subr_time.c revision 1.20.8.2 1 1.20.8.2 martin /* $NetBSD: subr_time.c,v 1.20.8.2 2024/10/13 15:33:17 martin Exp $ */
2 1.1 pooka
3 1.1 pooka /*
4 1.1 pooka * Copyright (c) 1982, 1986, 1989, 1993
5 1.1 pooka * The Regents of the University of California. All rights reserved.
6 1.1 pooka *
7 1.1 pooka * Redistribution and use in source and binary forms, with or without
8 1.1 pooka * modification, are permitted provided that the following conditions
9 1.1 pooka * are met:
10 1.1 pooka * 1. Redistributions of source code must retain the above copyright
11 1.1 pooka * notice, this list of conditions and the following disclaimer.
12 1.1 pooka * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 pooka * notice, this list of conditions and the following disclaimer in the
14 1.1 pooka * documentation and/or other materials provided with the distribution.
15 1.1 pooka * 3. Neither the name of the University nor the names of its contributors
16 1.1 pooka * may be used to endorse or promote products derived from this software
17 1.1 pooka * without specific prior written permission.
18 1.1 pooka *
19 1.1 pooka * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 1.1 pooka * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 1.1 pooka * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.1 pooka * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 1.1 pooka * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 pooka * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 1.1 pooka * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.1 pooka * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.1 pooka * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.1 pooka * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 pooka * SUCH DAMAGE.
30 1.1 pooka *
31 1.1 pooka * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
32 1.1 pooka * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
33 1.1 pooka */
34 1.1 pooka
35 1.1 pooka #include <sys/cdefs.h>
36 1.20.8.2 martin __KERNEL_RCSID(0, "$NetBSD: subr_time.c,v 1.20.8.2 2024/10/13 15:33:17 martin Exp $");
37 1.1 pooka
38 1.1 pooka #include <sys/param.h>
39 1.1 pooka #include <sys/kernel.h>
40 1.18 christos #include <sys/proc.h>
41 1.18 christos #include <sys/kauth.h>
42 1.18 christos #include <sys/lwp.h>
43 1.1 pooka #include <sys/timex.h>
44 1.1 pooka #include <sys/time.h>
45 1.1 pooka #include <sys/timetc.h>
46 1.2 ad #include <sys/intr.h>
47 1.1 pooka
48 1.1 pooka /*
49 1.1 pooka * Compute number of hz until specified time. Used to compute second
50 1.1 pooka * argument to callout_reset() from an absolute time.
51 1.1 pooka */
52 1.1 pooka int
53 1.4 christos tvhzto(const struct timeval *tvp)
54 1.1 pooka {
55 1.1 pooka struct timeval now, tv;
56 1.1 pooka
57 1.1 pooka tv = *tvp; /* Don't modify original tvp. */
58 1.1 pooka getmicrotime(&now);
59 1.1 pooka timersub(&tv, &now, &tv);
60 1.1 pooka return tvtohz(&tv);
61 1.1 pooka }
62 1.1 pooka
63 1.1 pooka /*
64 1.1 pooka * Compute number of ticks in the specified amount of time.
65 1.1 pooka */
66 1.1 pooka int
67 1.4 christos tvtohz(const struct timeval *tv)
68 1.1 pooka {
69 1.1 pooka unsigned long ticks;
70 1.1 pooka long sec, usec;
71 1.1 pooka
72 1.1 pooka /*
73 1.1 pooka * If the number of usecs in the whole seconds part of the time
74 1.1 pooka * difference fits in a long, then the total number of usecs will
75 1.1 pooka * fit in an unsigned long. Compute the total and convert it to
76 1.1 pooka * ticks, rounding up and adding 1 to allow for the current tick
77 1.1 pooka * to expire. Rounding also depends on unsigned long arithmetic
78 1.1 pooka * to avoid overflow.
79 1.1 pooka *
80 1.1 pooka * Otherwise, if the number of ticks in the whole seconds part of
81 1.1 pooka * the time difference fits in a long, then convert the parts to
82 1.1 pooka * ticks separately and add, using similar rounding methods and
83 1.1 pooka * overflow avoidance. This method would work in the previous
84 1.1 pooka * case, but it is slightly slower and assumes that hz is integral.
85 1.1 pooka *
86 1.1 pooka * Otherwise, round the time difference down to the maximum
87 1.1 pooka * representable value.
88 1.1 pooka *
89 1.1 pooka * If ints are 32-bit, then the maximum value for any timeout in
90 1.1 pooka * 10ms ticks is 248 days.
91 1.1 pooka */
92 1.1 pooka sec = tv->tv_sec;
93 1.1 pooka usec = tv->tv_usec;
94 1.1 pooka
95 1.20.8.1 martin KASSERT(usec >= 0);
96 1.20.8.1 martin KASSERT(usec < 1000000);
97 1.8 drochner
98 1.8 drochner /* catch overflows in conversion time_t->int */
99 1.8 drochner if (tv->tv_sec > INT_MAX)
100 1.8 drochner return INT_MAX;
101 1.8 drochner if (tv->tv_sec < 0)
102 1.8 drochner return 0;
103 1.1 pooka
104 1.8 drochner if (sec < 0 || (sec == 0 && usec == 0)) {
105 1.1 pooka /*
106 1.1 pooka * Would expire now or in the past. Return 0 ticks.
107 1.4 christos * This is different from the legacy tvhzto() interface,
108 1.1 pooka * and callers need to check for it.
109 1.1 pooka */
110 1.1 pooka ticks = 0;
111 1.1 pooka } else if (sec <= (LONG_MAX / 1000000))
112 1.1 pooka ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
113 1.1 pooka / tick) + 1;
114 1.1 pooka else if (sec <= (LONG_MAX / hz))
115 1.1 pooka ticks = (sec * hz) +
116 1.1 pooka (((unsigned long)usec + (tick - 1)) / tick) + 1;
117 1.1 pooka else
118 1.1 pooka ticks = LONG_MAX;
119 1.1 pooka
120 1.1 pooka if (ticks > INT_MAX)
121 1.1 pooka ticks = INT_MAX;
122 1.1 pooka
123 1.1 pooka return ((int)ticks);
124 1.1 pooka }
125 1.1 pooka
126 1.4 christos int
127 1.4 christos tshzto(const struct timespec *tsp)
128 1.4 christos {
129 1.4 christos struct timespec now, ts;
130 1.4 christos
131 1.4 christos ts = *tsp; /* Don't modify original tsp. */
132 1.4 christos getnanotime(&now);
133 1.4 christos timespecsub(&ts, &now, &ts);
134 1.4 christos return tstohz(&ts);
135 1.4 christos }
136 1.9 christos
137 1.9 christos int
138 1.9 christos tshztoup(const struct timespec *tsp)
139 1.9 christos {
140 1.9 christos struct timespec now, ts;
141 1.9 christos
142 1.9 christos ts = *tsp; /* Don't modify original tsp. */
143 1.9 christos getnanouptime(&now);
144 1.9 christos timespecsub(&ts, &now, &ts);
145 1.9 christos return tstohz(&ts);
146 1.9 christos }
147 1.9 christos
148 1.1 pooka /*
149 1.1 pooka * Compute number of ticks in the specified amount of time.
150 1.1 pooka */
151 1.1 pooka int
152 1.4 christos tstohz(const struct timespec *ts)
153 1.1 pooka {
154 1.1 pooka struct timeval tv;
155 1.1 pooka
156 1.1 pooka /*
157 1.1 pooka * usec has great enough resolution for hz, so convert to a
158 1.1 pooka * timeval and use tvtohz() above.
159 1.1 pooka */
160 1.1 pooka TIMESPEC_TO_TIMEVAL(&tv, ts);
161 1.1 pooka return tvtohz(&tv);
162 1.1 pooka }
163 1.1 pooka
164 1.1 pooka /*
165 1.1 pooka * Check that a proposed value to load into the .it_value or
166 1.1 pooka * .it_interval part of an interval timer is acceptable, and
167 1.1 pooka * fix it to have at least minimal value (i.e. if it is less
168 1.15 christos * than the resolution of the clock, round it up.). We don't
169 1.15 christos * timeout the 0,0 value because this means to disable the
170 1.15 christos * timer or the interval.
171 1.1 pooka */
172 1.1 pooka int
173 1.1 pooka itimerfix(struct timeval *tv)
174 1.1 pooka {
175 1.1 pooka
176 1.12 christos if (tv->tv_usec < 0 || tv->tv_usec >= 1000000)
177 1.12 christos return EINVAL;
178 1.15 christos if (tv->tv_sec < 0)
179 1.12 christos return ETIMEDOUT;
180 1.15 christos if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
181 1.1 pooka tv->tv_usec = tick;
182 1.12 christos return 0;
183 1.1 pooka }
184 1.1 pooka
185 1.1 pooka int
186 1.1 pooka itimespecfix(struct timespec *ts)
187 1.1 pooka {
188 1.1 pooka
189 1.12 christos if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
190 1.12 christos return EINVAL;
191 1.15 christos if (ts->tv_sec < 0)
192 1.12 christos return ETIMEDOUT;
193 1.15 christos if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
194 1.1 pooka ts->tv_nsec = tick * 1000;
195 1.12 christos return 0;
196 1.1 pooka }
197 1.5 rmind
198 1.5 rmind int
199 1.5 rmind inittimeleft(struct timespec *ts, struct timespec *sleepts)
200 1.5 rmind {
201 1.5 rmind
202 1.5 rmind if (itimespecfix(ts)) {
203 1.5 rmind return -1;
204 1.5 rmind }
205 1.5 rmind getnanouptime(sleepts);
206 1.5 rmind return 0;
207 1.5 rmind }
208 1.5 rmind
209 1.5 rmind int
210 1.5 rmind gettimeleft(struct timespec *ts, struct timespec *sleepts)
211 1.5 rmind {
212 1.5 rmind struct timespec sleptts;
213 1.5 rmind
214 1.5 rmind /*
215 1.5 rmind * Reduce ts by elapsed time based on monotonic time scale.
216 1.5 rmind */
217 1.5 rmind getnanouptime(&sleptts);
218 1.5 rmind timespecadd(ts, sleepts, ts);
219 1.5 rmind timespecsub(ts, &sleptts, ts);
220 1.5 rmind *sleepts = sleptts;
221 1.5 rmind
222 1.5 rmind return tstohz(ts);
223 1.5 rmind }
224 1.5 rmind
225 1.20 christos void
226 1.20 christos clock_timeleft(clockid_t clockid, struct timespec *ts, struct timespec *sleepts)
227 1.20 christos {
228 1.20 christos struct timespec sleptts;
229 1.20 christos
230 1.20 christos clock_gettime1(clockid, &sleptts);
231 1.20 christos timespecadd(ts, sleepts, ts);
232 1.20 christos timespecsub(ts, &sleptts, ts);
233 1.20 christos *sleepts = sleptts;
234 1.20 christos }
235 1.20 christos
236 1.11 martin int
237 1.11 martin clock_gettime1(clockid_t clock_id, struct timespec *ts)
238 1.11 martin {
239 1.18 christos int error;
240 1.18 christos struct proc *p;
241 1.18 christos
242 1.18 christos #define CPUCLOCK_ID_MASK (~(CLOCK_THREAD_CPUTIME_ID|CLOCK_PROCESS_CPUTIME_ID))
243 1.18 christos if (clock_id & CLOCK_PROCESS_CPUTIME_ID) {
244 1.18 christos pid_t pid = clock_id & CPUCLOCK_ID_MASK;
245 1.20.8.1 martin struct timeval cputime;
246 1.18 christos
247 1.18 christos mutex_enter(proc_lock);
248 1.18 christos p = pid == 0 ? curproc : proc_find(pid);
249 1.18 christos if (p == NULL) {
250 1.18 christos mutex_exit(proc_lock);
251 1.18 christos return ESRCH;
252 1.18 christos }
253 1.20.8.1 martin mutex_enter(p->p_lock);
254 1.20.8.1 martin calcru(p, /*usertime*/NULL, /*systime*/NULL, /*intrtime*/NULL,
255 1.20.8.1 martin &cputime);
256 1.20.8.1 martin mutex_exit(p->p_lock);
257 1.18 christos mutex_exit(proc_lock);
258 1.18 christos
259 1.18 christos // XXX: Perhaps create a special kauth type
260 1.18 christos error = kauth_authorize_process(curlwp->l_cred,
261 1.18 christos KAUTH_PROCESS_PTRACE, p,
262 1.18 christos KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
263 1.18 christos if (error)
264 1.18 christos return error;
265 1.20.8.1 martin
266 1.20.8.1 martin TIMEVAL_TO_TIMESPEC(&cputime, ts);
267 1.20.8.1 martin return 0;
268 1.18 christos } else if (clock_id & CLOCK_THREAD_CPUTIME_ID) {
269 1.18 christos struct lwp *l;
270 1.18 christos lwpid_t lid = clock_id & CPUCLOCK_ID_MASK;
271 1.20.8.1 martin struct bintime tm = {0, 0};
272 1.20.8.1 martin
273 1.18 christos p = curproc;
274 1.18 christos mutex_enter(p->p_lock);
275 1.18 christos l = lid == 0 ? curlwp : lwp_find(p, lid);
276 1.18 christos if (l == NULL) {
277 1.18 christos mutex_exit(p->p_lock);
278 1.18 christos return ESRCH;
279 1.18 christos }
280 1.20.8.1 martin addrulwp(l, &tm);
281 1.18 christos mutex_exit(p->p_lock);
282 1.18 christos
283 1.20.8.1 martin bintime2timespec(&tm, ts);
284 1.18 christos return 0;
285 1.18 christos }
286 1.11 martin
287 1.11 martin switch (clock_id) {
288 1.11 martin case CLOCK_REALTIME:
289 1.11 martin nanotime(ts);
290 1.11 martin break;
291 1.11 martin case CLOCK_MONOTONIC:
292 1.11 martin nanouptime(ts);
293 1.11 martin break;
294 1.11 martin default:
295 1.11 martin return EINVAL;
296 1.11 martin }
297 1.11 martin
298 1.11 martin return 0;
299 1.11 martin }
300 1.11 martin
301 1.5 rmind /*
302 1.5 rmind * Calculate delta and convert from struct timespec to the ticks.
303 1.5 rmind */
304 1.5 rmind int
305 1.10 christos ts2timo(clockid_t clock_id, int flags, struct timespec *ts,
306 1.10 christos int *timo, struct timespec *start)
307 1.5 rmind {
308 1.14 christos int error;
309 1.5 rmind struct timespec tsd;
310 1.5 rmind
311 1.10 christos flags &= TIMER_ABSTIME;
312 1.17 christos if (start == NULL)
313 1.10 christos start = &tsd;
314 1.10 christos
315 1.17 christos if (flags || start != &tsd)
316 1.17 christos if ((error = clock_gettime1(clock_id, start)) != 0)
317 1.17 christos return error;
318 1.10 christos
319 1.20.8.2 martin if (flags) {
320 1.20.8.2 martin timespecsub(ts, start, &tsd);
321 1.20.8.2 martin ts = &tsd;
322 1.20.8.2 martin }
323 1.10 christos
324 1.12 christos if ((error = itimespecfix(ts)) != 0)
325 1.5 rmind return error;
326 1.10 christos
327 1.15 christos if (ts->tv_sec == 0 && ts->tv_nsec == 0)
328 1.15 christos return ETIMEDOUT;
329 1.15 christos
330 1.14 christos *timo = tstohz(ts);
331 1.14 christos KASSERT(*timo > 0);
332 1.5 rmind
333 1.5 rmind return 0;
334 1.5 rmind }
335