->pr_slock);
1396
1397 pp->pr_maxpages = (n == 0)
1398 ? 0
1399 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1400
1401 simple_unlock(&pp->pr_slock);
1402 }
1403
1404 void
1405 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
1406 {
1407
1408 simple_lock(&pp->pr_slock);
1409
1410 pp->pr_hardlimit = n;
1411 pp->pr_hardlimit_warning = warnmess;
1412 pp->pr_hardlimit_ratecap.tv_sec = ratecap;
1413 pp->pr_hardlimit_warning_last.tv_sec = 0;
1414 pp->pr_hardlimit_warning_last.tv_usec = 0;
1415
1416 /*
1417 * In-line version of pool_sethiwat(), because we don't want to
1418 * release the lock.
1419 */
1420 pp->pr_maxpages = (n == 0)
1421 ? 0
1422 : roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
1423
1424 simple_unlock(&pp->pr_slock);
1425 }
1426
1427 /*
1428 * Release all complete pages that have not been used recently.
1429 */
1430 int
1431 #ifdef POOL_DIAGNOSTIC
1432 _pool_reclaim(struct pool *pp, const char *file, long line)
1433 #else
1434 pool_reclaim(struct pool *pp)
1435 #endif
1436 {
1437 struct pool_item_header *ph, *phnext;
1438 struct pool_cache *pc;
1439 struct timeval curtime;
1440 struct pool_pagelist pq;
1441 struct timeval diff;
1442 int s;
1443
1444 if (pp->pr_drain_hook != NULL) {
1445 /*
1446 * The drain hook must be called with the pool unlocked.
1447 */
1448 (*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
1449 }
1450
1451 if (simple_lock_try(&pp->pr_slock) == 0)
1452 return (0);
1453 pr_enter(pp, file, line);
1454
1455 LIST_INIT(&pq);
1456
1457 /*
1458 * Reclaim items from the pool's caches.
1459 */
1460 TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
1461 pool_cache_reclaim(pc);
1462
1463 s = splclock();
1464 curtime = mono_time;
1465 splx(s);
1466
1467 for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
1468 phnext = LIST_NEXT(ph, ph_pagelist);
1469
1470 /* Check our minimum page claim */
1471 if (pp->pr_npages <= pp->pr_minpages)
1472 break;
1473
1474 KASSERT(ph->ph_nmissing == 0);
1475 timersub(&curtime, &ph->ph_time, &diff);
1476 if (diff.tv_sec < pool_inactive_time)
1477 continue;
1478
1479 /*
1480 * If freeing this page would put us below
1481 * the low water mark, stop now.
1482 */
1483 if ((pp->pr_nitems - pp->pr_itemsperpage) <
1484 pp->pr_minitems)
1485 break;
1486
1487 pr_rmpage(pp, ph, &pq);
1488 }
1489
1490 pr_leave(pp);
1491 simple_unlock(&pp->pr_slock);
1492 if (LIST_EMPTY(&pq))
1493 return (0);
1494
1495 while ((ph = LIST_FIRST(&pq)) != NULL) {
1496 LIST_REMOVE(ph, ph_pagelist);
1497 pool_allocator_free(pp, ph->ph_page);
1498 if (pp->pr_roflags & PR_PHINPAGE) {
1499 continue;
1500 }
1501 s = splvm();
1502 pool_put(pp->pr_phpool, ph);
1503 splx(s);
1504 }
1505
1506 return (1);
1507 }
1508
1509 /*
1510 * Drain pools, one at a time.
1511 *
1512 * Note, we must never be called from an interrupt context.
1513 */
1514 void
1515 pool_drain(void *arg)
1516 {
1517 struct pool *pp;
1518 int s;
1519
1520 pp = NULL;
1521 s = splvm();
1522 simple_lock(&pool_head_slock);
1523 if (drainpp == NULL) {
1524 drainpp = TAILQ_FIRST(&pool_head);
1525 }
1526 if (drainpp) {
1527 pp = drainpp;
1528 drainpp = TAILQ_NEXT(pp, pr_poollist);
1529 }
1530 simple_unlock(&pool_head_slock);
1531 pool_reclaim(pp);
1532 splx(s);
1533 }
1534
1535 /*
1536 * Diagnostic helpers.
1537 */
1538 void
1539 pool_print(struct pool *pp, const char *modif)
1540 {
1541 int s;
1542
1543 s = splvm();
1544 if (simple_lock_try(&pp->pr_slock) == 0) {
1545 printf("pool %s is locked; try again later\n",
1546 pp->pr_wchan);
1547 splx(s);
1548 return;
1549 }
1550 pool_print1(pp, modif, printf);
1551 simple_unlock(&pp->pr_slock);
1552 splx(s);
1553 }
1554
1555 void
1556 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1557 {
1558 int didlock = 0;
1559
1560 if (pp == NULL) {
1561 (*pr)("Must specify a pool to print.\n");
1562 return;
1563 }
1564
1565 /*
1566 * Called from DDB; interrupts should be blocked, and all
1567 * other processors should be paused. We can skip locking
1568 * the pool in this case.
1569 *
1570 * We do a simple_lock_try() just to print the lock
1571 * status, however.
1572 */
1573
1574 if (simple_lock_try(&pp->pr_slock) == 0)
1575 (*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
1576 else
1577 didlock = 1;
1578
1579 pool_print1(pp, modif, pr);
1580
1581 if (didlock)
1582 simple_unlock(&pp->pr_slock);
1583 }
1584
1585 static void
1586 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
1587 void (*pr)(const char *, ...))
1588 {
1589 struct pool_item_header *ph;
1590 #ifdef DIAGNOSTIC
1591 struct pool_item *pi;
1592 #endif
1593
1594 LIST_FOREACH(ph, pl, ph_pagelist) {
1595 (*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
1596 ph->ph_page, ph->ph_nmissing,
1597 (u_long)ph->ph_time.tv_sec,
1598 (u_long)ph->ph_time.tv_usec);
1599 #ifdef DIAGNOSTIC
1600 if (!(pp->pr_roflags & PR_NOTOUCH)) {
1601 TAILQ_FOREACH(pi, &ph->ph_itemlist, pi_list) {
1602 if (pi->pi_magic != PI_MAGIC) {
1603 (*pr)("\t\t\titem %p, magic 0x%x\n",
1604 pi, pi->pi_magic);
1605 }
1606 }
1607 }
1608 #endif
1609 }
1610 }
1611
1612 static void
1613 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
1614 {
1615 struct pool_item_header *ph;
1616 struct pool_cache *pc;
1617 struct pool_cache_group *pcg;
1618 int i, print_log = 0, print_pagelist = 0, print_cache = 0;
1619 char c;
1620
1621 while ((c = *modif++) != '\0') {
1622 if (c == 'l')
1623 print_log = 1;
1624 if (c == 'p')
1625 print_pagelist = 1;
1626 if (c == 'c')
1627 print_cache = 1;
1628 }
1629
1630 (*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
1631 pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
1632 pp->pr_roflags);
1633 (*pr)("\talloc %p\n", pp->pr_alloc);
1634 (*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
1635 pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
1636 (*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
1637 pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
1638
1639 (*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
1640 pp->pr_nget, pp->pr_nfail, pp->pr_nput);
1641 (*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
1642 pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
1643
1644 if (print_pagelist == 0)
1645 goto skip_pagelist;
1646
1647 if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
1648 (*pr)("\n\tempty page list:\n");
1649 pool_print_pagelist(pp, &pp->pr_emptypages, pr);
1650 if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
1651 (*pr)("\n\tfull page list:\n");
1652 pool_print_pagelist(pp, &pp->pr_fullpages, pr);
1653 if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
1654 (*pr)("\n\tpartial-page list:\n");
1655 pool_print_pagelist(pp, &pp->pr_partpages, pr);
1656
1657 if (pp->pr_curpage == NULL)
1658 (*pr)("\tno current page\n");
1659 else
1660 (*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
1661
1662 skip_pagelist:
1663 if (print_log == 0)
1664 goto skip_log;
1665
1666 (*pr)("\n");
1667 if ((pp->pr_roflags & PR_LOGGING) == 0)
1668 (*pr)("\tno log\n");
1669 else
1670 pr_printlog(pp, NULL, pr);
1671
1672 skip_log:
1673 if (print_cache == 0)
1674 goto skip_cache;
1675
1676 TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
1677 (*pr)("\tcache %p: allocfrom %p freeto %p\n", pc,
1678 pc->pc_allocfrom, pc->pc_freeto);
1679 (*pr)("\t hits %lu misses %lu ngroups %lu nitems %lu\n",
1680 pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
1681 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1682 (*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);
1683 for (i = 0; i < PCG_NOBJECTS; i++) {
1684 if (pcg->pcg_objects[i].pcgo_pa !=
1685 POOL_PADDR_INVALID) {
1686 (*pr)("\t\t\t%p, 0x%llx\n",
1687 pcg->pcg_objects[i].pcgo_va,
1688 (unsigned long long)
1689 pcg->pcg_objects[i].pcgo_pa);
1690 } else {
1691 (*pr)("\t\t\t%p\n",
1692 pcg->pcg_objects[i].pcgo_va);
1693 }
1694 }
1695 }
1696 }
1697
1698 skip_cache:
1699 pr_enter_check(pp, pr);
1700 }
1701
1702 static int
1703 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
1704 {
1705 struct pool_item *pi;
1706 caddr_t page;
1707 int n;
1708
1709 page = (caddr_t)((u_long)ph & pp->pr_alloc->pa_pagemask);
1710 if (page != ph->ph_page &&
1711 (pp->pr_roflags & PR_PHINPAGE) != 0) {
1712 if (label != NULL)
1713 printf("%s: ", label);
1714 printf("pool(%p:%s): page inconsistency: page %p;"
1715 " at page head addr %p (p %p)\n", pp,
1716 pp->pr_wchan, ph->ph_page,
1717 ph, page);
1718 return 1;
1719 }
1720
1721 if ((pp->pr_roflags & PR_NOTOUCH) != 0)
1722 return 0;
1723
1724 for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
1725 pi != NULL;
1726 pi = TAILQ_NEXT(pi,pi_list), n++) {
1727
1728 #ifdef DIAGNOSTIC
1729 if (pi->pi_magic != PI_MAGIC) {
1730 if (label != NULL)
1731 printf("%s: ", label);
1732 printf("pool(%s): free list modified: magic=%x;"
1733 " page %p; item ordinal %d;"
1734 " addr %p (p %p)\n",
1735 pp->pr_wchan, pi->pi_magic, ph->ph_page,
1736 n, pi, page);
1737 panic("pool");
1738 }
1739 #endif
1740 page =
1741 (caddr_t)((u_long)pi & pp->pr_alloc->pa_pagemask);
1742 if (page == ph->ph_page)
1743 continue;
1744
1745 if (label != NULL)
1746 printf("%s: ", label);
1747 printf("pool(%p:%s): page inconsistency: page %p;"
1748 " item ordinal %d; addr %p (p %p)\n", pp,
1749 pp->pr_wchan, ph->ph_page,
1750 n, pi, page);
1751 return 1;
1752 }
1753 return 0;
1754 }
1755
1756
1757 int
1758 pool_chk(struct pool *pp, const char *label)
1759 {
1760 struct pool_item_header *ph;
1761 int r = 0;
1762
1763 simple_lock(&pp->pr_slock);
1764 LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
1765 r = pool_chk_page(pp, label, ph);
1766 if (r) {
1767 goto out;
1768 }
1769 }
1770 LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
1771 r = pool_chk_page(pp, label, ph);
1772 if (r) {
1773 goto out;
1774 }
1775 }
1776 LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
1777 r = pool_chk_page(pp, label, ph);
1778 if (r) {
1779 goto out;
1780 }
1781 }
1782
1783 out:
1784 simple_unlock(&pp->pr_slock);
1785 return (r);
1786 }
1787
1788 /*
1789 * pool_cache_init:
1790 *
1791 * Initialize a pool cache.
1792 *
1793 * NOTE: If the pool must be protected from interrupts, we expect
1794 * to be called at the appropriate interrupt priority level.
1795 */
1796 void
1797 pool_cache_init(struct pool_cache *pc, struct pool *pp,
1798 int (*ctor)(void *, void *, int),
1799 void (*dtor)(void *, void *),
1800 void *arg)
1801 {
1802
1803 TAILQ_INIT(&pc->pc_grouplist);
1804 simple_lock_init(&pc->pc_slock);
1805
1806 pc->pc_allocfrom = NULL;
1807 pc->pc_freeto = NULL;
1808 pc->pc_pool = pp;
1809
1810 pc->pc_ctor = ctor;
1811 pc->pc_dtor = dtor;
1812 pc->pc_arg = arg;
1813
1814 pc->pc_hits = 0;
1815 pc->pc_misses = 0;
1816
1817 pc->pc_ngroups = 0;
1818
1819 pc->pc_nitems = 0;
1820
1821 simple_lock(&pp->pr_slock);
1822 TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist);
1823 simple_unlock(&pp->pr_slock);
1824 }
1825
1826 /*
1827 * pool_cache_destroy:
1828 *
1829 * Destroy a pool cache.
1830 */
1831 void
1832 pool_cache_destroy(struct pool_cache *pc)
1833 {
1834 struct pool *pp = pc->pc_pool;
1835
1836 /* First, invalidate the entire cache. */
1837 pool_cache_invalidate(pc);
1838
1839 /* ...and remove it from the pool's cache list. */
1840 simple_lock(&pp->pr_slock);
1841 TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist);
1842 simple_unlock(&pp->pr_slock);
1843 }
1844
1845 static __inline void *
1846 pcg_get(struct pool_cache_group *pcg, paddr_t *pap)
1847 {
1848 void *object;
1849 u_int idx;
1850
1851 KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
1852 KASSERT(pcg->pcg_avail != 0);
1853 idx = --pcg->pcg_avail;
1854
1855 KASSERT(pcg->pcg_objects[idx].pcgo_va != NULL);
1856 object = pcg->pcg_objects[idx].pcgo_va;
1857 if (pap != NULL)
1858 *pap = pcg->pcg_objects[idx].pcgo_pa;
1859 pcg->pcg_objects[idx].pcgo_va = NULL;
1860
1861 return (object);
1862 }
1863
1864 static __inline void
1865 pcg_put(struct pool_cache_group *pcg, void *object, paddr_t pa)
1866 {
1867 u_int idx;
1868
1869 KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
1870 idx = pcg->pcg_avail++;
1871
1872 KASSERT(pcg->pcg_objects[idx].pcgo_va == NULL);
1873 pcg->pcg_objects[idx].pcgo_va = object;
1874 pcg->pcg_objects[idx].pcgo_pa = pa;
1875 }
1876
1877 /*
1878 * pool_cache_get{,_paddr}:
1879 *
1880 * Get an object from a pool cache (optionally returning
1881 * the physical address of the object).
1882 */
1883 void *
1884 pool_cache_get_paddr(struct pool_cache *pc, int flags, paddr_t *pap)
1885 {
1886 struct pool_cache_group *pcg;
1887 void *object;
1888
1889 #ifdef LOCKDEBUG
1890 if (flags & PR_WAITOK)
1891 simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)");
1892 #endif
1893
1894 simple_lock(&pc->pc_slock);
1895
1896 if ((pcg = pc->pc_allocfrom) == NULL) {
1897 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1898 if (pcg->pcg_avail != 0) {
1899 pc->pc_allocfrom = pcg;
1900 goto have_group;
1901 }
1902 }
1903
1904 /*
1905 * No groups with any available objects. Allocate
1906 * a new object, construct it, and return it to
1907 * the caller. We will allocate a group, if necessary,
1908 * when the object is freed back to the cache.
1909 */
1910 pc->pc_misses++;
1911 simple_unlock(&pc->pc_slock);
1912 object = pool_get(pc->pc_pool, flags);
1913 if (object != NULL && pc->pc_ctor != NULL) {
1914 if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
1915 pool_put(pc->pc_pool, object);
1916 return (NULL);
1917 }
1918 }
1919 if (object != NULL && pap != NULL) {
1920 #ifdef POOL_VTOPHYS
1921 *pap = POOL_VTOPHYS(object);
1922 #else
1923 *pap = POOL_PADDR_INVALID;
1924 #endif
1925 }
1926 return (object);
1927 }
1928
1929 have_group:
1930 pc->pc_hits++;
1931 pc->pc_nitems--;
1932 object = pcg_get(pcg, pap);
1933
1934 if (pcg->pcg_avail == 0)
1935 pc->pc_allocfrom = NULL;
1936
1937 simple_unlock(&pc->pc_slock);
1938
1939 return (object);
1940 }
1941
1942 /*
1943 * pool_cache_put{,_paddr}:
1944 *
1945 * Put an object back to the pool cache (optionally caching the
1946 * physical address of the object).
1947 */
1948 void
1949 pool_cache_put_paddr(struct pool_cache *pc, void *object, paddr_t pa)
1950 {
1951 struct pool_cache_group *pcg;
1952 int s;
1953
1954 simple_lock(&pc->pc_slock);
1955
1956 if ((pcg = pc->pc_freeto) == NULL) {
1957 TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
1958 if (pcg->pcg_avail != PCG_NOBJECTS) {
1959 pc->pc_freeto = pcg;
1960 goto have_group;
1961 }
1962 }
1963
1964 /*
1965 * No empty groups to free the object to. Attempt to
1966 * allocate one.
1967 */
1968 simple_unlock(&pc->pc_slock);
1969 s = splvm();
1970 pcg = pool_get(&pcgpool, PR_NOWAIT);
1971 splx(s);
1972 if (pcg != NULL) {
1973 memset(pcg, 0, sizeof(*pcg));
1974 simple_lock(&pc->pc_slock);
1975 pc->pc_ngroups++;
1976 TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list);
1977 if (pc->pc_freeto == NULL)
1978 pc->pc_freeto = pcg;
1979 goto have_group;
1980 }
1981
1982 /*
1983 * Unable to allocate a cache group; destruct the object
1984 * and free it back to the pool.
1985 */
1986 pool_cache_destruct_object(pc, object);
1987 return;
1988 }
1989
1990 have_group:
1991 pc->pc_nitems++;
1992 pcg_put(pcg, object, pa);
1993
1994 if (pcg->pcg_avail == PCG_NOBJECTS)
1995 pc->pc_freeto = NULL;
1996
1997 simple_unlock(&pc->pc_slock);
1998 }
1999
2000 /*
2001 * pool_cache_destruct_object:
2002 *
2003 * Force destruction of an object and its release back into
2004 * the pool.
2005 */
2006 void
2007 pool_cache_destruct_object(struct pool_cache *pc, void *object)
2008 {
2009
2010 if (pc->pc_dtor != NULL)
2011 (*pc->pc_dtor)(pc->pc_arg, object);
2012 pool_put(pc->pc_pool, object);
2013 }
2014
2015 /*
2016 * pool_cache_do_invalidate:
2017 *
2018 * This internal function implements pool_cache_invalidate() and
2019 * pool_cache_reclaim().
2020 */
2021 static void
2022 pool_cache_do_invalidate(struct pool_cache *pc, int free_groups,
2023 void (*putit)(struct pool *, void *))
2024 {
2025 struct pool_cache_group *pcg, *npcg;
2026 void *object;
2027 int s;
2028
2029 for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
2030 pcg = npcg) {
2031 npcg = TAILQ_NEXT(pcg, pcg_list);
2032 while (pcg->pcg_avail != 0) {
2033 pc->pc_nitems--;
2034 object = pcg_get(pcg, NULL);
2035 if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg)
2036 pc->pc_allocfrom = NULL;
2037 if (pc->pc_dtor != NULL)
2038 (*pc->pc_dtor)(pc->pc_arg, object);
2039 (*putit)(pc->pc_pool, object);
2040 }
2041 if (free_groups) {
2042 pc->pc_ngroups--;
2043 TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list);
2044 if (pc->pc_freeto == pcg)
2045 pc->pc_freeto = NULL;
2046 s = splvm();
2047 pool_put(&pcgpool, pcg);
2048 splx(s);
2049 }
2050 }
2051 }
2052
2053 /*
2054 * pool_cache_invalidate:
2055 *
2056 * Invalidate a pool cache (destruct and release all of the
2057 * cached objects).
2058 */
2059 void
2060 pool_cache_invalidate(struct pool_cache *pc)
2061 {
2062
2063 simple_lock(&pc->pc_slock);
2064 pool_cache_do_invalidate(pc, 0, pool_put);
2065 simple_unlock(&pc->pc_slock);
2066 }
2067
2068 /*
2069 * pool_cache_reclaim:
2070 *
2071 * Reclaim a pool cache for pool_reclaim().
2072 */
2073 static void
2074 pool_cache_reclaim(struct pool_cache *pc)
2075 {
2076
2077 simple_lock(&pc->pc_slock);
2078 pool_cache_do_invalidate(pc, 1, pool_do_put);
2079 simple_unlock(&pc->pc_slock);
2080 }
2081
2082 /*
2083 * Pool backend allocators.
2084 *
2085 * Each pool has a backend allocator that handles allocation, deallocation,
2086 * and any additional draining that might be needed.
2087 *
2088 * We provide two standard allocators:
2089 *
2090 * pool_allocator_kmem - the default when no allocator is specified
2091 *
2092 * pool_allocator_nointr - used for pools that will not be accessed
2093 * in interrupt context.
2094 */
2095 void *pool_page_alloc(struct pool *, int);
2096 void pool_page_free(struct pool *, void *);
2097
2098 struct pool_allocator pool_allocator_kmem = {
2099 pool_page_alloc, pool_page_free, 0,
2100 };
2101
2102 void *pool_page_alloc_nointr(struct pool *, int);
2103 void pool_page_free_nointr(struct pool *, void *);
2104
2105 struct pool_allocator pool_allocator_nointr = {
2106 pool_page_alloc_nointr, pool_page_free_nointr, 0,
2107 };
2108
2109 #ifdef POOL_SUBPAGE
2110 void *pool_subpage_alloc(struct pool *, int);
2111 void pool_subpage_free(struct pool *, void *);
2112
2113 struct pool_allocator pool_allocator_kmem_subpage = {
2114 pool_subpage_alloc, pool_subpage_free, 0,
2115 };
2116 #endif /* POOL_SUBPAGE */
2117
2118 /*
2119 * We have at least three different resources for the same allocation and
2120 * each resource can be depleted. First, we have the ready elements in the
2121 * pool. Then we have the resource (typically a vm_map) for this allocator.
2122 * Finally, we have physical memory. Waiting for any of these can be
2123 * unnecessary when any other is freed, but the kernel doesn't support
2124 * sleeping on multiple wait channels, so we have to employ another strategy.
2125 *
2126 * The caller sleeps on the pool (so that it can be awakened when an item
2127 * is returned to the pool), but we set PA_WANT on the allocator. When a
2128 * page is returned to the allocator and PA_WANT is set, pool_allocator_free
2129 * will wake up all sleeping pools belonging to this allocator.
2130 *
2131 * XXX Thundering herd.
2132 */
2133 void *
2134 pool_allocator_alloc(struct pool *org, int flags)
2135 {
2136 struct pool_allocator *pa = org->pr_alloc;
2137 struct pool *pp, *start;
2138 int s, freed;
2139 void *res;
2140
2141 LOCK_ASSERT(!simple_lock_held(&org->pr_slock));
2142
2143 do {
2144 if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
2145 return (res);
2146 if ((flags & PR_WAITOK) == 0) {
2147 /*
2148 * We only run the drain hookhere if PR_NOWAIT.
2149 * In other cases, the hook will be run in
2150 * pool_reclaim().
2151 */
2152 if (org->pr_drain_hook != NULL) {
2153 (*org->pr_drain_hook)(org->pr_drain_hook_arg,
2154 flags);
2155 if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
2156 return (res);
2157 }
2158 break;
2159 }
2160
2161 /*
2162 * Drain all pools, except "org", that use this
2163 * allocator. We do this to reclaim VA space.
2164 * pa_alloc is responsible for waiting for
2165 * physical memory.
2166 *
2167 * XXX We risk looping forever if start if someone
2168 * calls pool_destroy on "start". But there is no
2169 * other way to have potentially sleeping pool_reclaim,
2170 * non-sleeping locks on pool_allocator, and some
2171 * stirring of drained pools in the allocator.
2172 *
2173 * XXX Maybe we should use pool_head_slock for locking
2174 * the allocators?
2175 */
2176 freed = 0;
2177
2178 s = splvm();
2179 simple_lock(&pa->pa_slock);
2180 pp = start = TAILQ_FIRST(&pa->pa_list);
2181 do {
2182 TAILQ_REMOVE(&pa->pa_list, pp, pr_alloc_list);
2183 TAILQ_INSERT_TAIL(&pa->pa_list, pp, pr_alloc_list);
2184 if (pp == org)
2185 continue;
2186 simple_unlock(&pa->pa_slock);
2187 freed = pool_reclaim(pp);
2188 simple_lock(&pa->pa_slock);
2189 } while ((pp = TAILQ_FIRST(&pa->pa_list)) != start &&
2190 freed == 0);
2191
2192 if (freed == 0) {
2193 /*
2194 * We set PA_WANT here, the caller will most likely
2195 * sleep waiting for pages (if not, this won't hurt
2196 * that much), and there is no way to set this in
2197 * the caller without violating locking order.
2198 */
2199 pa->pa_flags |= PA_WANT;
2200 }
2201 simple_unlock(&pa->pa_slock);
2202 splx(s);
2203 } while (freed);
2204 return (NULL);
2205 }
2206
2207 void
2208 pool_allocator_free(struct pool *pp, void *v)
2209 {
2210 struct pool_allocator *pa = pp->pr_alloc;
2211 int s;
2212
2213 LOCK_ASSERT(!simple_lock_held(&pp->pr_slock));
2214
2215 (*pa->pa_free)(pp, v);
2216
2217 s = splvm();
2218 simple_lock(&pa->pa_slock);
2219 if ((pa->pa_flags & PA_WANT) == 0) {
2220 simple_unlock(&pa->pa_slock);
2221 splx(s);
2222 return;
2223 }
2224
2225 TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
2226 simple_lock(&pp->pr_slock);
2227 if ((pp->pr_flags & PR_WANTED) != 0) {
2228 pp->pr_flags &= ~PR_WANTED;
2229 wakeup(pp);
2230 }
2231 simple_unlock(&pp->pr_slock);
2232 }
2233 pa->pa_flags &= ~PA_WANT;
2234 simple_unlock(&pa->pa_slock);
2235 splx(s);
2236 }
2237
2238 void *
2239 pool_page_alloc(struct pool *pp, int flags)
2240 {
2241 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2242
2243 return ((void *) uvm_km_alloc_poolpage(waitok));
2244 }
2245
2246 void
2247 pool_page_free(struct pool *pp, void *v)
2248 {
2249
2250 uvm_km_free_poolpage((vaddr_t) v);
2251 }
2252
2253 #ifdef POOL_SUBPAGE
2254 /* Sub-page allocator, for machines with large hardware pages. */
2255 void *
2256 pool_subpage_alloc(struct pool *pp, int flags)
2257 {
2258 void *v;
2259 int s;
2260 s = splvm();
2261 v = pool_get(&psppool, flags);
2262 splx(s);
2263 return v;
2264 }
2265
2266 void
2267 pool_subpage_free(struct pool *pp, void *v)
2268 {
2269 int s;
2270 s = splvm();
2271 pool_put(&psppool, v);
2272 splx(s);
2273 }
2274
2275 /* We don't provide a real nointr allocator. Maybe later. */
2276 void *
2277 pool_page_alloc_nointr(struct pool *pp, int flags)
2278 {
2279
2280 return (pool_subpage_alloc(pp, flags));
2281 }
2282
2283 void
2284 pool_page_free_nointr(struct pool *pp, void *v)
2285 {
2286
2287 pool_subpage_free(pp, v);
2288 }
2289 #else
2290 void *
2291 pool_page_alloc_nointr(struct pool *pp, int flags)
2292 {
2293 boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
2294
2295 return ((void *) uvm_km_alloc_poolpage1(kernel_map,
2296 uvm.kernel_object, waitok));
2297 }
2298
2299 void
2300 pool_page_free_nointr(struct pool *pp, void *v)
2301 {
2302
2303 uvm_km_free_poolpage1(kernel_map, (vaddr_t) v);
2304 }
2305 #endif /* POOL_SUBPAGE */
2306