subr_prf.c revision 1.150.2.1 1 /* $NetBSD: subr_prf.c,v 1.150.2.1 2014/05/18 17:46:07 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 1986, 1988, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)subr_prf.c 8.4 (Berkeley) 5/4/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: subr_prf.c,v 1.150.2.1 2014/05/18 17:46:07 rmind Exp $");
41
42 #include "opt_ddb.h"
43 #include "opt_ipkdb.h"
44 #include "opt_kgdb.h"
45 #include "opt_dump.h"
46
47 #include <sys/param.h>
48 #include <sys/stdint.h>
49 #include <sys/systm.h>
50 #include <sys/buf.h>
51 #include <sys/device.h>
52 #include <sys/reboot.h>
53 #include <sys/msgbuf.h>
54 #include <sys/proc.h>
55 #include <sys/ioctl.h>
56 #include <sys/vnode.h>
57 #include <sys/file.h>
58 #include <sys/tty.h>
59 #include <sys/tprintf.h>
60 #include <sys/spldebug.h>
61 #include <sys/syslog.h>
62 #include <sys/kprintf.h>
63 #include <sys/atomic.h>
64 #include <sys/kernel.h>
65 #include <sys/cpu.h>
66
67 #include <dev/cons.h>
68
69 #include <net/if.h>
70
71 #ifdef IPKDB
72 #include <ipkdb/ipkdb.h>
73 #endif
74
75 static kmutex_t kprintf_mtx;
76 static bool kprintf_inited = false;
77
78 #ifdef KGDB
79 #include <sys/kgdb.h>
80 #endif
81
82 #ifdef DDB
83 #include <ddb/ddbvar.h> /* db_panic */
84 #include <ddb/db_output.h> /* db_printf, db_putchar prototypes */
85 #endif
86
87
88 /*
89 * defines
90 */
91
92
93 /*
94 * local prototypes
95 */
96
97 static void putchar(int, int, struct tty *);
98
99
100 /*
101 * globals
102 */
103
104 extern struct tty *constty; /* pointer to console "window" tty */
105 extern int log_open; /* subr_log: is /dev/klog open? */
106 const char *panicstr; /* arg to first call to panic (used as a flag
107 to indicate that panic has already been called). */
108 struct cpu_info *paniccpu; /* cpu that first paniced */
109 long panicstart, panicend; /* position in the msgbuf of the start and
110 end of the formatted panicstr. */
111 int doing_shutdown; /* set to indicate shutdown in progress */
112
113 #ifndef DUMP_ON_PANIC
114 #define DUMP_ON_PANIC 1
115 #endif
116 int dumponpanic = DUMP_ON_PANIC;
117
118 /*
119 * v_putc: routine to putc on virtual console
120 *
121 * the v_putc pointer can be used to redirect the console cnputc elsewhere
122 * [e.g. to a "virtual console"].
123 */
124
125 void (*v_putc)(int) = cnputc; /* start with cnputc (normal cons) */
126 void (*v_flush)(void) = cnflush; /* start with cnflush (normal cons) */
127
128 const char hexdigits[] = "0123456789abcdef";
129 const char HEXDIGITS[] = "0123456789ABCDEF";
130
131
132 /*
133 * functions
134 */
135
136 /*
137 * Locking is inited fairly early in MI bootstrap. Before that
138 * prints are done unlocked. But that doesn't really matter,
139 * since nothing can preempt us before interrupts are enabled.
140 */
141 void
142 kprintf_init(void)
143 {
144
145 KASSERT(!kprintf_inited && cold); /* not foolproof, but ... */
146 mutex_init(&kprintf_mtx, MUTEX_DEFAULT, IPL_HIGH);
147 kprintf_inited = true;
148 }
149
150 void
151 kprintf_lock(void)
152 {
153
154 if (__predict_true(kprintf_inited))
155 mutex_enter(&kprintf_mtx);
156 }
157
158 void
159 kprintf_unlock(void)
160 {
161
162 if (__predict_true(kprintf_inited)) {
163 /* assert kprintf wasn't somehow inited while we were in */
164 KASSERT(mutex_owned(&kprintf_mtx));
165 mutex_exit(&kprintf_mtx);
166 }
167 }
168
169 /*
170 * twiddle: spin a little propellor on the console.
171 */
172
173 void
174 twiddle(void)
175 {
176 static const char twiddle_chars[] = "|/-\\";
177 static int pos;
178
179 kprintf_lock();
180
181 putchar(twiddle_chars[pos++ & 3], TOCONS, NULL);
182 putchar('\b', TOCONS, NULL);
183
184 kprintf_unlock();
185 }
186
187 /*
188 * panic: handle an unresolvable fatal error
189 *
190 * prints "panic: <message>" and reboots. if called twice (i.e. recursive
191 * call) we avoid trying to dump and just reboot (to avoid recursive panics).
192 */
193
194 void
195 panic(const char *fmt, ...)
196 {
197 va_list ap;
198
199 va_start(ap, fmt);
200 vpanic(fmt, ap);
201 va_end(ap);
202 }
203
204 void
205 vpanic(const char *fmt, va_list ap)
206 {
207 CPU_INFO_ITERATOR cii;
208 struct cpu_info *ci, *oci;
209 int bootopt;
210 static char scratchstr[256]; /* stores panic message */
211
212 spldebug_stop();
213
214 if (lwp0.l_cpu && curlwp) {
215 /*
216 * Disable preemption. If already panicing on another CPU, sit
217 * here and spin until the system is rebooted. Allow the CPU that
218 * first paniced to panic again.
219 */
220 kpreempt_disable();
221 ci = curcpu();
222 oci = atomic_cas_ptr((void *)&paniccpu, NULL, ci);
223 if (oci != NULL && oci != ci) {
224 /* Give interrupts a chance to try and prevent deadlock. */
225 for (;;) {
226 #ifndef _RUMPKERNEL /* XXXpooka: temporary build fix, see kern/40505 */
227 DELAY(10);
228 #endif /* _RUMPKERNEL */
229 }
230 }
231
232 /*
233 * Convert the current thread to a bound thread and prevent all
234 * CPUs from scheduling unbound jobs. Do so without taking any
235 * locks.
236 */
237 curlwp->l_pflag |= LP_BOUND;
238 for (CPU_INFO_FOREACH(cii, ci)) {
239 ci->ci_schedstate.spc_flags |= SPCF_OFFLINE;
240 }
241 }
242
243 bootopt = RB_AUTOBOOT | RB_NOSYNC;
244 if (!doing_shutdown) {
245 if (dumponpanic)
246 bootopt |= RB_DUMP;
247 } else
248 printf("Skipping crash dump on recursive panic\n");
249
250 doing_shutdown = 1;
251
252 if (msgbufenabled && msgbufp->msg_magic == MSG_MAGIC)
253 panicstart = msgbufp->msg_bufx;
254
255 printf("panic: ");
256 if (panicstr == NULL) {
257 /* first time in panic - store fmt first for precaution */
258 panicstr = fmt;
259
260 vsnprintf(scratchstr, sizeof(scratchstr), fmt, ap);
261 printf("%s", scratchstr);
262 panicstr = scratchstr;
263 } else {
264 vprintf(fmt, ap);
265 }
266 printf("\n");
267
268 if (msgbufenabled && msgbufp->msg_magic == MSG_MAGIC)
269 panicend = msgbufp->msg_bufx;
270
271 #ifdef IPKDB
272 ipkdb_panic();
273 #endif
274 #ifdef KGDB
275 kgdb_panic();
276 #endif
277 #ifdef KADB
278 if (boothowto & RB_KDB)
279 kdbpanic();
280 #endif
281 #ifdef DDB
282 db_panic();
283 #endif
284 cpu_reboot(bootopt, NULL);
285 }
286
287 /*
288 * kernel logging functions: log, logpri, addlog
289 */
290
291 /*
292 * log: write to the log buffer
293 *
294 * => will not sleep [so safe to call from interrupt]
295 * => will log to console if /dev/klog isn't open
296 */
297
298 void
299 log(int level, const char *fmt, ...)
300 {
301 va_list ap;
302
303 kprintf_lock();
304
305 klogpri(level); /* log the level first */
306 va_start(ap, fmt);
307 kprintf(fmt, TOLOG, NULL, NULL, ap);
308 va_end(ap);
309 if (!log_open) {
310 va_start(ap, fmt);
311 kprintf(fmt, TOCONS, NULL, NULL, ap);
312 va_end(ap);
313 }
314
315 kprintf_unlock();
316
317 logwakeup(); /* wake up anyone waiting for log msgs */
318 }
319
320 /*
321 * vlog: write to the log buffer [already have va_list]
322 */
323
324 void
325 vlog(int level, const char *fmt, va_list ap)
326 {
327 va_list cap;
328
329 va_copy(cap, ap);
330 kprintf_lock();
331
332 klogpri(level); /* log the level first */
333 kprintf(fmt, TOLOG, NULL, NULL, ap);
334 if (!log_open)
335 kprintf(fmt, TOCONS, NULL, NULL, cap);
336
337 kprintf_unlock();
338 va_end(cap);
339
340 logwakeup(); /* wake up anyone waiting for log msgs */
341 }
342
343 /*
344 * logpri: log the priority level to the klog
345 */
346
347 void
348 logpri(int level)
349 {
350
351 kprintf_lock();
352 klogpri(level);
353 kprintf_unlock();
354 }
355
356 /*
357 * Note: we must be in the mutex here!
358 */
359 void
360 klogpri(int level)
361 {
362 char *p;
363 char snbuf[KPRINTF_BUFSIZE];
364
365 putchar('<', TOLOG, NULL);
366 snprintf(snbuf, sizeof(snbuf), "%d", level);
367 for (p = snbuf ; *p ; p++)
368 putchar(*p, TOLOG, NULL);
369 putchar('>', TOLOG, NULL);
370 }
371
372 /*
373 * addlog: add info to previous log message
374 */
375
376 void
377 addlog(const char *fmt, ...)
378 {
379 va_list ap;
380
381 kprintf_lock();
382
383 va_start(ap, fmt);
384 kprintf(fmt, TOLOG, NULL, NULL, ap);
385 va_end(ap);
386 if (!log_open) {
387 va_start(ap, fmt);
388 kprintf(fmt, TOCONS, NULL, NULL, ap);
389 va_end(ap);
390 }
391
392 kprintf_unlock();
393
394 logwakeup();
395 }
396
397
398 /*
399 * putchar: print a single character on console or user terminal.
400 *
401 * => if console, then the last MSGBUFS chars are saved in msgbuf
402 * for inspection later (e.g. dmesg/syslog)
403 * => we must already be in the mutex!
404 */
405 static void
406 putchar(int c, int flags, struct tty *tp)
407 {
408
409 if (panicstr)
410 constty = NULL;
411 if ((flags & TOCONS) && tp == NULL && constty) {
412 tp = constty;
413 flags |= TOTTY;
414 }
415 if ((flags & TOTTY) && tp &&
416 tputchar(c, flags, tp) < 0 &&
417 (flags & TOCONS) && tp == constty)
418 constty = NULL;
419 if ((flags & TOLOG) &&
420 c != '\0' && c != '\r' && c != 0177)
421 logputchar(c);
422 if ((flags & TOCONS) && constty == NULL && c != '\0')
423 (*v_putc)(c);
424 #ifdef DDB
425 if (flags & TODDB)
426 db_putchar(c);
427 #endif
428 }
429
430 /*
431 * tablefull: warn that a system table is full
432 */
433
434 void
435 tablefull(const char *tab, const char *hint)
436 {
437 if (hint)
438 log(LOG_ERR, "%s: table is full - %s\n", tab, hint);
439 else
440 log(LOG_ERR, "%s: table is full\n", tab);
441 }
442
443
444 /*
445 * uprintf: print to the controlling tty of the current process
446 *
447 * => we may block if the tty queue is full
448 * => no message is printed if the queue doesn't clear in a reasonable
449 * time
450 */
451
452 void
453 uprintf(const char *fmt, ...)
454 {
455 struct proc *p = curproc;
456 va_list ap;
457
458 /* mutex_enter(proc_lock); XXXSMP */
459
460 if (p->p_lflag & PL_CONTROLT && p->p_session->s_ttyvp) {
461 /* No mutex needed; going to process TTY. */
462 va_start(ap, fmt);
463 kprintf(fmt, TOTTY, p->p_session->s_ttyp, NULL, ap);
464 va_end(ap);
465 }
466
467 /* mutex_exit(proc_lock); XXXSMP */
468 }
469
470 void
471 uprintf_locked(const char *fmt, ...)
472 {
473 struct proc *p = curproc;
474 va_list ap;
475
476 if (p->p_lflag & PL_CONTROLT && p->p_session->s_ttyvp) {
477 /* No mutex needed; going to process TTY. */
478 va_start(ap, fmt);
479 kprintf(fmt, TOTTY, p->p_session->s_ttyp, NULL, ap);
480 va_end(ap);
481 }
482 }
483
484 /*
485 * tprintf functions: used to send messages to a specific process
486 *
487 * usage:
488 * get a tpr_t handle on a process "p" by using "tprintf_open(p)"
489 * use the handle when calling "tprintf"
490 * when done, do a "tprintf_close" to drop the handle
491 */
492
493 /*
494 * tprintf_open: get a tprintf handle on a process "p"
495 *
496 * => returns NULL if process can't be printed to
497 */
498
499 tpr_t
500 tprintf_open(struct proc *p)
501 {
502 tpr_t cookie;
503
504 cookie = NULL;
505
506 mutex_enter(proc_lock);
507 if (p->p_lflag & PL_CONTROLT && p->p_session->s_ttyvp) {
508 proc_sesshold(p->p_session);
509 cookie = (tpr_t)p->p_session;
510 }
511 mutex_exit(proc_lock);
512
513 return cookie;
514 }
515
516 /*
517 * tprintf_close: dispose of a tprintf handle obtained with tprintf_open
518 */
519
520 void
521 tprintf_close(tpr_t sess)
522 {
523
524 if (sess) {
525 mutex_enter(proc_lock);
526 /* Releases proc_lock. */
527 proc_sessrele((struct session *)sess);
528 }
529 }
530
531 /*
532 * tprintf: given tprintf handle to a process [obtained with tprintf_open],
533 * send a message to the controlling tty for that process.
534 *
535 * => also sends message to /dev/klog
536 */
537 void
538 tprintf(tpr_t tpr, const char *fmt, ...)
539 {
540 struct session *sess = (struct session *)tpr;
541 struct tty *tp = NULL;
542 int flags = TOLOG;
543 va_list ap;
544
545 /* mutex_enter(proc_lock); XXXSMP */
546 if (sess && sess->s_ttyvp && ttycheckoutq(sess->s_ttyp, 0)) {
547 flags |= TOTTY;
548 tp = sess->s_ttyp;
549 }
550
551 kprintf_lock();
552
553 klogpri(LOG_INFO);
554 va_start(ap, fmt);
555 kprintf(fmt, flags, tp, NULL, ap);
556 va_end(ap);
557
558 kprintf_unlock();
559 /* mutex_exit(proc_lock); XXXSMP */
560
561 logwakeup();
562 }
563
564
565 /*
566 * ttyprintf: send a message to a specific tty
567 *
568 * => should be used only by tty driver or anything that knows the
569 * underlying tty will not be revoked(2)'d away. [otherwise,
570 * use tprintf]
571 */
572 void
573 ttyprintf(struct tty *tp, const char *fmt, ...)
574 {
575 va_list ap;
576
577 /* No mutex needed; going to process TTY. */
578 va_start(ap, fmt);
579 kprintf(fmt, TOTTY, tp, NULL, ap);
580 va_end(ap);
581 }
582
583 #ifdef DDB
584
585 /*
586 * db_printf: printf for DDB (via db_putchar)
587 */
588
589 void
590 db_printf(const char *fmt, ...)
591 {
592 va_list ap;
593
594 /* No mutex needed; DDB pauses all processors. */
595 va_start(ap, fmt);
596 kprintf(fmt, TODDB, NULL, NULL, ap);
597 va_end(ap);
598
599 if (db_tee_msgbuf) {
600 va_start(ap, fmt);
601 kprintf(fmt, TOLOG, NULL, NULL, ap);
602 va_end(ap);
603 };
604 }
605
606 void
607 db_vprintf(const char *fmt, va_list ap)
608 {
609 va_list cap;
610
611 va_copy(cap, ap);
612 /* No mutex needed; DDB pauses all processors. */
613 kprintf(fmt, TODDB, NULL, NULL, ap);
614 if (db_tee_msgbuf)
615 kprintf(fmt, TOLOG, NULL, NULL, cap);
616 va_end(cap);
617 }
618
619 #endif /* DDB */
620
621 static void
622 kprintf_internal(const char *fmt, int oflags, void *vp, char *sbuf, ...)
623 {
624 va_list ap;
625
626 va_start(ap, sbuf);
627 (void)kprintf(fmt, oflags, vp, sbuf, ap);
628 va_end(ap);
629 }
630
631 /*
632 * Device autoconfiguration printf routines. These change their
633 * behavior based on the AB_* flags in boothowto. If AB_SILENT
634 * is set, messages never go to the console (but they still always
635 * go to the log). AB_VERBOSE overrides AB_SILENT.
636 */
637
638 /*
639 * aprint_normal: Send to console unless AB_QUIET. Always goes
640 * to the log.
641 */
642 static void
643 aprint_normal_internal(const char *prefix, const char *fmt, va_list ap)
644 {
645 int flags = TOLOG;
646
647 if ((boothowto & (AB_SILENT|AB_QUIET)) == 0 ||
648 (boothowto & AB_VERBOSE) != 0)
649 flags |= TOCONS;
650
651 kprintf_lock();
652
653 if (prefix)
654 kprintf_internal("%s: ", flags, NULL, NULL, prefix);
655 kprintf(fmt, flags, NULL, NULL, ap);
656
657 kprintf_unlock();
658
659 if (!panicstr)
660 logwakeup();
661 }
662
663 void
664 aprint_normal(const char *fmt, ...)
665 {
666 va_list ap;
667
668 va_start(ap, fmt);
669 aprint_normal_internal(NULL, fmt, ap);
670 va_end(ap);
671 }
672
673 void
674 aprint_normal_dev(device_t dv, const char *fmt, ...)
675 {
676 va_list ap;
677
678 va_start(ap, fmt);
679 aprint_normal_internal(device_xname(dv), fmt, ap);
680 va_end(ap);
681 }
682
683 void
684 aprint_normal_ifnet(struct ifnet *ifp, const char *fmt, ...)
685 {
686 va_list ap;
687
688 va_start(ap, fmt);
689 aprint_normal_internal(ifp->if_xname, fmt, ap);
690 va_end(ap);
691 }
692
693 /*
694 * aprint_error: Send to console unless AB_QUIET. Always goes
695 * to the log. Also counts the number of times called so other
696 * parts of the kernel can report the number of errors during a
697 * given phase of system startup.
698 */
699 static int aprint_error_count;
700
701 int
702 aprint_get_error_count(void)
703 {
704 int count;
705
706 kprintf_lock();
707
708 count = aprint_error_count;
709 aprint_error_count = 0;
710
711 kprintf_unlock();
712
713 return (count);
714 }
715
716 static void
717 aprint_error_internal(const char *prefix, const char *fmt, va_list ap)
718 {
719 int flags = TOLOG;
720
721 if ((boothowto & (AB_SILENT|AB_QUIET)) == 0 ||
722 (boothowto & AB_VERBOSE) != 0)
723 flags |= TOCONS;
724
725 kprintf_lock();
726
727 aprint_error_count++;
728
729 if (prefix)
730 kprintf_internal("%s: ", flags, NULL, NULL, prefix);
731 kprintf(fmt, flags, NULL, NULL, ap);
732
733 kprintf_unlock();
734
735 if (!panicstr)
736 logwakeup();
737 }
738
739 void
740 aprint_error(const char *fmt, ...)
741 {
742 va_list ap;
743
744 va_start(ap, fmt);
745 aprint_error_internal(NULL, fmt, ap);
746 va_end(ap);
747 }
748
749 void
750 aprint_error_dev(device_t dv, const char *fmt, ...)
751 {
752 va_list ap;
753
754 va_start(ap, fmt);
755 aprint_error_internal(device_xname(dv), fmt, ap);
756 va_end(ap);
757 }
758
759 void
760 aprint_error_ifnet(struct ifnet *ifp, const char *fmt, ...)
761 {
762 va_list ap;
763
764 va_start(ap, fmt);
765 aprint_error_internal(ifp->if_xname, fmt, ap);
766 va_end(ap);
767 }
768
769 /*
770 * aprint_naive: Send to console only if AB_QUIET. Never goes
771 * to the log.
772 */
773 static void
774 aprint_naive_internal(const char *prefix, const char *fmt, va_list ap)
775 {
776
777 if ((boothowto & (AB_QUIET|AB_SILENT|AB_VERBOSE)) != AB_QUIET)
778 return;
779
780 kprintf_lock();
781
782 if (prefix)
783 kprintf_internal("%s: ", TOCONS, NULL, NULL, prefix);
784 kprintf(fmt, TOCONS, NULL, NULL, ap);
785
786 kprintf_unlock();
787 }
788
789 void
790 aprint_naive(const char *fmt, ...)
791 {
792 va_list ap;
793
794 va_start(ap, fmt);
795 aprint_naive_internal(NULL, fmt, ap);
796 va_end(ap);
797 }
798
799 void
800 aprint_naive_dev(device_t dv, const char *fmt, ...)
801 {
802 va_list ap;
803
804 va_start(ap, fmt);
805 aprint_naive_internal(device_xname(dv), fmt, ap);
806 va_end(ap);
807 }
808
809 void
810 aprint_naive_ifnet(struct ifnet *ifp, const char *fmt, ...)
811 {
812 va_list ap;
813
814 va_start(ap, fmt);
815 aprint_naive_internal(ifp->if_xname, fmt, ap);
816 va_end(ap);
817 }
818
819 /*
820 * aprint_verbose: Send to console only if AB_VERBOSE. Always
821 * goes to the log.
822 */
823 static void
824 aprint_verbose_internal(const char *prefix, const char *fmt, va_list ap)
825 {
826 int flags = TOLOG;
827
828 if (boothowto & AB_VERBOSE)
829 flags |= TOCONS;
830
831 kprintf_lock();
832
833 if (prefix)
834 kprintf_internal("%s: ", flags, NULL, NULL, prefix);
835 kprintf(fmt, flags, NULL, NULL, ap);
836
837 kprintf_unlock();
838
839 if (!panicstr)
840 logwakeup();
841 }
842
843 void
844 aprint_verbose(const char *fmt, ...)
845 {
846 va_list ap;
847
848 va_start(ap, fmt);
849 aprint_verbose_internal(NULL, fmt, ap);
850 va_end(ap);
851 }
852
853 void
854 aprint_verbose_dev(device_t dv, const char *fmt, ...)
855 {
856 va_list ap;
857
858 va_start(ap, fmt);
859 aprint_verbose_internal(device_xname(dv), fmt, ap);
860 va_end(ap);
861 }
862
863 void
864 aprint_verbose_ifnet(struct ifnet *ifp, const char *fmt, ...)
865 {
866 va_list ap;
867
868 va_start(ap, fmt);
869 aprint_verbose_internal(ifp->if_xname, fmt, ap);
870 va_end(ap);
871 }
872
873 /*
874 * aprint_debug: Send to console and log only if AB_DEBUG.
875 */
876 static void
877 aprint_debug_internal(const char *prefix, const char *fmt, va_list ap)
878 {
879
880 if ((boothowto & AB_DEBUG) == 0)
881 return;
882
883 kprintf_lock();
884
885 if (prefix)
886 kprintf_internal("%s: ", TOCONS | TOLOG, NULL, NULL, prefix);
887 kprintf(fmt, TOCONS | TOLOG, NULL, NULL, ap);
888
889 kprintf_unlock();
890 }
891
892 void
893 aprint_debug(const char *fmt, ...)
894 {
895 va_list ap;
896
897 va_start(ap, fmt);
898 aprint_debug_internal(NULL, fmt, ap);
899 va_end(ap);
900 }
901
902 void
903 aprint_debug_dev(device_t dv, const char *fmt, ...)
904 {
905 va_list ap;
906
907 va_start(ap, fmt);
908 aprint_debug_internal(device_xname(dv), fmt, ap);
909 va_end(ap);
910 }
911
912 void
913 aprint_debug_ifnet(struct ifnet *ifp, const char *fmt, ...)
914 {
915 va_list ap;
916
917 va_start(ap, fmt);
918 aprint_debug_internal(ifp->if_xname, fmt, ap);
919 va_end(ap);
920 }
921
922 void
923 printf_tolog(const char *fmt, ...)
924 {
925 va_list ap;
926
927 kprintf_lock();
928
929 va_start(ap, fmt);
930 (void)kprintf(fmt, TOLOG, NULL, NULL, ap);
931 va_end(ap);
932
933 kprintf_unlock();
934 }
935
936 /*
937 * printf_nolog: Like printf(), but does not send message to the log.
938 */
939
940 void
941 printf_nolog(const char *fmt, ...)
942 {
943 va_list ap;
944
945 kprintf_lock();
946
947 va_start(ap, fmt);
948 kprintf(fmt, TOCONS, NULL, NULL, ap);
949 va_end(ap);
950
951 kprintf_unlock();
952 }
953
954 /*
955 * normal kernel printf functions: printf, vprintf, snprintf, vsnprintf
956 */
957
958 /*
959 * printf: print a message to the console and the log
960 */
961 void
962 printf(const char *fmt, ...)
963 {
964 va_list ap;
965
966 kprintf_lock();
967
968 va_start(ap, fmt);
969 kprintf(fmt, TOCONS | TOLOG, NULL, NULL, ap);
970 va_end(ap);
971
972 kprintf_unlock();
973
974 if (!panicstr)
975 logwakeup();
976 }
977
978 /*
979 * vprintf: print a message to the console and the log [already have
980 * va_list]
981 */
982
983 void
984 vprintf(const char *fmt, va_list ap)
985 {
986
987 kprintf_lock();
988
989 kprintf(fmt, TOCONS | TOLOG, NULL, NULL, ap);
990
991 kprintf_unlock();
992
993 if (!panicstr)
994 logwakeup();
995 }
996
997 /*
998 * snprintf: print a message to a buffer
999 */
1000 int
1001 snprintf(char *bf, size_t size, const char *fmt, ...)
1002 {
1003 int retval;
1004 va_list ap;
1005
1006 va_start(ap, fmt);
1007 retval = vsnprintf(bf, size, fmt, ap);
1008 va_end(ap);
1009
1010 return retval;
1011 }
1012
1013 /*
1014 * vsnprintf: print a message to a buffer [already have va_list]
1015 */
1016 int
1017 vsnprintf(char *bf, size_t size, const char *fmt, va_list ap)
1018 {
1019 int retval;
1020 char *p;
1021
1022 p = bf + size;
1023 retval = kprintf(fmt, TOBUFONLY, &p, bf, ap);
1024 if (bf && size > 0) {
1025 /* nul terminate */
1026 if (size <= (size_t)retval)
1027 bf[size - 1] = '\0';
1028 else
1029 bf[retval] = '\0';
1030 }
1031 return retval;
1032 }
1033
1034 /*
1035 * kprintf: scaled down version of printf(3).
1036 *
1037 * this version based on vfprintf() from libc which was derived from
1038 * software contributed to Berkeley by Chris Torek.
1039 *
1040 * NOTE: The kprintf mutex must be held if we're going TOBUF or TOCONS!
1041 */
1042
1043 /*
1044 * macros for converting digits to letters and vice versa
1045 */
1046 #define to_digit(c) ((c) - '0')
1047 #define is_digit(c) ((unsigned)to_digit(c) <= 9)
1048 #define to_char(n) ((n) + '0')
1049
1050 /*
1051 * flags used during conversion.
1052 */
1053 #define ALT 0x001 /* alternate form */
1054 #define HEXPREFIX 0x002 /* add 0x or 0X prefix */
1055 #define LADJUST 0x004 /* left adjustment */
1056 #define LONGDBL 0x008 /* long double; unimplemented */
1057 #define LONGINT 0x010 /* long integer */
1058 #define QUADINT 0x020 /* quad integer */
1059 #define SHORTINT 0x040 /* short integer */
1060 #define MAXINT 0x080 /* intmax_t */
1061 #define PTRINT 0x100 /* intptr_t */
1062 #define SIZEINT 0x200 /* size_t */
1063 #define ZEROPAD 0x400 /* zero (as opposed to blank) pad */
1064 #define FPT 0x800 /* Floating point number */
1065
1066 /*
1067 * To extend shorts properly, we need both signed and unsigned
1068 * argument extraction methods.
1069 */
1070 #define SARG() \
1071 (flags&MAXINT ? va_arg(ap, intmax_t) : \
1072 flags&PTRINT ? va_arg(ap, intptr_t) : \
1073 flags&SIZEINT ? va_arg(ap, ssize_t) : /* XXX */ \
1074 flags&QUADINT ? va_arg(ap, quad_t) : \
1075 flags&LONGINT ? va_arg(ap, long) : \
1076 flags&SHORTINT ? (long)(short)va_arg(ap, int) : \
1077 (long)va_arg(ap, int))
1078 #define UARG() \
1079 (flags&MAXINT ? va_arg(ap, uintmax_t) : \
1080 flags&PTRINT ? va_arg(ap, uintptr_t) : \
1081 flags&SIZEINT ? va_arg(ap, size_t) : \
1082 flags&QUADINT ? va_arg(ap, u_quad_t) : \
1083 flags&LONGINT ? va_arg(ap, u_long) : \
1084 flags&SHORTINT ? (u_long)(u_short)va_arg(ap, int) : \
1085 (u_long)va_arg(ap, u_int))
1086
1087 #define KPRINTF_PUTCHAR(C) { \
1088 if (oflags == TOBUFONLY) { \
1089 if (sbuf && ((vp == NULL) || (sbuf < tailp))) \
1090 *sbuf++ = (C); \
1091 } else { \
1092 putchar((C), oflags, vp); \
1093 } \
1094 }
1095
1096 void
1097 device_printf(device_t dev, const char *fmt, ...)
1098 {
1099 va_list ap;
1100
1101 va_start(ap, fmt);
1102 printf("%s: ", device_xname(dev));
1103 vprintf(fmt, ap);
1104 va_end(ap);
1105 return;
1106 }
1107
1108 /*
1109 * Guts of kernel printf. Note, we already expect to be in a mutex!
1110 */
1111 int
1112 kprintf(const char *fmt0, int oflags, void *vp, char *sbuf, va_list ap)
1113 {
1114 const char *fmt; /* format string */
1115 int ch; /* character from fmt */
1116 int n; /* handy integer (short term usage) */
1117 char *cp; /* handy char pointer (short term usage) */
1118 int flags; /* flags as above */
1119 int ret; /* return value accumulator */
1120 int width; /* width from format (%8d), or 0 */
1121 int prec; /* precision from format (%.3d), or -1 */
1122 char sign; /* sign prefix (' ', '+', '-', or \0) */
1123
1124 u_quad_t _uquad; /* integer arguments %[diouxX] */
1125 enum { OCT, DEC, HEX } base;/* base for [diouxX] conversion */
1126 int dprec; /* a copy of prec if [diouxX], 0 otherwise */
1127 int realsz; /* field size expanded by dprec */
1128 int size; /* size of converted field or string */
1129 const char *xdigs; /* digits for [xX] conversion */
1130 char bf[KPRINTF_BUFSIZE]; /* space for %c, %[diouxX] */
1131 char *tailp; /* tail pointer for snprintf */
1132
1133 if (oflags == TOBUFONLY && (vp != NULL))
1134 tailp = *(char **)vp;
1135 else
1136 tailp = NULL;
1137
1138 cp = NULL; /* XXX: shutup gcc */
1139 size = 0; /* XXX: shutup gcc */
1140
1141 fmt = fmt0;
1142 ret = 0;
1143
1144 xdigs = NULL; /* XXX: shut up gcc warning */
1145
1146 /*
1147 * Scan the format for conversions (`%' character).
1148 */
1149 for (;;) {
1150 for (; *fmt != '%' && *fmt; fmt++) {
1151 ret++;
1152 KPRINTF_PUTCHAR(*fmt);
1153 }
1154 if (*fmt == 0)
1155 goto done;
1156
1157 fmt++; /* skip over '%' */
1158
1159 flags = 0;
1160 dprec = 0;
1161 width = 0;
1162 prec = -1;
1163 sign = '\0';
1164
1165 rflag: ch = *fmt++;
1166 reswitch: switch (ch) {
1167 case ' ':
1168 /*
1169 * ``If the space and + flags both appear, the space
1170 * flag will be ignored.''
1171 * -- ANSI X3J11
1172 */
1173 if (!sign)
1174 sign = ' ';
1175 goto rflag;
1176 case '#':
1177 flags |= ALT;
1178 goto rflag;
1179 case '*':
1180 /*
1181 * ``A negative field width argument is taken as a
1182 * - flag followed by a positive field width.''
1183 * -- ANSI X3J11
1184 * They don't exclude field widths read from args.
1185 */
1186 if ((width = va_arg(ap, int)) >= 0)
1187 goto rflag;
1188 width = -width;
1189 /* FALLTHROUGH */
1190 case '-':
1191 flags |= LADJUST;
1192 goto rflag;
1193 case '+':
1194 sign = '+';
1195 goto rflag;
1196 case '.':
1197 if ((ch = *fmt++) == '*') {
1198 n = va_arg(ap, int);
1199 prec = n < 0 ? -1 : n;
1200 goto rflag;
1201 }
1202 n = 0;
1203 while (is_digit(ch)) {
1204 n = 10 * n + to_digit(ch);
1205 ch = *fmt++;
1206 }
1207 prec = n < 0 ? -1 : n;
1208 goto reswitch;
1209 case '0':
1210 /*
1211 * ``Note that 0 is taken as a flag, not as the
1212 * beginning of a field width.''
1213 * -- ANSI X3J11
1214 */
1215 flags |= ZEROPAD;
1216 goto rflag;
1217 case '1': case '2': case '3': case '4':
1218 case '5': case '6': case '7': case '8': case '9':
1219 n = 0;
1220 do {
1221 n = 10 * n + to_digit(ch);
1222 ch = *fmt++;
1223 } while (is_digit(ch));
1224 width = n;
1225 goto reswitch;
1226 case 'h':
1227 flags |= SHORTINT;
1228 goto rflag;
1229 case 'j':
1230 flags |= MAXINT;
1231 goto rflag;
1232 case 'l':
1233 if (*fmt == 'l') {
1234 fmt++;
1235 flags |= QUADINT;
1236 } else {
1237 flags |= LONGINT;
1238 }
1239 goto rflag;
1240 case 'q':
1241 flags |= QUADINT;
1242 goto rflag;
1243 case 't':
1244 flags |= PTRINT;
1245 goto rflag;
1246 case 'z':
1247 flags |= SIZEINT;
1248 goto rflag;
1249 case 'c':
1250 *(cp = bf) = va_arg(ap, int);
1251 size = 1;
1252 sign = '\0';
1253 break;
1254 case 'D':
1255 flags |= LONGINT;
1256 /*FALLTHROUGH*/
1257 case 'd':
1258 case 'i':
1259 _uquad = SARG();
1260 if ((quad_t)_uquad < 0) {
1261 _uquad = -_uquad;
1262 sign = '-';
1263 }
1264 base = DEC;
1265 goto number;
1266 case 'n':
1267 if (flags & MAXINT)
1268 *va_arg(ap, intmax_t *) = ret;
1269 else if (flags & PTRINT)
1270 *va_arg(ap, intptr_t *) = ret;
1271 else if (flags & SIZEINT)
1272 *va_arg(ap, ssize_t *) = ret;
1273 else if (flags & QUADINT)
1274 *va_arg(ap, quad_t *) = ret;
1275 else if (flags & LONGINT)
1276 *va_arg(ap, long *) = ret;
1277 else if (flags & SHORTINT)
1278 *va_arg(ap, short *) = ret;
1279 else
1280 *va_arg(ap, int *) = ret;
1281 continue; /* no output */
1282 case 'O':
1283 flags |= LONGINT;
1284 /*FALLTHROUGH*/
1285 case 'o':
1286 _uquad = UARG();
1287 base = OCT;
1288 goto nosign;
1289 case 'p':
1290 /*
1291 * ``The argument shall be a pointer to void. The
1292 * value of the pointer is converted to a sequence
1293 * of printable characters, in an implementation-
1294 * defined manner.''
1295 * -- ANSI X3J11
1296 */
1297 /* NOSTRICT */
1298 _uquad = (u_long)va_arg(ap, void *);
1299 base = HEX;
1300 xdigs = hexdigits;
1301 flags |= HEXPREFIX;
1302 ch = 'x';
1303 goto nosign;
1304 case 's':
1305 if ((cp = va_arg(ap, char *)) == NULL)
1306 /*XXXUNCONST*/
1307 cp = __UNCONST("(null)");
1308 if (prec >= 0) {
1309 /*
1310 * can't use strlen; can only look for the
1311 * NUL in the first `prec' characters, and
1312 * strlen() will go further.
1313 */
1314 char *p = memchr(cp, 0, prec);
1315
1316 if (p != NULL) {
1317 size = p - cp;
1318 if (size > prec)
1319 size = prec;
1320 } else
1321 size = prec;
1322 } else
1323 size = strlen(cp);
1324 sign = '\0';
1325 break;
1326 case 'U':
1327 flags |= LONGINT;
1328 /*FALLTHROUGH*/
1329 case 'u':
1330 _uquad = UARG();
1331 base = DEC;
1332 goto nosign;
1333 case 'X':
1334 xdigs = HEXDIGITS;
1335 goto hex;
1336 case 'x':
1337 xdigs = hexdigits;
1338 hex: _uquad = UARG();
1339 base = HEX;
1340 /* leading 0x/X only if non-zero */
1341 if (flags & ALT && _uquad != 0)
1342 flags |= HEXPREFIX;
1343
1344 /* unsigned conversions */
1345 nosign: sign = '\0';
1346 /*
1347 * ``... diouXx conversions ... if a precision is
1348 * specified, the 0 flag will be ignored.''
1349 * -- ANSI X3J11
1350 */
1351 number: if ((dprec = prec) >= 0)
1352 flags &= ~ZEROPAD;
1353
1354 /*
1355 * ``The result of converting a zero value with an
1356 * explicit precision of zero is no characters.''
1357 * -- ANSI X3J11
1358 */
1359 cp = bf + KPRINTF_BUFSIZE;
1360 if (_uquad != 0 || prec != 0) {
1361 /*
1362 * Unsigned mod is hard, and unsigned mod
1363 * by a constant is easier than that by
1364 * a variable; hence this switch.
1365 */
1366 switch (base) {
1367 case OCT:
1368 do {
1369 *--cp = to_char(_uquad & 7);
1370 _uquad >>= 3;
1371 } while (_uquad);
1372 /* handle octal leading 0 */
1373 if (flags & ALT && *cp != '0')
1374 *--cp = '0';
1375 break;
1376
1377 case DEC:
1378 /* many numbers are 1 digit */
1379 while (_uquad >= 10) {
1380 *--cp = to_char(_uquad % 10);
1381 _uquad /= 10;
1382 }
1383 *--cp = to_char(_uquad);
1384 break;
1385
1386 case HEX:
1387 do {
1388 *--cp = xdigs[_uquad & 15];
1389 _uquad >>= 4;
1390 } while (_uquad);
1391 break;
1392
1393 default:
1394 /*XXXUNCONST*/
1395 cp = __UNCONST("bug in kprintf: bad base");
1396 size = strlen(cp);
1397 goto skipsize;
1398 }
1399 }
1400 size = bf + KPRINTF_BUFSIZE - cp;
1401 skipsize:
1402 break;
1403 default: /* "%?" prints ?, unless ? is NUL */
1404 if (ch == '\0')
1405 goto done;
1406 /* pretend it was %c with argument ch */
1407 cp = bf;
1408 *cp = ch;
1409 size = 1;
1410 sign = '\0';
1411 break;
1412 }
1413
1414 /*
1415 * All reasonable formats wind up here. At this point, `cp'
1416 * points to a string which (if not flags&LADJUST) should be
1417 * padded out to `width' places. If flags&ZEROPAD, it should
1418 * first be prefixed by any sign or other prefix; otherwise,
1419 * it should be blank padded before the prefix is emitted.
1420 * After any left-hand padding and prefixing, emit zeroes
1421 * required by a decimal [diouxX] precision, then print the
1422 * string proper, then emit zeroes required by any leftover
1423 * floating precision; finally, if LADJUST, pad with blanks.
1424 *
1425 * Compute actual size, so we know how much to pad.
1426 * size excludes decimal prec; realsz includes it.
1427 */
1428 realsz = dprec > size ? dprec : size;
1429 if (sign)
1430 realsz++;
1431 else if (flags & HEXPREFIX)
1432 realsz+= 2;
1433
1434 /* adjust ret */
1435 ret += width > realsz ? width : realsz;
1436
1437 /* right-adjusting blank padding */
1438 if ((flags & (LADJUST|ZEROPAD)) == 0) {
1439 n = width - realsz;
1440 while (n-- > 0)
1441 KPRINTF_PUTCHAR(' ');
1442 }
1443
1444 /* prefix */
1445 if (sign) {
1446 KPRINTF_PUTCHAR(sign);
1447 } else if (flags & HEXPREFIX) {
1448 KPRINTF_PUTCHAR('0');
1449 KPRINTF_PUTCHAR(ch);
1450 }
1451
1452 /* right-adjusting zero padding */
1453 if ((flags & (LADJUST|ZEROPAD)) == ZEROPAD) {
1454 n = width - realsz;
1455 while (n-- > 0)
1456 KPRINTF_PUTCHAR('0');
1457 }
1458
1459 /* leading zeroes from decimal precision */
1460 n = dprec - size;
1461 while (n-- > 0)
1462 KPRINTF_PUTCHAR('0');
1463
1464 /* the string or number proper */
1465 for (; size--; cp++)
1466 KPRINTF_PUTCHAR(*cp);
1467 /* left-adjusting padding (always blank) */
1468 if (flags & LADJUST) {
1469 n = width - realsz;
1470 while (n-- > 0)
1471 KPRINTF_PUTCHAR(' ');
1472 }
1473 }
1474
1475 done:
1476 if ((oflags == TOBUFONLY) && (vp != NULL))
1477 *(char **)vp = sbuf;
1478 (*v_flush)();
1479 return ret;
1480 }
1481