Home | History | Annotate | Line # | Download | only in kern
subr_thmap.c revision 1.1
      1  1.1  rmind /*-
      2  1.1  rmind  * Copyright (c) 2018 Mindaugas Rasiukevicius <rmind at noxt eu>
      3  1.1  rmind  * All rights reserved.
      4  1.1  rmind  *
      5  1.1  rmind  * Redistribution and use in source and binary forms, with or without
      6  1.1  rmind  * modification, are permitted provided that the following conditions
      7  1.1  rmind  * are met:
      8  1.1  rmind  * 1. Redistributions of source code must retain the above copyright
      9  1.1  rmind  *    notice, this list of conditions and the following disclaimer.
     10  1.1  rmind  * 2. Redistributions in binary form must reproduce the above copyright
     11  1.1  rmind  *    notice, this list of conditions and the following disclaimer in the
     12  1.1  rmind  *    documentation and/or other materials provided with the distribution.
     13  1.1  rmind  *
     14  1.1  rmind  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     15  1.1  rmind  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     16  1.1  rmind  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     17  1.1  rmind  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     18  1.1  rmind  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     19  1.1  rmind  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     20  1.1  rmind  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     21  1.1  rmind  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     22  1.1  rmind  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     23  1.1  rmind  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     24  1.1  rmind  * SUCH DAMAGE.
     25  1.1  rmind  *
     26  1.1  rmind  * Upstream: https://github.com/rmind/thmap/
     27  1.1  rmind  */
     28  1.1  rmind 
     29  1.1  rmind /*
     30  1.1  rmind  * Concurrent trie-hash map.
     31  1.1  rmind  *
     32  1.1  rmind  * The data structure is conceptually a radix trie on hashed keys.
     33  1.1  rmind  * Keys are hashed using a 32-bit function.  The root level is a special
     34  1.1  rmind  * case: it is managed using the compare-and-swap (CAS) atomic operation
     35  1.1  rmind  * and has a fanout of 64.  The subsequent levels are constructed using
     36  1.1  rmind  * intermediate nodes with a fanout of 16 (using 4 bits).  As more levels
     37  1.1  rmind  * are created, more blocks of the 32-bit hash value might be generated
     38  1.1  rmind  * by incrementing the seed parameter of the hash function.
     39  1.1  rmind  *
     40  1.1  rmind  * Concurrency
     41  1.1  rmind  *
     42  1.1  rmind  * - READERS: Descending is simply walking through the slot values of
     43  1.1  rmind  *   the intermediate nodes.  It is lock-free as there is no intermediate
     44  1.1  rmind  *   state: the slot is either empty or has a pointer to the child node.
     45  1.1  rmind  *   The main assumptions here are the following:
     46  1.1  rmind  *
     47  1.1  rmind  *   i) modifications must preserve consistency with the respect to the
     48  1.1  rmind  *   readers i.e. the readers can only see the valid node values;
     49  1.1  rmind  *
     50  1.1  rmind  *   ii) any invalid view must "fail" the reads, e.g. by making them
     51  1.1  rmind  *   re-try from the root; this is a case for deletions and is achieved
     52  1.1  rmind  *   using the NODE_DELETED flag.
     53  1.1  rmind  *
     54  1.1  rmind  *   iii) the node destruction must be synchronised with the readers,
     55  1.1  rmind  *   e.g. by using the Epoch-based reclamation or other techniques.
     56  1.1  rmind  *
     57  1.1  rmind  * - WRITERS AND LOCKING: Each intermediate node has a spin-lock (which
     58  1.1  rmind  *   is implemented using the NODE_LOCKED bit) -- it provides mutual
     59  1.1  rmind  *   exclusion amongst concurrent writers.  The lock order for the nodes
     60  1.1  rmind  *   is "bottom-up" i.e. they are locked as we ascend the trie.  A key
     61  1.1  rmind  *   constraint here is that parent pointer never changes.
     62  1.1  rmind  *
     63  1.1  rmind  * - DELETES: In addition to writer's locking, the deletion keeps the
     64  1.1  rmind  *   intermediate nodes in a valid state and sets the NODE_DELETED flag,
     65  1.1  rmind  *   to indicate that the readers must re-start the walk from the root.
     66  1.1  rmind  *   As the levels are collapsed, NODE_DELETED gets propagated up-tree.
     67  1.1  rmind  *   The leaf nodes just stay as-is until they are reclaimed.
     68  1.1  rmind  *
     69  1.1  rmind  * - ROOT LEVEL: The root level is a special case, as it is implemented
     70  1.1  rmind  *   as an array (rather than intermediate node).  The root-level slot can
     71  1.1  rmind  *   only be set using CAS and it can only be set to a valid intermediate
     72  1.1  rmind  *   node.  The root-level slot can only be cleared when the node it points
     73  1.1  rmind  *   at becomes empty, is locked and marked as NODE_DELETED (this causes
     74  1.1  rmind  *   the insert/delete operations to re-try until the slot is set to NULL).
     75  1.1  rmind  *
     76  1.1  rmind  * References:
     77  1.1  rmind  *
     78  1.1  rmind  *	W. Litwin, 1981, Trie Hashing.
     79  1.1  rmind  *	Proceedings of the 1981 ACM SIGMOD, p. 19-29
     80  1.1  rmind  *	https://dl.acm.org/citation.cfm?id=582322
     81  1.1  rmind  *
     82  1.1  rmind  *	P. L. Lehman and S. B. Yao.
     83  1.1  rmind  *	Efficient locking for concurrent operations on B-trees.
     84  1.1  rmind  *	ACM TODS, 6(4):650-670, 1981
     85  1.1  rmind  *	https://www.csd.uoc.gr/~hy460/pdf/p650-lehman.pdf
     86  1.1  rmind  */
     87  1.1  rmind 
     88  1.1  rmind #ifdef _KERNEL
     89  1.1  rmind #include <sys/cdefs.h>
     90  1.1  rmind #include <sys/param.h>
     91  1.1  rmind #include <sys/types.h>
     92  1.1  rmind #include <sys/thmap.h>
     93  1.1  rmind #include <sys/kmem.h>
     94  1.1  rmind #include <sys/lock.h>
     95  1.1  rmind #include <sys/atomic.h>
     96  1.1  rmind #include <sys/hash.h>
     97  1.1  rmind #else
     98  1.1  rmind #include <stdio.h>
     99  1.1  rmind #include <stdlib.h>
    100  1.1  rmind #include <stdbool.h>
    101  1.1  rmind #include <stddef.h>
    102  1.1  rmind #include <inttypes.h>
    103  1.1  rmind #include <string.h>
    104  1.1  rmind #include <limits.h>
    105  1.1  rmind 
    106  1.1  rmind #include "thmap.h"
    107  1.1  rmind #include "utils.h"
    108  1.1  rmind #endif
    109  1.1  rmind 
    110  1.1  rmind /*
    111  1.1  rmind  * NetBSD kernel wrappers
    112  1.1  rmind  */
    113  1.1  rmind #ifdef _KERNEL
    114  1.1  rmind #define	ASSERT KASSERT
    115  1.1  rmind #define	DEBUG 1
    116  1.1  rmind #define	atomic_thread_fence(x) x
    117  1.1  rmind #define	memory_order_stores membar_producer()
    118  1.1  rmind #define	memory_order_loads membar_consumer()
    119  1.1  rmind #define	atomic_cas_32_p(p, e, n) (atomic_cas_32((p), (e), (n)) == (e))
    120  1.1  rmind #define	atomic_cas_ptr_p(p, e, n) \
    121  1.1  rmind     (atomic_cas_ptr((p), (void *)(e), (void *)(n)) == (e))
    122  1.1  rmind #define	atomic_exchange atomic_swap_ptr
    123  1.1  rmind #define	murmurhash3 murmurhash2
    124  1.1  rmind #endif
    125  1.1  rmind 
    126  1.1  rmind /*
    127  1.1  rmind  * The root level fanout is 64 (indexed by the last 6 bits of the hash
    128  1.1  rmind  * value XORed with the length).  Each subsequent level, represented by
    129  1.1  rmind  * intermediate nodes, has a fanout of 16 (using 4 bits).
    130  1.1  rmind  *
    131  1.1  rmind  * The hash function produces 32-bit values.
    132  1.1  rmind  */
    133  1.1  rmind 
    134  1.1  rmind #define	HASHVAL_BITS	(32)
    135  1.1  rmind #define	HASHVAL_MOD	(HASHVAL_BITS - 1)
    136  1.1  rmind #define	HASHVAL_SHIFT	(5)
    137  1.1  rmind 
    138  1.1  rmind #define	ROOT_BITS	(6)
    139  1.1  rmind #define	ROOT_SIZE	(1 << ROOT_BITS)
    140  1.1  rmind #define	ROOT_MASK	(ROOT_SIZE - 1)
    141  1.1  rmind #define	ROOT_MSBITS	(HASHVAL_BITS - ROOT_BITS)
    142  1.1  rmind 
    143  1.1  rmind #define	LEVEL_BITS	(4)
    144  1.1  rmind #define	LEVEL_SIZE	(1 << LEVEL_BITS)
    145  1.1  rmind #define	LEVEL_MASK	(LEVEL_SIZE - 1)
    146  1.1  rmind 
    147  1.1  rmind /*
    148  1.1  rmind  * Instead of raw pointers, we use offsets from the base address.
    149  1.1  rmind  * This accommodates the use of this data structure in shared memory,
    150  1.1  rmind  * where mappings can be in different address spaces.
    151  1.1  rmind  *
    152  1.1  rmind  * The pointers must be aligned, since pointer tagging is used to
    153  1.1  rmind  * differentiate the intermediate nodes from leaves.  We reserve the
    154  1.1  rmind  * least significant bit.
    155  1.1  rmind  */
    156  1.1  rmind typedef uintptr_t thmap_ptr_t;
    157  1.1  rmind 
    158  1.1  rmind #define	THMAP_NULL		((thmap_ptr_t)0)
    159  1.1  rmind 
    160  1.1  rmind #define	THMAP_LEAF_BIT		(0x1)
    161  1.1  rmind 
    162  1.1  rmind #define	THMAP_ALIGNED_P(p)	(((uintptr_t)(p) & 3) == 0)
    163  1.1  rmind #define	THMAP_ALIGN(p)		((uintptr_t)(p) & ~(uintptr_t)3)
    164  1.1  rmind #define	THMAP_INODE_P(p)	(((uintptr_t)(p) & THMAP_LEAF_BIT) == 0)
    165  1.1  rmind 
    166  1.1  rmind #define	THMAP_GETPTR(th, p)	((void *)((th)->baseptr + (uintptr_t)(p)))
    167  1.1  rmind #define	THMAP_GETOFF(th, p)	((thmap_ptr_t)((uintptr_t)(p) - (th)->baseptr))
    168  1.1  rmind #define	THMAP_NODE(th, p)	THMAP_GETPTR(th, THMAP_ALIGN(p))
    169  1.1  rmind 
    170  1.1  rmind /*
    171  1.1  rmind  * State field.
    172  1.1  rmind  */
    173  1.1  rmind 
    174  1.1  rmind #define	NODE_LOCKED		(1U << 31)		// lock (writers)
    175  1.1  rmind #define	NODE_DELETED		(1U << 30)		// node deleted
    176  1.1  rmind #define	NODE_COUNT(s)		((s) & 0x3fffffff)	// slot count mask
    177  1.1  rmind 
    178  1.1  rmind /*
    179  1.1  rmind  * There are two types of nodes:
    180  1.1  rmind  * - Intermediate nodes -- arrays pointing to another level or a leaf;
    181  1.1  rmind  * - Leaves, which store a key-value pair.
    182  1.1  rmind  */
    183  1.1  rmind 
    184  1.1  rmind typedef struct {
    185  1.1  rmind 	uint32_t	state;
    186  1.1  rmind 	thmap_ptr_t	parent;
    187  1.1  rmind 	thmap_ptr_t	slots[LEVEL_SIZE];
    188  1.1  rmind } thmap_inode_t;
    189  1.1  rmind 
    190  1.1  rmind #define	THMAP_INODE_LEN	sizeof(thmap_inode_t)
    191  1.1  rmind 
    192  1.1  rmind typedef struct {
    193  1.1  rmind 	thmap_ptr_t	key;
    194  1.1  rmind 	size_t		len;
    195  1.1  rmind 	void *		val;
    196  1.1  rmind } thmap_leaf_t;
    197  1.1  rmind 
    198  1.1  rmind typedef struct {
    199  1.1  rmind 	unsigned	rslot;		// root-level slot index
    200  1.1  rmind 	unsigned	level;		// current level in the tree
    201  1.1  rmind 	unsigned	hashidx;	// current hash index (block of bits)
    202  1.1  rmind 	uint32_t	hashval;	// current hash value
    203  1.1  rmind } thmap_query_t;
    204  1.1  rmind 
    205  1.1  rmind typedef struct {
    206  1.1  rmind 	uintptr_t	addr;
    207  1.1  rmind 	size_t		len;
    208  1.1  rmind 	void *		next;
    209  1.1  rmind } thmap_gc_t;
    210  1.1  rmind 
    211  1.1  rmind #define	THMAP_ROOT_LEN	(sizeof(thmap_ptr_t) * ROOT_SIZE)
    212  1.1  rmind 
    213  1.1  rmind struct thmap {
    214  1.1  rmind 	uintptr_t	baseptr;
    215  1.1  rmind 	thmap_ptr_t *	root;
    216  1.1  rmind 	unsigned	flags;
    217  1.1  rmind 	const thmap_ops_t *ops;
    218  1.1  rmind 	thmap_gc_t *	gc_list;
    219  1.1  rmind };
    220  1.1  rmind 
    221  1.1  rmind static void	stage_mem_gc(thmap_t *, uintptr_t, size_t);
    222  1.1  rmind 
    223  1.1  rmind /*
    224  1.1  rmind  * A few low-level helper routines.
    225  1.1  rmind  */
    226  1.1  rmind 
    227  1.1  rmind static uintptr_t
    228  1.1  rmind alloc_wrapper(size_t len)
    229  1.1  rmind {
    230  1.1  rmind 	return (uintptr_t)kmem_intr_alloc(len, KM_SLEEP);
    231  1.1  rmind }
    232  1.1  rmind 
    233  1.1  rmind static void
    234  1.1  rmind free_wrapper(uintptr_t addr, size_t len)
    235  1.1  rmind {
    236  1.1  rmind 	kmem_intr_free((void *)addr, len);
    237  1.1  rmind }
    238  1.1  rmind 
    239  1.1  rmind static const thmap_ops_t thmap_default_ops = {
    240  1.1  rmind 	.alloc = alloc_wrapper,
    241  1.1  rmind 	.free = free_wrapper
    242  1.1  rmind };
    243  1.1  rmind 
    244  1.1  rmind /*
    245  1.1  rmind  * NODE LOCKING.
    246  1.1  rmind  */
    247  1.1  rmind 
    248  1.1  rmind #ifdef DEBUG
    249  1.1  rmind static inline bool
    250  1.1  rmind node_locked_p(const thmap_inode_t *node)
    251  1.1  rmind {
    252  1.1  rmind 	return (node->state & NODE_LOCKED) != 0;
    253  1.1  rmind }
    254  1.1  rmind #endif
    255  1.1  rmind 
    256  1.1  rmind static void
    257  1.1  rmind lock_node(thmap_inode_t *node)
    258  1.1  rmind {
    259  1.1  rmind 	unsigned bcount = SPINLOCK_BACKOFF_MIN;
    260  1.1  rmind 	uint32_t s;
    261  1.1  rmind again:
    262  1.1  rmind 	s = node->state;
    263  1.1  rmind 	if (s & NODE_LOCKED) {
    264  1.1  rmind 		SPINLOCK_BACKOFF(bcount);
    265  1.1  rmind 		goto again;
    266  1.1  rmind 	}
    267  1.1  rmind 	/*
    268  1.1  rmind 	 * CAS will issue a full memory fence for us.
    269  1.1  rmind 	 *
    270  1.1  rmind 	 * WARNING: for optimisations purposes, callers rely on us
    271  1.1  rmind 	 * issuing load and store fence
    272  1.1  rmind 	 */
    273  1.1  rmind 	if (!atomic_cas_32_p(&node->state, s, s | NODE_LOCKED)) {
    274  1.1  rmind 		bcount = SPINLOCK_BACKOFF_MIN;
    275  1.1  rmind 		goto again;
    276  1.1  rmind 	}
    277  1.1  rmind }
    278  1.1  rmind 
    279  1.1  rmind static void
    280  1.1  rmind unlock_node(thmap_inode_t *node)
    281  1.1  rmind {
    282  1.1  rmind 	uint32_t s = node->state & ~NODE_LOCKED;
    283  1.1  rmind 
    284  1.1  rmind 	ASSERT(node_locked_p(node));
    285  1.1  rmind 	atomic_thread_fence(memory_order_stores);
    286  1.1  rmind 	node->state = s; // atomic store
    287  1.1  rmind }
    288  1.1  rmind 
    289  1.1  rmind /*
    290  1.1  rmind  * HASH VALUE AND KEY OPERATIONS.
    291  1.1  rmind  */
    292  1.1  rmind 
    293  1.1  rmind static inline void
    294  1.1  rmind hashval_init(thmap_query_t *query, const void * restrict key, size_t len)
    295  1.1  rmind {
    296  1.1  rmind 	const uint32_t hashval = murmurhash3(key, len, 0);
    297  1.1  rmind 
    298  1.1  rmind 	query->rslot = ((hashval >> ROOT_MSBITS) ^ len) & ROOT_MASK;
    299  1.1  rmind 	query->level = 0;
    300  1.1  rmind 	query->hashval = hashval;
    301  1.1  rmind 	query->hashidx = 0;
    302  1.1  rmind }
    303  1.1  rmind 
    304  1.1  rmind /*
    305  1.1  rmind  * hashval_getslot: given the key, compute the hash (if not already cached)
    306  1.1  rmind  * and return the offset for the current level.
    307  1.1  rmind  */
    308  1.1  rmind static unsigned
    309  1.1  rmind hashval_getslot(thmap_query_t *query, const void * restrict key, size_t len)
    310  1.1  rmind {
    311  1.1  rmind 	const unsigned offset = query->level * LEVEL_BITS;
    312  1.1  rmind 	const unsigned shift = offset & HASHVAL_MOD;
    313  1.1  rmind 	const unsigned i = offset >> HASHVAL_SHIFT;
    314  1.1  rmind 
    315  1.1  rmind 	if (query->hashidx != i) {
    316  1.1  rmind 		/* Generate a hash value for a required range. */
    317  1.1  rmind 		query->hashval = murmurhash3(key, len, i);
    318  1.1  rmind 		query->hashidx = i;
    319  1.1  rmind 	}
    320  1.1  rmind 	return (query->hashval >> shift) & LEVEL_MASK;
    321  1.1  rmind }
    322  1.1  rmind 
    323  1.1  rmind static unsigned
    324  1.1  rmind hashval_getleafslot(const thmap_t *thmap,
    325  1.1  rmind     const thmap_leaf_t *leaf, unsigned level)
    326  1.1  rmind {
    327  1.1  rmind 	const void *key = THMAP_GETPTR(thmap, leaf->key);
    328  1.1  rmind 	const unsigned offset = level * LEVEL_BITS;
    329  1.1  rmind 	const unsigned shift = offset & HASHVAL_MOD;
    330  1.1  rmind 	const unsigned i = offset >> HASHVAL_SHIFT;
    331  1.1  rmind 
    332  1.1  rmind 	return (murmurhash3(key, leaf->len, i) >> shift) & LEVEL_MASK;
    333  1.1  rmind }
    334  1.1  rmind 
    335  1.1  rmind static inline unsigned
    336  1.1  rmind hashval_getl0slot(const thmap_t *thmap, const thmap_query_t *query,
    337  1.1  rmind     const thmap_leaf_t *leaf)
    338  1.1  rmind {
    339  1.1  rmind 	if (__predict_true(query->hashidx == 0)) {
    340  1.1  rmind 		return query->hashval & LEVEL_MASK;
    341  1.1  rmind 	}
    342  1.1  rmind 	return hashval_getleafslot(thmap, leaf, 0);
    343  1.1  rmind }
    344  1.1  rmind 
    345  1.1  rmind static bool
    346  1.1  rmind key_cmp_p(const thmap_t *thmap, const thmap_leaf_t *leaf,
    347  1.1  rmind     const void * restrict key, size_t len)
    348  1.1  rmind {
    349  1.1  rmind 	const void *leafkey = THMAP_GETPTR(thmap, leaf->key);
    350  1.1  rmind 	return len == leaf->len && memcmp(key, leafkey, len) == 0;
    351  1.1  rmind }
    352  1.1  rmind 
    353  1.1  rmind /*
    354  1.1  rmind  * INTER-NODE OPERATIONS.
    355  1.1  rmind  */
    356  1.1  rmind 
    357  1.1  rmind static thmap_inode_t *
    358  1.1  rmind node_create(thmap_t *thmap, thmap_inode_t *parent)
    359  1.1  rmind {
    360  1.1  rmind 	thmap_inode_t *node;
    361  1.1  rmind 	uintptr_t p;
    362  1.1  rmind 
    363  1.1  rmind 	p = thmap->ops->alloc(THMAP_INODE_LEN);
    364  1.1  rmind 	if (!p) {
    365  1.1  rmind 		return NULL;
    366  1.1  rmind 	}
    367  1.1  rmind 	node = THMAP_GETPTR(thmap, p);
    368  1.1  rmind 	ASSERT(THMAP_ALIGNED_P(node));
    369  1.1  rmind 
    370  1.1  rmind 	memset(node, 0, THMAP_INODE_LEN);
    371  1.1  rmind 	if (parent) {
    372  1.1  rmind 		node->state = NODE_LOCKED;
    373  1.1  rmind 		node->parent = THMAP_GETOFF(thmap, parent);
    374  1.1  rmind 	}
    375  1.1  rmind 	return node;
    376  1.1  rmind }
    377  1.1  rmind 
    378  1.1  rmind static void
    379  1.1  rmind node_insert(thmap_inode_t *node, unsigned slot, thmap_ptr_t child)
    380  1.1  rmind {
    381  1.1  rmind 	ASSERT(node_locked_p(node) || node->parent == THMAP_NULL);
    382  1.1  rmind 	ASSERT((node->state & NODE_DELETED) == 0);
    383  1.1  rmind 	ASSERT(node->slots[slot] == THMAP_NULL);
    384  1.1  rmind 
    385  1.1  rmind 	ASSERT(NODE_COUNT(node->state) < LEVEL_SIZE);
    386  1.1  rmind 
    387  1.1  rmind 	node->slots[slot] = child;
    388  1.1  rmind 	node->state++;
    389  1.1  rmind }
    390  1.1  rmind 
    391  1.1  rmind static void
    392  1.1  rmind node_remove(thmap_inode_t *node, unsigned slot)
    393  1.1  rmind {
    394  1.1  rmind 	ASSERT(node_locked_p(node));
    395  1.1  rmind 	ASSERT((node->state & NODE_DELETED) == 0);
    396  1.1  rmind 	ASSERT(node->slots[slot] != THMAP_NULL);
    397  1.1  rmind 
    398  1.1  rmind 	ASSERT(NODE_COUNT(node->state) > 0);
    399  1.1  rmind 	ASSERT(NODE_COUNT(node->state) <= LEVEL_SIZE);
    400  1.1  rmind 
    401  1.1  rmind 	node->slots[slot] = THMAP_NULL;
    402  1.1  rmind 	node->state--;
    403  1.1  rmind }
    404  1.1  rmind 
    405  1.1  rmind /*
    406  1.1  rmind  * LEAF OPERATIONS.
    407  1.1  rmind  */
    408  1.1  rmind 
    409  1.1  rmind static thmap_leaf_t *
    410  1.1  rmind leaf_create(const thmap_t *thmap, const void *key, size_t len, void *val)
    411  1.1  rmind {
    412  1.1  rmind 	thmap_leaf_t *leaf;
    413  1.1  rmind 	uintptr_t leaf_off, key_off;
    414  1.1  rmind 
    415  1.1  rmind 	leaf_off = thmap->ops->alloc(sizeof(thmap_leaf_t));
    416  1.1  rmind 	if (!leaf_off) {
    417  1.1  rmind 		return NULL;
    418  1.1  rmind 	}
    419  1.1  rmind 	leaf = THMAP_GETPTR(thmap, leaf_off);
    420  1.1  rmind 	ASSERT(THMAP_ALIGNED_P(leaf));
    421  1.1  rmind 
    422  1.1  rmind 	if ((thmap->flags & THMAP_NOCOPY) == 0) {
    423  1.1  rmind 		/*
    424  1.1  rmind 		 * Copy the key.
    425  1.1  rmind 		 */
    426  1.1  rmind 		key_off = thmap->ops->alloc(len);
    427  1.1  rmind 		if (!key_off) {
    428  1.1  rmind 			thmap->ops->free(leaf_off, sizeof(thmap_leaf_t));
    429  1.1  rmind 			return NULL;
    430  1.1  rmind 		}
    431  1.1  rmind 		memcpy(THMAP_GETPTR(thmap, key_off), key, len);
    432  1.1  rmind 		leaf->key = key_off;
    433  1.1  rmind 	} else {
    434  1.1  rmind 		/* Otherwise, we use a reference. */
    435  1.1  rmind 		leaf->key = (uintptr_t)key;
    436  1.1  rmind 	}
    437  1.1  rmind 	leaf->len = len;
    438  1.1  rmind 	leaf->val = val;
    439  1.1  rmind 	return leaf;
    440  1.1  rmind }
    441  1.1  rmind 
    442  1.1  rmind static void
    443  1.1  rmind leaf_free(const thmap_t *thmap, thmap_leaf_t *leaf)
    444  1.1  rmind {
    445  1.1  rmind 	if ((thmap->flags & THMAP_NOCOPY) == 0) {
    446  1.1  rmind 		thmap->ops->free(leaf->key, leaf->len);
    447  1.1  rmind 	}
    448  1.1  rmind 	thmap->ops->free(THMAP_GETOFF(thmap, leaf), sizeof(thmap_leaf_t));
    449  1.1  rmind }
    450  1.1  rmind 
    451  1.1  rmind static thmap_leaf_t *
    452  1.1  rmind get_leaf(const thmap_t *thmap, thmap_inode_t *parent, unsigned slot)
    453  1.1  rmind {
    454  1.1  rmind 	thmap_ptr_t node;
    455  1.1  rmind 
    456  1.1  rmind 	node = parent->slots[slot];
    457  1.1  rmind 	if (THMAP_INODE_P(node)) {
    458  1.1  rmind 		return NULL;
    459  1.1  rmind 	}
    460  1.1  rmind 	return THMAP_NODE(thmap, node);
    461  1.1  rmind }
    462  1.1  rmind 
    463  1.1  rmind /*
    464  1.1  rmind  * ROOT OPERATIONS.
    465  1.1  rmind  */
    466  1.1  rmind 
    467  1.1  rmind static inline bool
    468  1.1  rmind root_try_put(thmap_t *thmap, const thmap_query_t *query, thmap_leaf_t *leaf)
    469  1.1  rmind {
    470  1.1  rmind 	const unsigned i = query->rslot;
    471  1.1  rmind 	thmap_inode_t *node;
    472  1.1  rmind 	thmap_ptr_t nptr;
    473  1.1  rmind 	unsigned slot;
    474  1.1  rmind 
    475  1.1  rmind 	/*
    476  1.1  rmind 	 * Must pre-check first.
    477  1.1  rmind 	 */
    478  1.1  rmind 	if (thmap->root[i]) {
    479  1.1  rmind 		return false;
    480  1.1  rmind 	}
    481  1.1  rmind 
    482  1.1  rmind 	/*
    483  1.1  rmind 	 * Create an intermediate node.  Since there is no parent set,
    484  1.1  rmind 	 * it will be created unlocked and the CAS operation will issue
    485  1.1  rmind 	 * the store memory fence for us.
    486  1.1  rmind 	 */
    487  1.1  rmind 	node = node_create(thmap, NULL);
    488  1.1  rmind 	slot = hashval_getl0slot(thmap, query, leaf);
    489  1.1  rmind 	node_insert(node, slot, THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT);
    490  1.1  rmind 	nptr = THMAP_GETOFF(thmap, node);
    491  1.1  rmind again:
    492  1.1  rmind 	if (thmap->root[i]) {
    493  1.1  rmind 		thmap->ops->free(nptr, THMAP_INODE_LEN);
    494  1.1  rmind 		return false;
    495  1.1  rmind 	}
    496  1.1  rmind 	if (!atomic_cas_ptr_p(&thmap->root[i], THMAP_NULL, nptr)) {
    497  1.1  rmind 		goto again;
    498  1.1  rmind 	}
    499  1.1  rmind 	return true;
    500  1.1  rmind }
    501  1.1  rmind 
    502  1.1  rmind /*
    503  1.1  rmind  * find_edge_node: given the hash, traverse the tree to find the edge node.
    504  1.1  rmind  *
    505  1.1  rmind  * => Returns an aligned (clean) pointer to the parent node.
    506  1.1  rmind  * => Returns the slot number and sets current level.
    507  1.1  rmind  */
    508  1.1  rmind static thmap_inode_t *
    509  1.1  rmind find_edge_node(const thmap_t *thmap, thmap_query_t *query,
    510  1.1  rmind     const void * restrict key, size_t len, unsigned *slot)
    511  1.1  rmind {
    512  1.1  rmind 	thmap_ptr_t root_slot = thmap->root[query->rslot];
    513  1.1  rmind 	thmap_inode_t *parent;
    514  1.1  rmind 	thmap_ptr_t node;
    515  1.1  rmind 	unsigned off;
    516  1.1  rmind 
    517  1.1  rmind 	ASSERT(query->level == 0);
    518  1.1  rmind 
    519  1.1  rmind 	parent = THMAP_NODE(thmap, root_slot);
    520  1.1  rmind 	if (!parent) {
    521  1.1  rmind 		return NULL;
    522  1.1  rmind 	}
    523  1.1  rmind descend:
    524  1.1  rmind 	off = hashval_getslot(query, key, len);
    525  1.1  rmind 	node = parent->slots[off];
    526  1.1  rmind 
    527  1.1  rmind 	/* Ensure the parent load happens before the child load. */
    528  1.1  rmind 	atomic_thread_fence(memory_order_loads);
    529  1.1  rmind 
    530  1.1  rmind 	/* Descend the tree until we find a leaf or empty slot. */
    531  1.1  rmind 	if (node && THMAP_INODE_P(node)) {
    532  1.1  rmind 		parent = THMAP_NODE(thmap, node);
    533  1.1  rmind 		query->level++;
    534  1.1  rmind 		goto descend;
    535  1.1  rmind 	}
    536  1.1  rmind 	if (parent->state & NODE_DELETED) {
    537  1.1  rmind 		return NULL;
    538  1.1  rmind 	}
    539  1.1  rmind 	*slot = off;
    540  1.1  rmind 	return parent;
    541  1.1  rmind }
    542  1.1  rmind 
    543  1.1  rmind /*
    544  1.1  rmind  * find_edge_node_locked: traverse the tree, like find_edge_node(),
    545  1.1  rmind  * but attempt to lock the edge node.
    546  1.1  rmind  *
    547  1.1  rmind  * => Returns NULL if the deleted node is found.  This indicates that
    548  1.1  rmind  *    the caller must re-try from the root, as the root slot might have
    549  1.1  rmind  *    changed too.
    550  1.1  rmind  */
    551  1.1  rmind static thmap_inode_t *
    552  1.1  rmind find_edge_node_locked(const thmap_t *thmap, thmap_query_t *query,
    553  1.1  rmind     const void * restrict key, size_t len, unsigned *slot)
    554  1.1  rmind {
    555  1.1  rmind 	thmap_inode_t *node;
    556  1.1  rmind 	thmap_ptr_t target;
    557  1.1  rmind retry:
    558  1.1  rmind 	/*
    559  1.1  rmind 	 * Find the edge node and lock it!  Re-check the state since
    560  1.1  rmind 	 * the tree might change by the time we acquire the lock.
    561  1.1  rmind 	 */
    562  1.1  rmind 	node = find_edge_node(thmap, query, key, len, slot);
    563  1.1  rmind 	if (!node) {
    564  1.1  rmind 		/* The root slot is empty -- let the caller decide. */
    565  1.1  rmind 		query->level = 0;
    566  1.1  rmind 		return NULL;
    567  1.1  rmind 	}
    568  1.1  rmind 	lock_node(node);
    569  1.1  rmind 	if (__predict_false(node->state & NODE_DELETED)) {
    570  1.1  rmind 		/*
    571  1.1  rmind 		 * The node has been deleted.  The tree might have a new
    572  1.1  rmind 		 * shape now, therefore we must re-start from the root.
    573  1.1  rmind 		 */
    574  1.1  rmind 		unlock_node(node);
    575  1.1  rmind 		query->level = 0;
    576  1.1  rmind 		return NULL;
    577  1.1  rmind 	}
    578  1.1  rmind 	target = node->slots[*slot];
    579  1.1  rmind 	if (__predict_false(target && THMAP_INODE_P(target))) {
    580  1.1  rmind 		/*
    581  1.1  rmind 		 * The target slot has been changed and it is now an
    582  1.1  rmind 		 * intermediate node.  Re-start from the top internode.
    583  1.1  rmind 		 */
    584  1.1  rmind 		unlock_node(node);
    585  1.1  rmind 		query->level = 0;
    586  1.1  rmind 		goto retry;
    587  1.1  rmind 	}
    588  1.1  rmind 	return node;
    589  1.1  rmind }
    590  1.1  rmind 
    591  1.1  rmind /*
    592  1.1  rmind  * thmap_get: lookup a value given the key.
    593  1.1  rmind  */
    594  1.1  rmind void *
    595  1.1  rmind thmap_get(thmap_t *thmap, const void *key, size_t len)
    596  1.1  rmind {
    597  1.1  rmind 	thmap_query_t query;
    598  1.1  rmind 	thmap_inode_t *parent;
    599  1.1  rmind 	thmap_leaf_t *leaf;
    600  1.1  rmind 	unsigned slot;
    601  1.1  rmind 
    602  1.1  rmind 	hashval_init(&query, key, len);
    603  1.1  rmind 	parent = find_edge_node(thmap, &query, key, len, &slot);
    604  1.1  rmind 	if (!parent) {
    605  1.1  rmind 		return NULL;
    606  1.1  rmind 	}
    607  1.1  rmind 	leaf = get_leaf(thmap, parent, slot);
    608  1.1  rmind 	if (!leaf) {
    609  1.1  rmind 		return NULL;
    610  1.1  rmind 	}
    611  1.1  rmind 	if (!key_cmp_p(thmap, leaf, key, len)) {
    612  1.1  rmind 		return NULL;
    613  1.1  rmind 	}
    614  1.1  rmind 	return leaf->val;
    615  1.1  rmind }
    616  1.1  rmind 
    617  1.1  rmind /*
    618  1.1  rmind  * thmap_put: insert a value given the key.
    619  1.1  rmind  *
    620  1.1  rmind  * => If the key is already present, return the associated value.
    621  1.1  rmind  * => Otherwise, on successful insert, return the given value.
    622  1.1  rmind  */
    623  1.1  rmind void *
    624  1.1  rmind thmap_put(thmap_t *thmap, const void *key, size_t len, void *val)
    625  1.1  rmind {
    626  1.1  rmind 	thmap_query_t query;
    627  1.1  rmind 	thmap_leaf_t *leaf, *other;
    628  1.1  rmind 	thmap_inode_t *parent, *child;
    629  1.1  rmind 	unsigned slot, other_slot;
    630  1.1  rmind 	thmap_ptr_t target;
    631  1.1  rmind 
    632  1.1  rmind 	/*
    633  1.1  rmind 	 * First, pre-allocate and initialise the leaf node.
    634  1.1  rmind 	 *
    635  1.1  rmind 	 * NOTE: locking of the edge node below will issue the
    636  1.1  rmind 	 * store fence for us.
    637  1.1  rmind 	 */
    638  1.1  rmind 	leaf = leaf_create(thmap, key, len, val);
    639  1.1  rmind 	if (__predict_false(!leaf)) {
    640  1.1  rmind 		return NULL;
    641  1.1  rmind 	}
    642  1.1  rmind 	hashval_init(&query, key, len);
    643  1.1  rmind retry:
    644  1.1  rmind 	/*
    645  1.1  rmind 	 * Try to insert into the root first, if its slot is empty.
    646  1.1  rmind 	 */
    647  1.1  rmind 	if (root_try_put(thmap, &query, leaf)) {
    648  1.1  rmind 		/* Success: the leaf was inserted; no locking involved. */
    649  1.1  rmind 		return val;
    650  1.1  rmind 	}
    651  1.1  rmind 
    652  1.1  rmind 	/*
    653  1.1  rmind 	 * Find the edge node and the target slot.
    654  1.1  rmind 	 */
    655  1.1  rmind 	parent = find_edge_node_locked(thmap, &query, key, len, &slot);
    656  1.1  rmind 	if (!parent) {
    657  1.1  rmind 		goto retry;
    658  1.1  rmind 	}
    659  1.1  rmind 	target = parent->slots[slot]; // tagged offset
    660  1.1  rmind 	if (THMAP_INODE_P(target)) {
    661  1.1  rmind 		/*
    662  1.1  rmind 		 * Empty slot: simply insert the new leaf.  The store
    663  1.1  rmind 		 * fence is already issued for us.
    664  1.1  rmind 		 */
    665  1.1  rmind 		target = THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT;
    666  1.1  rmind 		node_insert(parent, slot, target);
    667  1.1  rmind 		goto out;
    668  1.1  rmind 	}
    669  1.1  rmind 
    670  1.1  rmind 	/*
    671  1.1  rmind 	 * Collision or duplicate.
    672  1.1  rmind 	 */
    673  1.1  rmind 	other = THMAP_NODE(thmap, target);
    674  1.1  rmind 	if (key_cmp_p(thmap, other, key, len)) {
    675  1.1  rmind 		/*
    676  1.1  rmind 		 * Duplicate.  Free the pre-allocated leaf and
    677  1.1  rmind 		 * return the present value.
    678  1.1  rmind 		 */
    679  1.1  rmind 		leaf_free(thmap, leaf);
    680  1.1  rmind 		val = other->val;
    681  1.1  rmind 		goto out;
    682  1.1  rmind 	}
    683  1.1  rmind descend:
    684  1.1  rmind 	/*
    685  1.1  rmind 	 * Collision -- expand the tree.  Create an intermediate node
    686  1.1  rmind 	 * which will be locked (NODE_LOCKED) for us.  At this point,
    687  1.1  rmind 	 * we advance to the next level.
    688  1.1  rmind 	 */
    689  1.1  rmind 	child = node_create(thmap, parent);
    690  1.1  rmind 	if (__predict_false(!child)) {
    691  1.1  rmind 		leaf_free(thmap, leaf);
    692  1.1  rmind 		val = NULL;
    693  1.1  rmind 		goto out;
    694  1.1  rmind 	}
    695  1.1  rmind 	query.level++;
    696  1.1  rmind 
    697  1.1  rmind 	/*
    698  1.1  rmind 	 * Insert the other (colliding) leaf first.
    699  1.1  rmind 	 */
    700  1.1  rmind 	other_slot = hashval_getleafslot(thmap, other, query.level);
    701  1.1  rmind 	target = THMAP_GETOFF(thmap, other) | THMAP_LEAF_BIT;
    702  1.1  rmind 	node_insert(child, other_slot, target);
    703  1.1  rmind 
    704  1.1  rmind 	/*
    705  1.1  rmind 	 * Insert the intermediate node into the parent node.
    706  1.1  rmind 	 * It becomes the new parent for the our new leaf.
    707  1.1  rmind 	 *
    708  1.1  rmind 	 * Ensure that stores to the child (and leaf) reach the
    709  1.1  rmind 	 * global visibility before it gets inserted to the parent.
    710  1.1  rmind 	 */
    711  1.1  rmind 	atomic_thread_fence(memory_order_stores);
    712  1.1  rmind 	parent->slots[slot] = THMAP_GETOFF(thmap, child);
    713  1.1  rmind 
    714  1.1  rmind 	unlock_node(parent);
    715  1.1  rmind 	ASSERT(node_locked_p(child));
    716  1.1  rmind 	parent = child;
    717  1.1  rmind 
    718  1.1  rmind 	/*
    719  1.1  rmind 	 * Get the new slot and check for another collision
    720  1.1  rmind 	 * at the next level.
    721  1.1  rmind 	 */
    722  1.1  rmind 	slot = hashval_getslot(&query, key, len);
    723  1.1  rmind 	if (slot == other_slot) {
    724  1.1  rmind 		/* Another collision -- descend and expand again. */
    725  1.1  rmind 		goto descend;
    726  1.1  rmind 	}
    727  1.1  rmind 
    728  1.1  rmind 	/* Insert our new leaf once we expanded enough. */
    729  1.1  rmind 	target = THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT;
    730  1.1  rmind 	node_insert(parent, slot, target);
    731  1.1  rmind out:
    732  1.1  rmind 	unlock_node(parent);
    733  1.1  rmind 	return val;
    734  1.1  rmind }
    735  1.1  rmind 
    736  1.1  rmind /*
    737  1.1  rmind  * thmap_del: remove the entry given the key.
    738  1.1  rmind  */
    739  1.1  rmind void *
    740  1.1  rmind thmap_del(thmap_t *thmap, const void *key, size_t len)
    741  1.1  rmind {
    742  1.1  rmind 	thmap_query_t query;
    743  1.1  rmind 	thmap_leaf_t *leaf;
    744  1.1  rmind 	thmap_inode_t *parent;
    745  1.1  rmind 	unsigned slot;
    746  1.1  rmind 	void *val;
    747  1.1  rmind 
    748  1.1  rmind 	hashval_init(&query, key, len);
    749  1.1  rmind 	parent = find_edge_node_locked(thmap, &query, key, len, &slot);
    750  1.1  rmind 	if (!parent) {
    751  1.1  rmind 		/* Root slot empty: not found. */
    752  1.1  rmind 		return NULL;
    753  1.1  rmind 	}
    754  1.1  rmind 	leaf = get_leaf(thmap, parent, slot);
    755  1.1  rmind 	if (!leaf || !key_cmp_p(thmap, leaf, key, len)) {
    756  1.1  rmind 		/* Not found. */
    757  1.1  rmind 		unlock_node(parent);
    758  1.1  rmind 		return NULL;
    759  1.1  rmind 	}
    760  1.1  rmind 
    761  1.1  rmind 	/* Remove the leaf. */
    762  1.1  rmind 	ASSERT(THMAP_NODE(thmap, parent->slots[slot]) == leaf);
    763  1.1  rmind 	node_remove(parent, slot);
    764  1.1  rmind 
    765  1.1  rmind 	/*
    766  1.1  rmind 	 * Collapse the levels if removing the last item.
    767  1.1  rmind 	 */
    768  1.1  rmind 	while (query.level && NODE_COUNT(parent->state) == 0) {
    769  1.1  rmind 		thmap_inode_t *node = parent;
    770  1.1  rmind 
    771  1.1  rmind 		ASSERT(node->state == NODE_LOCKED);
    772  1.1  rmind 
    773  1.1  rmind 		/*
    774  1.1  rmind 		 * Ascend one level up.
    775  1.1  rmind 		 * => Mark our current parent as deleted.
    776  1.1  rmind 		 * => Lock the parent one level up.
    777  1.1  rmind 		 */
    778  1.1  rmind 		query.level--;
    779  1.1  rmind 		slot = hashval_getslot(&query, key, len);
    780  1.1  rmind 		parent = THMAP_NODE(thmap, node->parent);
    781  1.1  rmind 		ASSERT(parent != NULL);
    782  1.1  rmind 
    783  1.1  rmind 		lock_node(parent);
    784  1.1  rmind 		ASSERT((parent->state & NODE_DELETED) == 0);
    785  1.1  rmind 
    786  1.1  rmind 		node->state |= NODE_DELETED;
    787  1.1  rmind 		unlock_node(node); // memory_order_stores
    788  1.1  rmind 
    789  1.1  rmind 		ASSERT(THMAP_NODE(thmap, parent->slots[slot]) == node);
    790  1.1  rmind 		node_remove(parent, slot);
    791  1.1  rmind 
    792  1.1  rmind 		/* Stage the removed node for G/C. */
    793  1.1  rmind 		stage_mem_gc(thmap, THMAP_GETOFF(thmap, node), THMAP_INODE_LEN);
    794  1.1  rmind 	}
    795  1.1  rmind 
    796  1.1  rmind 	/*
    797  1.1  rmind 	 * If the top node is empty, then we need to remove it from the
    798  1.1  rmind 	 * root level.  Mark the node as deleted and clear the slot.
    799  1.1  rmind 	 *
    800  1.1  rmind 	 * Note: acquiring the lock on the top node effectively prevents
    801  1.1  rmind 	 * the root slot from changing.
    802  1.1  rmind 	 */
    803  1.1  rmind 	if (NODE_COUNT(parent->state) == 0) {
    804  1.1  rmind 		const unsigned rslot = query.rslot;
    805  1.1  rmind 		const thmap_ptr_t nptr = thmap->root[rslot];
    806  1.1  rmind 
    807  1.1  rmind 		ASSERT(query.level == 0);
    808  1.1  rmind 		ASSERT(parent->parent == THMAP_NULL);
    809  1.1  rmind 		ASSERT(THMAP_GETOFF(thmap, parent) == nptr);
    810  1.1  rmind 
    811  1.1  rmind 		/* Mark as deleted and remove from the root-level slot. */
    812  1.1  rmind 		parent->state |= NODE_DELETED;
    813  1.1  rmind 		atomic_thread_fence(memory_order_stores);
    814  1.1  rmind 		thmap->root[rslot] = THMAP_NULL;
    815  1.1  rmind 
    816  1.1  rmind 		stage_mem_gc(thmap, nptr, THMAP_INODE_LEN);
    817  1.1  rmind 	}
    818  1.1  rmind 	unlock_node(parent);
    819  1.1  rmind 
    820  1.1  rmind 	/*
    821  1.1  rmind 	 * Save the value and stage the leaf for G/C.
    822  1.1  rmind 	 */
    823  1.1  rmind 	val = leaf->val;
    824  1.1  rmind 	if ((thmap->flags & THMAP_NOCOPY) == 0) {
    825  1.1  rmind 		stage_mem_gc(thmap, leaf->key, leaf->len);
    826  1.1  rmind 	}
    827  1.1  rmind 	stage_mem_gc(thmap, THMAP_GETOFF(thmap, leaf), sizeof(thmap_leaf_t));
    828  1.1  rmind 	return val;
    829  1.1  rmind }
    830  1.1  rmind 
    831  1.1  rmind /*
    832  1.1  rmind  * G/C routines.
    833  1.1  rmind  */
    834  1.1  rmind 
    835  1.1  rmind static void
    836  1.1  rmind stage_mem_gc(thmap_t *thmap, uintptr_t addr, size_t len)
    837  1.1  rmind {
    838  1.1  rmind 	thmap_gc_t *head, *gc;
    839  1.1  rmind 
    840  1.1  rmind 	gc = kmem_intr_alloc(sizeof(thmap_gc_t), KM_SLEEP);
    841  1.1  rmind 	gc->addr = addr;
    842  1.1  rmind 	gc->len = len;
    843  1.1  rmind retry:
    844  1.1  rmind 	gc->next = head = thmap->gc_list;
    845  1.1  rmind 	if (!atomic_cas_ptr_p(&thmap->gc_list, head, gc)) {
    846  1.1  rmind 		goto retry;
    847  1.1  rmind 	}
    848  1.1  rmind }
    849  1.1  rmind 
    850  1.1  rmind void *
    851  1.1  rmind thmap_stage_gc(thmap_t *thmap)
    852  1.1  rmind {
    853  1.1  rmind 	return atomic_exchange(&thmap->gc_list, NULL);
    854  1.1  rmind }
    855  1.1  rmind 
    856  1.1  rmind void
    857  1.1  rmind thmap_gc(thmap_t *thmap, void *ref)
    858  1.1  rmind {
    859  1.1  rmind 	thmap_gc_t *gc = ref;
    860  1.1  rmind 
    861  1.1  rmind 	while (gc) {
    862  1.1  rmind 		thmap_gc_t *next = gc->next;
    863  1.1  rmind 		thmap->ops->free(gc->addr, gc->len);
    864  1.1  rmind 		kmem_intr_free(gc, sizeof(thmap_gc_t));
    865  1.1  rmind 		gc = next;
    866  1.1  rmind 	}
    867  1.1  rmind }
    868  1.1  rmind 
    869  1.1  rmind /*
    870  1.1  rmind  * thmap_create: construct a new trie-hash map object.
    871  1.1  rmind  */
    872  1.1  rmind thmap_t *
    873  1.1  rmind thmap_create(uintptr_t baseptr, const thmap_ops_t *ops, unsigned flags)
    874  1.1  rmind {
    875  1.1  rmind 	thmap_t *thmap;
    876  1.1  rmind 	uintptr_t root;
    877  1.1  rmind 
    878  1.1  rmind 	/*
    879  1.1  rmind 	 * Setup the map object.
    880  1.1  rmind 	 */
    881  1.1  rmind 	if (!THMAP_ALIGNED_P(baseptr)) {
    882  1.1  rmind 		return NULL;
    883  1.1  rmind 	}
    884  1.1  rmind 	thmap = kmem_zalloc(sizeof(thmap_t), KM_SLEEP);
    885  1.1  rmind 	if (!thmap) {
    886  1.1  rmind 		return NULL;
    887  1.1  rmind 	}
    888  1.1  rmind 	thmap->baseptr = baseptr;
    889  1.1  rmind 	thmap->ops = ops ? ops : &thmap_default_ops;
    890  1.1  rmind 	thmap->flags = flags;
    891  1.1  rmind 
    892  1.1  rmind 	if ((thmap->flags & THMAP_SETROOT) == 0) {
    893  1.1  rmind 		/* Allocate the root level. */
    894  1.1  rmind 		root = thmap->ops->alloc(THMAP_ROOT_LEN);
    895  1.1  rmind 		thmap->root = THMAP_GETPTR(thmap, root);
    896  1.1  rmind 		if (!thmap->root) {
    897  1.1  rmind 			kmem_free(thmap, sizeof(thmap_t));
    898  1.1  rmind 			return NULL;
    899  1.1  rmind 		}
    900  1.1  rmind 		memset(thmap->root, 0, THMAP_ROOT_LEN);
    901  1.1  rmind 	}
    902  1.1  rmind 	return thmap;
    903  1.1  rmind }
    904  1.1  rmind 
    905  1.1  rmind int
    906  1.1  rmind thmap_setroot(thmap_t *thmap, uintptr_t root_off)
    907  1.1  rmind {
    908  1.1  rmind 	if (thmap->root) {
    909  1.1  rmind 		return -1;
    910  1.1  rmind 	}
    911  1.1  rmind 	thmap->root = THMAP_GETPTR(thmap, root_off);
    912  1.1  rmind 	return 0;
    913  1.1  rmind }
    914  1.1  rmind 
    915  1.1  rmind uintptr_t
    916  1.1  rmind thmap_getroot(const thmap_t *thmap)
    917  1.1  rmind {
    918  1.1  rmind 	return THMAP_GETOFF(thmap, thmap->root);
    919  1.1  rmind }
    920  1.1  rmind 
    921  1.1  rmind void
    922  1.1  rmind thmap_destroy(thmap_t *thmap)
    923  1.1  rmind {
    924  1.1  rmind 	uintptr_t root = THMAP_GETOFF(thmap, thmap->root);
    925  1.1  rmind 	void *ref;
    926  1.1  rmind 
    927  1.1  rmind 	ref = thmap_stage_gc(thmap);
    928  1.1  rmind 	thmap_gc(thmap, ref);
    929  1.1  rmind 
    930  1.1  rmind 	if ((thmap->flags & THMAP_SETROOT) == 0) {
    931  1.1  rmind 		thmap->ops->free(root, THMAP_ROOT_LEN);
    932  1.1  rmind 	}
    933  1.1  rmind 	kmem_free(thmap, sizeof(thmap_t));
    934  1.1  rmind }
    935