subr_thmap.c revision 1.3.2.3 1 /* $NetBSD: subr_thmap.c,v 1.3.2.3 2019/01/26 22:00:36 pgoyette Exp $ */
2
3 /*-
4 * Copyright (c) 2018 Mindaugas Rasiukevicius <rmind at noxt eu>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * Upstream: https://github.com/rmind/thmap/
29 */
30
31 /*
32 * Concurrent trie-hash map.
33 *
34 * The data structure is conceptually a radix trie on hashed keys.
35 * Keys are hashed using a 32-bit function. The root level is a special
36 * case: it is managed using the compare-and-swap (CAS) atomic operation
37 * and has a fanout of 64. The subsequent levels are constructed using
38 * intermediate nodes with a fanout of 16 (using 4 bits). As more levels
39 * are created, more blocks of the 32-bit hash value might be generated
40 * by incrementing the seed parameter of the hash function.
41 *
42 * Concurrency
43 *
44 * - READERS: Descending is simply walking through the slot values of
45 * the intermediate nodes. It is lock-free as there is no intermediate
46 * state: the slot is either empty or has a pointer to the child node.
47 * The main assumptions here are the following:
48 *
49 * i) modifications must preserve consistency with the respect to the
50 * readers i.e. the readers can only see the valid node values;
51 *
52 * ii) any invalid view must "fail" the reads, e.g. by making them
53 * re-try from the root; this is a case for deletions and is achieved
54 * using the NODE_DELETED flag.
55 *
56 * iii) the node destruction must be synchronised with the readers,
57 * e.g. by using the Epoch-based reclamation or other techniques.
58 *
59 * - WRITERS AND LOCKING: Each intermediate node has a spin-lock (which
60 * is implemented using the NODE_LOCKED bit) -- it provides mutual
61 * exclusion amongst concurrent writers. The lock order for the nodes
62 * is "bottom-up" i.e. they are locked as we ascend the trie. A key
63 * constraint here is that parent pointer never changes.
64 *
65 * - DELETES: In addition to writer's locking, the deletion keeps the
66 * intermediate nodes in a valid state and sets the NODE_DELETED flag,
67 * to indicate that the readers must re-start the walk from the root.
68 * As the levels are collapsed, NODE_DELETED gets propagated up-tree.
69 * The leaf nodes just stay as-is until they are reclaimed.
70 *
71 * - ROOT LEVEL: The root level is a special case, as it is implemented
72 * as an array (rather than intermediate node). The root-level slot can
73 * only be set using CAS and it can only be set to a valid intermediate
74 * node. The root-level slot can only be cleared when the node it points
75 * at becomes empty, is locked and marked as NODE_DELETED (this causes
76 * the insert/delete operations to re-try until the slot is set to NULL).
77 *
78 * References:
79 *
80 * W. Litwin, 1981, Trie Hashing.
81 * Proceedings of the 1981 ACM SIGMOD, p. 19-29
82 * https://dl.acm.org/citation.cfm?id=582322
83 *
84 * P. L. Lehman and S. B. Yao.
85 * Efficient locking for concurrent operations on B-trees.
86 * ACM TODS, 6(4):650-670, 1981
87 * https://www.csd.uoc.gr/~hy460/pdf/p650-lehman.pdf
88 */
89
90
91 #ifdef _KERNEL
92 #include <sys/cdefs.h>
93 #include <sys/param.h>
94 #include <sys/types.h>
95 #include <sys/thmap.h>
96 #include <sys/kmem.h>
97 #include <sys/lock.h>
98 #include <sys/atomic.h>
99 #include <sys/hash.h>
100 #define THMAP_RCSID(a) __KERNEL_RCSID(0, a)
101 #else
102 #include <stdio.h>
103 #include <stdlib.h>
104 #include <stdbool.h>
105 #include <stddef.h>
106 #include <inttypes.h>
107 #include <string.h>
108 #include <limits.h>
109 #define THMAP_RCSID(a) __RCSID(a)
110
111 #include "thmap.h"
112 #include "utils.h"
113 #endif
114
115 THMAP_RCSID("$NetBSD: subr_thmap.c,v 1.3.2.3 2019/01/26 22:00:36 pgoyette Exp $");
116
117 /*
118 * NetBSD kernel wrappers
119 */
120 #ifdef _KERNEL
121 #define ASSERT KASSERT
122 #define atomic_thread_fence(x) x
123 #define memory_order_stores membar_producer()
124 #define memory_order_loads membar_consumer()
125 #define atomic_cas_32_p(p, e, n) (atomic_cas_32((p), (e), (n)) == (e))
126 #define atomic_cas_ptr_p(p, e, n) \
127 (atomic_cas_ptr((p), (void *)(e), (void *)(n)) == (e))
128 #define atomic_exchange atomic_swap_ptr
129 #define murmurhash3 murmurhash2
130 #endif
131
132 /*
133 * The root level fanout is 64 (indexed by the last 6 bits of the hash
134 * value XORed with the length). Each subsequent level, represented by
135 * intermediate nodes, has a fanout of 16 (using 4 bits).
136 *
137 * The hash function produces 32-bit values.
138 */
139
140 #define HASHVAL_BITS (32)
141 #define HASHVAL_MOD (HASHVAL_BITS - 1)
142 #define HASHVAL_SHIFT (5)
143
144 #define ROOT_BITS (6)
145 #define ROOT_SIZE (1 << ROOT_BITS)
146 #define ROOT_MASK (ROOT_SIZE - 1)
147 #define ROOT_MSBITS (HASHVAL_BITS - ROOT_BITS)
148
149 #define LEVEL_BITS (4)
150 #define LEVEL_SIZE (1 << LEVEL_BITS)
151 #define LEVEL_MASK (LEVEL_SIZE - 1)
152
153 /*
154 * Instead of raw pointers, we use offsets from the base address.
155 * This accommodates the use of this data structure in shared memory,
156 * where mappings can be in different address spaces.
157 *
158 * The pointers must be aligned, since pointer tagging is used to
159 * differentiate the intermediate nodes from leaves. We reserve the
160 * least significant bit.
161 */
162 typedef uintptr_t thmap_ptr_t;
163
164 #define THMAP_NULL ((thmap_ptr_t)0)
165
166 #define THMAP_LEAF_BIT (0x1)
167
168 #define THMAP_ALIGNED_P(p) (((uintptr_t)(p) & 3) == 0)
169 #define THMAP_ALIGN(p) ((uintptr_t)(p) & ~(uintptr_t)3)
170 #define THMAP_INODE_P(p) (((uintptr_t)(p) & THMAP_LEAF_BIT) == 0)
171
172 #define THMAP_GETPTR(th, p) ((void *)((th)->baseptr + (uintptr_t)(p)))
173 #define THMAP_GETOFF(th, p) ((thmap_ptr_t)((uintptr_t)(p) - (th)->baseptr))
174 #define THMAP_NODE(th, p) THMAP_GETPTR(th, THMAP_ALIGN(p))
175
176 /*
177 * State field.
178 */
179
180 #define NODE_LOCKED (1U << 31) // lock (writers)
181 #define NODE_DELETED (1U << 30) // node deleted
182 #define NODE_COUNT(s) ((s) & 0x3fffffff) // slot count mask
183
184 /*
185 * There are two types of nodes:
186 * - Intermediate nodes -- arrays pointing to another level or a leaf;
187 * - Leaves, which store a key-value pair.
188 */
189
190 typedef struct {
191 uint32_t state;
192 thmap_ptr_t parent;
193 thmap_ptr_t slots[LEVEL_SIZE];
194 } thmap_inode_t;
195
196 #define THMAP_INODE_LEN sizeof(thmap_inode_t)
197
198 typedef struct {
199 thmap_ptr_t key;
200 size_t len;
201 void * val;
202 } thmap_leaf_t;
203
204 typedef struct {
205 unsigned rslot; // root-level slot index
206 unsigned level; // current level in the tree
207 unsigned hashidx; // current hash index (block of bits)
208 uint32_t hashval; // current hash value
209 } thmap_query_t;
210
211 typedef struct {
212 uintptr_t addr;
213 size_t len;
214 void * next;
215 } thmap_gc_t;
216
217 #define THMAP_ROOT_LEN (sizeof(thmap_ptr_t) * ROOT_SIZE)
218
219 struct thmap {
220 uintptr_t baseptr;
221 thmap_ptr_t * root;
222 unsigned flags;
223 const thmap_ops_t *ops;
224 thmap_gc_t * gc_list;
225 };
226
227 static void stage_mem_gc(thmap_t *, uintptr_t, size_t);
228
229 /*
230 * A few low-level helper routines.
231 */
232
233 static uintptr_t
234 alloc_wrapper(size_t len)
235 {
236 return (uintptr_t)kmem_intr_alloc(len, KM_NOSLEEP);
237 }
238
239 static void
240 free_wrapper(uintptr_t addr, size_t len)
241 {
242 kmem_intr_free((void *)addr, len);
243 }
244
245 static const thmap_ops_t thmap_default_ops = {
246 .alloc = alloc_wrapper,
247 .free = free_wrapper
248 };
249
250 /*
251 * NODE LOCKING.
252 */
253
254 #ifdef DIAGNOSTIC
255 static inline bool
256 node_locked_p(const thmap_inode_t *node)
257 {
258 return (node->state & NODE_LOCKED) != 0;
259 }
260 #endif
261
262 static void
263 lock_node(thmap_inode_t *node)
264 {
265 unsigned bcount = SPINLOCK_BACKOFF_MIN;
266 uint32_t s;
267 again:
268 s = node->state;
269 if (s & NODE_LOCKED) {
270 SPINLOCK_BACKOFF(bcount);
271 goto again;
272 }
273 /*
274 * CAS will issue a full memory fence for us.
275 *
276 * WARNING: for optimisations purposes, callers rely on us
277 * issuing load and store fence
278 */
279 if (!atomic_cas_32_p(&node->state, s, s | NODE_LOCKED)) {
280 bcount = SPINLOCK_BACKOFF_MIN;
281 goto again;
282 }
283 }
284
285 static void
286 unlock_node(thmap_inode_t *node)
287 {
288 uint32_t s = node->state & ~NODE_LOCKED;
289
290 ASSERT(node_locked_p(node));
291 atomic_thread_fence(memory_order_stores);
292 node->state = s; // atomic store
293 }
294
295 /*
296 * HASH VALUE AND KEY OPERATIONS.
297 */
298
299 static inline void
300 hashval_init(thmap_query_t *query, const void * restrict key, size_t len)
301 {
302 const uint32_t hashval = murmurhash3(key, len, 0);
303
304 query->rslot = ((hashval >> ROOT_MSBITS) ^ len) & ROOT_MASK;
305 query->level = 0;
306 query->hashval = hashval;
307 query->hashidx = 0;
308 }
309
310 /*
311 * hashval_getslot: given the key, compute the hash (if not already cached)
312 * and return the offset for the current level.
313 */
314 static unsigned
315 hashval_getslot(thmap_query_t *query, const void * restrict key, size_t len)
316 {
317 const unsigned offset = query->level * LEVEL_BITS;
318 const unsigned shift = offset & HASHVAL_MOD;
319 const unsigned i = offset >> HASHVAL_SHIFT;
320
321 if (query->hashidx != i) {
322 /* Generate a hash value for a required range. */
323 query->hashval = murmurhash3(key, len, i);
324 query->hashidx = i;
325 }
326 return (query->hashval >> shift) & LEVEL_MASK;
327 }
328
329 static unsigned
330 hashval_getleafslot(const thmap_t *thmap,
331 const thmap_leaf_t *leaf, unsigned level)
332 {
333 const void *key = THMAP_GETPTR(thmap, leaf->key);
334 const unsigned offset = level * LEVEL_BITS;
335 const unsigned shift = offset & HASHVAL_MOD;
336 const unsigned i = offset >> HASHVAL_SHIFT;
337
338 return (murmurhash3(key, leaf->len, i) >> shift) & LEVEL_MASK;
339 }
340
341 static inline unsigned
342 hashval_getl0slot(const thmap_t *thmap, const thmap_query_t *query,
343 const thmap_leaf_t *leaf)
344 {
345 if (__predict_true(query->hashidx == 0)) {
346 return query->hashval & LEVEL_MASK;
347 }
348 return hashval_getleafslot(thmap, leaf, 0);
349 }
350
351 static bool
352 key_cmp_p(const thmap_t *thmap, const thmap_leaf_t *leaf,
353 const void * restrict key, size_t len)
354 {
355 const void *leafkey = THMAP_GETPTR(thmap, leaf->key);
356 return len == leaf->len && memcmp(key, leafkey, len) == 0;
357 }
358
359 /*
360 * INTER-NODE OPERATIONS.
361 */
362
363 static thmap_inode_t *
364 node_create(thmap_t *thmap, thmap_inode_t *parent)
365 {
366 thmap_inode_t *node;
367 uintptr_t p;
368
369 p = thmap->ops->alloc(THMAP_INODE_LEN);
370 if (!p) {
371 return NULL;
372 }
373 node = THMAP_GETPTR(thmap, p);
374 ASSERT(THMAP_ALIGNED_P(node));
375
376 memset(node, 0, THMAP_INODE_LEN);
377 if (parent) {
378 node->state = NODE_LOCKED;
379 node->parent = THMAP_GETOFF(thmap, parent);
380 }
381 return node;
382 }
383
384 static void
385 node_insert(thmap_inode_t *node, unsigned slot, thmap_ptr_t child)
386 {
387 ASSERT(node_locked_p(node) || node->parent == THMAP_NULL);
388 ASSERT((node->state & NODE_DELETED) == 0);
389 ASSERT(node->slots[slot] == THMAP_NULL);
390
391 ASSERT(NODE_COUNT(node->state) < LEVEL_SIZE);
392
393 node->slots[slot] = child;
394 node->state++;
395 }
396
397 static void
398 node_remove(thmap_inode_t *node, unsigned slot)
399 {
400 ASSERT(node_locked_p(node));
401 ASSERT((node->state & NODE_DELETED) == 0);
402 ASSERT(node->slots[slot] != THMAP_NULL);
403
404 ASSERT(NODE_COUNT(node->state) > 0);
405 ASSERT(NODE_COUNT(node->state) <= LEVEL_SIZE);
406
407 node->slots[slot] = THMAP_NULL;
408 node->state--;
409 }
410
411 /*
412 * LEAF OPERATIONS.
413 */
414
415 static thmap_leaf_t *
416 leaf_create(const thmap_t *thmap, const void *key, size_t len, void *val)
417 {
418 thmap_leaf_t *leaf;
419 uintptr_t leaf_off, key_off;
420
421 leaf_off = thmap->ops->alloc(sizeof(thmap_leaf_t));
422 if (!leaf_off) {
423 return NULL;
424 }
425 leaf = THMAP_GETPTR(thmap, leaf_off);
426 ASSERT(THMAP_ALIGNED_P(leaf));
427
428 if ((thmap->flags & THMAP_NOCOPY) == 0) {
429 /*
430 * Copy the key.
431 */
432 key_off = thmap->ops->alloc(len);
433 if (!key_off) {
434 thmap->ops->free(leaf_off, sizeof(thmap_leaf_t));
435 return NULL;
436 }
437 memcpy(THMAP_GETPTR(thmap, key_off), key, len);
438 leaf->key = key_off;
439 } else {
440 /* Otherwise, we use a reference. */
441 leaf->key = (uintptr_t)key;
442 }
443 leaf->len = len;
444 leaf->val = val;
445 return leaf;
446 }
447
448 static void
449 leaf_free(const thmap_t *thmap, thmap_leaf_t *leaf)
450 {
451 if ((thmap->flags & THMAP_NOCOPY) == 0) {
452 thmap->ops->free(leaf->key, leaf->len);
453 }
454 thmap->ops->free(THMAP_GETOFF(thmap, leaf), sizeof(thmap_leaf_t));
455 }
456
457 static thmap_leaf_t *
458 get_leaf(const thmap_t *thmap, thmap_inode_t *parent, unsigned slot)
459 {
460 thmap_ptr_t node;
461
462 node = parent->slots[slot];
463 if (THMAP_INODE_P(node)) {
464 return NULL;
465 }
466 return THMAP_NODE(thmap, node);
467 }
468
469 /*
470 * ROOT OPERATIONS.
471 */
472
473 static inline bool
474 root_try_put(thmap_t *thmap, const thmap_query_t *query, thmap_leaf_t *leaf)
475 {
476 const unsigned i = query->rslot;
477 thmap_inode_t *node;
478 thmap_ptr_t nptr;
479 unsigned slot;
480
481 /*
482 * Must pre-check first.
483 */
484 if (thmap->root[i]) {
485 return false;
486 }
487
488 /*
489 * Create an intermediate node. Since there is no parent set,
490 * it will be created unlocked and the CAS operation will issue
491 * the store memory fence for us.
492 */
493 node = node_create(thmap, NULL);
494 slot = hashval_getl0slot(thmap, query, leaf);
495 node_insert(node, slot, THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT);
496 nptr = THMAP_GETOFF(thmap, node);
497 again:
498 if (thmap->root[i]) {
499 thmap->ops->free(nptr, THMAP_INODE_LEN);
500 return false;
501 }
502 if (!atomic_cas_ptr_p(&thmap->root[i], THMAP_NULL, nptr)) {
503 goto again;
504 }
505 return true;
506 }
507
508 /*
509 * find_edge_node: given the hash, traverse the tree to find the edge node.
510 *
511 * => Returns an aligned (clean) pointer to the parent node.
512 * => Returns the slot number and sets current level.
513 */
514 static thmap_inode_t *
515 find_edge_node(const thmap_t *thmap, thmap_query_t *query,
516 const void * restrict key, size_t len, unsigned *slot)
517 {
518 thmap_ptr_t root_slot = thmap->root[query->rslot];
519 thmap_inode_t *parent;
520 thmap_ptr_t node;
521 unsigned off;
522
523 ASSERT(query->level == 0);
524
525 parent = THMAP_NODE(thmap, root_slot);
526 if (!parent) {
527 return NULL;
528 }
529 descend:
530 off = hashval_getslot(query, key, len);
531 node = parent->slots[off];
532
533 /* Ensure the parent load happens before the child load. */
534 atomic_thread_fence(memory_order_loads);
535
536 /* Descend the tree until we find a leaf or empty slot. */
537 if (node && THMAP_INODE_P(node)) {
538 parent = THMAP_NODE(thmap, node);
539 query->level++;
540 goto descend;
541 }
542 if (parent->state & NODE_DELETED) {
543 return NULL;
544 }
545 *slot = off;
546 return parent;
547 }
548
549 /*
550 * find_edge_node_locked: traverse the tree, like find_edge_node(),
551 * but attempt to lock the edge node.
552 *
553 * => Returns NULL if the deleted node is found. This indicates that
554 * the caller must re-try from the root, as the root slot might have
555 * changed too.
556 */
557 static thmap_inode_t *
558 find_edge_node_locked(const thmap_t *thmap, thmap_query_t *query,
559 const void * restrict key, size_t len, unsigned *slot)
560 {
561 thmap_inode_t *node;
562 thmap_ptr_t target;
563 retry:
564 /*
565 * Find the edge node and lock it! Re-check the state since
566 * the tree might change by the time we acquire the lock.
567 */
568 node = find_edge_node(thmap, query, key, len, slot);
569 if (!node) {
570 /* The root slot is empty -- let the caller decide. */
571 query->level = 0;
572 return NULL;
573 }
574 lock_node(node);
575 if (__predict_false(node->state & NODE_DELETED)) {
576 /*
577 * The node has been deleted. The tree might have a new
578 * shape now, therefore we must re-start from the root.
579 */
580 unlock_node(node);
581 query->level = 0;
582 return NULL;
583 }
584 target = node->slots[*slot];
585 if (__predict_false(target && THMAP_INODE_P(target))) {
586 /*
587 * The target slot has been changed and it is now an
588 * intermediate node. Re-start from the top internode.
589 */
590 unlock_node(node);
591 query->level = 0;
592 goto retry;
593 }
594 return node;
595 }
596
597 /*
598 * thmap_get: lookup a value given the key.
599 */
600 void *
601 thmap_get(thmap_t *thmap, const void *key, size_t len)
602 {
603 thmap_query_t query;
604 thmap_inode_t *parent;
605 thmap_leaf_t *leaf;
606 unsigned slot;
607
608 hashval_init(&query, key, len);
609 parent = find_edge_node(thmap, &query, key, len, &slot);
610 if (!parent) {
611 return NULL;
612 }
613 leaf = get_leaf(thmap, parent, slot);
614 if (!leaf) {
615 return NULL;
616 }
617 if (!key_cmp_p(thmap, leaf, key, len)) {
618 return NULL;
619 }
620 return leaf->val;
621 }
622
623 /*
624 * thmap_put: insert a value given the key.
625 *
626 * => If the key is already present, return the associated value.
627 * => Otherwise, on successful insert, return the given value.
628 */
629 void *
630 thmap_put(thmap_t *thmap, const void *key, size_t len, void *val)
631 {
632 thmap_query_t query;
633 thmap_leaf_t *leaf, *other;
634 thmap_inode_t *parent, *child;
635 unsigned slot, other_slot;
636 thmap_ptr_t target;
637
638 /*
639 * First, pre-allocate and initialise the leaf node.
640 *
641 * NOTE: locking of the edge node below will issue the
642 * store fence for us.
643 */
644 leaf = leaf_create(thmap, key, len, val);
645 if (__predict_false(!leaf)) {
646 return NULL;
647 }
648 hashval_init(&query, key, len);
649 retry:
650 /*
651 * Try to insert into the root first, if its slot is empty.
652 */
653 if (root_try_put(thmap, &query, leaf)) {
654 /* Success: the leaf was inserted; no locking involved. */
655 return val;
656 }
657
658 /*
659 * Find the edge node and the target slot.
660 */
661 parent = find_edge_node_locked(thmap, &query, key, len, &slot);
662 if (!parent) {
663 goto retry;
664 }
665 target = parent->slots[slot]; // tagged offset
666 if (THMAP_INODE_P(target)) {
667 /*
668 * Empty slot: simply insert the new leaf. The store
669 * fence is already issued for us.
670 */
671 target = THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT;
672 node_insert(parent, slot, target);
673 goto out;
674 }
675
676 /*
677 * Collision or duplicate.
678 */
679 other = THMAP_NODE(thmap, target);
680 if (key_cmp_p(thmap, other, key, len)) {
681 /*
682 * Duplicate. Free the pre-allocated leaf and
683 * return the present value.
684 */
685 leaf_free(thmap, leaf);
686 val = other->val;
687 goto out;
688 }
689 descend:
690 /*
691 * Collision -- expand the tree. Create an intermediate node
692 * which will be locked (NODE_LOCKED) for us. At this point,
693 * we advance to the next level.
694 */
695 child = node_create(thmap, parent);
696 if (__predict_false(!child)) {
697 leaf_free(thmap, leaf);
698 val = NULL;
699 goto out;
700 }
701 query.level++;
702
703 /*
704 * Insert the other (colliding) leaf first.
705 */
706 other_slot = hashval_getleafslot(thmap, other, query.level);
707 target = THMAP_GETOFF(thmap, other) | THMAP_LEAF_BIT;
708 node_insert(child, other_slot, target);
709
710 /*
711 * Insert the intermediate node into the parent node.
712 * It becomes the new parent for the our new leaf.
713 *
714 * Ensure that stores to the child (and leaf) reach the
715 * global visibility before it gets inserted to the parent.
716 */
717 atomic_thread_fence(memory_order_stores);
718 parent->slots[slot] = THMAP_GETOFF(thmap, child);
719
720 unlock_node(parent);
721 ASSERT(node_locked_p(child));
722 parent = child;
723
724 /*
725 * Get the new slot and check for another collision
726 * at the next level.
727 */
728 slot = hashval_getslot(&query, key, len);
729 if (slot == other_slot) {
730 /* Another collision -- descend and expand again. */
731 goto descend;
732 }
733
734 /* Insert our new leaf once we expanded enough. */
735 target = THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT;
736 node_insert(parent, slot, target);
737 out:
738 unlock_node(parent);
739 return val;
740 }
741
742 /*
743 * thmap_del: remove the entry given the key.
744 */
745 void *
746 thmap_del(thmap_t *thmap, const void *key, size_t len)
747 {
748 thmap_query_t query;
749 thmap_leaf_t *leaf;
750 thmap_inode_t *parent;
751 unsigned slot;
752 void *val;
753
754 hashval_init(&query, key, len);
755 parent = find_edge_node_locked(thmap, &query, key, len, &slot);
756 if (!parent) {
757 /* Root slot empty: not found. */
758 return NULL;
759 }
760 leaf = get_leaf(thmap, parent, slot);
761 if (!leaf || !key_cmp_p(thmap, leaf, key, len)) {
762 /* Not found. */
763 unlock_node(parent);
764 return NULL;
765 }
766
767 /* Remove the leaf. */
768 ASSERT(THMAP_NODE(thmap, parent->slots[slot]) == leaf);
769 node_remove(parent, slot);
770
771 /*
772 * Collapse the levels if removing the last item.
773 */
774 while (query.level && NODE_COUNT(parent->state) == 0) {
775 thmap_inode_t *node = parent;
776
777 ASSERT(node->state == NODE_LOCKED);
778
779 /*
780 * Ascend one level up.
781 * => Mark our current parent as deleted.
782 * => Lock the parent one level up.
783 */
784 query.level--;
785 slot = hashval_getslot(&query, key, len);
786 parent = THMAP_NODE(thmap, node->parent);
787 ASSERT(parent != NULL);
788
789 lock_node(parent);
790 ASSERT((parent->state & NODE_DELETED) == 0);
791
792 node->state |= NODE_DELETED;
793 unlock_node(node); // memory_order_stores
794
795 ASSERT(THMAP_NODE(thmap, parent->slots[slot]) == node);
796 node_remove(parent, slot);
797
798 /* Stage the removed node for G/C. */
799 stage_mem_gc(thmap, THMAP_GETOFF(thmap, node), THMAP_INODE_LEN);
800 }
801
802 /*
803 * If the top node is empty, then we need to remove it from the
804 * root level. Mark the node as deleted and clear the slot.
805 *
806 * Note: acquiring the lock on the top node effectively prevents
807 * the root slot from changing.
808 */
809 if (NODE_COUNT(parent->state) == 0) {
810 const unsigned rslot = query.rslot;
811 const thmap_ptr_t nptr = thmap->root[rslot];
812
813 ASSERT(query.level == 0);
814 ASSERT(parent->parent == THMAP_NULL);
815 ASSERT(THMAP_GETOFF(thmap, parent) == nptr);
816
817 /* Mark as deleted and remove from the root-level slot. */
818 parent->state |= NODE_DELETED;
819 atomic_thread_fence(memory_order_stores);
820 thmap->root[rslot] = THMAP_NULL;
821
822 stage_mem_gc(thmap, nptr, THMAP_INODE_LEN);
823 }
824 unlock_node(parent);
825
826 /*
827 * Save the value and stage the leaf for G/C.
828 */
829 val = leaf->val;
830 if ((thmap->flags & THMAP_NOCOPY) == 0) {
831 stage_mem_gc(thmap, leaf->key, leaf->len);
832 }
833 stage_mem_gc(thmap, THMAP_GETOFF(thmap, leaf), sizeof(thmap_leaf_t));
834 return val;
835 }
836
837 /*
838 * G/C routines.
839 */
840
841 static void
842 stage_mem_gc(thmap_t *thmap, uintptr_t addr, size_t len)
843 {
844 thmap_gc_t *head, *gc;
845
846 gc = kmem_intr_alloc(sizeof(thmap_gc_t), KM_NOSLEEP);
847 gc->addr = addr;
848 gc->len = len;
849 retry:
850 gc->next = head = thmap->gc_list;
851 if (!atomic_cas_ptr_p(&thmap->gc_list, head, gc)) {
852 goto retry;
853 }
854 }
855
856 void *
857 thmap_stage_gc(thmap_t *thmap)
858 {
859 return atomic_exchange(&thmap->gc_list, NULL);
860 }
861
862 void
863 thmap_gc(thmap_t *thmap, void *ref)
864 {
865 thmap_gc_t *gc = ref;
866
867 while (gc) {
868 thmap_gc_t *next = gc->next;
869 thmap->ops->free(gc->addr, gc->len);
870 kmem_intr_free(gc, sizeof(thmap_gc_t));
871 gc = next;
872 }
873 }
874
875 /*
876 * thmap_create: construct a new trie-hash map object.
877 */
878 thmap_t *
879 thmap_create(uintptr_t baseptr, const thmap_ops_t *ops, unsigned flags)
880 {
881 thmap_t *thmap;
882 uintptr_t root;
883
884 /*
885 * Setup the map object.
886 */
887 if (!THMAP_ALIGNED_P(baseptr)) {
888 return NULL;
889 }
890 thmap = kmem_zalloc(sizeof(thmap_t), KM_SLEEP);
891 if (!thmap) {
892 return NULL;
893 }
894 thmap->baseptr = baseptr;
895 thmap->ops = ops ? ops : &thmap_default_ops;
896 thmap->flags = flags;
897
898 if ((thmap->flags & THMAP_SETROOT) == 0) {
899 /* Allocate the root level. */
900 root = thmap->ops->alloc(THMAP_ROOT_LEN);
901 thmap->root = THMAP_GETPTR(thmap, root);
902 if (!thmap->root) {
903 kmem_free(thmap, sizeof(thmap_t));
904 return NULL;
905 }
906 memset(thmap->root, 0, THMAP_ROOT_LEN);
907 }
908 return thmap;
909 }
910
911 int
912 thmap_setroot(thmap_t *thmap, uintptr_t root_off)
913 {
914 if (thmap->root) {
915 return -1;
916 }
917 thmap->root = THMAP_GETPTR(thmap, root_off);
918 return 0;
919 }
920
921 uintptr_t
922 thmap_getroot(const thmap_t *thmap)
923 {
924 return THMAP_GETOFF(thmap, thmap->root);
925 }
926
927 void
928 thmap_destroy(thmap_t *thmap)
929 {
930 uintptr_t root = THMAP_GETOFF(thmap, thmap->root);
931 void *ref;
932
933 ref = thmap_stage_gc(thmap);
934 thmap_gc(thmap, ref);
935
936 if ((thmap->flags & THMAP_SETROOT) == 0) {
937 thmap->ops->free(root, THMAP_ROOT_LEN);
938 }
939 kmem_free(thmap, sizeof(thmap_t));
940 }
941