Home | History | Annotate | Line # | Download | only in kern
subr_thmap.c revision 1.3.2.3
      1 /*	$NetBSD: subr_thmap.c,v 1.3.2.3 2019/01/26 22:00:36 pgoyette Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2018 Mindaugas Rasiukevicius <rmind at noxt eu>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
     17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  *
     28  * Upstream: https://github.com/rmind/thmap/
     29  */
     30 
     31 /*
     32  * Concurrent trie-hash map.
     33  *
     34  * The data structure is conceptually a radix trie on hashed keys.
     35  * Keys are hashed using a 32-bit function.  The root level is a special
     36  * case: it is managed using the compare-and-swap (CAS) atomic operation
     37  * and has a fanout of 64.  The subsequent levels are constructed using
     38  * intermediate nodes with a fanout of 16 (using 4 bits).  As more levels
     39  * are created, more blocks of the 32-bit hash value might be generated
     40  * by incrementing the seed parameter of the hash function.
     41  *
     42  * Concurrency
     43  *
     44  * - READERS: Descending is simply walking through the slot values of
     45  *   the intermediate nodes.  It is lock-free as there is no intermediate
     46  *   state: the slot is either empty or has a pointer to the child node.
     47  *   The main assumptions here are the following:
     48  *
     49  *   i) modifications must preserve consistency with the respect to the
     50  *   readers i.e. the readers can only see the valid node values;
     51  *
     52  *   ii) any invalid view must "fail" the reads, e.g. by making them
     53  *   re-try from the root; this is a case for deletions and is achieved
     54  *   using the NODE_DELETED flag.
     55  *
     56  *   iii) the node destruction must be synchronised with the readers,
     57  *   e.g. by using the Epoch-based reclamation or other techniques.
     58  *
     59  * - WRITERS AND LOCKING: Each intermediate node has a spin-lock (which
     60  *   is implemented using the NODE_LOCKED bit) -- it provides mutual
     61  *   exclusion amongst concurrent writers.  The lock order for the nodes
     62  *   is "bottom-up" i.e. they are locked as we ascend the trie.  A key
     63  *   constraint here is that parent pointer never changes.
     64  *
     65  * - DELETES: In addition to writer's locking, the deletion keeps the
     66  *   intermediate nodes in a valid state and sets the NODE_DELETED flag,
     67  *   to indicate that the readers must re-start the walk from the root.
     68  *   As the levels are collapsed, NODE_DELETED gets propagated up-tree.
     69  *   The leaf nodes just stay as-is until they are reclaimed.
     70  *
     71  * - ROOT LEVEL: The root level is a special case, as it is implemented
     72  *   as an array (rather than intermediate node).  The root-level slot can
     73  *   only be set using CAS and it can only be set to a valid intermediate
     74  *   node.  The root-level slot can only be cleared when the node it points
     75  *   at becomes empty, is locked and marked as NODE_DELETED (this causes
     76  *   the insert/delete operations to re-try until the slot is set to NULL).
     77  *
     78  * References:
     79  *
     80  *	W. Litwin, 1981, Trie Hashing.
     81  *	Proceedings of the 1981 ACM SIGMOD, p. 19-29
     82  *	https://dl.acm.org/citation.cfm?id=582322
     83  *
     84  *	P. L. Lehman and S. B. Yao.
     85  *	Efficient locking for concurrent operations on B-trees.
     86  *	ACM TODS, 6(4):650-670, 1981
     87  *	https://www.csd.uoc.gr/~hy460/pdf/p650-lehman.pdf
     88  */
     89 
     90 
     91 #ifdef _KERNEL
     92 #include <sys/cdefs.h>
     93 #include <sys/param.h>
     94 #include <sys/types.h>
     95 #include <sys/thmap.h>
     96 #include <sys/kmem.h>
     97 #include <sys/lock.h>
     98 #include <sys/atomic.h>
     99 #include <sys/hash.h>
    100 #define THMAP_RCSID(a) __KERNEL_RCSID(0, a)
    101 #else
    102 #include <stdio.h>
    103 #include <stdlib.h>
    104 #include <stdbool.h>
    105 #include <stddef.h>
    106 #include <inttypes.h>
    107 #include <string.h>
    108 #include <limits.h>
    109 #define THMAP_RCSID(a) __RCSID(a)
    110 
    111 #include "thmap.h"
    112 #include "utils.h"
    113 #endif
    114 
    115 THMAP_RCSID("$NetBSD: subr_thmap.c,v 1.3.2.3 2019/01/26 22:00:36 pgoyette Exp $");
    116 
    117 /*
    118  * NetBSD kernel wrappers
    119  */
    120 #ifdef _KERNEL
    121 #define	ASSERT KASSERT
    122 #define	atomic_thread_fence(x) x
    123 #define	memory_order_stores membar_producer()
    124 #define	memory_order_loads membar_consumer()
    125 #define	atomic_cas_32_p(p, e, n) (atomic_cas_32((p), (e), (n)) == (e))
    126 #define	atomic_cas_ptr_p(p, e, n) \
    127     (atomic_cas_ptr((p), (void *)(e), (void *)(n)) == (e))
    128 #define	atomic_exchange atomic_swap_ptr
    129 #define	murmurhash3 murmurhash2
    130 #endif
    131 
    132 /*
    133  * The root level fanout is 64 (indexed by the last 6 bits of the hash
    134  * value XORed with the length).  Each subsequent level, represented by
    135  * intermediate nodes, has a fanout of 16 (using 4 bits).
    136  *
    137  * The hash function produces 32-bit values.
    138  */
    139 
    140 #define	HASHVAL_BITS	(32)
    141 #define	HASHVAL_MOD	(HASHVAL_BITS - 1)
    142 #define	HASHVAL_SHIFT	(5)
    143 
    144 #define	ROOT_BITS	(6)
    145 #define	ROOT_SIZE	(1 << ROOT_BITS)
    146 #define	ROOT_MASK	(ROOT_SIZE - 1)
    147 #define	ROOT_MSBITS	(HASHVAL_BITS - ROOT_BITS)
    148 
    149 #define	LEVEL_BITS	(4)
    150 #define	LEVEL_SIZE	(1 << LEVEL_BITS)
    151 #define	LEVEL_MASK	(LEVEL_SIZE - 1)
    152 
    153 /*
    154  * Instead of raw pointers, we use offsets from the base address.
    155  * This accommodates the use of this data structure in shared memory,
    156  * where mappings can be in different address spaces.
    157  *
    158  * The pointers must be aligned, since pointer tagging is used to
    159  * differentiate the intermediate nodes from leaves.  We reserve the
    160  * least significant bit.
    161  */
    162 typedef uintptr_t thmap_ptr_t;
    163 
    164 #define	THMAP_NULL		((thmap_ptr_t)0)
    165 
    166 #define	THMAP_LEAF_BIT		(0x1)
    167 
    168 #define	THMAP_ALIGNED_P(p)	(((uintptr_t)(p) & 3) == 0)
    169 #define	THMAP_ALIGN(p)		((uintptr_t)(p) & ~(uintptr_t)3)
    170 #define	THMAP_INODE_P(p)	(((uintptr_t)(p) & THMAP_LEAF_BIT) == 0)
    171 
    172 #define	THMAP_GETPTR(th, p)	((void *)((th)->baseptr + (uintptr_t)(p)))
    173 #define	THMAP_GETOFF(th, p)	((thmap_ptr_t)((uintptr_t)(p) - (th)->baseptr))
    174 #define	THMAP_NODE(th, p)	THMAP_GETPTR(th, THMAP_ALIGN(p))
    175 
    176 /*
    177  * State field.
    178  */
    179 
    180 #define	NODE_LOCKED		(1U << 31)		// lock (writers)
    181 #define	NODE_DELETED		(1U << 30)		// node deleted
    182 #define	NODE_COUNT(s)		((s) & 0x3fffffff)	// slot count mask
    183 
    184 /*
    185  * There are two types of nodes:
    186  * - Intermediate nodes -- arrays pointing to another level or a leaf;
    187  * - Leaves, which store a key-value pair.
    188  */
    189 
    190 typedef struct {
    191 	uint32_t	state;
    192 	thmap_ptr_t	parent;
    193 	thmap_ptr_t	slots[LEVEL_SIZE];
    194 } thmap_inode_t;
    195 
    196 #define	THMAP_INODE_LEN	sizeof(thmap_inode_t)
    197 
    198 typedef struct {
    199 	thmap_ptr_t	key;
    200 	size_t		len;
    201 	void *		val;
    202 } thmap_leaf_t;
    203 
    204 typedef struct {
    205 	unsigned	rslot;		// root-level slot index
    206 	unsigned	level;		// current level in the tree
    207 	unsigned	hashidx;	// current hash index (block of bits)
    208 	uint32_t	hashval;	// current hash value
    209 } thmap_query_t;
    210 
    211 typedef struct {
    212 	uintptr_t	addr;
    213 	size_t		len;
    214 	void *		next;
    215 } thmap_gc_t;
    216 
    217 #define	THMAP_ROOT_LEN	(sizeof(thmap_ptr_t) * ROOT_SIZE)
    218 
    219 struct thmap {
    220 	uintptr_t	baseptr;
    221 	thmap_ptr_t *	root;
    222 	unsigned	flags;
    223 	const thmap_ops_t *ops;
    224 	thmap_gc_t *	gc_list;
    225 };
    226 
    227 static void	stage_mem_gc(thmap_t *, uintptr_t, size_t);
    228 
    229 /*
    230  * A few low-level helper routines.
    231  */
    232 
    233 static uintptr_t
    234 alloc_wrapper(size_t len)
    235 {
    236 	return (uintptr_t)kmem_intr_alloc(len, KM_NOSLEEP);
    237 }
    238 
    239 static void
    240 free_wrapper(uintptr_t addr, size_t len)
    241 {
    242 	kmem_intr_free((void *)addr, len);
    243 }
    244 
    245 static const thmap_ops_t thmap_default_ops = {
    246 	.alloc = alloc_wrapper,
    247 	.free = free_wrapper
    248 };
    249 
    250 /*
    251  * NODE LOCKING.
    252  */
    253 
    254 #ifdef DIAGNOSTIC
    255 static inline bool
    256 node_locked_p(const thmap_inode_t *node)
    257 {
    258 	return (node->state & NODE_LOCKED) != 0;
    259 }
    260 #endif
    261 
    262 static void
    263 lock_node(thmap_inode_t *node)
    264 {
    265 	unsigned bcount = SPINLOCK_BACKOFF_MIN;
    266 	uint32_t s;
    267 again:
    268 	s = node->state;
    269 	if (s & NODE_LOCKED) {
    270 		SPINLOCK_BACKOFF(bcount);
    271 		goto again;
    272 	}
    273 	/*
    274 	 * CAS will issue a full memory fence for us.
    275 	 *
    276 	 * WARNING: for optimisations purposes, callers rely on us
    277 	 * issuing load and store fence
    278 	 */
    279 	if (!atomic_cas_32_p(&node->state, s, s | NODE_LOCKED)) {
    280 		bcount = SPINLOCK_BACKOFF_MIN;
    281 		goto again;
    282 	}
    283 }
    284 
    285 static void
    286 unlock_node(thmap_inode_t *node)
    287 {
    288 	uint32_t s = node->state & ~NODE_LOCKED;
    289 
    290 	ASSERT(node_locked_p(node));
    291 	atomic_thread_fence(memory_order_stores);
    292 	node->state = s; // atomic store
    293 }
    294 
    295 /*
    296  * HASH VALUE AND KEY OPERATIONS.
    297  */
    298 
    299 static inline void
    300 hashval_init(thmap_query_t *query, const void * restrict key, size_t len)
    301 {
    302 	const uint32_t hashval = murmurhash3(key, len, 0);
    303 
    304 	query->rslot = ((hashval >> ROOT_MSBITS) ^ len) & ROOT_MASK;
    305 	query->level = 0;
    306 	query->hashval = hashval;
    307 	query->hashidx = 0;
    308 }
    309 
    310 /*
    311  * hashval_getslot: given the key, compute the hash (if not already cached)
    312  * and return the offset for the current level.
    313  */
    314 static unsigned
    315 hashval_getslot(thmap_query_t *query, const void * restrict key, size_t len)
    316 {
    317 	const unsigned offset = query->level * LEVEL_BITS;
    318 	const unsigned shift = offset & HASHVAL_MOD;
    319 	const unsigned i = offset >> HASHVAL_SHIFT;
    320 
    321 	if (query->hashidx != i) {
    322 		/* Generate a hash value for a required range. */
    323 		query->hashval = murmurhash3(key, len, i);
    324 		query->hashidx = i;
    325 	}
    326 	return (query->hashval >> shift) & LEVEL_MASK;
    327 }
    328 
    329 static unsigned
    330 hashval_getleafslot(const thmap_t *thmap,
    331     const thmap_leaf_t *leaf, unsigned level)
    332 {
    333 	const void *key = THMAP_GETPTR(thmap, leaf->key);
    334 	const unsigned offset = level * LEVEL_BITS;
    335 	const unsigned shift = offset & HASHVAL_MOD;
    336 	const unsigned i = offset >> HASHVAL_SHIFT;
    337 
    338 	return (murmurhash3(key, leaf->len, i) >> shift) & LEVEL_MASK;
    339 }
    340 
    341 static inline unsigned
    342 hashval_getl0slot(const thmap_t *thmap, const thmap_query_t *query,
    343     const thmap_leaf_t *leaf)
    344 {
    345 	if (__predict_true(query->hashidx == 0)) {
    346 		return query->hashval & LEVEL_MASK;
    347 	}
    348 	return hashval_getleafslot(thmap, leaf, 0);
    349 }
    350 
    351 static bool
    352 key_cmp_p(const thmap_t *thmap, const thmap_leaf_t *leaf,
    353     const void * restrict key, size_t len)
    354 {
    355 	const void *leafkey = THMAP_GETPTR(thmap, leaf->key);
    356 	return len == leaf->len && memcmp(key, leafkey, len) == 0;
    357 }
    358 
    359 /*
    360  * INTER-NODE OPERATIONS.
    361  */
    362 
    363 static thmap_inode_t *
    364 node_create(thmap_t *thmap, thmap_inode_t *parent)
    365 {
    366 	thmap_inode_t *node;
    367 	uintptr_t p;
    368 
    369 	p = thmap->ops->alloc(THMAP_INODE_LEN);
    370 	if (!p) {
    371 		return NULL;
    372 	}
    373 	node = THMAP_GETPTR(thmap, p);
    374 	ASSERT(THMAP_ALIGNED_P(node));
    375 
    376 	memset(node, 0, THMAP_INODE_LEN);
    377 	if (parent) {
    378 		node->state = NODE_LOCKED;
    379 		node->parent = THMAP_GETOFF(thmap, parent);
    380 	}
    381 	return node;
    382 }
    383 
    384 static void
    385 node_insert(thmap_inode_t *node, unsigned slot, thmap_ptr_t child)
    386 {
    387 	ASSERT(node_locked_p(node) || node->parent == THMAP_NULL);
    388 	ASSERT((node->state & NODE_DELETED) == 0);
    389 	ASSERT(node->slots[slot] == THMAP_NULL);
    390 
    391 	ASSERT(NODE_COUNT(node->state) < LEVEL_SIZE);
    392 
    393 	node->slots[slot] = child;
    394 	node->state++;
    395 }
    396 
    397 static void
    398 node_remove(thmap_inode_t *node, unsigned slot)
    399 {
    400 	ASSERT(node_locked_p(node));
    401 	ASSERT((node->state & NODE_DELETED) == 0);
    402 	ASSERT(node->slots[slot] != THMAP_NULL);
    403 
    404 	ASSERT(NODE_COUNT(node->state) > 0);
    405 	ASSERT(NODE_COUNT(node->state) <= LEVEL_SIZE);
    406 
    407 	node->slots[slot] = THMAP_NULL;
    408 	node->state--;
    409 }
    410 
    411 /*
    412  * LEAF OPERATIONS.
    413  */
    414 
    415 static thmap_leaf_t *
    416 leaf_create(const thmap_t *thmap, const void *key, size_t len, void *val)
    417 {
    418 	thmap_leaf_t *leaf;
    419 	uintptr_t leaf_off, key_off;
    420 
    421 	leaf_off = thmap->ops->alloc(sizeof(thmap_leaf_t));
    422 	if (!leaf_off) {
    423 		return NULL;
    424 	}
    425 	leaf = THMAP_GETPTR(thmap, leaf_off);
    426 	ASSERT(THMAP_ALIGNED_P(leaf));
    427 
    428 	if ((thmap->flags & THMAP_NOCOPY) == 0) {
    429 		/*
    430 		 * Copy the key.
    431 		 */
    432 		key_off = thmap->ops->alloc(len);
    433 		if (!key_off) {
    434 			thmap->ops->free(leaf_off, sizeof(thmap_leaf_t));
    435 			return NULL;
    436 		}
    437 		memcpy(THMAP_GETPTR(thmap, key_off), key, len);
    438 		leaf->key = key_off;
    439 	} else {
    440 		/* Otherwise, we use a reference. */
    441 		leaf->key = (uintptr_t)key;
    442 	}
    443 	leaf->len = len;
    444 	leaf->val = val;
    445 	return leaf;
    446 }
    447 
    448 static void
    449 leaf_free(const thmap_t *thmap, thmap_leaf_t *leaf)
    450 {
    451 	if ((thmap->flags & THMAP_NOCOPY) == 0) {
    452 		thmap->ops->free(leaf->key, leaf->len);
    453 	}
    454 	thmap->ops->free(THMAP_GETOFF(thmap, leaf), sizeof(thmap_leaf_t));
    455 }
    456 
    457 static thmap_leaf_t *
    458 get_leaf(const thmap_t *thmap, thmap_inode_t *parent, unsigned slot)
    459 {
    460 	thmap_ptr_t node;
    461 
    462 	node = parent->slots[slot];
    463 	if (THMAP_INODE_P(node)) {
    464 		return NULL;
    465 	}
    466 	return THMAP_NODE(thmap, node);
    467 }
    468 
    469 /*
    470  * ROOT OPERATIONS.
    471  */
    472 
    473 static inline bool
    474 root_try_put(thmap_t *thmap, const thmap_query_t *query, thmap_leaf_t *leaf)
    475 {
    476 	const unsigned i = query->rslot;
    477 	thmap_inode_t *node;
    478 	thmap_ptr_t nptr;
    479 	unsigned slot;
    480 
    481 	/*
    482 	 * Must pre-check first.
    483 	 */
    484 	if (thmap->root[i]) {
    485 		return false;
    486 	}
    487 
    488 	/*
    489 	 * Create an intermediate node.  Since there is no parent set,
    490 	 * it will be created unlocked and the CAS operation will issue
    491 	 * the store memory fence for us.
    492 	 */
    493 	node = node_create(thmap, NULL);
    494 	slot = hashval_getl0slot(thmap, query, leaf);
    495 	node_insert(node, slot, THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT);
    496 	nptr = THMAP_GETOFF(thmap, node);
    497 again:
    498 	if (thmap->root[i]) {
    499 		thmap->ops->free(nptr, THMAP_INODE_LEN);
    500 		return false;
    501 	}
    502 	if (!atomic_cas_ptr_p(&thmap->root[i], THMAP_NULL, nptr)) {
    503 		goto again;
    504 	}
    505 	return true;
    506 }
    507 
    508 /*
    509  * find_edge_node: given the hash, traverse the tree to find the edge node.
    510  *
    511  * => Returns an aligned (clean) pointer to the parent node.
    512  * => Returns the slot number and sets current level.
    513  */
    514 static thmap_inode_t *
    515 find_edge_node(const thmap_t *thmap, thmap_query_t *query,
    516     const void * restrict key, size_t len, unsigned *slot)
    517 {
    518 	thmap_ptr_t root_slot = thmap->root[query->rslot];
    519 	thmap_inode_t *parent;
    520 	thmap_ptr_t node;
    521 	unsigned off;
    522 
    523 	ASSERT(query->level == 0);
    524 
    525 	parent = THMAP_NODE(thmap, root_slot);
    526 	if (!parent) {
    527 		return NULL;
    528 	}
    529 descend:
    530 	off = hashval_getslot(query, key, len);
    531 	node = parent->slots[off];
    532 
    533 	/* Ensure the parent load happens before the child load. */
    534 	atomic_thread_fence(memory_order_loads);
    535 
    536 	/* Descend the tree until we find a leaf or empty slot. */
    537 	if (node && THMAP_INODE_P(node)) {
    538 		parent = THMAP_NODE(thmap, node);
    539 		query->level++;
    540 		goto descend;
    541 	}
    542 	if (parent->state & NODE_DELETED) {
    543 		return NULL;
    544 	}
    545 	*slot = off;
    546 	return parent;
    547 }
    548 
    549 /*
    550  * find_edge_node_locked: traverse the tree, like find_edge_node(),
    551  * but attempt to lock the edge node.
    552  *
    553  * => Returns NULL if the deleted node is found.  This indicates that
    554  *    the caller must re-try from the root, as the root slot might have
    555  *    changed too.
    556  */
    557 static thmap_inode_t *
    558 find_edge_node_locked(const thmap_t *thmap, thmap_query_t *query,
    559     const void * restrict key, size_t len, unsigned *slot)
    560 {
    561 	thmap_inode_t *node;
    562 	thmap_ptr_t target;
    563 retry:
    564 	/*
    565 	 * Find the edge node and lock it!  Re-check the state since
    566 	 * the tree might change by the time we acquire the lock.
    567 	 */
    568 	node = find_edge_node(thmap, query, key, len, slot);
    569 	if (!node) {
    570 		/* The root slot is empty -- let the caller decide. */
    571 		query->level = 0;
    572 		return NULL;
    573 	}
    574 	lock_node(node);
    575 	if (__predict_false(node->state & NODE_DELETED)) {
    576 		/*
    577 		 * The node has been deleted.  The tree might have a new
    578 		 * shape now, therefore we must re-start from the root.
    579 		 */
    580 		unlock_node(node);
    581 		query->level = 0;
    582 		return NULL;
    583 	}
    584 	target = node->slots[*slot];
    585 	if (__predict_false(target && THMAP_INODE_P(target))) {
    586 		/*
    587 		 * The target slot has been changed and it is now an
    588 		 * intermediate node.  Re-start from the top internode.
    589 		 */
    590 		unlock_node(node);
    591 		query->level = 0;
    592 		goto retry;
    593 	}
    594 	return node;
    595 }
    596 
    597 /*
    598  * thmap_get: lookup a value given the key.
    599  */
    600 void *
    601 thmap_get(thmap_t *thmap, const void *key, size_t len)
    602 {
    603 	thmap_query_t query;
    604 	thmap_inode_t *parent;
    605 	thmap_leaf_t *leaf;
    606 	unsigned slot;
    607 
    608 	hashval_init(&query, key, len);
    609 	parent = find_edge_node(thmap, &query, key, len, &slot);
    610 	if (!parent) {
    611 		return NULL;
    612 	}
    613 	leaf = get_leaf(thmap, parent, slot);
    614 	if (!leaf) {
    615 		return NULL;
    616 	}
    617 	if (!key_cmp_p(thmap, leaf, key, len)) {
    618 		return NULL;
    619 	}
    620 	return leaf->val;
    621 }
    622 
    623 /*
    624  * thmap_put: insert a value given the key.
    625  *
    626  * => If the key is already present, return the associated value.
    627  * => Otherwise, on successful insert, return the given value.
    628  */
    629 void *
    630 thmap_put(thmap_t *thmap, const void *key, size_t len, void *val)
    631 {
    632 	thmap_query_t query;
    633 	thmap_leaf_t *leaf, *other;
    634 	thmap_inode_t *parent, *child;
    635 	unsigned slot, other_slot;
    636 	thmap_ptr_t target;
    637 
    638 	/*
    639 	 * First, pre-allocate and initialise the leaf node.
    640 	 *
    641 	 * NOTE: locking of the edge node below will issue the
    642 	 * store fence for us.
    643 	 */
    644 	leaf = leaf_create(thmap, key, len, val);
    645 	if (__predict_false(!leaf)) {
    646 		return NULL;
    647 	}
    648 	hashval_init(&query, key, len);
    649 retry:
    650 	/*
    651 	 * Try to insert into the root first, if its slot is empty.
    652 	 */
    653 	if (root_try_put(thmap, &query, leaf)) {
    654 		/* Success: the leaf was inserted; no locking involved. */
    655 		return val;
    656 	}
    657 
    658 	/*
    659 	 * Find the edge node and the target slot.
    660 	 */
    661 	parent = find_edge_node_locked(thmap, &query, key, len, &slot);
    662 	if (!parent) {
    663 		goto retry;
    664 	}
    665 	target = parent->slots[slot]; // tagged offset
    666 	if (THMAP_INODE_P(target)) {
    667 		/*
    668 		 * Empty slot: simply insert the new leaf.  The store
    669 		 * fence is already issued for us.
    670 		 */
    671 		target = THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT;
    672 		node_insert(parent, slot, target);
    673 		goto out;
    674 	}
    675 
    676 	/*
    677 	 * Collision or duplicate.
    678 	 */
    679 	other = THMAP_NODE(thmap, target);
    680 	if (key_cmp_p(thmap, other, key, len)) {
    681 		/*
    682 		 * Duplicate.  Free the pre-allocated leaf and
    683 		 * return the present value.
    684 		 */
    685 		leaf_free(thmap, leaf);
    686 		val = other->val;
    687 		goto out;
    688 	}
    689 descend:
    690 	/*
    691 	 * Collision -- expand the tree.  Create an intermediate node
    692 	 * which will be locked (NODE_LOCKED) for us.  At this point,
    693 	 * we advance to the next level.
    694 	 */
    695 	child = node_create(thmap, parent);
    696 	if (__predict_false(!child)) {
    697 		leaf_free(thmap, leaf);
    698 		val = NULL;
    699 		goto out;
    700 	}
    701 	query.level++;
    702 
    703 	/*
    704 	 * Insert the other (colliding) leaf first.
    705 	 */
    706 	other_slot = hashval_getleafslot(thmap, other, query.level);
    707 	target = THMAP_GETOFF(thmap, other) | THMAP_LEAF_BIT;
    708 	node_insert(child, other_slot, target);
    709 
    710 	/*
    711 	 * Insert the intermediate node into the parent node.
    712 	 * It becomes the new parent for the our new leaf.
    713 	 *
    714 	 * Ensure that stores to the child (and leaf) reach the
    715 	 * global visibility before it gets inserted to the parent.
    716 	 */
    717 	atomic_thread_fence(memory_order_stores);
    718 	parent->slots[slot] = THMAP_GETOFF(thmap, child);
    719 
    720 	unlock_node(parent);
    721 	ASSERT(node_locked_p(child));
    722 	parent = child;
    723 
    724 	/*
    725 	 * Get the new slot and check for another collision
    726 	 * at the next level.
    727 	 */
    728 	slot = hashval_getslot(&query, key, len);
    729 	if (slot == other_slot) {
    730 		/* Another collision -- descend and expand again. */
    731 		goto descend;
    732 	}
    733 
    734 	/* Insert our new leaf once we expanded enough. */
    735 	target = THMAP_GETOFF(thmap, leaf) | THMAP_LEAF_BIT;
    736 	node_insert(parent, slot, target);
    737 out:
    738 	unlock_node(parent);
    739 	return val;
    740 }
    741 
    742 /*
    743  * thmap_del: remove the entry given the key.
    744  */
    745 void *
    746 thmap_del(thmap_t *thmap, const void *key, size_t len)
    747 {
    748 	thmap_query_t query;
    749 	thmap_leaf_t *leaf;
    750 	thmap_inode_t *parent;
    751 	unsigned slot;
    752 	void *val;
    753 
    754 	hashval_init(&query, key, len);
    755 	parent = find_edge_node_locked(thmap, &query, key, len, &slot);
    756 	if (!parent) {
    757 		/* Root slot empty: not found. */
    758 		return NULL;
    759 	}
    760 	leaf = get_leaf(thmap, parent, slot);
    761 	if (!leaf || !key_cmp_p(thmap, leaf, key, len)) {
    762 		/* Not found. */
    763 		unlock_node(parent);
    764 		return NULL;
    765 	}
    766 
    767 	/* Remove the leaf. */
    768 	ASSERT(THMAP_NODE(thmap, parent->slots[slot]) == leaf);
    769 	node_remove(parent, slot);
    770 
    771 	/*
    772 	 * Collapse the levels if removing the last item.
    773 	 */
    774 	while (query.level && NODE_COUNT(parent->state) == 0) {
    775 		thmap_inode_t *node = parent;
    776 
    777 		ASSERT(node->state == NODE_LOCKED);
    778 
    779 		/*
    780 		 * Ascend one level up.
    781 		 * => Mark our current parent as deleted.
    782 		 * => Lock the parent one level up.
    783 		 */
    784 		query.level--;
    785 		slot = hashval_getslot(&query, key, len);
    786 		parent = THMAP_NODE(thmap, node->parent);
    787 		ASSERT(parent != NULL);
    788 
    789 		lock_node(parent);
    790 		ASSERT((parent->state & NODE_DELETED) == 0);
    791 
    792 		node->state |= NODE_DELETED;
    793 		unlock_node(node); // memory_order_stores
    794 
    795 		ASSERT(THMAP_NODE(thmap, parent->slots[slot]) == node);
    796 		node_remove(parent, slot);
    797 
    798 		/* Stage the removed node for G/C. */
    799 		stage_mem_gc(thmap, THMAP_GETOFF(thmap, node), THMAP_INODE_LEN);
    800 	}
    801 
    802 	/*
    803 	 * If the top node is empty, then we need to remove it from the
    804 	 * root level.  Mark the node as deleted and clear the slot.
    805 	 *
    806 	 * Note: acquiring the lock on the top node effectively prevents
    807 	 * the root slot from changing.
    808 	 */
    809 	if (NODE_COUNT(parent->state) == 0) {
    810 		const unsigned rslot = query.rslot;
    811 		const thmap_ptr_t nptr = thmap->root[rslot];
    812 
    813 		ASSERT(query.level == 0);
    814 		ASSERT(parent->parent == THMAP_NULL);
    815 		ASSERT(THMAP_GETOFF(thmap, parent) == nptr);
    816 
    817 		/* Mark as deleted and remove from the root-level slot. */
    818 		parent->state |= NODE_DELETED;
    819 		atomic_thread_fence(memory_order_stores);
    820 		thmap->root[rslot] = THMAP_NULL;
    821 
    822 		stage_mem_gc(thmap, nptr, THMAP_INODE_LEN);
    823 	}
    824 	unlock_node(parent);
    825 
    826 	/*
    827 	 * Save the value and stage the leaf for G/C.
    828 	 */
    829 	val = leaf->val;
    830 	if ((thmap->flags & THMAP_NOCOPY) == 0) {
    831 		stage_mem_gc(thmap, leaf->key, leaf->len);
    832 	}
    833 	stage_mem_gc(thmap, THMAP_GETOFF(thmap, leaf), sizeof(thmap_leaf_t));
    834 	return val;
    835 }
    836 
    837 /*
    838  * G/C routines.
    839  */
    840 
    841 static void
    842 stage_mem_gc(thmap_t *thmap, uintptr_t addr, size_t len)
    843 {
    844 	thmap_gc_t *head, *gc;
    845 
    846 	gc = kmem_intr_alloc(sizeof(thmap_gc_t), KM_NOSLEEP);
    847 	gc->addr = addr;
    848 	gc->len = len;
    849 retry:
    850 	gc->next = head = thmap->gc_list;
    851 	if (!atomic_cas_ptr_p(&thmap->gc_list, head, gc)) {
    852 		goto retry;
    853 	}
    854 }
    855 
    856 void *
    857 thmap_stage_gc(thmap_t *thmap)
    858 {
    859 	return atomic_exchange(&thmap->gc_list, NULL);
    860 }
    861 
    862 void
    863 thmap_gc(thmap_t *thmap, void *ref)
    864 {
    865 	thmap_gc_t *gc = ref;
    866 
    867 	while (gc) {
    868 		thmap_gc_t *next = gc->next;
    869 		thmap->ops->free(gc->addr, gc->len);
    870 		kmem_intr_free(gc, sizeof(thmap_gc_t));
    871 		gc = next;
    872 	}
    873 }
    874 
    875 /*
    876  * thmap_create: construct a new trie-hash map object.
    877  */
    878 thmap_t *
    879 thmap_create(uintptr_t baseptr, const thmap_ops_t *ops, unsigned flags)
    880 {
    881 	thmap_t *thmap;
    882 	uintptr_t root;
    883 
    884 	/*
    885 	 * Setup the map object.
    886 	 */
    887 	if (!THMAP_ALIGNED_P(baseptr)) {
    888 		return NULL;
    889 	}
    890 	thmap = kmem_zalloc(sizeof(thmap_t), KM_SLEEP);
    891 	if (!thmap) {
    892 		return NULL;
    893 	}
    894 	thmap->baseptr = baseptr;
    895 	thmap->ops = ops ? ops : &thmap_default_ops;
    896 	thmap->flags = flags;
    897 
    898 	if ((thmap->flags & THMAP_SETROOT) == 0) {
    899 		/* Allocate the root level. */
    900 		root = thmap->ops->alloc(THMAP_ROOT_LEN);
    901 		thmap->root = THMAP_GETPTR(thmap, root);
    902 		if (!thmap->root) {
    903 			kmem_free(thmap, sizeof(thmap_t));
    904 			return NULL;
    905 		}
    906 		memset(thmap->root, 0, THMAP_ROOT_LEN);
    907 	}
    908 	return thmap;
    909 }
    910 
    911 int
    912 thmap_setroot(thmap_t *thmap, uintptr_t root_off)
    913 {
    914 	if (thmap->root) {
    915 		return -1;
    916 	}
    917 	thmap->root = THMAP_GETPTR(thmap, root_off);
    918 	return 0;
    919 }
    920 
    921 uintptr_t
    922 thmap_getroot(const thmap_t *thmap)
    923 {
    924 	return THMAP_GETOFF(thmap, thmap->root);
    925 }
    926 
    927 void
    928 thmap_destroy(thmap_t *thmap)
    929 {
    930 	uintptr_t root = THMAP_GETOFF(thmap, thmap->root);
    931 	void *ref;
    932 
    933 	ref = thmap_stage_gc(thmap);
    934 	thmap_gc(thmap, ref);
    935 
    936 	if ((thmap->flags & THMAP_SETROOT) == 0) {
    937 		thmap->ops->free(root, THMAP_ROOT_LEN);
    938 	}
    939 	kmem_free(thmap, sizeof(thmap_t));
    940 }
    941