Home | History | Annotate | Line # | Download | only in kern
subr_pool.c revision 1.99.8.2
      1 /*	$NetBSD: subr_pool.c,v 1.99.8.2 2006/03/10 13:19:42 tron Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1999, 2000 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Paul Kranenburg; by Jason R. Thorpe of the Numerical Aerospace
      9  * Simulation Facility, NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 #include <sys/cdefs.h>
     41 __KERNEL_RCSID(0, "$NetBSD: subr_pool.c,v 1.99.8.2 2006/03/10 13:19:42 tron Exp $");
     42 
     43 #include "opt_pool.h"
     44 #include "opt_poollog.h"
     45 #include "opt_lockdebug.h"
     46 
     47 #include <sys/param.h>
     48 #include <sys/systm.h>
     49 #include <sys/proc.h>
     50 #include <sys/errno.h>
     51 #include <sys/kernel.h>
     52 #include <sys/malloc.h>
     53 #include <sys/lock.h>
     54 #include <sys/pool.h>
     55 #include <sys/syslog.h>
     56 
     57 #include <uvm/uvm.h>
     58 
     59 /*
     60  * Pool resource management utility.
     61  *
     62  * Memory is allocated in pages which are split into pieces according to
     63  * the pool item size. Each page is kept on one of three lists in the
     64  * pool structure: `pr_emptypages', `pr_fullpages' and `pr_partpages',
     65  * for empty, full and partially-full pages respectively. The individual
     66  * pool items are on a linked list headed by `ph_itemlist' in each page
     67  * header. The memory for building the page list is either taken from
     68  * the allocated pages themselves (for small pool items) or taken from
     69  * an internal pool of page headers (`phpool').
     70  */
     71 
     72 /* List of all pools */
     73 TAILQ_HEAD(,pool) pool_head = TAILQ_HEAD_INITIALIZER(pool_head);
     74 
     75 /* Private pool for page header structures */
     76 #define	PHPOOL_MAX	8
     77 static struct pool phpool[PHPOOL_MAX];
     78 #define	PHPOOL_FREELIST_NELEM(idx)	(((idx) == 0) ? 0 : (1 << (idx)))
     79 
     80 #ifdef POOL_SUBPAGE
     81 /* Pool of subpages for use by normal pools. */
     82 static struct pool psppool;
     83 #endif
     84 
     85 static void *pool_page_alloc_meta(struct pool *, int);
     86 static void pool_page_free_meta(struct pool *, void *);
     87 
     88 /* allocator for pool metadata */
     89 static struct pool_allocator pool_allocator_meta = {
     90 	pool_page_alloc_meta, pool_page_free_meta
     91 };
     92 
     93 /* # of seconds to retain page after last use */
     94 int pool_inactive_time = 10;
     95 
     96 /* Next candidate for drainage (see pool_drain()) */
     97 static struct pool	*drainpp;
     98 
     99 /* This spin lock protects both pool_head and drainpp. */
    100 struct simplelock pool_head_slock = SIMPLELOCK_INITIALIZER;
    101 
    102 typedef uint8_t pool_item_freelist_t;
    103 
    104 struct pool_item_header {
    105 	/* Page headers */
    106 	LIST_ENTRY(pool_item_header)
    107 				ph_pagelist;	/* pool page list */
    108 	SPLAY_ENTRY(pool_item_header)
    109 				ph_node;	/* Off-page page headers */
    110 	caddr_t			ph_page;	/* this page's address */
    111 	struct timeval		ph_time;	/* last referenced */
    112 	union {
    113 		/* !PR_NOTOUCH */
    114 		struct {
    115 			TAILQ_HEAD(, pool_item)
    116 				phu_itemlist;	/* chunk list for this page */
    117 		} phu_normal;
    118 		/* PR_NOTOUCH */
    119 		struct {
    120 			uint16_t
    121 				phu_off;	/* start offset in page */
    122 			pool_item_freelist_t
    123 				phu_firstfree;	/* first free item */
    124 			/*
    125 			 * XXX it might be better to use
    126 			 * a simple bitmap and ffs(3)
    127 			 */
    128 		} phu_notouch;
    129 	} ph_u;
    130 	uint16_t		ph_nmissing;	/* # of chunks in use */
    131 };
    132 #define	ph_itemlist	ph_u.phu_normal.phu_itemlist
    133 #define	ph_off		ph_u.phu_notouch.phu_off
    134 #define	ph_firstfree	ph_u.phu_notouch.phu_firstfree
    135 
    136 struct pool_item {
    137 #ifdef DIAGNOSTIC
    138 	u_int pi_magic;
    139 #endif
    140 #define	PI_MAGIC 0xdeadbeefU
    141 	/* Other entries use only this list entry */
    142 	TAILQ_ENTRY(pool_item)	pi_list;
    143 };
    144 
    145 #define	POOL_NEEDS_CATCHUP(pp)						\
    146 	((pp)->pr_nitems < (pp)->pr_minitems)
    147 
    148 /*
    149  * Pool cache management.
    150  *
    151  * Pool caches provide a way for constructed objects to be cached by the
    152  * pool subsystem.  This can lead to performance improvements by avoiding
    153  * needless object construction/destruction; it is deferred until absolutely
    154  * necessary.
    155  *
    156  * Caches are grouped into cache groups.  Each cache group references
    157  * up to 16 constructed objects.  When a cache allocates an object
    158  * from the pool, it calls the object's constructor and places it into
    159  * a cache group.  When a cache group frees an object back to the pool,
    160  * it first calls the object's destructor.  This allows the object to
    161  * persist in constructed form while freed to the cache.
    162  *
    163  * Multiple caches may exist for each pool.  This allows a single
    164  * object type to have multiple constructed forms.  The pool references
    165  * each cache, so that when a pool is drained by the pagedaemon, it can
    166  * drain each individual cache as well.  Each time a cache is drained,
    167  * the most idle cache group is freed to the pool in its entirety.
    168  *
    169  * Pool caches are layed on top of pools.  By layering them, we can avoid
    170  * the complexity of cache management for pools which would not benefit
    171  * from it.
    172  */
    173 
    174 /* The cache group pool. */
    175 static struct pool pcgpool;
    176 
    177 static void	pool_cache_reclaim(struct pool_cache *, struct pool_pagelist *);
    178 
    179 static int	pool_catchup(struct pool *);
    180 static void	pool_prime_page(struct pool *, caddr_t,
    181 		    struct pool_item_header *);
    182 static void	pool_update_curpage(struct pool *);
    183 
    184 void		*pool_allocator_alloc(struct pool *, int);
    185 void		pool_allocator_free(struct pool *, void *);
    186 
    187 static void pool_print_pagelist(struct pool *, struct pool_pagelist *,
    188 	void (*)(const char *, ...));
    189 static void pool_print1(struct pool *, const char *,
    190 	void (*)(const char *, ...));
    191 
    192 static int pool_chk_page(struct pool *, const char *,
    193 			 struct pool_item_header *);
    194 
    195 /*
    196  * Pool log entry. An array of these is allocated in pool_init().
    197  */
    198 struct pool_log {
    199 	const char	*pl_file;
    200 	long		pl_line;
    201 	int		pl_action;
    202 #define	PRLOG_GET	1
    203 #define	PRLOG_PUT	2
    204 	void		*pl_addr;
    205 };
    206 
    207 #ifdef POOL_DIAGNOSTIC
    208 /* Number of entries in pool log buffers */
    209 #ifndef POOL_LOGSIZE
    210 #define	POOL_LOGSIZE	10
    211 #endif
    212 
    213 int pool_logsize = POOL_LOGSIZE;
    214 
    215 static __inline void
    216 pr_log(struct pool *pp, void *v, int action, const char *file, long line)
    217 {
    218 	int n = pp->pr_curlogentry;
    219 	struct pool_log *pl;
    220 
    221 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    222 		return;
    223 
    224 	/*
    225 	 * Fill in the current entry. Wrap around and overwrite
    226 	 * the oldest entry if necessary.
    227 	 */
    228 	pl = &pp->pr_log[n];
    229 	pl->pl_file = file;
    230 	pl->pl_line = line;
    231 	pl->pl_action = action;
    232 	pl->pl_addr = v;
    233 	if (++n >= pp->pr_logsize)
    234 		n = 0;
    235 	pp->pr_curlogentry = n;
    236 }
    237 
    238 static void
    239 pr_printlog(struct pool *pp, struct pool_item *pi,
    240     void (*pr)(const char *, ...))
    241 {
    242 	int i = pp->pr_logsize;
    243 	int n = pp->pr_curlogentry;
    244 
    245 	if ((pp->pr_roflags & PR_LOGGING) == 0)
    246 		return;
    247 
    248 	/*
    249 	 * Print all entries in this pool's log.
    250 	 */
    251 	while (i-- > 0) {
    252 		struct pool_log *pl = &pp->pr_log[n];
    253 		if (pl->pl_action != 0) {
    254 			if (pi == NULL || pi == pl->pl_addr) {
    255 				(*pr)("\tlog entry %d:\n", i);
    256 				(*pr)("\t\taction = %s, addr = %p\n",
    257 				    pl->pl_action == PRLOG_GET ? "get" : "put",
    258 				    pl->pl_addr);
    259 				(*pr)("\t\tfile: %s at line %lu\n",
    260 				    pl->pl_file, pl->pl_line);
    261 			}
    262 		}
    263 		if (++n >= pp->pr_logsize)
    264 			n = 0;
    265 	}
    266 }
    267 
    268 static __inline void
    269 pr_enter(struct pool *pp, const char *file, long line)
    270 {
    271 
    272 	if (__predict_false(pp->pr_entered_file != NULL)) {
    273 		printf("pool %s: reentrancy at file %s line %ld\n",
    274 		    pp->pr_wchan, file, line);
    275 		printf("         previous entry at file %s line %ld\n",
    276 		    pp->pr_entered_file, pp->pr_entered_line);
    277 		panic("pr_enter");
    278 	}
    279 
    280 	pp->pr_entered_file = file;
    281 	pp->pr_entered_line = line;
    282 }
    283 
    284 static __inline void
    285 pr_leave(struct pool *pp)
    286 {
    287 
    288 	if (__predict_false(pp->pr_entered_file == NULL)) {
    289 		printf("pool %s not entered?\n", pp->pr_wchan);
    290 		panic("pr_leave");
    291 	}
    292 
    293 	pp->pr_entered_file = NULL;
    294 	pp->pr_entered_line = 0;
    295 }
    296 
    297 static __inline void
    298 pr_enter_check(struct pool *pp, void (*pr)(const char *, ...))
    299 {
    300 
    301 	if (pp->pr_entered_file != NULL)
    302 		(*pr)("\n\tcurrently entered from file %s line %ld\n",
    303 		    pp->pr_entered_file, pp->pr_entered_line);
    304 }
    305 #else
    306 #define	pr_log(pp, v, action, file, line)
    307 #define	pr_printlog(pp, pi, pr)
    308 #define	pr_enter(pp, file, line)
    309 #define	pr_leave(pp)
    310 #define	pr_enter_check(pp, pr)
    311 #endif /* POOL_DIAGNOSTIC */
    312 
    313 static __inline int
    314 pr_item_notouch_index(const struct pool *pp, const struct pool_item_header *ph,
    315     const void *v)
    316 {
    317 	const char *cp = v;
    318 	int idx;
    319 
    320 	KASSERT(pp->pr_roflags & PR_NOTOUCH);
    321 	idx = (cp - ph->ph_page - ph->ph_off) / pp->pr_size;
    322 	KASSERT(idx < pp->pr_itemsperpage);
    323 	return idx;
    324 }
    325 
    326 #define	PR_FREELIST_ALIGN(p) \
    327 	roundup((uintptr_t)(p), sizeof(pool_item_freelist_t))
    328 #define	PR_FREELIST(ph)	((pool_item_freelist_t *)PR_FREELIST_ALIGN((ph) + 1))
    329 #define	PR_INDEX_USED	((pool_item_freelist_t)-1)
    330 #define	PR_INDEX_EOL	((pool_item_freelist_t)-2)
    331 
    332 static __inline void
    333 pr_item_notouch_put(const struct pool *pp, struct pool_item_header *ph,
    334     void *obj)
    335 {
    336 	int idx = pr_item_notouch_index(pp, ph, obj);
    337 	pool_item_freelist_t *freelist = PR_FREELIST(ph);
    338 
    339 	KASSERT(freelist[idx] == PR_INDEX_USED);
    340 	freelist[idx] = ph->ph_firstfree;
    341 	ph->ph_firstfree = idx;
    342 }
    343 
    344 static __inline void *
    345 pr_item_notouch_get(const struct pool *pp, struct pool_item_header *ph)
    346 {
    347 	int idx = ph->ph_firstfree;
    348 	pool_item_freelist_t *freelist = PR_FREELIST(ph);
    349 
    350 	KASSERT(freelist[idx] != PR_INDEX_USED);
    351 	ph->ph_firstfree = freelist[idx];
    352 	freelist[idx] = PR_INDEX_USED;
    353 
    354 	return ph->ph_page + ph->ph_off + idx * pp->pr_size;
    355 }
    356 
    357 static __inline int
    358 phtree_compare(struct pool_item_header *a, struct pool_item_header *b)
    359 {
    360 	if (a->ph_page < b->ph_page)
    361 		return (-1);
    362 	else if (a->ph_page > b->ph_page)
    363 		return (1);
    364 	else
    365 		return (0);
    366 }
    367 
    368 SPLAY_PROTOTYPE(phtree, pool_item_header, ph_node, phtree_compare);
    369 SPLAY_GENERATE(phtree, pool_item_header, ph_node, phtree_compare);
    370 
    371 /*
    372  * Return the pool page header based on page address.
    373  */
    374 static __inline struct pool_item_header *
    375 pr_find_pagehead(struct pool *pp, caddr_t page)
    376 {
    377 	struct pool_item_header *ph, tmp;
    378 
    379 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    380 		return ((struct pool_item_header *)(page + pp->pr_phoffset));
    381 
    382 	tmp.ph_page = page;
    383 	ph = SPLAY_FIND(phtree, &pp->pr_phtree, &tmp);
    384 	return ph;
    385 }
    386 
    387 static void
    388 pr_pagelist_free(struct pool *pp, struct pool_pagelist *pq)
    389 {
    390 	struct pool_item_header *ph;
    391 	int s;
    392 
    393 	while ((ph = LIST_FIRST(pq)) != NULL) {
    394 		LIST_REMOVE(ph, ph_pagelist);
    395 		pool_allocator_free(pp, ph->ph_page);
    396 		if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    397 			s = splvm();
    398 			pool_put(pp->pr_phpool, ph);
    399 			splx(s);
    400 		}
    401 	}
    402 }
    403 
    404 /*
    405  * Remove a page from the pool.
    406  */
    407 static __inline void
    408 pr_rmpage(struct pool *pp, struct pool_item_header *ph,
    409      struct pool_pagelist *pq)
    410 {
    411 
    412 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
    413 
    414 	/*
    415 	 * If the page was idle, decrement the idle page count.
    416 	 */
    417 	if (ph->ph_nmissing == 0) {
    418 #ifdef DIAGNOSTIC
    419 		if (pp->pr_nidle == 0)
    420 			panic("pr_rmpage: nidle inconsistent");
    421 		if (pp->pr_nitems < pp->pr_itemsperpage)
    422 			panic("pr_rmpage: nitems inconsistent");
    423 #endif
    424 		pp->pr_nidle--;
    425 	}
    426 
    427 	pp->pr_nitems -= pp->pr_itemsperpage;
    428 
    429 	/*
    430 	 * Unlink the page from the pool and queue it for release.
    431 	 */
    432 	LIST_REMOVE(ph, ph_pagelist);
    433 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
    434 		SPLAY_REMOVE(phtree, &pp->pr_phtree, ph);
    435 	LIST_INSERT_HEAD(pq, ph, ph_pagelist);
    436 
    437 	pp->pr_npages--;
    438 	pp->pr_npagefree++;
    439 
    440 	pool_update_curpage(pp);
    441 }
    442 
    443 /*
    444  * Initialize all the pools listed in the "pools" link set.
    445  */
    446 void
    447 link_pool_init(void)
    448 {
    449 	__link_set_decl(pools, struct link_pool_init);
    450 	struct link_pool_init * const *pi;
    451 
    452 	__link_set_foreach(pi, pools)
    453 		pool_init((*pi)->pp, (*pi)->size, (*pi)->align,
    454 		    (*pi)->align_offset, (*pi)->flags, (*pi)->wchan,
    455 		    (*pi)->palloc);
    456 }
    457 
    458 /*
    459  * Initialize the given pool resource structure.
    460  *
    461  * We export this routine to allow other kernel parts to declare
    462  * static pools that must be initialized before malloc() is available.
    463  */
    464 void
    465 pool_init(struct pool *pp, size_t size, u_int align, u_int ioff, int flags,
    466     const char *wchan, struct pool_allocator *palloc)
    467 {
    468 	int off, slack;
    469 	size_t trysize, phsize;
    470 	int s;
    471 
    472 	KASSERT((1UL << (CHAR_BIT * sizeof(pool_item_freelist_t))) - 2 >=
    473 	    PHPOOL_FREELIST_NELEM(PHPOOL_MAX - 1));
    474 
    475 #ifdef POOL_DIAGNOSTIC
    476 	/*
    477 	 * Always log if POOL_DIAGNOSTIC is defined.
    478 	 */
    479 	if (pool_logsize != 0)
    480 		flags |= PR_LOGGING;
    481 #endif
    482 
    483 	if (palloc == NULL)
    484 		palloc = &pool_allocator_kmem;
    485 #ifdef POOL_SUBPAGE
    486 	if (size > palloc->pa_pagesz) {
    487 		if (palloc == &pool_allocator_kmem)
    488 			palloc = &pool_allocator_kmem_fullpage;
    489 		else if (palloc == &pool_allocator_nointr)
    490 			palloc = &pool_allocator_nointr_fullpage;
    491 	}
    492 #endif /* POOL_SUBPAGE */
    493 	if ((palloc->pa_flags & PA_INITIALIZED) == 0) {
    494 		if (palloc->pa_pagesz == 0)
    495 			palloc->pa_pagesz = PAGE_SIZE;
    496 
    497 		TAILQ_INIT(&palloc->pa_list);
    498 
    499 		simple_lock_init(&palloc->pa_slock);
    500 		palloc->pa_pagemask = ~(palloc->pa_pagesz - 1);
    501 		palloc->pa_pageshift = ffs(palloc->pa_pagesz) - 1;
    502 		palloc->pa_flags |= PA_INITIALIZED;
    503 	}
    504 
    505 	if (align == 0)
    506 		align = ALIGN(1);
    507 
    508 	if (size < sizeof(struct pool_item))
    509 		size = sizeof(struct pool_item);
    510 
    511 	size = roundup(size, align);
    512 #ifdef DIAGNOSTIC
    513 	if (size > palloc->pa_pagesz)
    514 		panic("pool_init: pool item size (%lu) too large",
    515 		      (u_long)size);
    516 #endif
    517 
    518 	/*
    519 	 * Initialize the pool structure.
    520 	 */
    521 	LIST_INIT(&pp->pr_emptypages);
    522 	LIST_INIT(&pp->pr_fullpages);
    523 	LIST_INIT(&pp->pr_partpages);
    524 	TAILQ_INIT(&pp->pr_cachelist);
    525 	pp->pr_curpage = NULL;
    526 	pp->pr_npages = 0;
    527 	pp->pr_minitems = 0;
    528 	pp->pr_minpages = 0;
    529 	pp->pr_maxpages = UINT_MAX;
    530 	pp->pr_roflags = flags;
    531 	pp->pr_flags = 0;
    532 	pp->pr_size = size;
    533 	pp->pr_align = align;
    534 	pp->pr_wchan = wchan;
    535 	pp->pr_alloc = palloc;
    536 	pp->pr_nitems = 0;
    537 	pp->pr_nout = 0;
    538 	pp->pr_hardlimit = UINT_MAX;
    539 	pp->pr_hardlimit_warning = NULL;
    540 	pp->pr_hardlimit_ratecap.tv_sec = 0;
    541 	pp->pr_hardlimit_ratecap.tv_usec = 0;
    542 	pp->pr_hardlimit_warning_last.tv_sec = 0;
    543 	pp->pr_hardlimit_warning_last.tv_usec = 0;
    544 	pp->pr_drain_hook = NULL;
    545 	pp->pr_drain_hook_arg = NULL;
    546 
    547 	/*
    548 	 * Decide whether to put the page header off page to avoid
    549 	 * wasting too large a part of the page or too big item.
    550 	 * Off-page page headers go on a hash table, so we can match
    551 	 * a returned item with its header based on the page address.
    552 	 * We use 1/16 of the page size and about 8 times of the item
    553 	 * size as the threshold (XXX: tune)
    554 	 *
    555 	 * However, we'll put the header into the page if we can put
    556 	 * it without wasting any items.
    557 	 *
    558 	 * Silently enforce `0 <= ioff < align'.
    559 	 */
    560 	pp->pr_itemoffset = ioff %= align;
    561 	/* See the comment below about reserved bytes. */
    562 	trysize = palloc->pa_pagesz - ((align - ioff) % align);
    563 	phsize = ALIGN(sizeof(struct pool_item_header));
    564 	if ((pp->pr_roflags & PR_NOTOUCH) == 0 &&
    565 	    (pp->pr_size < MIN(palloc->pa_pagesz / 16, phsize << 3) ||
    566 	    trysize / pp->pr_size == (trysize - phsize) / pp->pr_size)) {
    567 		/* Use the end of the page for the page header */
    568 		pp->pr_roflags |= PR_PHINPAGE;
    569 		pp->pr_phoffset = off = palloc->pa_pagesz - phsize;
    570 	} else {
    571 		/* The page header will be taken from our page header pool */
    572 		pp->pr_phoffset = 0;
    573 		off = palloc->pa_pagesz;
    574 		SPLAY_INIT(&pp->pr_phtree);
    575 	}
    576 
    577 	/*
    578 	 * Alignment is to take place at `ioff' within the item. This means
    579 	 * we must reserve up to `align - 1' bytes on the page to allow
    580 	 * appropriate positioning of each item.
    581 	 */
    582 	pp->pr_itemsperpage = (off - ((align - ioff) % align)) / pp->pr_size;
    583 	KASSERT(pp->pr_itemsperpage != 0);
    584 	if ((pp->pr_roflags & PR_NOTOUCH)) {
    585 		int idx;
    586 
    587 		for (idx = 0; pp->pr_itemsperpage > PHPOOL_FREELIST_NELEM(idx);
    588 		    idx++) {
    589 			/* nothing */
    590 		}
    591 		if (idx >= PHPOOL_MAX) {
    592 			/*
    593 			 * if you see this panic, consider to tweak
    594 			 * PHPOOL_MAX and PHPOOL_FREELIST_NELEM.
    595 			 */
    596 			panic("%s: too large itemsperpage(%d) for PR_NOTOUCH",
    597 			    pp->pr_wchan, pp->pr_itemsperpage);
    598 		}
    599 		pp->pr_phpool = &phpool[idx];
    600 	} else if ((pp->pr_roflags & PR_PHINPAGE) == 0) {
    601 		pp->pr_phpool = &phpool[0];
    602 	}
    603 #if defined(DIAGNOSTIC)
    604 	else {
    605 		pp->pr_phpool = NULL;
    606 	}
    607 #endif
    608 
    609 	/*
    610 	 * Use the slack between the chunks and the page header
    611 	 * for "cache coloring".
    612 	 */
    613 	slack = off - pp->pr_itemsperpage * pp->pr_size;
    614 	pp->pr_maxcolor = (slack / align) * align;
    615 	pp->pr_curcolor = 0;
    616 
    617 	pp->pr_nget = 0;
    618 	pp->pr_nfail = 0;
    619 	pp->pr_nput = 0;
    620 	pp->pr_npagealloc = 0;
    621 	pp->pr_npagefree = 0;
    622 	pp->pr_hiwat = 0;
    623 	pp->pr_nidle = 0;
    624 
    625 #ifdef POOL_DIAGNOSTIC
    626 	if (flags & PR_LOGGING) {
    627 		if (kmem_map == NULL ||
    628 		    (pp->pr_log = malloc(pool_logsize * sizeof(struct pool_log),
    629 		     M_TEMP, M_NOWAIT)) == NULL)
    630 			pp->pr_roflags &= ~PR_LOGGING;
    631 		pp->pr_curlogentry = 0;
    632 		pp->pr_logsize = pool_logsize;
    633 	}
    634 #endif
    635 
    636 	pp->pr_entered_file = NULL;
    637 	pp->pr_entered_line = 0;
    638 
    639 	simple_lock_init(&pp->pr_slock);
    640 
    641 	/*
    642 	 * Initialize private page header pool and cache magazine pool if we
    643 	 * haven't done so yet.
    644 	 * XXX LOCKING.
    645 	 */
    646 	if (phpool[0].pr_size == 0) {
    647 		int idx;
    648 		for (idx = 0; idx < PHPOOL_MAX; idx++) {
    649 			static char phpool_names[PHPOOL_MAX][6+1+6+1];
    650 			int nelem;
    651 			size_t sz;
    652 
    653 			nelem = PHPOOL_FREELIST_NELEM(idx);
    654 			snprintf(phpool_names[idx], sizeof(phpool_names[idx]),
    655 			    "phpool-%d", nelem);
    656 			sz = sizeof(struct pool_item_header);
    657 			if (nelem) {
    658 				sz = PR_FREELIST_ALIGN(sz)
    659 				    + nelem * sizeof(pool_item_freelist_t);
    660 			}
    661 			pool_init(&phpool[idx], sz, 0, 0, 0,
    662 			    phpool_names[idx], &pool_allocator_meta);
    663 		}
    664 #ifdef POOL_SUBPAGE
    665 		pool_init(&psppool, POOL_SUBPAGE, POOL_SUBPAGE, 0,
    666 		    PR_RECURSIVE, "psppool", &pool_allocator_meta);
    667 #endif
    668 		pool_init(&pcgpool, sizeof(struct pool_cache_group), 0, 0,
    669 		    0, "pcgpool", &pool_allocator_meta);
    670 	}
    671 
    672 	/* Insert into the list of all pools. */
    673 	simple_lock(&pool_head_slock);
    674 	TAILQ_INSERT_TAIL(&pool_head, pp, pr_poollist);
    675 	simple_unlock(&pool_head_slock);
    676 
    677 	/* Insert this into the list of pools using this allocator. */
    678 	s = splvm();
    679 	simple_lock(&palloc->pa_slock);
    680 	TAILQ_INSERT_TAIL(&palloc->pa_list, pp, pr_alloc_list);
    681 	simple_unlock(&palloc->pa_slock);
    682 	splx(s);
    683 }
    684 
    685 /*
    686  * De-commision a pool resource.
    687  */
    688 void
    689 pool_destroy(struct pool *pp)
    690 {
    691 	struct pool_pagelist pq;
    692 	struct pool_item_header *ph;
    693 	int s;
    694 
    695 	/* Remove from global pool list */
    696 	simple_lock(&pool_head_slock);
    697 	TAILQ_REMOVE(&pool_head, pp, pr_poollist);
    698 	if (drainpp == pp)
    699 		drainpp = NULL;
    700 	simple_unlock(&pool_head_slock);
    701 
    702 	/* Remove this pool from its allocator's list of pools. */
    703 	s = splvm();
    704 	simple_lock(&pp->pr_alloc->pa_slock);
    705 	TAILQ_REMOVE(&pp->pr_alloc->pa_list, pp, pr_alloc_list);
    706 	simple_unlock(&pp->pr_alloc->pa_slock);
    707 	splx(s);
    708 
    709 	s = splvm();
    710 	simple_lock(&pp->pr_slock);
    711 
    712 	KASSERT(TAILQ_EMPTY(&pp->pr_cachelist));
    713 
    714 #ifdef DIAGNOSTIC
    715 	if (pp->pr_nout != 0) {
    716 		pr_printlog(pp, NULL, printf);
    717 		panic("pool_destroy: pool busy: still out: %u",
    718 		    pp->pr_nout);
    719 	}
    720 #endif
    721 
    722 	KASSERT(LIST_EMPTY(&pp->pr_fullpages));
    723 	KASSERT(LIST_EMPTY(&pp->pr_partpages));
    724 
    725 	/* Remove all pages */
    726 	LIST_INIT(&pq);
    727 	while ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
    728 		pr_rmpage(pp, ph, &pq);
    729 
    730 	simple_unlock(&pp->pr_slock);
    731 	splx(s);
    732 
    733 	pr_pagelist_free(pp, &pq);
    734 
    735 #ifdef POOL_DIAGNOSTIC
    736 	if ((pp->pr_roflags & PR_LOGGING) != 0)
    737 		free(pp->pr_log, M_TEMP);
    738 #endif
    739 }
    740 
    741 void
    742 pool_set_drain_hook(struct pool *pp, void (*fn)(void *, int), void *arg)
    743 {
    744 
    745 	/* XXX no locking -- must be used just after pool_init() */
    746 #ifdef DIAGNOSTIC
    747 	if (pp->pr_drain_hook != NULL)
    748 		panic("pool_set_drain_hook(%s): already set", pp->pr_wchan);
    749 #endif
    750 	pp->pr_drain_hook = fn;
    751 	pp->pr_drain_hook_arg = arg;
    752 }
    753 
    754 static struct pool_item_header *
    755 pool_alloc_item_header(struct pool *pp, caddr_t storage, int flags)
    756 {
    757 	struct pool_item_header *ph;
    758 	int s;
    759 
    760 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock) == 0);
    761 
    762 	if ((pp->pr_roflags & PR_PHINPAGE) != 0)
    763 		ph = (struct pool_item_header *) (storage + pp->pr_phoffset);
    764 	else {
    765 		s = splvm();
    766 		ph = pool_get(pp->pr_phpool, flags);
    767 		splx(s);
    768 	}
    769 
    770 	return (ph);
    771 }
    772 
    773 /*
    774  * Grab an item from the pool; must be called at appropriate spl level
    775  */
    776 void *
    777 #ifdef POOL_DIAGNOSTIC
    778 _pool_get(struct pool *pp, int flags, const char *file, long line)
    779 #else
    780 pool_get(struct pool *pp, int flags)
    781 #endif
    782 {
    783 	struct pool_item *pi;
    784 	struct pool_item_header *ph;
    785 	void *v;
    786 
    787 #ifdef DIAGNOSTIC
    788 	if (__predict_false(pp->pr_itemsperpage == 0))
    789 		panic("pool_get: pool %p: pr_itemsperpage is zero, "
    790 		    "pool not initialized?", pp);
    791 	if (__predict_false(curlwp == NULL && doing_shutdown == 0 &&
    792 			    (flags & PR_WAITOK) != 0))
    793 		panic("pool_get: %s: must have NOWAIT", pp->pr_wchan);
    794 
    795 #ifdef LOCKDEBUG
    796 	if (flags & PR_WAITOK)
    797 		simple_lock_only_held(NULL, "pool_get(PR_WAITOK)");
    798 #endif
    799 #endif /* DIAGNOSTIC */
    800 
    801 	simple_lock(&pp->pr_slock);
    802 	pr_enter(pp, file, line);
    803 
    804  startover:
    805 	/*
    806 	 * Check to see if we've reached the hard limit.  If we have,
    807 	 * and we can wait, then wait until an item has been returned to
    808 	 * the pool.
    809 	 */
    810 #ifdef DIAGNOSTIC
    811 	if (__predict_false(pp->pr_nout > pp->pr_hardlimit)) {
    812 		pr_leave(pp);
    813 		simple_unlock(&pp->pr_slock);
    814 		panic("pool_get: %s: crossed hard limit", pp->pr_wchan);
    815 	}
    816 #endif
    817 	if (__predict_false(pp->pr_nout == pp->pr_hardlimit)) {
    818 		if (pp->pr_drain_hook != NULL) {
    819 			/*
    820 			 * Since the drain hook is going to free things
    821 			 * back to the pool, unlock, call the hook, re-lock,
    822 			 * and check the hardlimit condition again.
    823 			 */
    824 			pr_leave(pp);
    825 			simple_unlock(&pp->pr_slock);
    826 			(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, flags);
    827 			simple_lock(&pp->pr_slock);
    828 			pr_enter(pp, file, line);
    829 			if (pp->pr_nout < pp->pr_hardlimit)
    830 				goto startover;
    831 		}
    832 
    833 		if ((flags & PR_WAITOK) && !(flags & PR_LIMITFAIL)) {
    834 			/*
    835 			 * XXX: A warning isn't logged in this case.  Should
    836 			 * it be?
    837 			 */
    838 			pp->pr_flags |= PR_WANTED;
    839 			pr_leave(pp);
    840 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
    841 			pr_enter(pp, file, line);
    842 			goto startover;
    843 		}
    844 
    845 		/*
    846 		 * Log a message that the hard limit has been hit.
    847 		 */
    848 		if (pp->pr_hardlimit_warning != NULL &&
    849 		    ratecheck(&pp->pr_hardlimit_warning_last,
    850 			      &pp->pr_hardlimit_ratecap))
    851 			log(LOG_ERR, "%s\n", pp->pr_hardlimit_warning);
    852 
    853 		pp->pr_nfail++;
    854 
    855 		pr_leave(pp);
    856 		simple_unlock(&pp->pr_slock);
    857 		return (NULL);
    858 	}
    859 
    860 	/*
    861 	 * The convention we use is that if `curpage' is not NULL, then
    862 	 * it points at a non-empty bucket. In particular, `curpage'
    863 	 * never points at a page header which has PR_PHINPAGE set and
    864 	 * has no items in its bucket.
    865 	 */
    866 	if ((ph = pp->pr_curpage) == NULL) {
    867 #ifdef DIAGNOSTIC
    868 		if (pp->pr_nitems != 0) {
    869 			simple_unlock(&pp->pr_slock);
    870 			printf("pool_get: %s: curpage NULL, nitems %u\n",
    871 			    pp->pr_wchan, pp->pr_nitems);
    872 			panic("pool_get: nitems inconsistent");
    873 		}
    874 #endif
    875 
    876 		/*
    877 		 * Call the back-end page allocator for more memory.
    878 		 * Release the pool lock, as the back-end page allocator
    879 		 * may block.
    880 		 */
    881 		pr_leave(pp);
    882 		simple_unlock(&pp->pr_slock);
    883 		v = pool_allocator_alloc(pp, flags);
    884 		if (__predict_true(v != NULL))
    885 			ph = pool_alloc_item_header(pp, v, flags);
    886 
    887 		if (__predict_false(v == NULL || ph == NULL)) {
    888 			if (v != NULL)
    889 				pool_allocator_free(pp, v);
    890 
    891 			simple_lock(&pp->pr_slock);
    892 			pr_enter(pp, file, line);
    893 
    894 			/*
    895 			 * We were unable to allocate a page or item
    896 			 * header, but we released the lock during
    897 			 * allocation, so perhaps items were freed
    898 			 * back to the pool.  Check for this case.
    899 			 */
    900 			if (pp->pr_curpage != NULL)
    901 				goto startover;
    902 
    903 			if ((flags & PR_WAITOK) == 0) {
    904 				pp->pr_nfail++;
    905 				pr_leave(pp);
    906 				simple_unlock(&pp->pr_slock);
    907 				return (NULL);
    908 			}
    909 
    910 			/*
    911 			 * Wait for items to be returned to this pool.
    912 			 *
    913 			 * XXX: maybe we should wake up once a second and
    914 			 * try again?
    915 			 */
    916 			pp->pr_flags |= PR_WANTED;
    917 			/* PA_WANTED is already set on the allocator. */
    918 			pr_leave(pp);
    919 			ltsleep(pp, PSWP, pp->pr_wchan, 0, &pp->pr_slock);
    920 			pr_enter(pp, file, line);
    921 			goto startover;
    922 		}
    923 
    924 		/* We have more memory; add it to the pool */
    925 		simple_lock(&pp->pr_slock);
    926 		pr_enter(pp, file, line);
    927 		pool_prime_page(pp, v, ph);
    928 		pp->pr_npagealloc++;
    929 
    930 		/* Start the allocation process over. */
    931 		goto startover;
    932 	}
    933 	if (pp->pr_roflags & PR_NOTOUCH) {
    934 #ifdef DIAGNOSTIC
    935 		if (__predict_false(ph->ph_nmissing == pp->pr_itemsperpage)) {
    936 			pr_leave(pp);
    937 			simple_unlock(&pp->pr_slock);
    938 			panic("pool_get: %s: page empty", pp->pr_wchan);
    939 		}
    940 #endif
    941 		v = pr_item_notouch_get(pp, ph);
    942 #ifdef POOL_DIAGNOSTIC
    943 		pr_log(pp, v, PRLOG_GET, file, line);
    944 #endif
    945 	} else {
    946 		v = pi = TAILQ_FIRST(&ph->ph_itemlist);
    947 		if (__predict_false(v == NULL)) {
    948 			pr_leave(pp);
    949 			simple_unlock(&pp->pr_slock);
    950 			panic("pool_get: %s: page empty", pp->pr_wchan);
    951 		}
    952 #ifdef DIAGNOSTIC
    953 		if (__predict_false(pp->pr_nitems == 0)) {
    954 			pr_leave(pp);
    955 			simple_unlock(&pp->pr_slock);
    956 			printf("pool_get: %s: items on itemlist, nitems %u\n",
    957 			    pp->pr_wchan, pp->pr_nitems);
    958 			panic("pool_get: nitems inconsistent");
    959 		}
    960 #endif
    961 
    962 #ifdef POOL_DIAGNOSTIC
    963 		pr_log(pp, v, PRLOG_GET, file, line);
    964 #endif
    965 
    966 #ifdef DIAGNOSTIC
    967 		if (__predict_false(pi->pi_magic != PI_MAGIC)) {
    968 			pr_printlog(pp, pi, printf);
    969 			panic("pool_get(%s): free list modified: "
    970 			    "magic=%x; page %p; item addr %p\n",
    971 			    pp->pr_wchan, pi->pi_magic, ph->ph_page, pi);
    972 		}
    973 #endif
    974 
    975 		/*
    976 		 * Remove from item list.
    977 		 */
    978 		TAILQ_REMOVE(&ph->ph_itemlist, pi, pi_list);
    979 	}
    980 	pp->pr_nitems--;
    981 	pp->pr_nout++;
    982 	if (ph->ph_nmissing == 0) {
    983 #ifdef DIAGNOSTIC
    984 		if (__predict_false(pp->pr_nidle == 0))
    985 			panic("pool_get: nidle inconsistent");
    986 #endif
    987 		pp->pr_nidle--;
    988 
    989 		/*
    990 		 * This page was previously empty.  Move it to the list of
    991 		 * partially-full pages.  This page is already curpage.
    992 		 */
    993 		LIST_REMOVE(ph, ph_pagelist);
    994 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
    995 	}
    996 	ph->ph_nmissing++;
    997 	if (ph->ph_nmissing == pp->pr_itemsperpage) {
    998 #ifdef DIAGNOSTIC
    999 		if (__predict_false((pp->pr_roflags & PR_NOTOUCH) == 0 &&
   1000 		    !TAILQ_EMPTY(&ph->ph_itemlist))) {
   1001 			pr_leave(pp);
   1002 			simple_unlock(&pp->pr_slock);
   1003 			panic("pool_get: %s: nmissing inconsistent",
   1004 			    pp->pr_wchan);
   1005 		}
   1006 #endif
   1007 		/*
   1008 		 * This page is now full.  Move it to the full list
   1009 		 * and select a new current page.
   1010 		 */
   1011 		LIST_REMOVE(ph, ph_pagelist);
   1012 		LIST_INSERT_HEAD(&pp->pr_fullpages, ph, ph_pagelist);
   1013 		pool_update_curpage(pp);
   1014 	}
   1015 
   1016 	pp->pr_nget++;
   1017 
   1018 	/*
   1019 	 * If we have a low water mark and we are now below that low
   1020 	 * water mark, add more items to the pool.
   1021 	 */
   1022 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1023 		/*
   1024 		 * XXX: Should we log a warning?  Should we set up a timeout
   1025 		 * to try again in a second or so?  The latter could break
   1026 		 * a caller's assumptions about interrupt protection, etc.
   1027 		 */
   1028 	}
   1029 
   1030 	pr_leave(pp);
   1031 	simple_unlock(&pp->pr_slock);
   1032 	return (v);
   1033 }
   1034 
   1035 /*
   1036  * Internal version of pool_put().  Pool is already locked/entered.
   1037  */
   1038 static void
   1039 pool_do_put(struct pool *pp, void *v, struct pool_pagelist *pq)
   1040 {
   1041 	struct pool_item *pi = v;
   1042 	struct pool_item_header *ph;
   1043 	caddr_t page;
   1044 	int s;
   1045 
   1046 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
   1047 
   1048 	page = (caddr_t)((u_long)v & pp->pr_alloc->pa_pagemask);
   1049 
   1050 #ifdef DIAGNOSTIC
   1051 	if (__predict_false(pp->pr_nout == 0)) {
   1052 		printf("pool %s: putting with none out\n",
   1053 		    pp->pr_wchan);
   1054 		panic("pool_put");
   1055 	}
   1056 #endif
   1057 
   1058 	if (__predict_false((ph = pr_find_pagehead(pp, page)) == NULL)) {
   1059 		pr_printlog(pp, NULL, printf);
   1060 		panic("pool_put: %s: page header missing", pp->pr_wchan);
   1061 	}
   1062 
   1063 #ifdef LOCKDEBUG
   1064 	/*
   1065 	 * Check if we're freeing a locked simple lock.
   1066 	 */
   1067 	simple_lock_freecheck((caddr_t)pi, ((caddr_t)pi) + pp->pr_size);
   1068 #endif
   1069 
   1070 	/*
   1071 	 * Return to item list.
   1072 	 */
   1073 	if (pp->pr_roflags & PR_NOTOUCH) {
   1074 		pr_item_notouch_put(pp, ph, v);
   1075 	} else {
   1076 #ifdef DIAGNOSTIC
   1077 		pi->pi_magic = PI_MAGIC;
   1078 #endif
   1079 #ifdef DEBUG
   1080 		{
   1081 			int i, *ip = v;
   1082 
   1083 			for (i = 0; i < pp->pr_size / sizeof(int); i++) {
   1084 				*ip++ = PI_MAGIC;
   1085 			}
   1086 		}
   1087 #endif
   1088 
   1089 		TAILQ_INSERT_HEAD(&ph->ph_itemlist, pi, pi_list);
   1090 	}
   1091 	KDASSERT(ph->ph_nmissing != 0);
   1092 	ph->ph_nmissing--;
   1093 	pp->pr_nput++;
   1094 	pp->pr_nitems++;
   1095 	pp->pr_nout--;
   1096 
   1097 	/* Cancel "pool empty" condition if it exists */
   1098 	if (pp->pr_curpage == NULL)
   1099 		pp->pr_curpage = ph;
   1100 
   1101 	if (pp->pr_flags & PR_WANTED) {
   1102 		pp->pr_flags &= ~PR_WANTED;
   1103 		if (ph->ph_nmissing == 0)
   1104 			pp->pr_nidle++;
   1105 		wakeup((caddr_t)pp);
   1106 		return;
   1107 	}
   1108 
   1109 	/*
   1110 	 * If this page is now empty, do one of two things:
   1111 	 *
   1112 	 *	(1) If we have more pages than the page high water mark,
   1113 	 *	    free the page back to the system.  ONLY CONSIDER
   1114 	 *	    FREEING BACK A PAGE IF WE HAVE MORE THAN OUR MINIMUM PAGE
   1115 	 *	    CLAIM.
   1116 	 *
   1117 	 *	(2) Otherwise, move the page to the empty page list.
   1118 	 *
   1119 	 * Either way, select a new current page (so we use a partially-full
   1120 	 * page if one is available).
   1121 	 */
   1122 	if (ph->ph_nmissing == 0) {
   1123 		pp->pr_nidle++;
   1124 		if (pp->pr_npages > pp->pr_minpages &&
   1125 		    (pp->pr_npages > pp->pr_maxpages ||
   1126 		     (pp->pr_alloc->pa_flags & PA_WANT) != 0)) {
   1127 			pr_rmpage(pp, ph, pq);
   1128 		} else {
   1129 			LIST_REMOVE(ph, ph_pagelist);
   1130 			LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1131 
   1132 			/*
   1133 			 * Update the timestamp on the page.  A page must
   1134 			 * be idle for some period of time before it can
   1135 			 * be reclaimed by the pagedaemon.  This minimizes
   1136 			 * ping-pong'ing for memory.
   1137 			 */
   1138 			s = splclock();
   1139 			ph->ph_time = mono_time;
   1140 			splx(s);
   1141 		}
   1142 		pool_update_curpage(pp);
   1143 	}
   1144 
   1145 	/*
   1146 	 * If the page was previously completely full, move it to the
   1147 	 * partially-full list and make it the current page.  The next
   1148 	 * allocation will get the item from this page, instead of
   1149 	 * further fragmenting the pool.
   1150 	 */
   1151 	else if (ph->ph_nmissing == (pp->pr_itemsperpage - 1)) {
   1152 		LIST_REMOVE(ph, ph_pagelist);
   1153 		LIST_INSERT_HEAD(&pp->pr_partpages, ph, ph_pagelist);
   1154 		pp->pr_curpage = ph;
   1155 	}
   1156 }
   1157 
   1158 /*
   1159  * Return resource to the pool; must be called at appropriate spl level
   1160  */
   1161 #ifdef POOL_DIAGNOSTIC
   1162 void
   1163 _pool_put(struct pool *pp, void *v, const char *file, long line)
   1164 {
   1165 	struct pool_pagelist pq;
   1166 
   1167 	LIST_INIT(&pq);
   1168 
   1169 	simple_lock(&pp->pr_slock);
   1170 	pr_enter(pp, file, line);
   1171 
   1172 	pr_log(pp, v, PRLOG_PUT, file, line);
   1173 
   1174 	pool_do_put(pp, v, &pq);
   1175 
   1176 	pr_leave(pp);
   1177 	simple_unlock(&pp->pr_slock);
   1178 
   1179 	if (! LIST_EMPTY(&pq))
   1180 		pr_pagelist_free(pp, &pq);
   1181 }
   1182 #undef pool_put
   1183 #endif /* POOL_DIAGNOSTIC */
   1184 
   1185 void
   1186 pool_put(struct pool *pp, void *v)
   1187 {
   1188 	struct pool_pagelist pq;
   1189 
   1190 	LIST_INIT(&pq);
   1191 
   1192 	simple_lock(&pp->pr_slock);
   1193 	pool_do_put(pp, v, &pq);
   1194 	simple_unlock(&pp->pr_slock);
   1195 
   1196 	if (! LIST_EMPTY(&pq))
   1197 		pr_pagelist_free(pp, &pq);
   1198 }
   1199 
   1200 #ifdef POOL_DIAGNOSTIC
   1201 #define		pool_put(h, v)	_pool_put((h), (v), __FILE__, __LINE__)
   1202 #endif
   1203 
   1204 /*
   1205  * Add N items to the pool.
   1206  */
   1207 int
   1208 pool_prime(struct pool *pp, int n)
   1209 {
   1210 	struct pool_item_header *ph = NULL;
   1211 	caddr_t cp;
   1212 	int newpages;
   1213 
   1214 	simple_lock(&pp->pr_slock);
   1215 
   1216 	newpages = roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1217 
   1218 	while (newpages-- > 0) {
   1219 		simple_unlock(&pp->pr_slock);
   1220 		cp = pool_allocator_alloc(pp, PR_NOWAIT);
   1221 		if (__predict_true(cp != NULL))
   1222 			ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
   1223 
   1224 		if (__predict_false(cp == NULL || ph == NULL)) {
   1225 			if (cp != NULL)
   1226 				pool_allocator_free(pp, cp);
   1227 			simple_lock(&pp->pr_slock);
   1228 			break;
   1229 		}
   1230 
   1231 		simple_lock(&pp->pr_slock);
   1232 		pool_prime_page(pp, cp, ph);
   1233 		pp->pr_npagealloc++;
   1234 		pp->pr_minpages++;
   1235 	}
   1236 
   1237 	if (pp->pr_minpages >= pp->pr_maxpages)
   1238 		pp->pr_maxpages = pp->pr_minpages + 1;	/* XXX */
   1239 
   1240 	simple_unlock(&pp->pr_slock);
   1241 	return (0);
   1242 }
   1243 
   1244 /*
   1245  * Add a page worth of items to the pool.
   1246  *
   1247  * Note, we must be called with the pool descriptor LOCKED.
   1248  */
   1249 static void
   1250 pool_prime_page(struct pool *pp, caddr_t storage, struct pool_item_header *ph)
   1251 {
   1252 	struct pool_item *pi;
   1253 	caddr_t cp = storage;
   1254 	unsigned int align = pp->pr_align;
   1255 	unsigned int ioff = pp->pr_itemoffset;
   1256 	int n;
   1257 	int s;
   1258 
   1259 	LOCK_ASSERT(simple_lock_held(&pp->pr_slock));
   1260 
   1261 #ifdef DIAGNOSTIC
   1262 	if (((u_long)cp & (pp->pr_alloc->pa_pagesz - 1)) != 0)
   1263 		panic("pool_prime_page: %s: unaligned page", pp->pr_wchan);
   1264 #endif
   1265 
   1266 	/*
   1267 	 * Insert page header.
   1268 	 */
   1269 	LIST_INSERT_HEAD(&pp->pr_emptypages, ph, ph_pagelist);
   1270 	TAILQ_INIT(&ph->ph_itemlist);
   1271 	ph->ph_page = storage;
   1272 	ph->ph_nmissing = 0;
   1273 	s = splclock();
   1274 	ph->ph_time = mono_time;
   1275 	splx(s);
   1276 	if ((pp->pr_roflags & PR_PHINPAGE) == 0)
   1277 		SPLAY_INSERT(phtree, &pp->pr_phtree, ph);
   1278 
   1279 	pp->pr_nidle++;
   1280 
   1281 	/*
   1282 	 * Color this page.
   1283 	 */
   1284 	cp = (caddr_t)(cp + pp->pr_curcolor);
   1285 	if ((pp->pr_curcolor += align) > pp->pr_maxcolor)
   1286 		pp->pr_curcolor = 0;
   1287 
   1288 	/*
   1289 	 * Adjust storage to apply aligment to `pr_itemoffset' in each item.
   1290 	 */
   1291 	if (ioff != 0)
   1292 		cp = (caddr_t)(cp + (align - ioff));
   1293 
   1294 	/*
   1295 	 * Insert remaining chunks on the bucket list.
   1296 	 */
   1297 	n = pp->pr_itemsperpage;
   1298 	pp->pr_nitems += n;
   1299 
   1300 	if (pp->pr_roflags & PR_NOTOUCH) {
   1301 		pool_item_freelist_t *freelist = PR_FREELIST(ph);
   1302 		int i;
   1303 
   1304 		ph->ph_off = cp - storage;
   1305 		ph->ph_firstfree = 0;
   1306 		for (i = 0; i < n - 1; i++)
   1307 			freelist[i] = i + 1;
   1308 		freelist[n - 1] = PR_INDEX_EOL;
   1309 	} else {
   1310 		while (n--) {
   1311 			pi = (struct pool_item *)cp;
   1312 
   1313 			KASSERT(((((vaddr_t)pi) + ioff) & (align - 1)) == 0);
   1314 
   1315 			/* Insert on page list */
   1316 			TAILQ_INSERT_TAIL(&ph->ph_itemlist, pi, pi_list);
   1317 #ifdef DIAGNOSTIC
   1318 			pi->pi_magic = PI_MAGIC;
   1319 #endif
   1320 			cp = (caddr_t)(cp + pp->pr_size);
   1321 		}
   1322 	}
   1323 
   1324 	/*
   1325 	 * If the pool was depleted, point at the new page.
   1326 	 */
   1327 	if (pp->pr_curpage == NULL)
   1328 		pp->pr_curpage = ph;
   1329 
   1330 	if (++pp->pr_npages > pp->pr_hiwat)
   1331 		pp->pr_hiwat = pp->pr_npages;
   1332 }
   1333 
   1334 /*
   1335  * Used by pool_get() when nitems drops below the low water mark.  This
   1336  * is used to catch up pr_nitems with the low water mark.
   1337  *
   1338  * Note 1, we never wait for memory here, we let the caller decide what to do.
   1339  *
   1340  * Note 2, we must be called with the pool already locked, and we return
   1341  * with it locked.
   1342  */
   1343 static int
   1344 pool_catchup(struct pool *pp)
   1345 {
   1346 	struct pool_item_header *ph = NULL;
   1347 	caddr_t cp;
   1348 	int error = 0;
   1349 
   1350 	while (POOL_NEEDS_CATCHUP(pp)) {
   1351 		/*
   1352 		 * Call the page back-end allocator for more memory.
   1353 		 *
   1354 		 * XXX: We never wait, so should we bother unlocking
   1355 		 * the pool descriptor?
   1356 		 */
   1357 		simple_unlock(&pp->pr_slock);
   1358 		cp = pool_allocator_alloc(pp, PR_NOWAIT);
   1359 		if (__predict_true(cp != NULL))
   1360 			ph = pool_alloc_item_header(pp, cp, PR_NOWAIT);
   1361 		if (__predict_false(cp == NULL || ph == NULL)) {
   1362 			if (cp != NULL)
   1363 				pool_allocator_free(pp, cp);
   1364 			error = ENOMEM;
   1365 			simple_lock(&pp->pr_slock);
   1366 			break;
   1367 		}
   1368 		simple_lock(&pp->pr_slock);
   1369 		pool_prime_page(pp, cp, ph);
   1370 		pp->pr_npagealloc++;
   1371 	}
   1372 
   1373 	return (error);
   1374 }
   1375 
   1376 static void
   1377 pool_update_curpage(struct pool *pp)
   1378 {
   1379 
   1380 	pp->pr_curpage = LIST_FIRST(&pp->pr_partpages);
   1381 	if (pp->pr_curpage == NULL) {
   1382 		pp->pr_curpage = LIST_FIRST(&pp->pr_emptypages);
   1383 	}
   1384 }
   1385 
   1386 void
   1387 pool_setlowat(struct pool *pp, int n)
   1388 {
   1389 
   1390 	simple_lock(&pp->pr_slock);
   1391 
   1392 	pp->pr_minitems = n;
   1393 	pp->pr_minpages = (n == 0)
   1394 		? 0
   1395 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1396 
   1397 	/* Make sure we're caught up with the newly-set low water mark. */
   1398 	if (POOL_NEEDS_CATCHUP(pp) && pool_catchup(pp) != 0) {
   1399 		/*
   1400 		 * XXX: Should we log a warning?  Should we set up a timeout
   1401 		 * to try again in a second or so?  The latter could break
   1402 		 * a caller's assumptions about interrupt protection, etc.
   1403 		 */
   1404 	}
   1405 
   1406 	simple_unlock(&pp->pr_slock);
   1407 }
   1408 
   1409 void
   1410 pool_sethiwat(struct pool *pp, int n)
   1411 {
   1412 
   1413 	simple_lock(&pp->pr_slock);
   1414 
   1415 	pp->pr_maxpages = (n == 0)
   1416 		? 0
   1417 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1418 
   1419 	simple_unlock(&pp->pr_slock);
   1420 }
   1421 
   1422 void
   1423 pool_sethardlimit(struct pool *pp, int n, const char *warnmess, int ratecap)
   1424 {
   1425 
   1426 	simple_lock(&pp->pr_slock);
   1427 
   1428 	pp->pr_hardlimit = n;
   1429 	pp->pr_hardlimit_warning = warnmess;
   1430 	pp->pr_hardlimit_ratecap.tv_sec = ratecap;
   1431 	pp->pr_hardlimit_warning_last.tv_sec = 0;
   1432 	pp->pr_hardlimit_warning_last.tv_usec = 0;
   1433 
   1434 	/*
   1435 	 * In-line version of pool_sethiwat(), because we don't want to
   1436 	 * release the lock.
   1437 	 */
   1438 	pp->pr_maxpages = (n == 0)
   1439 		? 0
   1440 		: roundup(n, pp->pr_itemsperpage) / pp->pr_itemsperpage;
   1441 
   1442 	simple_unlock(&pp->pr_slock);
   1443 }
   1444 
   1445 /*
   1446  * Release all complete pages that have not been used recently.
   1447  */
   1448 int
   1449 #ifdef POOL_DIAGNOSTIC
   1450 _pool_reclaim(struct pool *pp, const char *file, long line)
   1451 #else
   1452 pool_reclaim(struct pool *pp)
   1453 #endif
   1454 {
   1455 	struct pool_item_header *ph, *phnext;
   1456 	struct pool_cache *pc;
   1457 	struct timeval curtime;
   1458 	struct pool_pagelist pq;
   1459 	struct timeval diff;
   1460 	int s;
   1461 
   1462 	if (pp->pr_drain_hook != NULL) {
   1463 		/*
   1464 		 * The drain hook must be called with the pool unlocked.
   1465 		 */
   1466 		(*pp->pr_drain_hook)(pp->pr_drain_hook_arg, PR_NOWAIT);
   1467 	}
   1468 
   1469 	if (simple_lock_try(&pp->pr_slock) == 0)
   1470 		return (0);
   1471 	pr_enter(pp, file, line);
   1472 
   1473 	LIST_INIT(&pq);
   1474 
   1475 	/*
   1476 	 * Reclaim items from the pool's caches.
   1477 	 */
   1478 	TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist)
   1479 		pool_cache_reclaim(pc, &pq);
   1480 
   1481 	s = splclock();
   1482 	curtime = mono_time;
   1483 	splx(s);
   1484 
   1485 	for (ph = LIST_FIRST(&pp->pr_emptypages); ph != NULL; ph = phnext) {
   1486 		phnext = LIST_NEXT(ph, ph_pagelist);
   1487 
   1488 		/* Check our minimum page claim */
   1489 		if (pp->pr_npages <= pp->pr_minpages)
   1490 			break;
   1491 
   1492 		KASSERT(ph->ph_nmissing == 0);
   1493 		timersub(&curtime, &ph->ph_time, &diff);
   1494 		if (diff.tv_sec < pool_inactive_time)
   1495 			continue;
   1496 
   1497 		/*
   1498 		 * If freeing this page would put us below
   1499 		 * the low water mark, stop now.
   1500 		 */
   1501 		if ((pp->pr_nitems - pp->pr_itemsperpage) <
   1502 		    pp->pr_minitems)
   1503 			break;
   1504 
   1505 		pr_rmpage(pp, ph, &pq);
   1506 	}
   1507 
   1508 	pr_leave(pp);
   1509 	simple_unlock(&pp->pr_slock);
   1510 	if (LIST_EMPTY(&pq))
   1511 		return (0);
   1512 
   1513 	pr_pagelist_free(pp, &pq);
   1514 	return (1);
   1515 }
   1516 
   1517 /*
   1518  * Drain pools, one at a time.
   1519  *
   1520  * Note, we must never be called from an interrupt context.
   1521  */
   1522 void
   1523 pool_drain(void *arg)
   1524 {
   1525 	struct pool *pp;
   1526 	int s;
   1527 
   1528 	pp = NULL;
   1529 	s = splvm();
   1530 	simple_lock(&pool_head_slock);
   1531 	if (drainpp == NULL) {
   1532 		drainpp = TAILQ_FIRST(&pool_head);
   1533 	}
   1534 	if (drainpp) {
   1535 		pp = drainpp;
   1536 		drainpp = TAILQ_NEXT(pp, pr_poollist);
   1537 	}
   1538 	simple_unlock(&pool_head_slock);
   1539 	pool_reclaim(pp);
   1540 	splx(s);
   1541 }
   1542 
   1543 /*
   1544  * Diagnostic helpers.
   1545  */
   1546 void
   1547 pool_print(struct pool *pp, const char *modif)
   1548 {
   1549 	int s;
   1550 
   1551 	s = splvm();
   1552 	if (simple_lock_try(&pp->pr_slock) == 0) {
   1553 		printf("pool %s is locked; try again later\n",
   1554 		    pp->pr_wchan);
   1555 		splx(s);
   1556 		return;
   1557 	}
   1558 	pool_print1(pp, modif, printf);
   1559 	simple_unlock(&pp->pr_slock);
   1560 	splx(s);
   1561 }
   1562 
   1563 void
   1564 pool_printit(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1565 {
   1566 	int didlock = 0;
   1567 
   1568 	if (pp == NULL) {
   1569 		(*pr)("Must specify a pool to print.\n");
   1570 		return;
   1571 	}
   1572 
   1573 	/*
   1574 	 * Called from DDB; interrupts should be blocked, and all
   1575 	 * other processors should be paused.  We can skip locking
   1576 	 * the pool in this case.
   1577 	 *
   1578 	 * We do a simple_lock_try() just to print the lock
   1579 	 * status, however.
   1580 	 */
   1581 
   1582 	if (simple_lock_try(&pp->pr_slock) == 0)
   1583 		(*pr)("WARNING: pool %s is locked\n", pp->pr_wchan);
   1584 	else
   1585 		didlock = 1;
   1586 
   1587 	pool_print1(pp, modif, pr);
   1588 
   1589 	if (didlock)
   1590 		simple_unlock(&pp->pr_slock);
   1591 }
   1592 
   1593 static void
   1594 pool_print_pagelist(struct pool *pp, struct pool_pagelist *pl,
   1595     void (*pr)(const char *, ...))
   1596 {
   1597 	struct pool_item_header *ph;
   1598 #ifdef DIAGNOSTIC
   1599 	struct pool_item *pi;
   1600 #endif
   1601 
   1602 	LIST_FOREACH(ph, pl, ph_pagelist) {
   1603 		(*pr)("\t\tpage %p, nmissing %d, time %lu,%lu\n",
   1604 		    ph->ph_page, ph->ph_nmissing,
   1605 		    (u_long)ph->ph_time.tv_sec,
   1606 		    (u_long)ph->ph_time.tv_usec);
   1607 #ifdef DIAGNOSTIC
   1608 		if (!(pp->pr_roflags & PR_NOTOUCH)) {
   1609 			TAILQ_FOREACH(pi, &ph->ph_itemlist, pi_list) {
   1610 				if (pi->pi_magic != PI_MAGIC) {
   1611 					(*pr)("\t\t\titem %p, magic 0x%x\n",
   1612 					    pi, pi->pi_magic);
   1613 				}
   1614 			}
   1615 		}
   1616 #endif
   1617 	}
   1618 }
   1619 
   1620 static void
   1621 pool_print1(struct pool *pp, const char *modif, void (*pr)(const char *, ...))
   1622 {
   1623 	struct pool_item_header *ph;
   1624 	struct pool_cache *pc;
   1625 	struct pool_cache_group *pcg;
   1626 	int i, print_log = 0, print_pagelist = 0, print_cache = 0;
   1627 	char c;
   1628 
   1629 	while ((c = *modif++) != '\0') {
   1630 		if (c == 'l')
   1631 			print_log = 1;
   1632 		if (c == 'p')
   1633 			print_pagelist = 1;
   1634 		if (c == 'c')
   1635 			print_cache = 1;
   1636 	}
   1637 
   1638 	(*pr)("POOL %s: size %u, align %u, ioff %u, roflags 0x%08x\n",
   1639 	    pp->pr_wchan, pp->pr_size, pp->pr_align, pp->pr_itemoffset,
   1640 	    pp->pr_roflags);
   1641 	(*pr)("\talloc %p\n", pp->pr_alloc);
   1642 	(*pr)("\tminitems %u, minpages %u, maxpages %u, npages %u\n",
   1643 	    pp->pr_minitems, pp->pr_minpages, pp->pr_maxpages, pp->pr_npages);
   1644 	(*pr)("\titemsperpage %u, nitems %u, nout %u, hardlimit %u\n",
   1645 	    pp->pr_itemsperpage, pp->pr_nitems, pp->pr_nout, pp->pr_hardlimit);
   1646 
   1647 	(*pr)("\n\tnget %lu, nfail %lu, nput %lu\n",
   1648 	    pp->pr_nget, pp->pr_nfail, pp->pr_nput);
   1649 	(*pr)("\tnpagealloc %lu, npagefree %lu, hiwat %u, nidle %lu\n",
   1650 	    pp->pr_npagealloc, pp->pr_npagefree, pp->pr_hiwat, pp->pr_nidle);
   1651 
   1652 	if (print_pagelist == 0)
   1653 		goto skip_pagelist;
   1654 
   1655 	if ((ph = LIST_FIRST(&pp->pr_emptypages)) != NULL)
   1656 		(*pr)("\n\tempty page list:\n");
   1657 	pool_print_pagelist(pp, &pp->pr_emptypages, pr);
   1658 	if ((ph = LIST_FIRST(&pp->pr_fullpages)) != NULL)
   1659 		(*pr)("\n\tfull page list:\n");
   1660 	pool_print_pagelist(pp, &pp->pr_fullpages, pr);
   1661 	if ((ph = LIST_FIRST(&pp->pr_partpages)) != NULL)
   1662 		(*pr)("\n\tpartial-page list:\n");
   1663 	pool_print_pagelist(pp, &pp->pr_partpages, pr);
   1664 
   1665 	if (pp->pr_curpage == NULL)
   1666 		(*pr)("\tno current page\n");
   1667 	else
   1668 		(*pr)("\tcurpage %p\n", pp->pr_curpage->ph_page);
   1669 
   1670  skip_pagelist:
   1671 	if (print_log == 0)
   1672 		goto skip_log;
   1673 
   1674 	(*pr)("\n");
   1675 	if ((pp->pr_roflags & PR_LOGGING) == 0)
   1676 		(*pr)("\tno log\n");
   1677 	else
   1678 		pr_printlog(pp, NULL, pr);
   1679 
   1680  skip_log:
   1681 	if (print_cache == 0)
   1682 		goto skip_cache;
   1683 
   1684 	TAILQ_FOREACH(pc, &pp->pr_cachelist, pc_poollist) {
   1685 		(*pr)("\tcache %p: allocfrom %p freeto %p\n", pc,
   1686 		    pc->pc_allocfrom, pc->pc_freeto);
   1687 		(*pr)("\t    hits %lu misses %lu ngroups %lu nitems %lu\n",
   1688 		    pc->pc_hits, pc->pc_misses, pc->pc_ngroups, pc->pc_nitems);
   1689 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
   1690 			(*pr)("\t\tgroup %p: avail %d\n", pcg, pcg->pcg_avail);
   1691 			for (i = 0; i < PCG_NOBJECTS; i++) {
   1692 				if (pcg->pcg_objects[i].pcgo_pa !=
   1693 				    POOL_PADDR_INVALID) {
   1694 					(*pr)("\t\t\t%p, 0x%llx\n",
   1695 					    pcg->pcg_objects[i].pcgo_va,
   1696 					    (unsigned long long)
   1697 					    pcg->pcg_objects[i].pcgo_pa);
   1698 				} else {
   1699 					(*pr)("\t\t\t%p\n",
   1700 					    pcg->pcg_objects[i].pcgo_va);
   1701 				}
   1702 			}
   1703 		}
   1704 	}
   1705 
   1706  skip_cache:
   1707 	pr_enter_check(pp, pr);
   1708 }
   1709 
   1710 static int
   1711 pool_chk_page(struct pool *pp, const char *label, struct pool_item_header *ph)
   1712 {
   1713 	struct pool_item *pi;
   1714 	caddr_t page;
   1715 	int n;
   1716 
   1717 	page = (caddr_t)((u_long)ph & pp->pr_alloc->pa_pagemask);
   1718 	if (page != ph->ph_page &&
   1719 	    (pp->pr_roflags & PR_PHINPAGE) != 0) {
   1720 		if (label != NULL)
   1721 			printf("%s: ", label);
   1722 		printf("pool(%p:%s): page inconsistency: page %p;"
   1723 		       " at page head addr %p (p %p)\n", pp,
   1724 			pp->pr_wchan, ph->ph_page,
   1725 			ph, page);
   1726 		return 1;
   1727 	}
   1728 
   1729 	if ((pp->pr_roflags & PR_NOTOUCH) != 0)
   1730 		return 0;
   1731 
   1732 	for (pi = TAILQ_FIRST(&ph->ph_itemlist), n = 0;
   1733 	     pi != NULL;
   1734 	     pi = TAILQ_NEXT(pi,pi_list), n++) {
   1735 
   1736 #ifdef DIAGNOSTIC
   1737 		if (pi->pi_magic != PI_MAGIC) {
   1738 			if (label != NULL)
   1739 				printf("%s: ", label);
   1740 			printf("pool(%s): free list modified: magic=%x;"
   1741 			       " page %p; item ordinal %d;"
   1742 			       " addr %p (p %p)\n",
   1743 				pp->pr_wchan, pi->pi_magic, ph->ph_page,
   1744 				n, pi, page);
   1745 			panic("pool");
   1746 		}
   1747 #endif
   1748 		page =
   1749 		    (caddr_t)((u_long)pi & pp->pr_alloc->pa_pagemask);
   1750 		if (page == ph->ph_page)
   1751 			continue;
   1752 
   1753 		if (label != NULL)
   1754 			printf("%s: ", label);
   1755 		printf("pool(%p:%s): page inconsistency: page %p;"
   1756 		       " item ordinal %d; addr %p (p %p)\n", pp,
   1757 			pp->pr_wchan, ph->ph_page,
   1758 			n, pi, page);
   1759 		return 1;
   1760 	}
   1761 	return 0;
   1762 }
   1763 
   1764 
   1765 int
   1766 pool_chk(struct pool *pp, const char *label)
   1767 {
   1768 	struct pool_item_header *ph;
   1769 	int r = 0;
   1770 
   1771 	simple_lock(&pp->pr_slock);
   1772 	LIST_FOREACH(ph, &pp->pr_emptypages, ph_pagelist) {
   1773 		r = pool_chk_page(pp, label, ph);
   1774 		if (r) {
   1775 			goto out;
   1776 		}
   1777 	}
   1778 	LIST_FOREACH(ph, &pp->pr_fullpages, ph_pagelist) {
   1779 		r = pool_chk_page(pp, label, ph);
   1780 		if (r) {
   1781 			goto out;
   1782 		}
   1783 	}
   1784 	LIST_FOREACH(ph, &pp->pr_partpages, ph_pagelist) {
   1785 		r = pool_chk_page(pp, label, ph);
   1786 		if (r) {
   1787 			goto out;
   1788 		}
   1789 	}
   1790 
   1791 out:
   1792 	simple_unlock(&pp->pr_slock);
   1793 	return (r);
   1794 }
   1795 
   1796 /*
   1797  * pool_cache_init:
   1798  *
   1799  *	Initialize a pool cache.
   1800  *
   1801  *	NOTE: If the pool must be protected from interrupts, we expect
   1802  *	to be called at the appropriate interrupt priority level.
   1803  */
   1804 void
   1805 pool_cache_init(struct pool_cache *pc, struct pool *pp,
   1806     int (*ctor)(void *, void *, int),
   1807     void (*dtor)(void *, void *),
   1808     void *arg)
   1809 {
   1810 
   1811 	TAILQ_INIT(&pc->pc_grouplist);
   1812 	simple_lock_init(&pc->pc_slock);
   1813 
   1814 	pc->pc_allocfrom = NULL;
   1815 	pc->pc_freeto = NULL;
   1816 	pc->pc_pool = pp;
   1817 
   1818 	pc->pc_ctor = ctor;
   1819 	pc->pc_dtor = dtor;
   1820 	pc->pc_arg  = arg;
   1821 
   1822 	pc->pc_hits   = 0;
   1823 	pc->pc_misses = 0;
   1824 
   1825 	pc->pc_ngroups = 0;
   1826 
   1827 	pc->pc_nitems = 0;
   1828 
   1829 	simple_lock(&pp->pr_slock);
   1830 	TAILQ_INSERT_TAIL(&pp->pr_cachelist, pc, pc_poollist);
   1831 	simple_unlock(&pp->pr_slock);
   1832 }
   1833 
   1834 /*
   1835  * pool_cache_destroy:
   1836  *
   1837  *	Destroy a pool cache.
   1838  */
   1839 void
   1840 pool_cache_destroy(struct pool_cache *pc)
   1841 {
   1842 	struct pool *pp = pc->pc_pool;
   1843 
   1844 	/* First, invalidate the entire cache. */
   1845 	pool_cache_invalidate(pc);
   1846 
   1847 	/* ...and remove it from the pool's cache list. */
   1848 	simple_lock(&pp->pr_slock);
   1849 	TAILQ_REMOVE(&pp->pr_cachelist, pc, pc_poollist);
   1850 	simple_unlock(&pp->pr_slock);
   1851 }
   1852 
   1853 static __inline void *
   1854 pcg_get(struct pool_cache_group *pcg, paddr_t *pap)
   1855 {
   1856 	void *object;
   1857 	u_int idx;
   1858 
   1859 	KASSERT(pcg->pcg_avail <= PCG_NOBJECTS);
   1860 	KASSERT(pcg->pcg_avail != 0);
   1861 	idx = --pcg->pcg_avail;
   1862 
   1863 	KASSERT(pcg->pcg_objects[idx].pcgo_va != NULL);
   1864 	object = pcg->pcg_objects[idx].pcgo_va;
   1865 	if (pap != NULL)
   1866 		*pap = pcg->pcg_objects[idx].pcgo_pa;
   1867 	pcg->pcg_objects[idx].pcgo_va = NULL;
   1868 
   1869 	return (object);
   1870 }
   1871 
   1872 static __inline void
   1873 pcg_put(struct pool_cache_group *pcg, void *object, paddr_t pa)
   1874 {
   1875 	u_int idx;
   1876 
   1877 	KASSERT(pcg->pcg_avail < PCG_NOBJECTS);
   1878 	idx = pcg->pcg_avail++;
   1879 
   1880 	KASSERT(pcg->pcg_objects[idx].pcgo_va == NULL);
   1881 	pcg->pcg_objects[idx].pcgo_va = object;
   1882 	pcg->pcg_objects[idx].pcgo_pa = pa;
   1883 }
   1884 
   1885 /*
   1886  * pool_cache_get{,_paddr}:
   1887  *
   1888  *	Get an object from a pool cache (optionally returning
   1889  *	the physical address of the object).
   1890  */
   1891 void *
   1892 pool_cache_get_paddr(struct pool_cache *pc, int flags, paddr_t *pap)
   1893 {
   1894 	struct pool_cache_group *pcg;
   1895 	void *object;
   1896 
   1897 #ifdef LOCKDEBUG
   1898 	if (flags & PR_WAITOK)
   1899 		simple_lock_only_held(NULL, "pool_cache_get(PR_WAITOK)");
   1900 #endif
   1901 
   1902 	simple_lock(&pc->pc_slock);
   1903 
   1904 	if ((pcg = pc->pc_allocfrom) == NULL) {
   1905 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
   1906 			if (pcg->pcg_avail != 0) {
   1907 				pc->pc_allocfrom = pcg;
   1908 				goto have_group;
   1909 			}
   1910 		}
   1911 
   1912 		/*
   1913 		 * No groups with any available objects.  Allocate
   1914 		 * a new object, construct it, and return it to
   1915 		 * the caller.  We will allocate a group, if necessary,
   1916 		 * when the object is freed back to the cache.
   1917 		 */
   1918 		pc->pc_misses++;
   1919 		simple_unlock(&pc->pc_slock);
   1920 		object = pool_get(pc->pc_pool, flags);
   1921 		if (object != NULL && pc->pc_ctor != NULL) {
   1922 			if ((*pc->pc_ctor)(pc->pc_arg, object, flags) != 0) {
   1923 				pool_put(pc->pc_pool, object);
   1924 				return (NULL);
   1925 			}
   1926 		}
   1927 		if (object != NULL && pap != NULL) {
   1928 #ifdef POOL_VTOPHYS
   1929 			*pap = POOL_VTOPHYS(object);
   1930 #else
   1931 			*pap = POOL_PADDR_INVALID;
   1932 #endif
   1933 		}
   1934 		return (object);
   1935 	}
   1936 
   1937  have_group:
   1938 	pc->pc_hits++;
   1939 	pc->pc_nitems--;
   1940 	object = pcg_get(pcg, pap);
   1941 
   1942 	if (pcg->pcg_avail == 0)
   1943 		pc->pc_allocfrom = NULL;
   1944 
   1945 	simple_unlock(&pc->pc_slock);
   1946 
   1947 	return (object);
   1948 }
   1949 
   1950 /*
   1951  * pool_cache_put{,_paddr}:
   1952  *
   1953  *	Put an object back to the pool cache (optionally caching the
   1954  *	physical address of the object).
   1955  */
   1956 void
   1957 pool_cache_put_paddr(struct pool_cache *pc, void *object, paddr_t pa)
   1958 {
   1959 	struct pool_cache_group *pcg;
   1960 	int s;
   1961 
   1962 	simple_lock(&pc->pc_slock);
   1963 
   1964 	if ((pcg = pc->pc_freeto) == NULL) {
   1965 		TAILQ_FOREACH(pcg, &pc->pc_grouplist, pcg_list) {
   1966 			if (pcg->pcg_avail != PCG_NOBJECTS) {
   1967 				pc->pc_freeto = pcg;
   1968 				goto have_group;
   1969 			}
   1970 		}
   1971 
   1972 		/*
   1973 		 * No empty groups to free the object to.  Attempt to
   1974 		 * allocate one.
   1975 		 */
   1976 		simple_unlock(&pc->pc_slock);
   1977 		s = splvm();
   1978 		pcg = pool_get(&pcgpool, PR_NOWAIT);
   1979 		splx(s);
   1980 		if (pcg != NULL) {
   1981 			memset(pcg, 0, sizeof(*pcg));
   1982 			simple_lock(&pc->pc_slock);
   1983 			pc->pc_ngroups++;
   1984 			TAILQ_INSERT_TAIL(&pc->pc_grouplist, pcg, pcg_list);
   1985 			if (pc->pc_freeto == NULL)
   1986 				pc->pc_freeto = pcg;
   1987 			goto have_group;
   1988 		}
   1989 
   1990 		/*
   1991 		 * Unable to allocate a cache group; destruct the object
   1992 		 * and free it back to the pool.
   1993 		 */
   1994 		pool_cache_destruct_object(pc, object);
   1995 		return;
   1996 	}
   1997 
   1998  have_group:
   1999 	pc->pc_nitems++;
   2000 	pcg_put(pcg, object, pa);
   2001 
   2002 	if (pcg->pcg_avail == PCG_NOBJECTS)
   2003 		pc->pc_freeto = NULL;
   2004 
   2005 	simple_unlock(&pc->pc_slock);
   2006 }
   2007 
   2008 /*
   2009  * pool_cache_destruct_object:
   2010  *
   2011  *	Force destruction of an object and its release back into
   2012  *	the pool.
   2013  */
   2014 void
   2015 pool_cache_destruct_object(struct pool_cache *pc, void *object)
   2016 {
   2017 
   2018 	if (pc->pc_dtor != NULL)
   2019 		(*pc->pc_dtor)(pc->pc_arg, object);
   2020 	pool_put(pc->pc_pool, object);
   2021 }
   2022 
   2023 /*
   2024  * pool_cache_invalidate:
   2025  *
   2026  *	Invalidate a pool cache (destruct and release all of the
   2027  *	cached objects).
   2028  */
   2029 void
   2030 pool_cache_invalidate(struct pool_cache *pc)
   2031 {
   2032 	struct pool_pagelist pq;
   2033 	struct pool_cache_group *pcg, *npcg;
   2034 	void *object;
   2035 
   2036 	LIST_INIT(&pq);
   2037 
   2038 	simple_lock(&pc->pc_slock);
   2039 	simple_lock(&pc->pc_pool->pr_slock);
   2040 
   2041 	for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
   2042 	     pcg = npcg) {
   2043 		npcg = TAILQ_NEXT(pcg, pcg_list);
   2044 		while (pcg->pcg_avail != 0) {
   2045 			pc->pc_nitems--;
   2046 			object = pcg_get(pcg, NULL);
   2047 			if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg)
   2048 				pc->pc_allocfrom = NULL;
   2049 			if (pc->pc_dtor != NULL)
   2050 				(*pc->pc_dtor)(pc->pc_arg, object);
   2051 			pool_do_put(pc->pc_pool, object, &pq);
   2052 		}
   2053 	}
   2054 
   2055 	simple_unlock(&pc->pc_pool->pr_slock);
   2056 	simple_unlock(&pc->pc_slock);
   2057 
   2058 	if (! LIST_EMPTY(&pq))
   2059 		pr_pagelist_free(pc->pc_pool, &pq);
   2060 }
   2061 
   2062 /*
   2063  * pool_cache_reclaim:
   2064  *
   2065  *	Reclaim a pool cache for pool_reclaim().
   2066  */
   2067 static void
   2068 pool_cache_reclaim(struct pool_cache *pc, struct pool_pagelist *pq)
   2069 {
   2070 	struct pool_cache_group *pcg, *npcg;
   2071 	void *object;
   2072 	int s;
   2073 
   2074 	/*
   2075 	 * We're locking in the wrong order (normally pool_cache -> pool,
   2076 	 * but the pool is already locked when we get here), so we have
   2077 	 * to use trylock.  If we can't lock the pool_cache, it's not really
   2078 	 * a big deal here.
   2079 	 */
   2080 	if (simple_lock_try(&pc->pc_slock) == 0)
   2081 		return;
   2082 
   2083 	for (pcg = TAILQ_FIRST(&pc->pc_grouplist); pcg != NULL;
   2084 	     pcg = npcg) {
   2085 		npcg = TAILQ_NEXT(pcg, pcg_list);
   2086 		while (pcg->pcg_avail != 0) {
   2087 			pc->pc_nitems--;
   2088 			object = pcg_get(pcg, NULL);
   2089 			if (pcg->pcg_avail == 0 && pc->pc_allocfrom == pcg)
   2090 				pc->pc_allocfrom = NULL;
   2091 			if (pc->pc_dtor != NULL)
   2092 				(*pc->pc_dtor)(pc->pc_arg, object);
   2093 			pool_do_put(pc->pc_pool, object, pq);
   2094 		}
   2095 		pc->pc_ngroups--;
   2096 		TAILQ_REMOVE(&pc->pc_grouplist, pcg, pcg_list);
   2097 		if (pc->pc_freeto == pcg)
   2098 			pc->pc_freeto = NULL;
   2099 		s = splvm();
   2100 		pool_put(&pcgpool, pcg);
   2101 		splx(s);
   2102 	}
   2103 
   2104 	simple_unlock(&pc->pc_slock);
   2105 }
   2106 
   2107 /*
   2108  * Pool backend allocators.
   2109  *
   2110  * Each pool has a backend allocator that handles allocation, deallocation,
   2111  * and any additional draining that might be needed.
   2112  *
   2113  * We provide two standard allocators:
   2114  *
   2115  *	pool_allocator_kmem - the default when no allocator is specified
   2116  *
   2117  *	pool_allocator_nointr - used for pools that will not be accessed
   2118  *	in interrupt context.
   2119  */
   2120 void	*pool_page_alloc(struct pool *, int);
   2121 void	pool_page_free(struct pool *, void *);
   2122 
   2123 #ifdef POOL_SUBPAGE
   2124 struct pool_allocator pool_allocator_kmem_fullpage = {
   2125 	pool_page_alloc, pool_page_free, 0,
   2126 };
   2127 #else
   2128 struct pool_allocator pool_allocator_kmem = {
   2129 	pool_page_alloc, pool_page_free, 0,
   2130 };
   2131 #endif
   2132 
   2133 void	*pool_page_alloc_nointr(struct pool *, int);
   2134 void	pool_page_free_nointr(struct pool *, void *);
   2135 
   2136 #ifdef POOL_SUBPAGE
   2137 struct pool_allocator pool_allocator_nointr_fullpage = {
   2138 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2139 };
   2140 #else
   2141 struct pool_allocator pool_allocator_nointr = {
   2142 	pool_page_alloc_nointr, pool_page_free_nointr, 0,
   2143 };
   2144 #endif
   2145 
   2146 #ifdef POOL_SUBPAGE
   2147 void	*pool_subpage_alloc(struct pool *, int);
   2148 void	pool_subpage_free(struct pool *, void *);
   2149 
   2150 struct pool_allocator pool_allocator_kmem = {
   2151 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2152 };
   2153 
   2154 void	*pool_subpage_alloc_nointr(struct pool *, int);
   2155 void	pool_subpage_free_nointr(struct pool *, void *);
   2156 
   2157 struct pool_allocator pool_allocator_nointr = {
   2158 	pool_subpage_alloc, pool_subpage_free, POOL_SUBPAGE,
   2159 };
   2160 #endif /* POOL_SUBPAGE */
   2161 
   2162 /*
   2163  * We have at least three different resources for the same allocation and
   2164  * each resource can be depleted.  First, we have the ready elements in the
   2165  * pool.  Then we have the resource (typically a vm_map) for this allocator.
   2166  * Finally, we have physical memory.  Waiting for any of these can be
   2167  * unnecessary when any other is freed, but the kernel doesn't support
   2168  * sleeping on multiple wait channels, so we have to employ another strategy.
   2169  *
   2170  * The caller sleeps on the pool (so that it can be awakened when an item
   2171  * is returned to the pool), but we set PA_WANT on the allocator.  When a
   2172  * page is returned to the allocator and PA_WANT is set, pool_allocator_free
   2173  * will wake up all sleeping pools belonging to this allocator.
   2174  *
   2175  * XXX Thundering herd.
   2176  */
   2177 void *
   2178 pool_allocator_alloc(struct pool *org, int flags)
   2179 {
   2180 	struct pool_allocator *pa = org->pr_alloc;
   2181 	struct pool *pp, *start;
   2182 	int s, freed;
   2183 	void *res;
   2184 
   2185 	LOCK_ASSERT(!simple_lock_held(&org->pr_slock));
   2186 
   2187 	do {
   2188 		if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
   2189 			return (res);
   2190 		if ((flags & PR_WAITOK) == 0) {
   2191 			/*
   2192 			 * We only run the drain hookhere if PR_NOWAIT.
   2193 			 * In other cases, the hook will be run in
   2194 			 * pool_reclaim().
   2195 			 */
   2196 			if (org->pr_drain_hook != NULL) {
   2197 				(*org->pr_drain_hook)(org->pr_drain_hook_arg,
   2198 				    flags);
   2199 				if ((res = (*pa->pa_alloc)(org, flags)) != NULL)
   2200 					return (res);
   2201 			}
   2202 			break;
   2203 		}
   2204 
   2205 		/*
   2206 		 * Drain all pools, except "org", that use this
   2207 		 * allocator.  We do this to reclaim VA space.
   2208 		 * pa_alloc is responsible for waiting for
   2209 		 * physical memory.
   2210 		 *
   2211 		 * XXX We risk looping forever if start if someone
   2212 		 * calls pool_destroy on "start".  But there is no
   2213 		 * other way to have potentially sleeping pool_reclaim,
   2214 		 * non-sleeping locks on pool_allocator, and some
   2215 		 * stirring of drained pools in the allocator.
   2216 		 *
   2217 		 * XXX Maybe we should use pool_head_slock for locking
   2218 		 * the allocators?
   2219 		 */
   2220 		freed = 0;
   2221 
   2222 		s = splvm();
   2223 		simple_lock(&pa->pa_slock);
   2224 		pp = start = TAILQ_FIRST(&pa->pa_list);
   2225 		do {
   2226 			TAILQ_REMOVE(&pa->pa_list, pp, pr_alloc_list);
   2227 			TAILQ_INSERT_TAIL(&pa->pa_list, pp, pr_alloc_list);
   2228 			if (pp == org)
   2229 				continue;
   2230 			simple_unlock(&pa->pa_slock);
   2231 			freed = pool_reclaim(pp);
   2232 			simple_lock(&pa->pa_slock);
   2233 		} while ((pp = TAILQ_FIRST(&pa->pa_list)) != start &&
   2234 			 freed == 0);
   2235 
   2236 		if (freed == 0) {
   2237 			/*
   2238 			 * We set PA_WANT here, the caller will most likely
   2239 			 * sleep waiting for pages (if not, this won't hurt
   2240 			 * that much), and there is no way to set this in
   2241 			 * the caller without violating locking order.
   2242 			 */
   2243 			pa->pa_flags |= PA_WANT;
   2244 		}
   2245 		simple_unlock(&pa->pa_slock);
   2246 		splx(s);
   2247 	} while (freed);
   2248 	return (NULL);
   2249 }
   2250 
   2251 void
   2252 pool_allocator_free(struct pool *pp, void *v)
   2253 {
   2254 	struct pool_allocator *pa = pp->pr_alloc;
   2255 	int s;
   2256 
   2257 	LOCK_ASSERT(!simple_lock_held(&pp->pr_slock));
   2258 
   2259 	(*pa->pa_free)(pp, v);
   2260 
   2261 	s = splvm();
   2262 	simple_lock(&pa->pa_slock);
   2263 	if ((pa->pa_flags & PA_WANT) == 0) {
   2264 		simple_unlock(&pa->pa_slock);
   2265 		splx(s);
   2266 		return;
   2267 	}
   2268 
   2269 	TAILQ_FOREACH(pp, &pa->pa_list, pr_alloc_list) {
   2270 		simple_lock(&pp->pr_slock);
   2271 		if ((pp->pr_flags & PR_WANTED) != 0) {
   2272 			pp->pr_flags &= ~PR_WANTED;
   2273 			wakeup(pp);
   2274 		}
   2275 		simple_unlock(&pp->pr_slock);
   2276 	}
   2277 	pa->pa_flags &= ~PA_WANT;
   2278 	simple_unlock(&pa->pa_slock);
   2279 	splx(s);
   2280 }
   2281 
   2282 void *
   2283 pool_page_alloc(struct pool *pp, int flags)
   2284 {
   2285 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   2286 
   2287 	return ((void *) uvm_km_alloc_poolpage_cache(kmem_map, NULL, waitok));
   2288 }
   2289 
   2290 void
   2291 pool_page_free(struct pool *pp, void *v)
   2292 {
   2293 
   2294 	uvm_km_free_poolpage_cache(kmem_map, (vaddr_t) v);
   2295 }
   2296 
   2297 static void *
   2298 pool_page_alloc_meta(struct pool *pp, int flags)
   2299 {
   2300 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   2301 
   2302 	return ((void *) uvm_km_alloc_poolpage1(kmem_map, NULL, waitok));
   2303 }
   2304 
   2305 static void
   2306 pool_page_free_meta(struct pool *pp, void *v)
   2307 {
   2308 
   2309 	uvm_km_free_poolpage1(kmem_map, (vaddr_t) v);
   2310 }
   2311 
   2312 #ifdef POOL_SUBPAGE
   2313 /* Sub-page allocator, for machines with large hardware pages. */
   2314 void *
   2315 pool_subpage_alloc(struct pool *pp, int flags)
   2316 {
   2317 	void *v;
   2318 	int s;
   2319 	s = splvm();
   2320 	v = pool_get(&psppool, flags);
   2321 	splx(s);
   2322 	return v;
   2323 }
   2324 
   2325 void
   2326 pool_subpage_free(struct pool *pp, void *v)
   2327 {
   2328 	int s;
   2329 	s = splvm();
   2330 	pool_put(&psppool, v);
   2331 	splx(s);
   2332 }
   2333 
   2334 /* We don't provide a real nointr allocator.  Maybe later. */
   2335 void *
   2336 pool_subpage_alloc_nointr(struct pool *pp, int flags)
   2337 {
   2338 
   2339 	return (pool_subpage_alloc(pp, flags));
   2340 }
   2341 
   2342 void
   2343 pool_subpage_free_nointr(struct pool *pp, void *v)
   2344 {
   2345 
   2346 	pool_subpage_free(pp, v);
   2347 }
   2348 #endif /* POOL_SUBPAGE */
   2349 void *
   2350 pool_page_alloc_nointr(struct pool *pp, int flags)
   2351 {
   2352 	boolean_t waitok = (flags & PR_WAITOK) ? TRUE : FALSE;
   2353 
   2354 	return ((void *) uvm_km_alloc_poolpage_cache(kernel_map,
   2355 	    uvm.kernel_object, waitok));
   2356 }
   2357 
   2358 void
   2359 pool_page_free_nointr(struct pool *pp, void *v)
   2360 {
   2361 
   2362 	uvm_km_free_poolpage_cache(kernel_map, (vaddr_t) v);
   2363 }
   2364