Home | History | Annotate | Line # | Download | only in kern
subr_pserialize.c revision 1.9
      1 /*	$NetBSD: subr_pserialize.c,v 1.9 2017/11/21 08:49:14 ozaki-r Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     17  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     18  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     19  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     20  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     21  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     22  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     23  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     24  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     25  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     26  * POSSIBILITY OF SUCH DAMAGE.
     27  */
     28 
     29 /*
     30  * Passive serialization.
     31  *
     32  * Implementation accurately matches the lapsed US patent 4809168, therefore
     33  * code is patent-free in the United States.  Your use of this code is at
     34  * your own risk.
     35  *
     36  * Note for NetBSD developers: all changes to this source file must be
     37  * approved by the <core>.
     38  */
     39 
     40 #include <sys/cdefs.h>
     41 __KERNEL_RCSID(0, "$NetBSD: subr_pserialize.c,v 1.9 2017/11/21 08:49:14 ozaki-r Exp $");
     42 
     43 #include <sys/param.h>
     44 
     45 #include <sys/condvar.h>
     46 #include <sys/cpu.h>
     47 #include <sys/evcnt.h>
     48 #include <sys/kmem.h>
     49 #include <sys/mutex.h>
     50 #include <sys/pserialize.h>
     51 #include <sys/proc.h>
     52 #include <sys/queue.h>
     53 #include <sys/xcall.h>
     54 
     55 struct pserialize {
     56 	TAILQ_ENTRY(pserialize)	psz_chain;
     57 	lwp_t *			psz_owner;
     58 	kcpuset_t *		psz_target;
     59 	kcpuset_t *		psz_pass;
     60 };
     61 
     62 static u_int			psz_work_todo	__cacheline_aligned;
     63 static kmutex_t			psz_lock	__cacheline_aligned;
     64 static struct evcnt		psz_ev_excl	__cacheline_aligned;
     65 
     66 /*
     67  * As defined in "Method 1":
     68  *	q0: "0 MP checkpoints have occured".
     69  *	q1: "1 MP checkpoint has occured".
     70  *	q2: "2 MP checkpoints have occured".
     71  */
     72 static TAILQ_HEAD(, pserialize)	psz_queue0	__cacheline_aligned;
     73 static TAILQ_HEAD(, pserialize)	psz_queue1	__cacheline_aligned;
     74 static TAILQ_HEAD(, pserialize)	psz_queue2	__cacheline_aligned;
     75 
     76 #ifdef LOCKDEBUG
     77 #include <sys/percpu.h>
     78 
     79 static percpu_t		*psz_debug_nreads	__cacheline_aligned;
     80 #endif
     81 
     82 /*
     83  * pserialize_init:
     84  *
     85  *	Initialize passive serialization structures.
     86  */
     87 void
     88 pserialize_init(void)
     89 {
     90 
     91 	psz_work_todo = 0;
     92 	TAILQ_INIT(&psz_queue0);
     93 	TAILQ_INIT(&psz_queue1);
     94 	TAILQ_INIT(&psz_queue2);
     95 	mutex_init(&psz_lock, MUTEX_DEFAULT, IPL_SCHED);
     96 	evcnt_attach_dynamic(&psz_ev_excl, EVCNT_TYPE_MISC, NULL,
     97 	    "pserialize", "exclusive access");
     98 #ifdef LOCKDEBUG
     99 	psz_debug_nreads = percpu_alloc(sizeof(uint32_t));
    100 #endif
    101 }
    102 
    103 /*
    104  * pserialize_create:
    105  *
    106  *	Create and initialize a passive serialization object.
    107  */
    108 pserialize_t
    109 pserialize_create(void)
    110 {
    111 	pserialize_t psz;
    112 
    113 	psz = kmem_zalloc(sizeof(struct pserialize), KM_SLEEP);
    114 	kcpuset_create(&psz->psz_target, true);
    115 	kcpuset_create(&psz->psz_pass, true);
    116 	psz->psz_owner = NULL;
    117 
    118 	return psz;
    119 }
    120 
    121 /*
    122  * pserialize_destroy:
    123  *
    124  *	Destroy a passive serialization object.
    125  */
    126 void
    127 pserialize_destroy(pserialize_t psz)
    128 {
    129 
    130 	KASSERT(psz->psz_owner == NULL);
    131 
    132 	kcpuset_destroy(psz->psz_target);
    133 	kcpuset_destroy(psz->psz_pass);
    134 	kmem_free(psz, sizeof(struct pserialize));
    135 }
    136 
    137 /*
    138  * pserialize_perform:
    139  *
    140  *	Perform the write side of passive serialization.  The calling
    141  *	thread holds an exclusive lock on the data object(s) being updated.
    142  *	We wait until every processor in the system has made at least two
    143  *	passes through cpu_switchto().  The wait is made with the caller's
    144  *	update lock held, but is short term.
    145  */
    146 void
    147 pserialize_perform(pserialize_t psz)
    148 {
    149 	uint64_t xc;
    150 
    151 	KASSERT(!cpu_intr_p());
    152 	KASSERT(!cpu_softintr_p());
    153 
    154 	if (__predict_false(panicstr != NULL)) {
    155 		return;
    156 	}
    157 	KASSERT(psz->psz_owner == NULL);
    158 	KASSERT(ncpu > 0);
    159 
    160 	/*
    161 	 * Set up the object and put it onto the queue.  The lock
    162 	 * activity here provides the necessary memory barrier to
    163 	 * make the caller's data update completely visible to
    164 	 * other processors.
    165 	 */
    166 	psz->psz_owner = curlwp;
    167 	kcpuset_copy(psz->psz_target, kcpuset_running);
    168 	kcpuset_zero(psz->psz_pass);
    169 
    170 	mutex_spin_enter(&psz_lock);
    171 	TAILQ_INSERT_TAIL(&psz_queue0, psz, psz_chain);
    172 	psz_work_todo++;
    173 
    174 	do {
    175 		mutex_spin_exit(&psz_lock);
    176 
    177 		/*
    178 		 * Force some context switch activity on every CPU, as
    179 		 * the system may not be busy.  Pause to not flood.
    180 		 */
    181 		xc = xc_broadcast(XC_HIGHPRI, (xcfunc_t)nullop, NULL, NULL);
    182 		xc_wait(xc);
    183 		kpause("psrlz", false, 1, NULL);
    184 
    185 		mutex_spin_enter(&psz_lock);
    186 	} while (!kcpuset_iszero(psz->psz_target));
    187 
    188 	psz_ev_excl.ev_count++;
    189 	mutex_spin_exit(&psz_lock);
    190 
    191 	psz->psz_owner = NULL;
    192 }
    193 
    194 int
    195 pserialize_read_enter(void)
    196 {
    197 	int s;
    198 
    199 	KASSERT(!cpu_intr_p());
    200 	s = splsoftserial();
    201 #ifdef LOCKDEBUG
    202 	{
    203 		uint32_t *nreads;
    204 		nreads = percpu_getref(psz_debug_nreads);
    205 		(*nreads)++;
    206 		if (*nreads == 0)
    207 			panic("nreads overflow");
    208 		percpu_putref(psz_debug_nreads);
    209 	}
    210 #endif
    211 	return s;
    212 }
    213 
    214 void
    215 pserialize_read_exit(int s)
    216 {
    217 
    218 #ifdef LOCKDEBUG
    219 	{
    220 		uint32_t *nreads;
    221 		nreads = percpu_getref(psz_debug_nreads);
    222 		(*nreads)--;
    223 		if (*nreads == UINT_MAX)
    224 			panic("nreads underflow");
    225 		percpu_putref(psz_debug_nreads);
    226 	}
    227 #endif
    228 	splx(s);
    229 }
    230 
    231 /*
    232  * pserialize_switchpoint:
    233  *
    234  *	Monitor system context switch activity.  Called from machine
    235  *	independent code after mi_switch() returns.
    236  */
    237 void
    238 pserialize_switchpoint(void)
    239 {
    240 	pserialize_t psz, next;
    241 	cpuid_t cid;
    242 
    243 	/* We must to ensure not to come here from inside a read section. */
    244 	KASSERT(pserialize_not_in_read_section());
    245 
    246 	/*
    247 	 * If no updates pending, bail out.  No need to lock in order to
    248 	 * test psz_work_todo; the only ill effect of missing an update
    249 	 * would be to delay LWPs waiting in pserialize_perform().  That
    250 	 * will not happen because updates are on the queue before an
    251 	 * xcall is generated (serialization) to tickle every CPU.
    252 	 */
    253 	if (__predict_true(psz_work_todo == 0)) {
    254 		return;
    255 	}
    256 	mutex_spin_enter(&psz_lock);
    257 	cid = cpu_index(curcpu());
    258 
    259 	/*
    260 	 * At first, scan through the second queue and update each request,
    261 	 * if passed all processors, then transfer to the third queue.
    262 	 */
    263 	for (psz = TAILQ_FIRST(&psz_queue1); psz != NULL; psz = next) {
    264 		next = TAILQ_NEXT(psz, psz_chain);
    265 		kcpuset_set(psz->psz_pass, cid);
    266 		if (!kcpuset_match(psz->psz_pass, psz->psz_target)) {
    267 			continue;
    268 		}
    269 		kcpuset_zero(psz->psz_pass);
    270 		TAILQ_REMOVE(&psz_queue1, psz, psz_chain);
    271 		TAILQ_INSERT_TAIL(&psz_queue2, psz, psz_chain);
    272 	}
    273 	/*
    274 	 * Scan through the first queue and update each request,
    275 	 * if passed all processors, then move to the second queue.
    276 	 */
    277 	for (psz = TAILQ_FIRST(&psz_queue0); psz != NULL; psz = next) {
    278 		next = TAILQ_NEXT(psz, psz_chain);
    279 		kcpuset_set(psz->psz_pass, cid);
    280 		if (!kcpuset_match(psz->psz_pass, psz->psz_target)) {
    281 			continue;
    282 		}
    283 		kcpuset_zero(psz->psz_pass);
    284 		TAILQ_REMOVE(&psz_queue0, psz, psz_chain);
    285 		TAILQ_INSERT_TAIL(&psz_queue1, psz, psz_chain);
    286 	}
    287 	/*
    288 	 * Process the third queue: entries have been seen twice on every
    289 	 * processor, remove from the queue and notify the updating thread.
    290 	 */
    291 	while ((psz = TAILQ_FIRST(&psz_queue2)) != NULL) {
    292 		TAILQ_REMOVE(&psz_queue2, psz, psz_chain);
    293 		kcpuset_zero(psz->psz_target);
    294 		psz_work_todo--;
    295 	}
    296 	mutex_spin_exit(&psz_lock);
    297 }
    298 
    299 /*
    300  * pserialize_in_read_section:
    301  *
    302  *   True if the caller is in a pserialize read section.  To be used only
    303  *   for diagnostic assertions where we want to guarantee the condition like:
    304  *
    305  *     KASSERT(pserialize_in_read_section());
    306  */
    307 bool
    308 pserialize_in_read_section(void)
    309 {
    310 #ifdef LOCKDEBUG
    311 	uint32_t *nreads;
    312 	bool in;
    313 
    314 	/* Not initialized yet */
    315 	if (__predict_false(psz_debug_nreads == NULL))
    316 		return true;
    317 
    318 	nreads = percpu_getref(psz_debug_nreads);
    319 	in = *nreads != 0;
    320 	percpu_putref(psz_debug_nreads);
    321 
    322 	return in;
    323 #else
    324 	return true;
    325 #endif
    326 }
    327 
    328 /*
    329  * pserialize_not_in_read_section:
    330  *
    331  *   True if the caller is not in a pserialize read section.  To be used only
    332  *   for diagnostic assertions where we want to guarantee the condition like:
    333  *
    334  *     KASSERT(pserialize_not_in_read_section());
    335  */
    336 bool
    337 pserialize_not_in_read_section(void)
    338 {
    339 #ifdef LOCKDEBUG
    340 	uint32_t *nreads;
    341 	bool notin;
    342 
    343 	/* Not initialized yet */
    344 	if (__predict_false(psz_debug_nreads == NULL))
    345 		return true;
    346 
    347 	nreads = percpu_getref(psz_debug_nreads);
    348 	notin = *nreads == 0;
    349 	percpu_putref(psz_debug_nreads);
    350 
    351 	return notin;
    352 #else
    353 	return true;
    354 #endif
    355 }
    356