subr_thmap.c revision 1.1 1 /*-
2 * Copyright (c) 2018 Mindaugas Rasiukevicius <rmind at noxt eu>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 *
26 * Upstream: https://github.com/rmind/thmap/
27 */
28
29 /*
30 * Concurrent trie-hash map.
31 *
32 * The data structure is conceptually a radix trie on hashed keys.
33 * Keys are hashed using a 32-bit function. The root level is a special
34 * case: it is managed using the compare-and-swap (CAS) atomic operation
35 * and has a fanout of 64. The subsequent levels are constructed using
36 * intermediate nodes with a fanout of 16 (using 4 bits). As more levels
37 * are created, more blocks of the 32-bit hash value might be generated
38 * by incrementing the seed parameter of the hash function.
39 *
40 * Concurrency
41 *
42 * - READERS: Descending is simply walking through the slot values of
43 * the intermediate nodes. It is lock-free as there is no intermediate
44 * state: the slot is either empty or has a pointer to the child node.
45 * The main assumptions here are the following:
46 *
47 * i) modifications must preserve consistency with the respect to the
48 * readers i.e. the readers can only see the valid node values;
49 *
50 * ii) any invalid view must "fail" the reads, e.g. by making them
51 * re-try from the root; this is a case for deletions and is achieved
52 * using the NODE_DELETED flag.
53 *
54 * iii) the node destruction must be synchronised with the readers,
55 * e.g. by using the Epoch-based reclamation or other techniques.
56 *
57 * - WRITERS AND LOCKING: Each intermediate node has a spin-lock (which
58 * is implemented using the NODE_LOCKED bit) -- it provides mutual
59 * exclusion amongst concurrent writers. The lock order for the nodes
60 * is "bottom-up" i.e. they are locked as we ascend the trie. A key
61 * constraint here is that parent pointer never changes.
62 *
63 * - DELETES: In addition to writer's locking, the deletion keeps the
64 * intermediate nodes in a valid state and sets the NODE_DELETED flag,
65 * to indicate that the readers must re-start the walk from the root.
66 * As the levels are collapsed, NODE_DELETED gets propagated up-tree.
67 * The leaf nodes just stay as-is until they are reclaimed.
68 *
69 * - ROOT LEVEL: The root level is a special case, as it is implemented
70 * as an array (rather than intermediate node). The root-level slot can
71 * only be set using CAS and it can only be set to a valid intermediate
72 * node. The root-level slot can only be cleared when the node it points
73 * at becomes empty, is locked and marked as NODE_DELETED (this causes
74 * the insert/delete operations to re-try until the slot is set to NULL).
75 *
76 * References:
77 *
78 * W. Litwin, 1981, Trie Hashing.
79 * Proceedings of the 1981 ACM SIGMOD, p. 19-29
80 * https://dl.acm.org/citation.cfm?id=582322
81 *
82 * P. L. Lehman and S. B. Yao.
83 * Efficient locking for concurrent operations on B-trees.
84 * ACM TODS, 6(4):650-670, 1981
85 * https://www.csd.uoc.gr/~hy460/pdf/p650-lehman.pdf
86 */
87
88 #ifdef _KERNEL
89 #include <sys/cdefs.h>
90 #include <sys/param.h>
91 #include <sys/types.h>
92 #include <sys/thmap.h>
93 #include <sys/kmem.h>
94 #include <sys/lock.h>
95 #include <sys/atomic.h>
96 #include <sys/hash.h>
97 #else
98 #include <stdio.h>
99 #include <stdlib.h>
100 #include <stdbool.h>
101 #include <stddef.h>
102 #include <inttypes.h>
103 #include <string.h>
104 #include <limits.h>
105
106 #include "thmap.h"
107 #include "utils.h"
108 #endif
109
110 /*
111 * NetBSD kernel wrappers
112 */
113 #ifdef _KERNEL
114 #define ASSERT KASSERT
115 #define DEBUG 1
116 #define atomic_thread_fence(x) x
117 #define memory_order_stores membar_producer()
118 #define memory_order_loads membar_consumer()
119 #define atomic_cas_32_p(p, e, n) (atomic_cas_32((p), (e), (n)) == (e))
120 #define atomic_cas_ptr_p(p, e, n) \
121 (atomic_cas_ptr((p), (void *)(e), (void *)(n)) == (e))
122 #define atomic_exchange atomic_swap_ptr
123 #define murmurhash3 murmurhash2
124 #endif
125
126 /*
127 * The root level fanout is 64 (indexed by the last 6 bits of the hash
128 * value XORed with the length). Each subsequent level, represented by
129 * intermediate nodes, has a fanout of 16 (using 4 bits).
130 *
131 * The hash function produces 32-bit values.
132 */
133
134 #define HASHVAL_BITS (32)
135 #define HASHVAL_MOD (HASHVAL_BITS - 1)
136 #define HASHVAL_SHIFT (5)
137
138 #define ROOT_BITS (6)
139 #define ROOT_SIZE (1 << ROOT_BITS)
140 #define ROOT_MASK (ROOT_SIZE - 1)
141 #define ROOT_MSBITS (HASHVAL_BITS - ROOT_BITS)
142
143 #define LEVEL_BITS (4)
144 #define LEVEL_SIZE (1 << LEVEL_BITS)
145 #define LEVEL_MASK (LEVEL_SIZE - 1)
146
147 /*
148 * Instead of raw pointers, we use offsets from the base address.
149 * This accommodates the use of this data structure in shared memory,
150 * where mappings can be in different address spaces.
151 *
152 * The pointers must be aligned, since pointer tagging is used to
153 * differentiate the intermediate nodes from leaves. We reserve the
154 * least significant bit.
155 */
156 typedef uintptr_t thmap_ptr_t;
157
158 #define THMAP_NULL ((thmap_ptr_t)0)
159
160 #define THMAP_LEAF_BIT (0x1)
161
162 #define THMAP_ALIGNED_P(p) (((uintptr_t)(p) & 3) == 0)
163 #define THMAP_ALIGN(p) ((uintptr_t)(p) & ~(uintptr_t)3)
164 #define THMAP_INODE_P(p) (((uintptr_t)(p) & THMAP_LEAF_BIT) == 0)
165
166 #define THMAP_GETPTR(th, p) ((void *)((th)->baseptr + (uintptr_t)(p)))
167 #define THMAP_GETOFF(th, p) ((thmap_ptr_t)((uintptr_t)(p) - (th)->baseptr))
168 #define THMAP_NODE(th, p) THMAP_GETPTR(th, THMAP_ALIGN(p))
169
170 /*
171 * State field.
172 */
173
174 #define NODE_LOCKED (1U << 31) // lock (writers)
175 #define NODE_DELETED (1U << 30) // node deleted
176 #define NODE_COUNT(s) ((s) & 0x3fffffff) // slot count mask
177
178 /*
179 * There are two types of nodes:
180 * - Intermediate nodes -- arrays pointing to another level or a leaf;
181 * - Leaves, which store a key-value pair.
182 */
183
184 typedef struct {
185 uint32_t state;
186 thmap_ptr_t parent;
187 thmap_ptr_t slots[LEVEL_SIZE];
188 } thmap_inode_t;
189
190 #define THMAP_INODE_LEN sizeof(thmap_inode_t)
191
192 typedef struct {
193 thmap_ptr_t key;
194 size_t len;
195 void * val;
196 } thmap_leaf_t;
197
198 typedef struct {
199 unsigned rslot; // root-level slot index
200 unsigned level; // current level in the tree
201 unsigned hashidx; // current hash index (block of bits)
202 uint32_t hashval; // current hash value
203 } thmap_query_t;
204
205 typedef struct {
206 uintptr_t addr;
207 size_t len;
208 void * next;
209 } thmap_gc_t;
210
211 #define THMAP_ROOT_LEN (sizeof(thmap_ptr_t) * ROOT_SIZE)
212
213 struct thmap {
214 uintptr_t baseptr;
215 thmap_ptr_t * root;
216 unsigned flags;
217 const thmap_ops_t *ops;
218 thmap_gc_t * gc_list;
219 };
220
221 static void stage_mem_gc(thmap_t *, uintptr_t, size_t);
222
223 /*
224 * A few low-level helper routines.
225 */
226
227 static uintptr_t
228 alloc_wrapper(size_t len)
229 {
230 return (uintptr_t)kmem_intr_alloc(len, KM_SLEEP);
231 }
232
233 static void
234 free_wrapper(uintptr_t addr, size_t len)
235 {
236 kmem_intr_free((void *)addr, len);
237 }
238
239 static const thmap_ops_t thmap_default_ops = {
240 .alloc = alloc_wrapper,
241 .free = free_wrapper
242 };
243
244 /*
245 * NODE LOCKING.
246 */
247
248 #ifdef DEBUG
249 static inline bool
250 node_locked_p(const thmap_inode_t *node)
251 {
252 return (node->state & NODE_LOCKED) != 0;
253 }
254 #endif
255
256 static void
257 lock_node(thmap_inode_t *node)
258 {
259 unsigned bcount = SPINLOCK_BACKOFF_MIN;
260 uint32_t s;
261 again:
262 s = node->state;
263 if (s & NODE_LOCKED) {
264 SPINLOCK_BACKOFF(bcount);
265 goto again;
266 }
267 /*
268 * CAS will issue a full memory fence for us.
269 *
270 * WARNING: for optimisations purposes, callers rely on us
271 * issuing load and store fence
272 */
273 if (!atomic_cas_32_p(&node->state, s, s | NODE_LOCKED)) {
274 bcount = SPINLOCK_BACKOFF_MIN;
275 goto again;
276 }
277 }
278
279 static void
280 unlock_node(thmap_inode_t *node)
281 {
282 uint32_t s = node->state & ~NODE_LOCKED;
283
284 ASSERT(node_locked_p(node));
285 atomic_thread_fence(memory_order_stores);
286 node->state = s; // atomic store
287 }
288
289 /*
290 * HASH VALUE AND KEY OPERATIONS.
291 */
292
293 static inline void
294 hashval_init(thmap_query_t *query, const void * restrict key, size_t len)
295 {
296 const uint32_t hashval = murmurhash3(key, len, 0);
297
298 query->rslot = ((hashval >> ROOT_MSBITS) ^ len) & ROOT_MASK;
299 query->level = 0;
300 query->hashval = hashval;
301 query->hashidx = 0;
302 }
303
304 /*
305 * hashval_getslot: given the key, compute the hash (if not already cached)
306 * and return the offset for the current level.
307 */
308 static unsigned
309 hashval_getslot(thmap_query_t *query, const void * restrict key, size_t len)
310 {
311 const unsigned offset = query->level * LEVEL_BITS;
312 const unsigned shift = offset & HASHVAL_MOD;
313 const unsigned i = offset >> HASHVAL_SHIFT;
314
315 if (query->hashidx != i) {
316 /* Generate a hash value for a required range. */
317 query->hashval = murmurhash3(key, len, i);
318 query->hashidx = i;
319 }
320 return (query->hashval >> shift) & LEVEL_MASK;
321 }
322
323 static unsigned
324 hashval_getleafslot(const thmap_t *thmap,
325 const thmap_leaf_t *leaf, unsigned level)
326 {
327 const void *key = THMAP_GETPTR(thmap, leaf->key);
328 const unsigned offset = level * LEVEL_BITS;
329 const unsigned shift = offset & HASHVAL_MOD;
330 const unsigned i = offset >> HASHVAL_SHIFT;
331
332 return (murmurhash3(key, leaf->len, i) >> shift) & LEVEL_MASK;
333 }
334
335 static inline unsigned
336 hashval_getl0slot(const thmap_t *thmap, const thmap_query_t *query,
337 const thmap_leaf_t *leaf)
338 {
339 if (__predict_true(query->hashidx == 0)) {
340 return query->hashval & LEVEL_MASK;
341 }
342 return hashval_getleafslot(thmap, leaf, 0);
343 }
344
345 static bool
346 key_cmp_p(const thmap_t *thmap, const thmap_leaf_t *leaf,
347 const void * restrict key, size_t len)
348 {
349 const void *leafkey = THMAP_GETPTR(thmap, leaf->key);
350 return len == leaf->len && memcmp(key, leafkey, len) == 0;
351 }
352
353 /*
354 * INTER-NODE OPERATIONS.
355 */
356
357 static thmap_inode_t *
358 node_create(thmap_t *thmap, thmap_inode_t *parent)
359 {
360 thmap_inode_t *node;
361 uintptr_t p;
362
363 p = thmap->ops->alloc(THMAP_INODE_LEN);
364 if (!p) {
365 return NULL;
366 }
367 node = THMAP_GETPTR(thmap, p);
368 ASSERT(THMAP_ALIGNED_P(node));
369
370 memset(node, 0, THMAP_INODE_LEN);
371 if (parent) {
372 node->state = NODE_LOCKED;
373 node->parent = THMAP_GETOFF(thmap, parent);
374 }
375 return node;
376 }
377
378 static void
379 node_insert(thmap_inode_t *node, unsigned slot, thmap_ptr_t child)
380 {
381 ASSERT(node_locked_p(node) || node->parent == THMAP_NULL);
382 ASSERT((node->state & NODE_DELETED) == 0);
383 ASSERT(node->slots[slot] == THMAP_NULL);
384
385 ASSERT(NODE_COUNT(node->state) < LEVEL_SIZE);
386
387 node->slots[slot] = child;
388 node->state++;
389 }
390
391 static void
392 node_remove(thmap_inode_t *node, unsigned slot)
393 {
394 ASSERT(node_locked_p(node));
395 ASSERT((node->state & NODE_DELETED) == 0);
396 ASSERT(node->slots[slot] != THMAP_NULL);
397
398 ASSERT(NODE_COUNT(node->state) > 0);
399 ASSERT(NODE_COUNT(node->state) <= LEVEL_SIZE);
400
401 node->slots[slot] = THMAP_NULL;
402 node->state--;
403 }
404
405 /*
406 * LEAF OPERATIONS.
407 */
408
409 static thmap_leaf_t *
410 leaf_create(const thmap_t *thmap, const void *key, size_t len, void *val)
411 {
412 thmap_leaf_t *leaf;
413 uintptr_t leaf_off, key_off;
414
415 leaf_off = thmap->ops->alloc(sizeof(thmap_leaf_t));
416 if (!leaf_off) {
417 return NULL;
418 }
419 leaf = THMAP_GETPTR(thmap, leaf_off);
420 ASSERT(THMAP_ALIGNED_P(leaf));
421
422 if ((thmap->flags & THMAP_NOCOPY) == 0) {
423 /*
424 * Copy the key.
425 */
426 key_off = thmap->ops->alloc(len);
427 if (!key_off) {
428 thmap->ops->free(leaf_off, sizeof(thmap_leaf_t));
429 return NULL;
430 }
431 memcpy(THMAP_GETPTR(thmap, key_off), key, len);
432 leaf->key = key_off;
433 } else {
434 /* Otherwise, we use a reference. */
435 leaf->key = (uintptr_t)key;
436 }
437 leaf->len = len;
438 leaf->val = val;
439 return leaf;
440 }
441
442 static void
443 leaf_free(const thmap_t *thmap, thmap_leaf_t *leaf)
444 {
445 if ((thmap->flags & THMAP_NOCOPY) == 0) {
446 thmap->ops->free(leaf->key, leaf->len);
447 }
448 thmap->ops->free(THMAP_GETOFF(thmap, leaf), sizeof(thmap_leaf_t));
449 }
450
451 static thmap_leaf_t *
452 get_leaf(const thmap_t *thmap, thmap_inode_t *parent, unsigned slot)
453 {
454 thmap_ptr_t node;
455
456 node = parent->slots[slot];
457 if (THMAP_INODE_P(node)) {
458 return NULL;
459 }
460 return THMAP_NODE(thmap, node);
461 }
462
463 /*
464 * ROOT OPERATIONS.
465 */
466
467 static inline bool
468 root_try_put(thmap_t *thmap, const thmap_query_t *query, thmap_leaf_t *leaf)
469 {
470 const unsigned i = query->rslot;
471 thmap_inode_t *node;
472 thmap_ptr_t nptr;
473 unsigned slot;
474
475 /*
476 * Must pre-check first.
477 */
478 if (thmap->root[i]) {
479 return false;
480 }
481
482 /*
483 * Create an intermediate node. Since there is no parent set,
484 * it will be created unlocked and the CAS operation will issue
485 * the store memory fence for us.
486 */
487 node = node_create(thmap, NULL);
488 slot = hashval_getl0slot(thmap, query, leaf);
489 node_insert(node, slot, THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT);
490 nptr = THMAP_GETOFF(thmap, node);
491 again:
492 if (thmap->root[i]) {
493 thmap->ops->free(nptr, THMAP_INODE_LEN);
494 return false;
495 }
496 if (!atomic_cas_ptr_p(&thmap->root[i], THMAP_NULL, nptr)) {
497 goto again;
498 }
499 return true;
500 }
501
502 /*
503 * find_edge_node: given the hash, traverse the tree to find the edge node.
504 *
505 * => Returns an aligned (clean) pointer to the parent node.
506 * => Returns the slot number and sets current level.
507 */
508 static thmap_inode_t *
509 find_edge_node(const thmap_t *thmap, thmap_query_t *query,
510 const void * restrict key, size_t len, unsigned *slot)
511 {
512 thmap_ptr_t root_slot = thmap->root[query->rslot];
513 thmap_inode_t *parent;
514 thmap_ptr_t node;
515 unsigned off;
516
517 ASSERT(query->level == 0);
518
519 parent = THMAP_NODE(thmap, root_slot);
520 if (!parent) {
521 return NULL;
522 }
523 descend:
524 off = hashval_getslot(query, key, len);
525 node = parent->slots[off];
526
527 /* Ensure the parent load happens before the child load. */
528 atomic_thread_fence(memory_order_loads);
529
530 /* Descend the tree until we find a leaf or empty slot. */
531 if (node && THMAP_INODE_P(node)) {
532 parent = THMAP_NODE(thmap, node);
533 query->level++;
534 goto descend;
535 }
536 if (parent->state & NODE_DELETED) {
537 return NULL;
538 }
539 *slot = off;
540 return parent;
541 }
542
543 /*
544 * find_edge_node_locked: traverse the tree, like find_edge_node(),
545 * but attempt to lock the edge node.
546 *
547 * => Returns NULL if the deleted node is found. This indicates that
548 * the caller must re-try from the root, as the root slot might have
549 * changed too.
550 */
551 static thmap_inode_t *
552 find_edge_node_locked(const thmap_t *thmap, thmap_query_t *query,
553 const void * restrict key, size_t len, unsigned *slot)
554 {
555 thmap_inode_t *node;
556 thmap_ptr_t target;
557 retry:
558 /*
559 * Find the edge node and lock it! Re-check the state since
560 * the tree might change by the time we acquire the lock.
561 */
562 node = find_edge_node(thmap, query, key, len, slot);
563 if (!node) {
564 /* The root slot is empty -- let the caller decide. */
565 query->level = 0;
566 return NULL;
567 }
568 lock_node(node);
569 if (__predict_false(node->state & NODE_DELETED)) {
570 /*
571 * The node has been deleted. The tree might have a new
572 * shape now, therefore we must re-start from the root.
573 */
574 unlock_node(node);
575 query->level = 0;
576 return NULL;
577 }
578 target = node->slots[*slot];
579 if (__predict_false(target && THMAP_INODE_P(target))) {
580 /*
581 * The target slot has been changed and it is now an
582 * intermediate node. Re-start from the top internode.
583 */
584 unlock_node(node);
585 query->level = 0;
586 goto retry;
587 }
588 return node;
589 }
590
591 /*
592 * thmap_get: lookup a value given the key.
593 */
594 void *
595 thmap_get(thmap_t *thmap, const void *key, size_t len)
596 {
597 thmap_query_t query;
598 thmap_inode_t *parent;
599 thmap_leaf_t *leaf;
600 unsigned slot;
601
602 hashval_init(&query, key, len);
603 parent = find_edge_node(thmap, &query, key, len, &slot);
604 if (!parent) {
605 return NULL;
606 }
607 leaf = get_leaf(thmap, parent, slot);
608 if (!leaf) {
609 return NULL;
610 }
611 if (!key_cmp_p(thmap, leaf, key, len)) {
612 return NULL;
613 }
614 return leaf->val;
615 }
616
617 /*
618 * thmap_put: insert a value given the key.
619 *
620 * => If the key is already present, return the associated value.
621 * => Otherwise, on successful insert, return the given value.
622 */
623 void *
624 thmap_put(thmap_t *thmap, const void *key, size_t len, void *val)
625 {
626 thmap_query_t query;
627 thmap_leaf_t *leaf, *other;
628 thmap_inode_t *parent, *child;
629 unsigned slot, other_slot;
630 thmap_ptr_t target;
631
632 /*
633 * First, pre-allocate and initialise the leaf node.
634 *
635 * NOTE: locking of the edge node below will issue the
636 * store fence for us.
637 */
638 leaf = leaf_create(thmap, key, len, val);
639 if (__predict_false(!leaf)) {
640 return NULL;
641 }
642 hashval_init(&query, key, len);
643 retry:
644 /*
645 * Try to insert into the root first, if its slot is empty.
646 */
647 if (root_try_put(thmap, &query, leaf)) {
648 /* Success: the leaf was inserted; no locking involved. */
649 return val;
650 }
651
652 /*
653 * Find the edge node and the target slot.
654 */
655 parent = find_edge_node_locked(thmap, &query, key, len, &slot);
656 if (!parent) {
657 goto retry;
658 }
659 target = parent->slots[slot]; // tagged offset
660 if (THMAP_INODE_P(target)) {
661 /*
662 * Empty slot: simply insert the new leaf. The store
663 * fence is already issued for us.
664 */
665 target = THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT;
666 node_insert(parent, slot, target);
667 goto out;
668 }
669
670 /*
671 * Collision or duplicate.
672 */
673 other = THMAP_NODE(thmap, target);
674 if (key_cmp_p(thmap, other, key, len)) {
675 /*
676 * Duplicate. Free the pre-allocated leaf and
677 * return the present value.
678 */
679 leaf_free(thmap, leaf);
680 val = other->val;
681 goto out;
682 }
683 descend:
684 /*
685 * Collision -- expand the tree. Create an intermediate node
686 * which will be locked (NODE_LOCKED) for us. At this point,
687 * we advance to the next level.
688 */
689 child = node_create(thmap, parent);
690 if (__predict_false(!child)) {
691 leaf_free(thmap, leaf);
692 val = NULL;
693 goto out;
694 }
695 query.level++;
696
697 /*
698 * Insert the other (colliding) leaf first.
699 */
700 other_slot = hashval_getleafslot(thmap, other, query.level);
701 target = THMAP_GETOFF(thmap, other) | THMAP_LEAF_BIT;
702 node_insert(child, other_slot, target);
703
704 /*
705 * Insert the intermediate node into the parent node.
706 * It becomes the new parent for the our new leaf.
707 *
708 * Ensure that stores to the child (and leaf) reach the
709 * global visibility before it gets inserted to the parent.
710 */
711 atomic_thread_fence(memory_order_stores);
712 parent->slots[slot] = THMAP_GETOFF(thmap, child);
713
714 unlock_node(parent);
715 ASSERT(node_locked_p(child));
716 parent = child;
717
718 /*
719 * Get the new slot and check for another collision
720 * at the next level.
721 */
722 slot = hashval_getslot(&query, key, len);
723 if (slot == other_slot) {
724 /* Another collision -- descend and expand again. */
725 goto descend;
726 }
727
728 /* Insert our new leaf once we expanded enough. */
729 target = THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT;
730 node_insert(parent, slot, target);
731 out:
732 unlock_node(parent);
733 return val;
734 }
735
736 /*
737 * thmap_del: remove the entry given the key.
738 */
739 void *
740 thmap_del(thmap_t *thmap, const void *key, size_t len)
741 {
742 thmap_query_t query;
743 thmap_leaf_t *leaf;
744 thmap_inode_t *parent;
745 unsigned slot;
746 void *val;
747
748 hashval_init(&query, key, len);
749 parent = find_edge_node_locked(thmap, &query, key, len, &slot);
750 if (!parent) {
751 /* Root slot empty: not found. */
752 return NULL;
753 }
754 leaf = get_leaf(thmap, parent, slot);
755 if (!leaf || !key_cmp_p(thmap, leaf, key, len)) {
756 /* Not found. */
757 unlock_node(parent);
758 return NULL;
759 }
760
761 /* Remove the leaf. */
762 ASSERT(THMAP_NODE(thmap, parent->slots[slot]) == leaf);
763 node_remove(parent, slot);
764
765 /*
766 * Collapse the levels if removing the last item.
767 */
768 while (query.level && NODE_COUNT(parent->state) == 0) {
769 thmap_inode_t *node = parent;
770
771 ASSERT(node->state == NODE_LOCKED);
772
773 /*
774 * Ascend one level up.
775 * => Mark our current parent as deleted.
776 * => Lock the parent one level up.
777 */
778 query.level--;
779 slot = hashval_getslot(&query, key, len);
780 parent = THMAP_NODE(thmap, node->parent);
781 ASSERT(parent != NULL);
782
783 lock_node(parent);
784 ASSERT((parent->state & NODE_DELETED) == 0);
785
786 node->state |= NODE_DELETED;
787 unlock_node(node); // memory_order_stores
788
789 ASSERT(THMAP_NODE(thmap, parent->slots[slot]) == node);
790 node_remove(parent, slot);
791
792 /* Stage the removed node for G/C. */
793 stage_mem_gc(thmap, THMAP_GETOFF(thmap, node), THMAP_INODE_LEN);
794 }
795
796 /*
797 * If the top node is empty, then we need to remove it from the
798 * root level. Mark the node as deleted and clear the slot.
799 *
800 * Note: acquiring the lock on the top node effectively prevents
801 * the root slot from changing.
802 */
803 if (NODE_COUNT(parent->state) == 0) {
804 const unsigned rslot = query.rslot;
805 const thmap_ptr_t nptr = thmap->root[rslot];
806
807 ASSERT(query.level == 0);
808 ASSERT(parent->parent == THMAP_NULL);
809 ASSERT(THMAP_GETOFF(thmap, parent) == nptr);
810
811 /* Mark as deleted and remove from the root-level slot. */
812 parent->state |= NODE_DELETED;
813 atomic_thread_fence(memory_order_stores);
814 thmap->root[rslot] = THMAP_NULL;
815
816 stage_mem_gc(thmap, nptr, THMAP_INODE_LEN);
817 }
818 unlock_node(parent);
819
820 /*
821 * Save the value and stage the leaf for G/C.
822 */
823 val = leaf->val;
824 if ((thmap->flags & THMAP_NOCOPY) == 0) {
825 stage_mem_gc(thmap, leaf->key, leaf->len);
826 }
827 stage_mem_gc(thmap, THMAP_GETOFF(thmap, leaf), sizeof(thmap_leaf_t));
828 return val;
829 }
830
831 /*
832 * G/C routines.
833 */
834
835 static void
836 stage_mem_gc(thmap_t *thmap, uintptr_t addr, size_t len)
837 {
838 thmap_gc_t *head, *gc;
839
840 gc = kmem_intr_alloc(sizeof(thmap_gc_t), KM_SLEEP);
841 gc->addr = addr;
842 gc->len = len;
843 retry:
844 gc->next = head = thmap->gc_list;
845 if (!atomic_cas_ptr_p(&thmap->gc_list, head, gc)) {
846 goto retry;
847 }
848 }
849
850 void *
851 thmap_stage_gc(thmap_t *thmap)
852 {
853 return atomic_exchange(&thmap->gc_list, NULL);
854 }
855
856 void
857 thmap_gc(thmap_t *thmap, void *ref)
858 {
859 thmap_gc_t *gc = ref;
860
861 while (gc) {
862 thmap_gc_t *next = gc->next;
863 thmap->ops->free(gc->addr, gc->len);
864 kmem_intr_free(gc, sizeof(thmap_gc_t));
865 gc = next;
866 }
867 }
868
869 /*
870 * thmap_create: construct a new trie-hash map object.
871 */
872 thmap_t *
873 thmap_create(uintptr_t baseptr, const thmap_ops_t *ops, unsigned flags)
874 {
875 thmap_t *thmap;
876 uintptr_t root;
877
878 /*
879 * Setup the map object.
880 */
881 if (!THMAP_ALIGNED_P(baseptr)) {
882 return NULL;
883 }
884 thmap = kmem_zalloc(sizeof(thmap_t), KM_SLEEP);
885 if (!thmap) {
886 return NULL;
887 }
888 thmap->baseptr = baseptr;
889 thmap->ops = ops ? ops : &thmap_default_ops;
890 thmap->flags = flags;
891
892 if ((thmap->flags & THMAP_SETROOT) == 0) {
893 /* Allocate the root level. */
894 root = thmap->ops->alloc(THMAP_ROOT_LEN);
895 thmap->root = THMAP_GETPTR(thmap, root);
896 if (!thmap->root) {
897 kmem_free(thmap, sizeof(thmap_t));
898 return NULL;
899 }
900 memset(thmap->root, 0, THMAP_ROOT_LEN);
901 }
902 return thmap;
903 }
904
905 int
906 thmap_setroot(thmap_t *thmap, uintptr_t root_off)
907 {
908 if (thmap->root) {
909 return -1;
910 }
911 thmap->root = THMAP_GETPTR(thmap, root_off);
912 return 0;
913 }
914
915 uintptr_t
916 thmap_getroot(const thmap_t *thmap)
917 {
918 return THMAP_GETOFF(thmap, thmap->root);
919 }
920
921 void
922 thmap_destroy(thmap_t *thmap)
923 {
924 uintptr_t root = THMAP_GETOFF(thmap, thmap->root);
925 void *ref;
926
927 ref = thmap_stage_gc(thmap);
928 thmap_gc(thmap, ref);
929
930 if ((thmap->flags & THMAP_SETROOT) == 0) {
931 thmap->ops->free(root, THMAP_ROOT_LEN);
932 }
933 kmem_free(thmap, sizeof(thmap_t));
934 }
935