subr_prf.c revision 1.176 1 /* $NetBSD: subr_prf.c,v 1.176 2019/01/14 19:21:54 jdolecek Exp $ */
2
3 /*-
4 * Copyright (c) 1986, 1988, 1991, 1993
5 * The Regents of the University of California. All rights reserved.
6 * (c) UNIX System Laboratories, Inc.
7 * All or some portions of this file are derived from material licensed
8 * to the University of California by American Telephone and Telegraph
9 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
10 * the permission of UNIX System Laboratories, Inc.
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, this list of conditions and the following disclaimer.
17 * 2. Redistributions in binary form must reproduce the above copyright
18 * notice, this list of conditions and the following disclaimer in the
19 * documentation and/or other materials provided with the distribution.
20 * 3. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 *
36 * @(#)subr_prf.c 8.4 (Berkeley) 5/4/95
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: subr_prf.c,v 1.176 2019/01/14 19:21:54 jdolecek Exp $");
41
42 #ifdef _KERNEL_OPT
43 #include "opt_ddb.h"
44 #include "opt_kgdb.h"
45 #include "opt_dump.h"
46 #include "opt_rnd_printf.h"
47 #endif
48
49 #include <sys/param.h>
50 #include <sys/stdint.h>
51 #include <sys/systm.h>
52 #include <sys/buf.h>
53 #include <sys/device.h>
54 #include <sys/reboot.h>
55 #include <sys/msgbuf.h>
56 #include <sys/proc.h>
57 #include <sys/ioctl.h>
58 #include <sys/vnode.h>
59 #include <sys/file.h>
60 #include <sys/tty.h>
61 #include <sys/tprintf.h>
62 #include <sys/spldebug.h>
63 #include <sys/syslog.h>
64 #include <sys/kprintf.h>
65 #include <sys/atomic.h>
66 #include <sys/kernel.h>
67 #include <sys/cpu.h>
68 #include <sys/sha2.h>
69 #include <sys/rndsource.h>
70
71 #include <dev/cons.h>
72
73 #include <net/if.h>
74
75 static kmutex_t kprintf_mtx;
76 static bool kprintf_inited = false;
77
78 #ifdef KGDB
79 #include <sys/kgdb.h>
80 #endif
81
82 #ifdef DDB
83 #include <ddb/ddbvar.h> /* db_panic */
84 #include <ddb/db_output.h> /* db_printf, db_putchar prototypes */
85 #endif
86
87
88 /*
89 * defines
90 */
91 #define KLOG_PRI 0x80000000
92
93
94 /*
95 * local prototypes
96 */
97
98 static void putchar(int, int, struct tty *);
99
100
101 /*
102 * globals
103 */
104
105 extern struct tty *constty; /* pointer to console "window" tty */
106 extern int log_open; /* subr_log: is /dev/klog open? */
107 extern krndsource_t rnd_printf_source;
108 const char *panicstr; /* arg to first call to panic (used as a flag
109 to indicate that panic has already been called). */
110 struct cpu_info *paniccpu; /* cpu that first paniced */
111 long panicstart, panicend; /* position in the msgbuf of the start and
112 end of the formatted panicstr. */
113 int doing_shutdown; /* set to indicate shutdown in progress */
114
115 #ifdef RND_PRINTF
116 static bool kprintf_inited_callout = false;
117 static SHA512_CTX kprnd_sha;
118 static uint8_t kprnd_accum[SHA512_DIGEST_LENGTH];
119 static int kprnd_added;
120
121 static struct callout kprnd_callout;
122 #endif
123
124 #ifndef DUMP_ON_PANIC
125 #define DUMP_ON_PANIC 1
126 #endif
127 int dumponpanic = DUMP_ON_PANIC;
128
129 /*
130 * v_putc: routine to putc on virtual console
131 *
132 * the v_putc pointer can be used to redirect the console cnputc elsewhere
133 * [e.g. to a "virtual console"].
134 */
135
136 void (*v_putc)(int) = cnputc; /* start with cnputc (normal cons) */
137 void (*v_flush)(void) = cnflush; /* start with cnflush (normal cons) */
138
139 const char hexdigits[] = "0123456789abcdef";
140 const char HEXDIGITS[] = "0123456789ABCDEF";
141
142
143 /*
144 * functions
145 */
146
147 #ifdef RND_PRINTF
148 static void kprintf_rnd_get(size_t bytes, void *priv)
149 {
150 if (kprnd_added) {
151 KASSERT(kprintf_inited);
152 if (mutex_tryenter(&kprintf_mtx)) {
153 SHA512_Final(kprnd_accum, &kprnd_sha);
154 rnd_add_data(&rnd_printf_source,
155 kprnd_accum, sizeof(kprnd_accum), 0);
156 kprnd_added = 0;
157 /* This, we must do, since we called _Final. */
158 SHA512_Init(&kprnd_sha);
159 /* This is optional but seems useful. */
160 SHA512_Update(&kprnd_sha, kprnd_accum,
161 sizeof(kprnd_accum));
162 mutex_exit(&kprintf_mtx);
163 }
164 }
165 }
166
167 static void kprintf_rnd_callout(void *arg)
168 {
169 kprintf_rnd_get(0, NULL);
170 callout_schedule(&kprnd_callout, hz);
171 }
172
173 #endif
174
175 /*
176 * Locking is inited fairly early in MI bootstrap. Before that
177 * prints are done unlocked. But that doesn't really matter,
178 * since nothing can preempt us before interrupts are enabled.
179 */
180 void
181 kprintf_init(void)
182 {
183
184 KASSERT(!kprintf_inited && cold); /* not foolproof, but ... */
185 #ifdef RND_PRINTF
186 SHA512_Init(&kprnd_sha);
187 #endif
188 mutex_init(&kprintf_mtx, MUTEX_DEFAULT, IPL_HIGH);
189 kprintf_inited = true;
190 }
191
192 #ifdef RND_PRINTF
193 void
194 kprintf_init_callout(void)
195 {
196 KASSERT(!kprintf_inited_callout);
197 callout_init(&kprnd_callout, CALLOUT_MPSAFE);
198 callout_setfunc(&kprnd_callout, kprintf_rnd_callout, NULL);
199 callout_schedule(&kprnd_callout, hz);
200 kprintf_inited_callout = true;
201 }
202 #endif
203
204 void
205 kprintf_lock(void)
206 {
207
208 if (__predict_true(kprintf_inited))
209 mutex_enter(&kprintf_mtx);
210 }
211
212 void
213 kprintf_unlock(void)
214 {
215
216 if (__predict_true(kprintf_inited)) {
217 /* assert kprintf wasn't somehow inited while we were in */
218 KASSERT(mutex_owned(&kprintf_mtx));
219 mutex_exit(&kprintf_mtx);
220 }
221 }
222
223 /*
224 * twiddle: spin a little propellor on the console.
225 */
226
227 void
228 twiddle(void)
229 {
230 static const char twiddle_chars[] = "|/-\\";
231 static int pos;
232
233 kprintf_lock();
234
235 putchar(twiddle_chars[pos++ & 3], TOCONS|NOTSTAMP, NULL);
236 putchar('\b', TOCONS|NOTSTAMP, NULL);
237
238 kprintf_unlock();
239 }
240
241 /*
242 * panic: handle an unresolvable fatal error
243 *
244 * prints "panic: <message>" and reboots. if called twice (i.e. recursive
245 * call) we avoid trying to dump and just reboot (to avoid recursive panics).
246 */
247
248 void
249 panic(const char *fmt, ...)
250 {
251 va_list ap;
252
253 va_start(ap, fmt);
254 vpanic(fmt, ap);
255 va_end(ap);
256 }
257
258 void
259 vpanic(const char *fmt, va_list ap)
260 {
261 CPU_INFO_ITERATOR cii;
262 struct cpu_info *ci, *oci;
263 int bootopt;
264 static char scratchstr[384]; /* stores panic message */
265
266 spldebug_stop();
267
268 if (lwp0.l_cpu && curlwp) {
269 /*
270 * Disable preemption. If already panicing on another CPU, sit
271 * here and spin until the system is rebooted. Allow the CPU that
272 * first paniced to panic again.
273 */
274 kpreempt_disable();
275 ci = curcpu();
276 oci = atomic_cas_ptr((void *)&paniccpu, NULL, ci);
277 if (oci != NULL && oci != ci) {
278 /* Give interrupts a chance to try and prevent deadlock. */
279 for (;;) {
280 #ifndef _RUMPKERNEL /* XXXpooka: temporary build fix, see kern/40505 */
281 DELAY(10);
282 #endif /* _RUMPKERNEL */
283 }
284 }
285
286 /*
287 * Convert the current thread to a bound thread and prevent all
288 * CPUs from scheduling unbound jobs. Do so without taking any
289 * locks.
290 */
291 curlwp->l_pflag |= LP_BOUND;
292 for (CPU_INFO_FOREACH(cii, ci)) {
293 ci->ci_schedstate.spc_flags |= SPCF_OFFLINE;
294 }
295 }
296
297 bootopt = RB_AUTOBOOT | RB_NOSYNC;
298 if (!doing_shutdown) {
299 if (dumponpanic)
300 bootopt |= RB_DUMP;
301 } else
302 printf("Skipping crash dump on recursive panic\n");
303
304 doing_shutdown = 1;
305
306 if (logenabled(msgbufp))
307 panicstart = msgbufp->msg_bufx;
308
309 printf("panic: ");
310 if (panicstr == NULL) {
311 /* first time in panic - store fmt first for precaution */
312 panicstr = fmt;
313
314 vsnprintf(scratchstr, sizeof(scratchstr), fmt, ap);
315 printf("%s", scratchstr);
316 panicstr = scratchstr;
317 } else {
318 vprintf(fmt, ap);
319 }
320 printf("\n");
321
322 if (logenabled(msgbufp))
323 panicend = msgbufp->msg_bufx;
324
325 #ifdef KGDB
326 kgdb_panic();
327 #endif
328 #ifdef KADB
329 if (boothowto & RB_KDB)
330 kdbpanic();
331 #endif
332 #ifdef DDB
333 db_panic();
334 #endif
335 cpu_reboot(bootopt, NULL);
336 }
337
338 /*
339 * kernel logging functions: log, logpri, addlog
340 */
341
342 /*
343 * log: write to the log buffer
344 *
345 * => will not sleep [so safe to call from interrupt]
346 * => will log to console if /dev/klog isn't open
347 */
348
349 void
350 log(int level, const char *fmt, ...)
351 {
352 va_list ap;
353
354 kprintf_lock();
355
356 klogpri(level); /* log the level first */
357 va_start(ap, fmt);
358 kprintf(fmt, TOLOG, NULL, NULL, ap);
359 va_end(ap);
360 if (!log_open) {
361 va_start(ap, fmt);
362 kprintf(fmt, TOCONS, NULL, NULL, ap);
363 va_end(ap);
364 }
365
366 kprintf_unlock();
367
368 logwakeup(); /* wake up anyone waiting for log msgs */
369 }
370
371 /*
372 * vlog: write to the log buffer [already have va_list]
373 */
374
375 void
376 vlog(int level, const char *fmt, va_list ap)
377 {
378 va_list cap;
379
380 va_copy(cap, ap);
381 kprintf_lock();
382
383 klogpri(level); /* log the level first */
384 kprintf(fmt, TOLOG, NULL, NULL, ap);
385 if (!log_open)
386 kprintf(fmt, TOCONS, NULL, NULL, cap);
387
388 kprintf_unlock();
389 va_end(cap);
390
391 logwakeup(); /* wake up anyone waiting for log msgs */
392 }
393
394 /*
395 * logpri: log the priority level to the klog
396 */
397
398 void
399 logpri(int level)
400 {
401
402 kprintf_lock();
403 klogpri(level);
404 kprintf_unlock();
405 }
406
407 /*
408 * Note: we must be in the mutex here!
409 */
410 void
411 klogpri(int level)
412 {
413 KASSERT((level & KLOG_PRI) == 0);
414
415 putchar(level | KLOG_PRI, TOLOG, NULL);
416 }
417
418 /*
419 * addlog: add info to previous log message
420 */
421
422 void
423 addlog(const char *fmt, ...)
424 {
425 va_list ap;
426
427 kprintf_lock();
428
429 va_start(ap, fmt);
430 kprintf(fmt, TOLOG, NULL, NULL, ap);
431 va_end(ap);
432 if (!log_open) {
433 va_start(ap, fmt);
434 kprintf(fmt, TOCONS, NULL, NULL, ap);
435 va_end(ap);
436 }
437
438 kprintf_unlock();
439
440 logwakeup();
441 }
442
443 static void
444 putone(int c, int flags, struct tty *tp)
445 {
446 if (panicstr)
447 constty = NULL;
448
449 if ((flags & TOCONS) && tp == NULL && constty) {
450 tp = constty;
451 flags |= TOTTY;
452 }
453 if ((flags & TOTTY) && tp &&
454 tputchar(c, flags, tp) < 0 &&
455 (flags & TOCONS) && tp == constty)
456 constty = NULL;
457 if ((flags & TOLOG) &&
458 c != '\0' && c != '\r' && c != 0177)
459 logputchar(c);
460 if ((flags & TOCONS) && constty == NULL && c != '\0')
461 (*v_putc)(c);
462 }
463
464 static void
465 putlogpri(int level)
466 {
467 char *p;
468 char snbuf[KPRINTF_BUFSIZE];
469
470 putone('<', TOLOG, NULL);
471 snprintf(snbuf, sizeof(snbuf), "%d", level);
472 for (p = snbuf ; *p ; p++)
473 putone(*p, TOLOG, NULL);
474 putone('>', TOLOG, NULL);
475 }
476
477 #ifndef KLOG_NOTIMESTAMP
478 static int needtstamp = 1;
479 int log_ts_prec = 7;
480
481 static void
482 addtstamp(int flags, struct tty *tp)
483 {
484 char buf[64];
485 struct timespec ts;
486 int n, prec;
487 long fsec;
488
489 prec = log_ts_prec;
490 if (prec < 0) {
491 prec = 0;
492 log_ts_prec = prec;
493 } else if (prec > 9) {
494 prec = 9;
495 log_ts_prec = prec;
496 }
497
498 getnanouptime(&ts);
499
500 for (n = prec, fsec = ts.tv_nsec; n < 8; n++)
501 fsec /= 10;
502 if (n < 9)
503 fsec = (fsec / 10) + ((fsec % 10) >= 5);
504
505 n = snprintf(buf, sizeof(buf), "[% 4jd.%.*ld] ",
506 (intmax_t)ts.tv_sec, prec, fsec);
507
508 for (int i = 0; i < n; i++)
509 putone(buf[i], flags, tp);
510 }
511 #endif
512
513 /*
514 * putchar: print a single character on console or user terminal.
515 *
516 * => if console, then the last MSGBUFS chars are saved in msgbuf
517 * for inspection later (e.g. dmesg/syslog)
518 * => we must already be in the mutex!
519 */
520 static void
521 putchar(int c, int flags, struct tty *tp)
522 {
523 if (c & KLOG_PRI) {
524 putlogpri(c & ~KLOG_PRI);
525 return;
526 }
527
528 #ifndef KLOG_NOTIMESTAMP
529 if (c != '\0' && c != '\n' && needtstamp && (flags & NOTSTAMP) == 0) {
530 addtstamp(flags, tp);
531 needtstamp = 0;
532 }
533
534 if (c == '\n')
535 needtstamp = 1;
536 #endif
537 putone(c, flags, tp);
538
539 #ifdef DDB
540 if (flags & TODDB) {
541 db_putchar(c);
542 return;
543 }
544 #endif
545
546 #ifdef RND_PRINTF
547 if (__predict_true(kprintf_inited)) {
548 static uint8_t rbuf[SHA512_BLOCK_LENGTH];
549 static int cursor;
550
551 rbuf[cursor] = c;
552 if (cursor == sizeof(rbuf) - 1) {
553 SHA512_Update(&kprnd_sha, rbuf, sizeof(rbuf));
554 kprnd_added++;
555 cursor = 0;
556 } else {
557 cursor++;
558 }
559 }
560 #endif
561 }
562
563 /*
564 * tablefull: warn that a system table is full
565 */
566
567 void
568 tablefull(const char *tab, const char *hint)
569 {
570 if (hint)
571 log(LOG_ERR, "%s: table is full - %s\n", tab, hint);
572 else
573 log(LOG_ERR, "%s: table is full\n", tab);
574 }
575
576
577 /*
578 * uprintf: print to the controlling tty of the current process
579 *
580 * => we may block if the tty queue is full
581 * => no message is printed if the queue doesn't clear in a reasonable
582 * time
583 */
584
585 void
586 uprintf(const char *fmt, ...)
587 {
588 struct proc *p = curproc;
589 va_list ap;
590
591 /* mutex_enter(proc_lock); XXXSMP */
592
593 if (p->p_lflag & PL_CONTROLT && p->p_session->s_ttyvp) {
594 /* No mutex needed; going to process TTY. */
595 va_start(ap, fmt);
596 kprintf(fmt, TOTTY, p->p_session->s_ttyp, NULL, ap);
597 va_end(ap);
598 }
599
600 /* mutex_exit(proc_lock); XXXSMP */
601 }
602
603 void
604 uprintf_locked(const char *fmt, ...)
605 {
606 struct proc *p = curproc;
607 va_list ap;
608
609 if (p->p_lflag & PL_CONTROLT && p->p_session->s_ttyvp) {
610 /* No mutex needed; going to process TTY. */
611 va_start(ap, fmt);
612 kprintf(fmt, TOTTY, p->p_session->s_ttyp, NULL, ap);
613 va_end(ap);
614 }
615 }
616
617 /*
618 * tprintf functions: used to send messages to a specific process
619 *
620 * usage:
621 * get a tpr_t handle on a process "p" by using "tprintf_open(p)"
622 * use the handle when calling "tprintf"
623 * when done, do a "tprintf_close" to drop the handle
624 */
625
626 /*
627 * tprintf_open: get a tprintf handle on a process "p"
628 *
629 * => returns NULL if process can't be printed to
630 */
631
632 tpr_t
633 tprintf_open(struct proc *p)
634 {
635 tpr_t cookie;
636
637 cookie = NULL;
638
639 mutex_enter(proc_lock);
640 if (p->p_lflag & PL_CONTROLT && p->p_session->s_ttyvp) {
641 proc_sesshold(p->p_session);
642 cookie = (tpr_t)p->p_session;
643 }
644 mutex_exit(proc_lock);
645
646 return cookie;
647 }
648
649 /*
650 * tprintf_close: dispose of a tprintf handle obtained with tprintf_open
651 */
652
653 void
654 tprintf_close(tpr_t sess)
655 {
656
657 if (sess) {
658 mutex_enter(proc_lock);
659 /* Releases proc_lock. */
660 proc_sessrele((struct session *)sess);
661 }
662 }
663
664 /*
665 * tprintf: given tprintf handle to a process [obtained with tprintf_open],
666 * send a message to the controlling tty for that process.
667 *
668 * => also sends message to /dev/klog
669 */
670 void
671 tprintf(tpr_t tpr, const char *fmt, ...)
672 {
673 struct session *sess = (struct session *)tpr;
674 struct tty *tp = NULL;
675 int flags = TOLOG;
676 va_list ap;
677
678 /* mutex_enter(proc_lock); XXXSMP */
679 if (sess && sess->s_ttyvp && ttycheckoutq(sess->s_ttyp, 0)) {
680 flags |= TOTTY;
681 tp = sess->s_ttyp;
682 }
683
684 kprintf_lock();
685
686 klogpri(LOG_INFO);
687 va_start(ap, fmt);
688 kprintf(fmt, flags, tp, NULL, ap);
689 va_end(ap);
690
691 kprintf_unlock();
692 /* mutex_exit(proc_lock); XXXSMP */
693
694 logwakeup();
695 }
696
697
698 /*
699 * ttyprintf: send a message to a specific tty
700 *
701 * => should be used only by tty driver or anything that knows the
702 * underlying tty will not be revoked(2)'d away. [otherwise,
703 * use tprintf]
704 */
705 void
706 ttyprintf(struct tty *tp, const char *fmt, ...)
707 {
708 va_list ap;
709
710 /* No mutex needed; going to process TTY. */
711 va_start(ap, fmt);
712 kprintf(fmt, TOTTY, tp, NULL, ap);
713 va_end(ap);
714 }
715
716 #ifdef DDB
717
718 /*
719 * db_printf: printf for DDB (via db_putchar)
720 */
721
722 void
723 db_printf(const char *fmt, ...)
724 {
725 va_list ap;
726
727 /* No mutex needed; DDB pauses all processors. */
728 va_start(ap, fmt);
729 kprintf(fmt, TODDB, NULL, NULL, ap);
730 va_end(ap);
731
732 if (db_tee_msgbuf) {
733 va_start(ap, fmt);
734 kprintf(fmt, TOLOG, NULL, NULL, ap);
735 va_end(ap);
736 }
737 }
738
739 void
740 db_vprintf(const char *fmt, va_list ap)
741 {
742 va_list cap;
743
744 va_copy(cap, ap);
745 /* No mutex needed; DDB pauses all processors. */
746 kprintf(fmt, TODDB, NULL, NULL, ap);
747 if (db_tee_msgbuf)
748 kprintf(fmt, TOLOG, NULL, NULL, cap);
749 va_end(cap);
750 }
751
752 #endif /* DDB */
753
754 static void
755 kprintf_internal(const char *fmt, int oflags, void *vp, char *sbuf, ...)
756 {
757 va_list ap;
758
759 va_start(ap, sbuf);
760 (void)kprintf(fmt, oflags, vp, sbuf, ap);
761 va_end(ap);
762 }
763
764 /*
765 * Device autoconfiguration printf routines. These change their
766 * behavior based on the AB_* flags in boothowto. If AB_SILENT
767 * is set, messages never go to the console (but they still always
768 * go to the log). AB_VERBOSE overrides AB_SILENT.
769 */
770
771 /*
772 * aprint_normal: Send to console unless AB_QUIET. Always goes
773 * to the log.
774 */
775 static void
776 aprint_normal_internal(const char *prefix, const char *fmt, va_list ap)
777 {
778 int flags = TOLOG;
779
780 if ((boothowto & (AB_SILENT|AB_QUIET)) == 0 ||
781 (boothowto & AB_VERBOSE) != 0)
782 flags |= TOCONS;
783
784 kprintf_lock();
785
786 if (prefix)
787 kprintf_internal("%s: ", flags, NULL, NULL, prefix);
788 kprintf(fmt, flags, NULL, NULL, ap);
789
790 kprintf_unlock();
791
792 if (!panicstr)
793 logwakeup();
794 }
795
796 void
797 aprint_normal(const char *fmt, ...)
798 {
799 va_list ap;
800
801 va_start(ap, fmt);
802 aprint_normal_internal(NULL, fmt, ap);
803 va_end(ap);
804 }
805
806 void
807 aprint_normal_dev(device_t dv, const char *fmt, ...)
808 {
809 va_list ap;
810
811 KASSERT(dv != NULL);
812
813 va_start(ap, fmt);
814 aprint_normal_internal(device_xname(dv), fmt, ap);
815 va_end(ap);
816 }
817
818 void
819 aprint_normal_ifnet(struct ifnet *ifp, const char *fmt, ...)
820 {
821 va_list ap;
822
823 KASSERT(ifp != NULL);
824
825 va_start(ap, fmt);
826 aprint_normal_internal(ifp->if_xname, fmt, ap);
827 va_end(ap);
828 }
829
830 /*
831 * aprint_error: Send to console unless AB_QUIET. Always goes
832 * to the log. Also counts the number of times called so other
833 * parts of the kernel can report the number of errors during a
834 * given phase of system startup.
835 */
836 static int aprint_error_count;
837
838 int
839 aprint_get_error_count(void)
840 {
841 int count;
842
843 kprintf_lock();
844
845 count = aprint_error_count;
846 aprint_error_count = 0;
847
848 kprintf_unlock();
849
850 return (count);
851 }
852
853 static void
854 aprint_error_internal(const char *prefix, const char *fmt, va_list ap)
855 {
856 int flags = TOLOG;
857
858 if ((boothowto & (AB_SILENT|AB_QUIET)) == 0 ||
859 (boothowto & AB_VERBOSE) != 0)
860 flags |= TOCONS;
861
862 kprintf_lock();
863
864 aprint_error_count++;
865
866 if (prefix)
867 kprintf_internal("%s: ", flags, NULL, NULL, prefix);
868 kprintf_internal("autoconfiguration error: ", TOLOG, NULL, NULL);
869 kprintf(fmt, flags, NULL, NULL, ap);
870
871 kprintf_unlock();
872
873 if (!panicstr)
874 logwakeup();
875 }
876
877 void
878 aprint_error(const char *fmt, ...)
879 {
880 va_list ap;
881
882 va_start(ap, fmt);
883 aprint_error_internal(NULL, fmt, ap);
884 va_end(ap);
885 }
886
887 void
888 aprint_error_dev(device_t dv, const char *fmt, ...)
889 {
890 va_list ap;
891
892 KASSERT(dv != NULL);
893
894 va_start(ap, fmt);
895 aprint_error_internal(device_xname(dv), fmt, ap);
896 va_end(ap);
897 }
898
899 void
900 aprint_error_ifnet(struct ifnet *ifp, const char *fmt, ...)
901 {
902 va_list ap;
903
904 KASSERT(ifp != NULL);
905
906 va_start(ap, fmt);
907 aprint_error_internal(ifp->if_xname, fmt, ap);
908 va_end(ap);
909 }
910
911 /*
912 * aprint_naive: Send to console only if AB_QUIET. Never goes
913 * to the log.
914 */
915 static void
916 aprint_naive_internal(const char *prefix, const char *fmt, va_list ap)
917 {
918 if ((boothowto & (AB_QUIET|AB_SILENT|AB_VERBOSE)) != AB_QUIET)
919 return;
920
921 kprintf_lock();
922
923 if (prefix)
924 kprintf_internal("%s: ", TOCONS, NULL, NULL, prefix);
925 kprintf(fmt, TOCONS, NULL, NULL, ap);
926
927 kprintf_unlock();
928 }
929
930 void
931 aprint_naive(const char *fmt, ...)
932 {
933 va_list ap;
934
935 va_start(ap, fmt);
936 aprint_naive_internal(NULL, fmt, ap);
937 va_end(ap);
938 }
939
940 void
941 aprint_naive_dev(device_t dv, const char *fmt, ...)
942 {
943 va_list ap;
944
945 KASSERT(dv != NULL);
946
947 va_start(ap, fmt);
948 aprint_naive_internal(device_xname(dv), fmt, ap);
949 va_end(ap);
950 }
951
952 void
953 aprint_naive_ifnet(struct ifnet *ifp, const char *fmt, ...)
954 {
955 va_list ap;
956
957 KASSERT(ifp != NULL);
958
959 va_start(ap, fmt);
960 aprint_naive_internal(ifp->if_xname, fmt, ap);
961 va_end(ap);
962 }
963
964 /*
965 * aprint_verbose: Send to console only if AB_VERBOSE. Always
966 * goes to the log.
967 */
968 static void
969 aprint_verbose_internal(const char *prefix, const char *fmt, va_list ap)
970 {
971 int flags = TOLOG;
972
973 if (boothowto & AB_VERBOSE)
974 flags |= TOCONS;
975
976 kprintf_lock();
977
978 if (prefix)
979 kprintf_internal("%s: ", flags, NULL, NULL, prefix);
980 kprintf(fmt, flags, NULL, NULL, ap);
981
982 kprintf_unlock();
983
984 if (!panicstr)
985 logwakeup();
986 }
987
988 void
989 aprint_verbose(const char *fmt, ...)
990 {
991 va_list ap;
992
993 va_start(ap, fmt);
994 aprint_verbose_internal(NULL, fmt, ap);
995 va_end(ap);
996 }
997
998 void
999 aprint_verbose_dev(device_t dv, const char *fmt, ...)
1000 {
1001 va_list ap;
1002
1003 KASSERT(dv != NULL);
1004
1005 va_start(ap, fmt);
1006 aprint_verbose_internal(device_xname(dv), fmt, ap);
1007 va_end(ap);
1008 }
1009
1010 void
1011 aprint_verbose_ifnet(struct ifnet *ifp, const char *fmt, ...)
1012 {
1013 va_list ap;
1014
1015 KASSERT(ifp != NULL);
1016
1017 va_start(ap, fmt);
1018 aprint_verbose_internal(ifp->if_xname, fmt, ap);
1019 va_end(ap);
1020 }
1021
1022 /*
1023 * aprint_debug: Send to console and log only if AB_DEBUG.
1024 */
1025 static void
1026 aprint_debug_internal(const char *prefix, const char *fmt, va_list ap)
1027 {
1028 if ((boothowto & AB_DEBUG) == 0)
1029 return;
1030
1031 kprintf_lock();
1032
1033 if (prefix)
1034 kprintf_internal("%s: ", TOCONS | TOLOG, NULL, NULL, prefix);
1035 kprintf(fmt, TOCONS | TOLOG, NULL, NULL, ap);
1036
1037 kprintf_unlock();
1038 }
1039
1040 void
1041 aprint_debug(const char *fmt, ...)
1042 {
1043 va_list ap;
1044
1045 va_start(ap, fmt);
1046 aprint_debug_internal(NULL, fmt, ap);
1047 va_end(ap);
1048 }
1049
1050 void
1051 aprint_debug_dev(device_t dv, const char *fmt, ...)
1052 {
1053 va_list ap;
1054
1055 KASSERT(dv != NULL);
1056
1057 va_start(ap, fmt);
1058 aprint_debug_internal(device_xname(dv), fmt, ap);
1059 va_end(ap);
1060 }
1061
1062 void
1063 aprint_debug_ifnet(struct ifnet *ifp, const char *fmt, ...)
1064 {
1065 va_list ap;
1066
1067 KASSERT(ifp != NULL);
1068
1069 va_start(ap, fmt);
1070 aprint_debug_internal(ifp->if_xname, fmt, ap);
1071 va_end(ap);
1072 }
1073
1074 void
1075 vprintf_flags(int flags, const char *fmt, va_list ap)
1076 {
1077 kprintf_lock();
1078 kprintf(fmt, flags, NULL, NULL, ap);
1079 kprintf_unlock();
1080 }
1081
1082 void
1083 printf_flags(int flags, const char *fmt, ...)
1084 {
1085 va_list ap;
1086
1087 va_start(ap, fmt);
1088 vprintf_flags(flags, fmt, ap);
1089 va_end(ap);
1090 }
1091
1092 void
1093 printf_tolog(const char *fmt, ...)
1094 {
1095 va_list ap;
1096
1097 va_start(ap, fmt);
1098 vprintf_flags(TOLOG, fmt, ap);
1099 va_end(ap);
1100 }
1101
1102 /*
1103 * printf_nolog: Like printf(), but does not send message to the log.
1104 */
1105
1106 void
1107 printf_nolog(const char *fmt, ...)
1108 {
1109 va_list ap;
1110
1111 va_start(ap, fmt);
1112 vprintf_flags(TOCONS, fmt, ap);
1113 va_end(ap);
1114 }
1115
1116 /*
1117 * normal kernel printf functions: printf, vprintf, snprintf, vsnprintf
1118 */
1119
1120 /*
1121 * printf: print a message to the console and the log
1122 */
1123 void
1124 printf(const char *fmt, ...)
1125 {
1126 va_list ap;
1127
1128 va_start(ap, fmt);
1129 vprintf_flags(TOCONS | TOLOG, fmt, ap);
1130 va_end(ap);
1131 }
1132
1133 /*
1134 * vprintf: print a message to the console and the log [already have
1135 * va_list]
1136 */
1137
1138 void
1139 vprintf(const char *fmt, va_list ap)
1140 {
1141 vprintf_flags(TOCONS | TOLOG, fmt, ap);
1142
1143 if (!panicstr)
1144 logwakeup();
1145 }
1146
1147 /*
1148 * snprintf: print a message to a buffer
1149 */
1150 int
1151 snprintf(char *bf, size_t size, const char *fmt, ...)
1152 {
1153 int retval;
1154 va_list ap;
1155
1156 va_start(ap, fmt);
1157 retval = vsnprintf(bf, size, fmt, ap);
1158 va_end(ap);
1159
1160 return retval;
1161 }
1162
1163 /*
1164 * vsnprintf: print a message to a buffer [already have va_list]
1165 */
1166 int
1167 vsnprintf(char *bf, size_t size, const char *fmt, va_list ap)
1168 {
1169 int retval;
1170 char *p;
1171
1172 p = bf + size;
1173 retval = kprintf(fmt, TOBUFONLY, &p, bf, ap);
1174 if (bf && size > 0) {
1175 /* nul terminate */
1176 if (size <= (size_t)retval)
1177 bf[size - 1] = '\0';
1178 else
1179 bf[retval] = '\0';
1180 }
1181 return retval;
1182 }
1183
1184 /*
1185 * kprintf: scaled down version of printf(3).
1186 *
1187 * this version based on vfprintf() from libc which was derived from
1188 * software contributed to Berkeley by Chris Torek.
1189 *
1190 * NOTE: The kprintf mutex must be held if we're going TOBUF or TOCONS!
1191 */
1192
1193 /*
1194 * macros for converting digits to letters and vice versa
1195 */
1196 #define to_digit(c) ((c) - '0')
1197 #define is_digit(c) ((unsigned)to_digit(c) <= 9)
1198 #define to_char(n) ((n) + '0')
1199
1200 /*
1201 * flags used during conversion.
1202 */
1203 #define ALT 0x001 /* alternate form */
1204 #define HEXPREFIX 0x002 /* add 0x or 0X prefix */
1205 #define LADJUST 0x004 /* left adjustment */
1206 #define LONGDBL 0x008 /* long double; unimplemented */
1207 #define LONGINT 0x010 /* long integer */
1208 #define QUADINT 0x020 /* quad integer */
1209 #define SHORTINT 0x040 /* short integer */
1210 #define MAXINT 0x080 /* intmax_t */
1211 #define PTRINT 0x100 /* intptr_t */
1212 #define SIZEINT 0x200 /* size_t */
1213 #define ZEROPAD 0x400 /* zero (as opposed to blank) pad */
1214 #define FPT 0x800 /* Floating point number */
1215
1216 /*
1217 * To extend shorts properly, we need both signed and unsigned
1218 * argument extraction methods.
1219 */
1220 #define SARG() \
1221 (flags&MAXINT ? va_arg(ap, intmax_t) : \
1222 flags&PTRINT ? va_arg(ap, intptr_t) : \
1223 flags&SIZEINT ? va_arg(ap, ssize_t) : /* XXX */ \
1224 flags&QUADINT ? va_arg(ap, quad_t) : \
1225 flags&LONGINT ? va_arg(ap, long) : \
1226 flags&SHORTINT ? (long)(short)va_arg(ap, int) : \
1227 (long)va_arg(ap, int))
1228 #define UARG() \
1229 (flags&MAXINT ? va_arg(ap, uintmax_t) : \
1230 flags&PTRINT ? va_arg(ap, uintptr_t) : \
1231 flags&SIZEINT ? va_arg(ap, size_t) : \
1232 flags&QUADINT ? va_arg(ap, u_quad_t) : \
1233 flags&LONGINT ? va_arg(ap, u_long) : \
1234 flags&SHORTINT ? (u_long)(u_short)va_arg(ap, int) : \
1235 (u_long)va_arg(ap, u_int))
1236
1237 #define KPRINTF_PUTCHAR(C) { \
1238 if (oflags == TOBUFONLY) { \
1239 if (sbuf && ((vp == NULL) || (sbuf < tailp))) \
1240 *sbuf++ = (C); \
1241 } else { \
1242 putchar((C), oflags, vp); \
1243 } \
1244 }
1245
1246 void
1247 device_printf(device_t dev, const char *fmt, ...)
1248 {
1249 va_list ap;
1250
1251 va_start(ap, fmt);
1252 printf("%s: ", device_xname(dev));
1253 vprintf(fmt, ap);
1254 va_end(ap);
1255 return;
1256 }
1257
1258 /*
1259 * Guts of kernel printf. Note, we already expect to be in a mutex!
1260 */
1261 int
1262 kprintf(const char *fmt0, int oflags, void *vp, char *sbuf, va_list ap)
1263 {
1264 const char *fmt; /* format string */
1265 int ch; /* character from fmt */
1266 int n; /* handy integer (short term usage) */
1267 char *cp; /* handy char pointer (short term usage) */
1268 int flags; /* flags as above */
1269 int ret; /* return value accumulator */
1270 int width; /* width from format (%8d), or 0 */
1271 int prec; /* precision from format (%.3d), or -1 */
1272 char sign; /* sign prefix (' ', '+', '-', or \0) */
1273
1274 u_quad_t _uquad; /* integer arguments %[diouxX] */
1275 enum { OCT, DEC, HEX } base;/* base for [diouxX] conversion */
1276 int dprec; /* a copy of prec if [diouxX], 0 otherwise */
1277 int realsz; /* field size expanded by dprec */
1278 int size; /* size of converted field or string */
1279 const char *xdigs; /* digits for [xX] conversion */
1280 char bf[KPRINTF_BUFSIZE]; /* space for %c, %[diouxX] */
1281 char *tailp; /* tail pointer for snprintf */
1282
1283 if (oflags == TOBUFONLY && (vp != NULL))
1284 tailp = *(char **)vp;
1285 else
1286 tailp = NULL;
1287
1288 cp = NULL; /* XXX: shutup gcc */
1289 size = 0; /* XXX: shutup gcc */
1290
1291 fmt = fmt0;
1292 ret = 0;
1293
1294 xdigs = NULL; /* XXX: shut up gcc warning */
1295
1296 /*
1297 * Scan the format for conversions (`%' character).
1298 */
1299 for (;;) {
1300 for (; *fmt != '%' && *fmt; fmt++) {
1301 ret++;
1302 KPRINTF_PUTCHAR(*fmt);
1303 }
1304 if (*fmt == 0)
1305 goto done;
1306
1307 fmt++; /* skip over '%' */
1308
1309 flags = 0;
1310 dprec = 0;
1311 width = 0;
1312 prec = -1;
1313 sign = '\0';
1314
1315 rflag: ch = *fmt++;
1316 reswitch: switch (ch) {
1317 case ' ':
1318 /*
1319 * ``If the space and + flags both appear, the space
1320 * flag will be ignored.''
1321 * -- ANSI X3J11
1322 */
1323 if (!sign)
1324 sign = ' ';
1325 goto rflag;
1326 case '#':
1327 flags |= ALT;
1328 goto rflag;
1329 case '*':
1330 /*
1331 * ``A negative field width argument is taken as a
1332 * - flag followed by a positive field width.''
1333 * -- ANSI X3J11
1334 * They don't exclude field widths read from args.
1335 */
1336 if ((width = va_arg(ap, int)) >= 0)
1337 goto rflag;
1338 width = -width;
1339 /* FALLTHROUGH */
1340 case '-':
1341 flags |= LADJUST;
1342 goto rflag;
1343 case '+':
1344 sign = '+';
1345 goto rflag;
1346 case '.':
1347 if ((ch = *fmt++) == '*') {
1348 n = va_arg(ap, int);
1349 prec = n < 0 ? -1 : n;
1350 goto rflag;
1351 }
1352 n = 0;
1353 while (is_digit(ch)) {
1354 n = 10 * n + to_digit(ch);
1355 ch = *fmt++;
1356 }
1357 prec = n < 0 ? -1 : n;
1358 goto reswitch;
1359 case '0':
1360 /*
1361 * ``Note that 0 is taken as a flag, not as the
1362 * beginning of a field width.''
1363 * -- ANSI X3J11
1364 */
1365 flags |= ZEROPAD;
1366 goto rflag;
1367 case '1': case '2': case '3': case '4':
1368 case '5': case '6': case '7': case '8': case '9':
1369 n = 0;
1370 do {
1371 n = 10 * n + to_digit(ch);
1372 ch = *fmt++;
1373 } while (is_digit(ch));
1374 width = n;
1375 goto reswitch;
1376 case 'h':
1377 flags |= SHORTINT;
1378 goto rflag;
1379 case 'j':
1380 flags |= MAXINT;
1381 goto rflag;
1382 case 'l':
1383 if (*fmt == 'l') {
1384 fmt++;
1385 flags |= QUADINT;
1386 } else {
1387 flags |= LONGINT;
1388 }
1389 goto rflag;
1390 case 'q':
1391 flags |= QUADINT;
1392 goto rflag;
1393 case 't':
1394 flags |= PTRINT;
1395 goto rflag;
1396 case 'z':
1397 flags |= SIZEINT;
1398 goto rflag;
1399 case 'c':
1400 *(cp = bf) = va_arg(ap, int);
1401 size = 1;
1402 sign = '\0';
1403 break;
1404 case 'D':
1405 flags |= LONGINT;
1406 /*FALLTHROUGH*/
1407 case 'd':
1408 case 'i':
1409 _uquad = SARG();
1410 if ((quad_t)_uquad < 0) {
1411 _uquad = -_uquad;
1412 sign = '-';
1413 }
1414 base = DEC;
1415 goto number;
1416 case 'n':
1417 if (flags & MAXINT)
1418 *va_arg(ap, intmax_t *) = ret;
1419 else if (flags & PTRINT)
1420 *va_arg(ap, intptr_t *) = ret;
1421 else if (flags & SIZEINT)
1422 *va_arg(ap, ssize_t *) = ret;
1423 else if (flags & QUADINT)
1424 *va_arg(ap, quad_t *) = ret;
1425 else if (flags & LONGINT)
1426 *va_arg(ap, long *) = ret;
1427 else if (flags & SHORTINT)
1428 *va_arg(ap, short *) = ret;
1429 else
1430 *va_arg(ap, int *) = ret;
1431 continue; /* no output */
1432 case 'O':
1433 flags |= LONGINT;
1434 /*FALLTHROUGH*/
1435 case 'o':
1436 _uquad = UARG();
1437 base = OCT;
1438 goto nosign;
1439 case 'p':
1440 /*
1441 * ``The argument shall be a pointer to void. The
1442 * value of the pointer is converted to a sequence
1443 * of printable characters, in an implementation-
1444 * defined manner.''
1445 * -- ANSI X3J11
1446 */
1447 /* NOSTRICT */
1448 _uquad = (u_long)va_arg(ap, void *);
1449 base = HEX;
1450 xdigs = hexdigits;
1451 flags |= HEXPREFIX;
1452 ch = 'x';
1453 goto nosign;
1454 case 's':
1455 if ((cp = va_arg(ap, char *)) == NULL)
1456 /*XXXUNCONST*/
1457 cp = __UNCONST("(null)");
1458 if (prec >= 0) {
1459 /*
1460 * can't use strlen; can only look for the
1461 * NUL in the first `prec' characters, and
1462 * strlen() will go further.
1463 */
1464 char *p = memchr(cp, 0, prec);
1465
1466 if (p != NULL) {
1467 size = p - cp;
1468 if (size > prec)
1469 size = prec;
1470 } else
1471 size = prec;
1472 } else
1473 size = strlen(cp);
1474 sign = '\0';
1475 break;
1476 case 'U':
1477 flags |= LONGINT;
1478 /*FALLTHROUGH*/
1479 case 'u':
1480 _uquad = UARG();
1481 base = DEC;
1482 goto nosign;
1483 case 'X':
1484 xdigs = HEXDIGITS;
1485 goto hex;
1486 case 'x':
1487 xdigs = hexdigits;
1488 hex: _uquad = UARG();
1489 base = HEX;
1490 /* leading 0x/X only if non-zero */
1491 if (flags & ALT && _uquad != 0)
1492 flags |= HEXPREFIX;
1493
1494 /* unsigned conversions */
1495 nosign: sign = '\0';
1496 /*
1497 * ``... diouXx conversions ... if a precision is
1498 * specified, the 0 flag will be ignored.''
1499 * -- ANSI X3J11
1500 */
1501 number: if ((dprec = prec) >= 0)
1502 flags &= ~ZEROPAD;
1503
1504 /*
1505 * ``The result of converting a zero value with an
1506 * explicit precision of zero is no characters.''
1507 * -- ANSI X3J11
1508 */
1509 cp = bf + KPRINTF_BUFSIZE;
1510 if (_uquad != 0 || prec != 0) {
1511 /*
1512 * Unsigned mod is hard, and unsigned mod
1513 * by a constant is easier than that by
1514 * a variable; hence this switch.
1515 */
1516 switch (base) {
1517 case OCT:
1518 do {
1519 *--cp = to_char(_uquad & 7);
1520 _uquad >>= 3;
1521 } while (_uquad);
1522 /* handle octal leading 0 */
1523 if (flags & ALT && *cp != '0')
1524 *--cp = '0';
1525 break;
1526
1527 case DEC:
1528 /* many numbers are 1 digit */
1529 while (_uquad >= 10) {
1530 *--cp = to_char(_uquad % 10);
1531 _uquad /= 10;
1532 }
1533 *--cp = to_char(_uquad);
1534 break;
1535
1536 case HEX:
1537 do {
1538 *--cp = xdigs[_uquad & 15];
1539 _uquad >>= 4;
1540 } while (_uquad);
1541 break;
1542
1543 default:
1544 /*XXXUNCONST*/
1545 cp = __UNCONST("bug in kprintf: bad base");
1546 size = strlen(cp);
1547 goto skipsize;
1548 }
1549 }
1550 size = bf + KPRINTF_BUFSIZE - cp;
1551 skipsize:
1552 break;
1553 default: /* "%?" prints ?, unless ? is NUL */
1554 if (ch == '\0')
1555 goto done;
1556 /* pretend it was %c with argument ch */
1557 cp = bf;
1558 *cp = ch;
1559 size = 1;
1560 sign = '\0';
1561 break;
1562 }
1563
1564 /*
1565 * All reasonable formats wind up here. At this point, `cp'
1566 * points to a string which (if not flags&LADJUST) should be
1567 * padded out to `width' places. If flags&ZEROPAD, it should
1568 * first be prefixed by any sign or other prefix; otherwise,
1569 * it should be blank padded before the prefix is emitted.
1570 * After any left-hand padding and prefixing, emit zeroes
1571 * required by a decimal [diouxX] precision, then print the
1572 * string proper, then emit zeroes required by any leftover
1573 * floating precision; finally, if LADJUST, pad with blanks.
1574 *
1575 * Compute actual size, so we know how much to pad.
1576 * size excludes decimal prec; realsz includes it.
1577 */
1578 realsz = dprec > size ? dprec : size;
1579 if (sign)
1580 realsz++;
1581 else if (flags & HEXPREFIX)
1582 realsz+= 2;
1583
1584 /* adjust ret */
1585 ret += width > realsz ? width : realsz;
1586
1587 /* right-adjusting blank padding */
1588 if ((flags & (LADJUST|ZEROPAD)) == 0) {
1589 n = width - realsz;
1590 while (n-- > 0)
1591 KPRINTF_PUTCHAR(' ');
1592 }
1593
1594 /* prefix */
1595 if (sign) {
1596 KPRINTF_PUTCHAR(sign);
1597 } else if (flags & HEXPREFIX) {
1598 KPRINTF_PUTCHAR('0');
1599 KPRINTF_PUTCHAR(ch);
1600 }
1601
1602 /* right-adjusting zero padding */
1603 if ((flags & (LADJUST|ZEROPAD)) == ZEROPAD) {
1604 n = width - realsz;
1605 while (n-- > 0)
1606 KPRINTF_PUTCHAR('0');
1607 }
1608
1609 /* leading zeroes from decimal precision */
1610 n = dprec - size;
1611 while (n-- > 0)
1612 KPRINTF_PUTCHAR('0');
1613
1614 /* the string or number proper */
1615 for (; size--; cp++)
1616 KPRINTF_PUTCHAR(*cp);
1617 /* left-adjusting padding (always blank) */
1618 if (flags & LADJUST) {
1619 n = width - realsz;
1620 while (n-- > 0)
1621 KPRINTF_PUTCHAR(' ');
1622 }
1623 }
1624
1625 done:
1626 if ((oflags == TOBUFONLY) && (vp != NULL))
1627 *(char **)vp = sbuf;
1628 (*v_flush)();
1629
1630 #ifdef RND_PRINTF
1631 if (!cold) {
1632 struct timespec ts;
1633 (void)nanotime(&ts);
1634 SHA512_Update(&kprnd_sha, (char *)&ts, sizeof(ts));
1635 }
1636 #endif
1637 return ret;
1638 }
1639