Home | History | Annotate | Line # | Download | only in kern
subr_pserialize.c revision 1.10
      1  1.10   msaitoh /*	$NetBSD: subr_pserialize.c,v 1.10 2017/12/28 03:39:48 msaitoh Exp $	*/
      2   1.1  christos 
      3   1.1  christos /*-
      4   1.1  christos  * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
      5   1.1  christos  * All rights reserved.
      6   1.1  christos  *
      7   1.1  christos  * Redistribution and use in source and binary forms, with or without
      8   1.1  christos  * modification, are permitted provided that the following conditions
      9   1.1  christos  * are met:
     10   1.1  christos  * 1. Redistributions of source code must retain the above copyright
     11   1.1  christos  *    notice, this list of conditions and the following disclaimer.
     12   1.1  christos  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1  christos  *    notice, this list of conditions and the following disclaimer in the
     14   1.1  christos  *    documentation and/or other materials provided with the distribution.
     15   1.1  christos  *
     16   1.1  christos  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17   1.1  christos  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18   1.1  christos  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19   1.1  christos  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20   1.1  christos  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21   1.1  christos  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22   1.1  christos  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23   1.1  christos  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24   1.1  christos  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25   1.1  christos  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26   1.1  christos  * POSSIBILITY OF SUCH DAMAGE.
     27   1.1  christos  */
     28   1.1  christos 
     29   1.1  christos /*
     30   1.1  christos  * Passive serialization.
     31   1.1  christos  *
     32   1.1  christos  * Implementation accurately matches the lapsed US patent 4809168, therefore
     33   1.1  christos  * code is patent-free in the United States.  Your use of this code is at
     34   1.1  christos  * your own risk.
     35   1.1  christos  *
     36   1.1  christos  * Note for NetBSD developers: all changes to this source file must be
     37   1.1  christos  * approved by the <core>.
     38   1.1  christos  */
     39   1.1  christos 
     40   1.1  christos #include <sys/cdefs.h>
     41  1.10   msaitoh __KERNEL_RCSID(0, "$NetBSD: subr_pserialize.c,v 1.10 2017/12/28 03:39:48 msaitoh Exp $");
     42   1.1  christos 
     43   1.1  christos #include <sys/param.h>
     44   1.1  christos 
     45   1.1  christos #include <sys/condvar.h>
     46   1.1  christos #include <sys/cpu.h>
     47   1.2        he #include <sys/evcnt.h>
     48   1.1  christos #include <sys/kmem.h>
     49   1.1  christos #include <sys/mutex.h>
     50   1.1  christos #include <sys/pserialize.h>
     51   1.7     rmind #include <sys/proc.h>
     52   1.1  christos #include <sys/queue.h>
     53   1.1  christos #include <sys/xcall.h>
     54   1.1  christos 
     55   1.1  christos struct pserialize {
     56   1.1  christos 	TAILQ_ENTRY(pserialize)	psz_chain;
     57   1.1  christos 	lwp_t *			psz_owner;
     58   1.1  christos 	kcpuset_t *		psz_target;
     59   1.1  christos 	kcpuset_t *		psz_pass;
     60   1.1  christos };
     61   1.1  christos 
     62   1.1  christos static u_int			psz_work_todo	__cacheline_aligned;
     63   1.1  christos static kmutex_t			psz_lock	__cacheline_aligned;
     64   1.1  christos static struct evcnt		psz_ev_excl	__cacheline_aligned;
     65   1.1  christos 
     66   1.1  christos /*
     67   1.1  christos  * As defined in "Method 1":
     68   1.1  christos  *	q0: "0 MP checkpoints have occured".
     69   1.1  christos  *	q1: "1 MP checkpoint has occured".
     70   1.1  christos  *	q2: "2 MP checkpoints have occured".
     71   1.1  christos  */
     72   1.1  christos static TAILQ_HEAD(, pserialize)	psz_queue0	__cacheline_aligned;
     73   1.1  christos static TAILQ_HEAD(, pserialize)	psz_queue1	__cacheline_aligned;
     74   1.1  christos static TAILQ_HEAD(, pserialize)	psz_queue2	__cacheline_aligned;
     75   1.1  christos 
     76   1.9     ozaki #ifdef LOCKDEBUG
     77   1.9     ozaki #include <sys/percpu.h>
     78   1.9     ozaki 
     79   1.9     ozaki static percpu_t		*psz_debug_nreads	__cacheline_aligned;
     80   1.9     ozaki #endif
     81   1.9     ozaki 
     82   1.1  christos /*
     83   1.1  christos  * pserialize_init:
     84   1.1  christos  *
     85   1.1  christos  *	Initialize passive serialization structures.
     86   1.1  christos  */
     87   1.1  christos void
     88   1.1  christos pserialize_init(void)
     89   1.1  christos {
     90   1.1  christos 
     91   1.1  christos 	psz_work_todo = 0;
     92   1.1  christos 	TAILQ_INIT(&psz_queue0);
     93   1.1  christos 	TAILQ_INIT(&psz_queue1);
     94   1.1  christos 	TAILQ_INIT(&psz_queue2);
     95   1.1  christos 	mutex_init(&psz_lock, MUTEX_DEFAULT, IPL_SCHED);
     96   1.1  christos 	evcnt_attach_dynamic(&psz_ev_excl, EVCNT_TYPE_MISC, NULL,
     97   1.1  christos 	    "pserialize", "exclusive access");
     98   1.9     ozaki #ifdef LOCKDEBUG
     99   1.9     ozaki 	psz_debug_nreads = percpu_alloc(sizeof(uint32_t));
    100   1.9     ozaki #endif
    101   1.1  christos }
    102   1.1  christos 
    103   1.1  christos /*
    104   1.1  christos  * pserialize_create:
    105   1.1  christos  *
    106   1.1  christos  *	Create and initialize a passive serialization object.
    107   1.1  christos  */
    108   1.1  christos pserialize_t
    109   1.1  christos pserialize_create(void)
    110   1.1  christos {
    111   1.1  christos 	pserialize_t psz;
    112   1.1  christos 
    113   1.1  christos 	psz = kmem_zalloc(sizeof(struct pserialize), KM_SLEEP);
    114   1.4     rmind 	kcpuset_create(&psz->psz_target, true);
    115   1.4     rmind 	kcpuset_create(&psz->psz_pass, true);
    116   1.1  christos 	psz->psz_owner = NULL;
    117   1.1  christos 
    118   1.1  christos 	return psz;
    119   1.1  christos }
    120   1.1  christos 
    121   1.1  christos /*
    122   1.1  christos  * pserialize_destroy:
    123   1.1  christos  *
    124   1.1  christos  *	Destroy a passive serialization object.
    125   1.1  christos  */
    126   1.1  christos void
    127   1.1  christos pserialize_destroy(pserialize_t psz)
    128   1.1  christos {
    129   1.1  christos 
    130   1.1  christos 	KASSERT(psz->psz_owner == NULL);
    131   1.1  christos 
    132   1.1  christos 	kcpuset_destroy(psz->psz_target);
    133   1.1  christos 	kcpuset_destroy(psz->psz_pass);
    134   1.1  christos 	kmem_free(psz, sizeof(struct pserialize));
    135   1.1  christos }
    136   1.1  christos 
    137   1.1  christos /*
    138   1.1  christos  * pserialize_perform:
    139   1.1  christos  *
    140   1.1  christos  *	Perform the write side of passive serialization.  The calling
    141   1.1  christos  *	thread holds an exclusive lock on the data object(s) being updated.
    142   1.1  christos  *	We wait until every processor in the system has made at least two
    143   1.8  dholland  *	passes through cpu_switchto().  The wait is made with the caller's
    144   1.1  christos  *	update lock held, but is short term.
    145   1.1  christos  */
    146   1.1  christos void
    147   1.1  christos pserialize_perform(pserialize_t psz)
    148   1.1  christos {
    149   1.6     rmind 	uint64_t xc;
    150   1.1  christos 
    151   1.1  christos 	KASSERT(!cpu_intr_p());
    152   1.1  christos 	KASSERT(!cpu_softintr_p());
    153   1.1  christos 
    154   1.1  christos 	if (__predict_false(panicstr != NULL)) {
    155   1.1  christos 		return;
    156   1.1  christos 	}
    157   1.1  christos 	KASSERT(psz->psz_owner == NULL);
    158   1.1  christos 	KASSERT(ncpu > 0);
    159   1.1  christos 
    160  1.10   msaitoh 	if (__predict_false(mp_online == false)) {
    161  1.10   msaitoh 		psz_ev_excl.ev_count++;
    162  1.10   msaitoh 		return;
    163  1.10   msaitoh 	}
    164  1.10   msaitoh 
    165   1.1  christos 	/*
    166   1.1  christos 	 * Set up the object and put it onto the queue.  The lock
    167   1.1  christos 	 * activity here provides the necessary memory barrier to
    168   1.1  christos 	 * make the caller's data update completely visible to
    169   1.1  christos 	 * other processors.
    170   1.1  christos 	 */
    171   1.1  christos 	psz->psz_owner = curlwp;
    172   1.5     rmind 	kcpuset_copy(psz->psz_target, kcpuset_running);
    173   1.1  christos 	kcpuset_zero(psz->psz_pass);
    174   1.1  christos 
    175   1.1  christos 	mutex_spin_enter(&psz_lock);
    176   1.1  christos 	TAILQ_INSERT_TAIL(&psz_queue0, psz, psz_chain);
    177   1.1  christos 	psz_work_todo++;
    178   1.1  christos 
    179   1.7     rmind 	do {
    180   1.7     rmind 		mutex_spin_exit(&psz_lock);
    181   1.7     rmind 
    182   1.7     rmind 		/*
    183   1.7     rmind 		 * Force some context switch activity on every CPU, as
    184   1.7     rmind 		 * the system may not be busy.  Pause to not flood.
    185   1.7     rmind 		 */
    186   1.7     rmind 		xc = xc_broadcast(XC_HIGHPRI, (xcfunc_t)nullop, NULL, NULL);
    187   1.7     rmind 		xc_wait(xc);
    188   1.7     rmind 		kpause("psrlz", false, 1, NULL);
    189   1.6     rmind 
    190   1.7     rmind 		mutex_spin_enter(&psz_lock);
    191   1.7     rmind 	} while (!kcpuset_iszero(psz->psz_target));
    192   1.1  christos 
    193   1.1  christos 	psz_ev_excl.ev_count++;
    194   1.1  christos 	mutex_spin_exit(&psz_lock);
    195   1.1  christos 
    196   1.1  christos 	psz->psz_owner = NULL;
    197   1.1  christos }
    198   1.1  christos 
    199   1.1  christos int
    200   1.1  christos pserialize_read_enter(void)
    201   1.1  christos {
    202   1.9     ozaki 	int s;
    203   1.1  christos 
    204   1.1  christos 	KASSERT(!cpu_intr_p());
    205   1.9     ozaki 	s = splsoftserial();
    206   1.9     ozaki #ifdef LOCKDEBUG
    207   1.9     ozaki 	{
    208   1.9     ozaki 		uint32_t *nreads;
    209   1.9     ozaki 		nreads = percpu_getref(psz_debug_nreads);
    210   1.9     ozaki 		(*nreads)++;
    211   1.9     ozaki 		if (*nreads == 0)
    212   1.9     ozaki 			panic("nreads overflow");
    213   1.9     ozaki 		percpu_putref(psz_debug_nreads);
    214   1.9     ozaki 	}
    215   1.9     ozaki #endif
    216   1.9     ozaki 	return s;
    217   1.1  christos }
    218   1.1  christos 
    219   1.1  christos void
    220   1.1  christos pserialize_read_exit(int s)
    221   1.1  christos {
    222   1.1  christos 
    223   1.9     ozaki #ifdef LOCKDEBUG
    224   1.9     ozaki 	{
    225   1.9     ozaki 		uint32_t *nreads;
    226   1.9     ozaki 		nreads = percpu_getref(psz_debug_nreads);
    227   1.9     ozaki 		(*nreads)--;
    228   1.9     ozaki 		if (*nreads == UINT_MAX)
    229   1.9     ozaki 			panic("nreads underflow");
    230   1.9     ozaki 		percpu_putref(psz_debug_nreads);
    231   1.9     ozaki 	}
    232   1.9     ozaki #endif
    233   1.1  christos 	splx(s);
    234   1.1  christos }
    235   1.1  christos 
    236   1.1  christos /*
    237   1.1  christos  * pserialize_switchpoint:
    238   1.1  christos  *
    239   1.1  christos  *	Monitor system context switch activity.  Called from machine
    240   1.1  christos  *	independent code after mi_switch() returns.
    241   1.1  christos  */
    242   1.1  christos void
    243   1.1  christos pserialize_switchpoint(void)
    244   1.1  christos {
    245   1.1  christos 	pserialize_t psz, next;
    246   1.1  christos 	cpuid_t cid;
    247   1.1  christos 
    248   1.9     ozaki 	/* We must to ensure not to come here from inside a read section. */
    249   1.9     ozaki 	KASSERT(pserialize_not_in_read_section());
    250   1.9     ozaki 
    251   1.1  christos 	/*
    252   1.1  christos 	 * If no updates pending, bail out.  No need to lock in order to
    253   1.1  christos 	 * test psz_work_todo; the only ill effect of missing an update
    254   1.1  christos 	 * would be to delay LWPs waiting in pserialize_perform().  That
    255   1.1  christos 	 * will not happen because updates are on the queue before an
    256   1.1  christos 	 * xcall is generated (serialization) to tickle every CPU.
    257   1.1  christos 	 */
    258   1.1  christos 	if (__predict_true(psz_work_todo == 0)) {
    259   1.1  christos 		return;
    260   1.1  christos 	}
    261   1.1  christos 	mutex_spin_enter(&psz_lock);
    262   1.1  christos 	cid = cpu_index(curcpu());
    263   1.1  christos 
    264   1.1  christos 	/*
    265   1.1  christos 	 * At first, scan through the second queue and update each request,
    266   1.1  christos 	 * if passed all processors, then transfer to the third queue.
    267   1.1  christos 	 */
    268   1.1  christos 	for (psz = TAILQ_FIRST(&psz_queue1); psz != NULL; psz = next) {
    269   1.1  christos 		next = TAILQ_NEXT(psz, psz_chain);
    270   1.7     rmind 		kcpuset_set(psz->psz_pass, cid);
    271   1.1  christos 		if (!kcpuset_match(psz->psz_pass, psz->psz_target)) {
    272   1.1  christos 			continue;
    273   1.1  christos 		}
    274   1.1  christos 		kcpuset_zero(psz->psz_pass);
    275   1.1  christos 		TAILQ_REMOVE(&psz_queue1, psz, psz_chain);
    276   1.1  christos 		TAILQ_INSERT_TAIL(&psz_queue2, psz, psz_chain);
    277   1.1  christos 	}
    278   1.1  christos 	/*
    279   1.1  christos 	 * Scan through the first queue and update each request,
    280   1.1  christos 	 * if passed all processors, then move to the second queue.
    281   1.1  christos 	 */
    282   1.1  christos 	for (psz = TAILQ_FIRST(&psz_queue0); psz != NULL; psz = next) {
    283   1.1  christos 		next = TAILQ_NEXT(psz, psz_chain);
    284   1.7     rmind 		kcpuset_set(psz->psz_pass, cid);
    285   1.1  christos 		if (!kcpuset_match(psz->psz_pass, psz->psz_target)) {
    286   1.1  christos 			continue;
    287   1.1  christos 		}
    288   1.1  christos 		kcpuset_zero(psz->psz_pass);
    289   1.1  christos 		TAILQ_REMOVE(&psz_queue0, psz, psz_chain);
    290   1.1  christos 		TAILQ_INSERT_TAIL(&psz_queue1, psz, psz_chain);
    291   1.1  christos 	}
    292   1.1  christos 	/*
    293   1.1  christos 	 * Process the third queue: entries have been seen twice on every
    294   1.1  christos 	 * processor, remove from the queue and notify the updating thread.
    295   1.1  christos 	 */
    296   1.1  christos 	while ((psz = TAILQ_FIRST(&psz_queue2)) != NULL) {
    297   1.1  christos 		TAILQ_REMOVE(&psz_queue2, psz, psz_chain);
    298   1.1  christos 		kcpuset_zero(psz->psz_target);
    299   1.1  christos 		psz_work_todo--;
    300   1.1  christos 	}
    301   1.1  christos 	mutex_spin_exit(&psz_lock);
    302   1.1  christos }
    303   1.9     ozaki 
    304   1.9     ozaki /*
    305   1.9     ozaki  * pserialize_in_read_section:
    306   1.9     ozaki  *
    307   1.9     ozaki  *   True if the caller is in a pserialize read section.  To be used only
    308   1.9     ozaki  *   for diagnostic assertions where we want to guarantee the condition like:
    309   1.9     ozaki  *
    310   1.9     ozaki  *     KASSERT(pserialize_in_read_section());
    311   1.9     ozaki  */
    312   1.9     ozaki bool
    313   1.9     ozaki pserialize_in_read_section(void)
    314   1.9     ozaki {
    315   1.9     ozaki #ifdef LOCKDEBUG
    316   1.9     ozaki 	uint32_t *nreads;
    317   1.9     ozaki 	bool in;
    318   1.9     ozaki 
    319   1.9     ozaki 	/* Not initialized yet */
    320   1.9     ozaki 	if (__predict_false(psz_debug_nreads == NULL))
    321   1.9     ozaki 		return true;
    322   1.9     ozaki 
    323   1.9     ozaki 	nreads = percpu_getref(psz_debug_nreads);
    324   1.9     ozaki 	in = *nreads != 0;
    325   1.9     ozaki 	percpu_putref(psz_debug_nreads);
    326   1.9     ozaki 
    327   1.9     ozaki 	return in;
    328   1.9     ozaki #else
    329   1.9     ozaki 	return true;
    330   1.9     ozaki #endif
    331   1.9     ozaki }
    332   1.9     ozaki 
    333   1.9     ozaki /*
    334   1.9     ozaki  * pserialize_not_in_read_section:
    335   1.9     ozaki  *
    336   1.9     ozaki  *   True if the caller is not in a pserialize read section.  To be used only
    337   1.9     ozaki  *   for diagnostic assertions where we want to guarantee the condition like:
    338   1.9     ozaki  *
    339   1.9     ozaki  *     KASSERT(pserialize_not_in_read_section());
    340   1.9     ozaki  */
    341   1.9     ozaki bool
    342   1.9     ozaki pserialize_not_in_read_section(void)
    343   1.9     ozaki {
    344   1.9     ozaki #ifdef LOCKDEBUG
    345   1.9     ozaki 	uint32_t *nreads;
    346   1.9     ozaki 	bool notin;
    347   1.9     ozaki 
    348   1.9     ozaki 	/* Not initialized yet */
    349   1.9     ozaki 	if (__predict_false(psz_debug_nreads == NULL))
    350   1.9     ozaki 		return true;
    351   1.9     ozaki 
    352   1.9     ozaki 	nreads = percpu_getref(psz_debug_nreads);
    353   1.9     ozaki 	notin = *nreads == 0;
    354   1.9     ozaki 	percpu_putref(psz_debug_nreads);
    355   1.9     ozaki 
    356   1.9     ozaki 	return notin;
    357   1.9     ozaki #else
    358   1.9     ozaki 	return true;
    359   1.9     ozaki #endif
    360   1.9     ozaki }
    361