Home | History | Annotate | Line # | Download | only in kern
subr_time.c revision 1.35.4.1
      1  1.35.4.1    martin /*	$NetBSD: subr_time.c,v 1.35.4.1 2024/10/11 17:07:16 martin Exp $	*/
      2       1.1     pooka 
      3       1.1     pooka /*
      4       1.1     pooka  * Copyright (c) 1982, 1986, 1989, 1993
      5       1.1     pooka  *	The Regents of the University of California.  All rights reserved.
      6       1.1     pooka  *
      7       1.1     pooka  * Redistribution and use in source and binary forms, with or without
      8       1.1     pooka  * modification, are permitted provided that the following conditions
      9       1.1     pooka  * are met:
     10       1.1     pooka  * 1. Redistributions of source code must retain the above copyright
     11       1.1     pooka  *    notice, this list of conditions and the following disclaimer.
     12       1.1     pooka  * 2. Redistributions in binary form must reproduce the above copyright
     13       1.1     pooka  *    notice, this list of conditions and the following disclaimer in the
     14       1.1     pooka  *    documentation and/or other materials provided with the distribution.
     15       1.1     pooka  * 3. Neither the name of the University nor the names of its contributors
     16       1.1     pooka  *    may be used to endorse or promote products derived from this software
     17       1.1     pooka  *    without specific prior written permission.
     18       1.1     pooka  *
     19       1.1     pooka  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20       1.1     pooka  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21       1.1     pooka  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22       1.1     pooka  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23       1.1     pooka  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24       1.1     pooka  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25       1.1     pooka  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26       1.1     pooka  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27       1.1     pooka  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28       1.1     pooka  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29       1.1     pooka  * SUCH DAMAGE.
     30       1.1     pooka  *
     31       1.1     pooka  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
     32       1.1     pooka  *	@(#)kern_time.c 8.4 (Berkeley) 5/26/95
     33       1.1     pooka  */
     34       1.1     pooka 
     35       1.1     pooka #include <sys/cdefs.h>
     36  1.35.4.1    martin __KERNEL_RCSID(0, "$NetBSD: subr_time.c,v 1.35.4.1 2024/10/11 17:07:16 martin Exp $");
     37       1.1     pooka 
     38       1.1     pooka #include <sys/param.h>
     39       1.1     pooka #include <sys/kernel.h>
     40      1.18  christos #include <sys/proc.h>
     41      1.18  christos #include <sys/kauth.h>
     42      1.18  christos #include <sys/lwp.h>
     43       1.1     pooka #include <sys/timex.h>
     44       1.1     pooka #include <sys/time.h>
     45       1.1     pooka #include <sys/timetc.h>
     46       1.2        ad #include <sys/intr.h>
     47       1.1     pooka 
     48      1.18  christos #ifdef DEBUG_STICKS
     49      1.18  christos #define DPRINTF(a) uprintf a
     50      1.18  christos #else
     51      1.18  christos #define DPRINTF(a)
     52      1.18  christos #endif
     53      1.18  christos 
     54       1.1     pooka /*
     55       1.1     pooka  * Compute number of hz until specified time.  Used to compute second
     56       1.1     pooka  * argument to callout_reset() from an absolute time.
     57       1.1     pooka  */
     58       1.1     pooka int
     59       1.4  christos tvhzto(const struct timeval *tvp)
     60       1.1     pooka {
     61       1.1     pooka 	struct timeval now, tv;
     62       1.1     pooka 
     63       1.1     pooka 	tv = *tvp;	/* Don't modify original tvp. */
     64       1.1     pooka 	getmicrotime(&now);
     65       1.1     pooka 	timersub(&tv, &now, &tv);
     66       1.1     pooka 	return tvtohz(&tv);
     67       1.1     pooka }
     68       1.1     pooka 
     69       1.1     pooka /*
     70       1.1     pooka  * Compute number of ticks in the specified amount of time.
     71       1.1     pooka  */
     72       1.1     pooka int
     73       1.4  christos tvtohz(const struct timeval *tv)
     74       1.1     pooka {
     75       1.1     pooka 	unsigned long ticks;
     76       1.1     pooka 	long sec, usec;
     77       1.1     pooka 
     78       1.1     pooka 	/*
     79       1.1     pooka 	 * If the number of usecs in the whole seconds part of the time
     80       1.1     pooka 	 * difference fits in a long, then the total number of usecs will
     81       1.1     pooka 	 * fit in an unsigned long.  Compute the total and convert it to
     82       1.1     pooka 	 * ticks, rounding up and adding 1 to allow for the current tick
     83       1.1     pooka 	 * to expire.  Rounding also depends on unsigned long arithmetic
     84       1.1     pooka 	 * to avoid overflow.
     85       1.1     pooka 	 *
     86       1.1     pooka 	 * Otherwise, if the number of ticks in the whole seconds part of
     87       1.1     pooka 	 * the time difference fits in a long, then convert the parts to
     88       1.1     pooka 	 * ticks separately and add, using similar rounding methods and
     89       1.1     pooka 	 * overflow avoidance.  This method would work in the previous
     90       1.1     pooka 	 * case, but it is slightly slower and assumes that hz is integral.
     91       1.1     pooka 	 *
     92       1.1     pooka 	 * Otherwise, round the time difference down to the maximum
     93       1.1     pooka 	 * representable value.
     94       1.1     pooka 	 *
     95       1.1     pooka 	 * If ints are 32-bit, then the maximum value for any timeout in
     96       1.1     pooka 	 * 10ms ticks is 248 days.
     97       1.1     pooka 	 */
     98       1.1     pooka 	sec = tv->tv_sec;
     99       1.1     pooka 	usec = tv->tv_usec;
    100       1.1     pooka 
    101       1.8  drochner 	KASSERT(usec >= 0 && usec < 1000000);
    102       1.8  drochner 
    103       1.8  drochner 	/* catch overflows in conversion time_t->int */
    104       1.8  drochner 	if (tv->tv_sec > INT_MAX)
    105       1.8  drochner 		return INT_MAX;
    106       1.8  drochner 	if (tv->tv_sec < 0)
    107       1.8  drochner 		return 0;
    108       1.1     pooka 
    109       1.8  drochner 	if (sec < 0 || (sec == 0 && usec == 0)) {
    110       1.1     pooka 		/*
    111       1.1     pooka 		 * Would expire now or in the past.  Return 0 ticks.
    112       1.4  christos 		 * This is different from the legacy tvhzto() interface,
    113       1.1     pooka 		 * and callers need to check for it.
    114       1.1     pooka 		 */
    115       1.1     pooka 		ticks = 0;
    116       1.1     pooka 	} else if (sec <= (LONG_MAX / 1000000))
    117       1.1     pooka 		ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
    118       1.1     pooka 		    / tick) + 1;
    119       1.1     pooka 	else if (sec <= (LONG_MAX / hz))
    120       1.1     pooka 		ticks = (sec * hz) +
    121       1.1     pooka 		    (((unsigned long)usec + (tick - 1)) / tick) + 1;
    122       1.1     pooka 	else
    123       1.1     pooka 		ticks = LONG_MAX;
    124       1.1     pooka 
    125       1.1     pooka 	if (ticks > INT_MAX)
    126       1.1     pooka 		ticks = INT_MAX;
    127       1.1     pooka 
    128       1.1     pooka 	return ((int)ticks);
    129       1.1     pooka }
    130       1.1     pooka 
    131       1.4  christos int
    132       1.4  christos tshzto(const struct timespec *tsp)
    133       1.4  christos {
    134       1.4  christos 	struct timespec now, ts;
    135       1.4  christos 
    136       1.4  christos 	ts = *tsp;	/* Don't modify original tsp. */
    137       1.4  christos 	getnanotime(&now);
    138       1.4  christos 	timespecsub(&ts, &now, &ts);
    139       1.4  christos 	return tstohz(&ts);
    140       1.4  christos }
    141       1.9  christos 
    142       1.9  christos int
    143       1.9  christos tshztoup(const struct timespec *tsp)
    144       1.9  christos {
    145       1.9  christos 	struct timespec now, ts;
    146       1.9  christos 
    147       1.9  christos 	ts = *tsp;	/* Don't modify original tsp. */
    148       1.9  christos 	getnanouptime(&now);
    149       1.9  christos 	timespecsub(&ts, &now, &ts);
    150       1.9  christos 	return tstohz(&ts);
    151       1.9  christos }
    152       1.9  christos 
    153       1.1     pooka /*
    154       1.1     pooka  * Compute number of ticks in the specified amount of time.
    155       1.1     pooka  */
    156       1.1     pooka int
    157       1.4  christos tstohz(const struct timespec *ts)
    158       1.1     pooka {
    159       1.1     pooka 	struct timeval tv;
    160       1.1     pooka 
    161       1.1     pooka 	/*
    162       1.1     pooka 	 * usec has great enough resolution for hz, so convert to a
    163       1.1     pooka 	 * timeval and use tvtohz() above.
    164       1.1     pooka 	 */
    165       1.1     pooka 	TIMESPEC_TO_TIMEVAL(&tv, ts);
    166       1.1     pooka 	return tvtohz(&tv);
    167       1.1     pooka }
    168       1.1     pooka 
    169       1.1     pooka /*
    170       1.1     pooka  * Check that a proposed value to load into the .it_value or
    171       1.1     pooka  * .it_interval part of an interval timer is acceptable, and
    172       1.1     pooka  * fix it to have at least minimal value (i.e. if it is less
    173      1.15  christos  * than the resolution of the clock, round it up.). We don't
    174      1.15  christos  * timeout the 0,0 value because this means to disable the
    175      1.15  christos  * timer or the interval.
    176       1.1     pooka  */
    177       1.1     pooka int
    178       1.1     pooka itimerfix(struct timeval *tv)
    179       1.1     pooka {
    180       1.1     pooka 
    181      1.12  christos 	if (tv->tv_usec < 0 || tv->tv_usec >= 1000000)
    182      1.12  christos 		return EINVAL;
    183      1.15  christos 	if (tv->tv_sec < 0)
    184      1.12  christos 		return ETIMEDOUT;
    185      1.15  christos 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
    186       1.1     pooka 		tv->tv_usec = tick;
    187      1.12  christos 	return 0;
    188       1.1     pooka }
    189       1.1     pooka 
    190       1.1     pooka int
    191       1.1     pooka itimespecfix(struct timespec *ts)
    192       1.1     pooka {
    193       1.1     pooka 
    194      1.12  christos 	if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
    195      1.12  christos 		return EINVAL;
    196      1.15  christos 	if (ts->tv_sec < 0)
    197      1.12  christos 		return ETIMEDOUT;
    198      1.15  christos 	if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
    199       1.1     pooka 		ts->tv_nsec = tick * 1000;
    200      1.12  christos 	return 0;
    201       1.1     pooka }
    202       1.5     rmind 
    203       1.5     rmind int
    204       1.5     rmind inittimeleft(struct timespec *ts, struct timespec *sleepts)
    205       1.5     rmind {
    206       1.5     rmind 
    207       1.5     rmind 	if (itimespecfix(ts)) {
    208       1.5     rmind 		return -1;
    209       1.5     rmind 	}
    210      1.35  riastrad 	KASSERT(ts->tv_sec >= 0);
    211       1.5     rmind 	getnanouptime(sleepts);
    212       1.5     rmind 	return 0;
    213       1.5     rmind }
    214       1.5     rmind 
    215       1.5     rmind int
    216       1.5     rmind gettimeleft(struct timespec *ts, struct timespec *sleepts)
    217       1.5     rmind {
    218      1.35  riastrad 	struct timespec now, sleptts;
    219      1.35  riastrad 
    220      1.35  riastrad 	KASSERT(ts->tv_sec >= 0);
    221       1.5     rmind 
    222       1.5     rmind 	/*
    223       1.5     rmind 	 * Reduce ts by elapsed time based on monotonic time scale.
    224       1.5     rmind 	 */
    225      1.35  riastrad 	getnanouptime(&now);
    226      1.35  riastrad 	KASSERT(timespeccmp(sleepts, &now, <=));
    227      1.35  riastrad 	timespecsub(&now, sleepts, &sleptts);
    228      1.35  riastrad 	*sleepts = now;
    229      1.35  riastrad 
    230      1.35  riastrad 	if (timespeccmp(ts, &sleptts, <=)) { /* timed out */
    231      1.35  riastrad 		timespecclear(ts);
    232      1.35  riastrad 		return 0;
    233      1.35  riastrad 	}
    234       1.5     rmind 	timespecsub(ts, &sleptts, ts);
    235       1.5     rmind 
    236       1.5     rmind 	return tstohz(ts);
    237       1.5     rmind }
    238       1.5     rmind 
    239      1.20  christos void
    240      1.20  christos clock_timeleft(clockid_t clockid, struct timespec *ts, struct timespec *sleepts)
    241      1.20  christos {
    242      1.20  christos 	struct timespec sleptts;
    243      1.20  christos 
    244      1.20  christos 	clock_gettime1(clockid, &sleptts);
    245      1.20  christos 	timespecadd(ts, sleepts, ts);
    246      1.20  christos 	timespecsub(ts, &sleptts, ts);
    247      1.20  christos 	*sleepts = sleptts;
    248      1.20  christos }
    249      1.20  christos 
    250      1.18  christos static void
    251      1.18  christos ticks2ts(uint64_t ticks, struct timespec *ts)
    252      1.18  christos {
    253      1.18  christos 	ts->tv_sec = ticks / hz;
    254      1.18  christos 	uint64_t sticks = ticks - ts->tv_sec * hz;
    255      1.19  pgoyette 	if (sticks > BINTIME_SCALE_MS)	/* floor(2^64 / 1000) */
    256      1.18  christos 		ts->tv_nsec = sticks / hz * 1000000000LL;
    257      1.19  pgoyette    	else if (sticks > BINTIME_SCALE_US)	/* floor(2^64 / 1000000) */
    258      1.18  christos    		ts->tv_nsec = sticks * 1000LL / hz * 1000000LL;
    259      1.18  christos 	else
    260      1.18  christos    		ts->tv_nsec = sticks * 1000000000LL / hz;
    261      1.18  christos 	DPRINTF(("%s: %ju/%ju -> %ju.%ju\n", __func__,
    262      1.18  christos 	    (uintmax_t)ticks, (uintmax_t)sticks,
    263      1.18  christos 	    (uintmax_t)ts->tv_sec, (uintmax_t)ts->tv_nsec));
    264      1.18  christos }
    265      1.18  christos 
    266      1.11    martin int
    267      1.11    martin clock_gettime1(clockid_t clock_id, struct timespec *ts)
    268      1.11    martin {
    269      1.18  christos 	int error;
    270      1.18  christos 	uint64_t ticks;
    271      1.18  christos 	struct proc *p;
    272      1.18  christos 
    273      1.18  christos #define CPUCLOCK_ID_MASK (~(CLOCK_THREAD_CPUTIME_ID|CLOCK_PROCESS_CPUTIME_ID))
    274      1.18  christos 	if (clock_id & CLOCK_PROCESS_CPUTIME_ID) {
    275      1.18  christos 		pid_t pid = clock_id & CPUCLOCK_ID_MASK;
    276      1.18  christos 
    277      1.25        ad 		mutex_enter(&proc_lock);
    278      1.18  christos 		p = pid == 0 ? curproc : proc_find(pid);
    279      1.18  christos 		if (p == NULL) {
    280      1.25        ad 			mutex_exit(&proc_lock);
    281      1.18  christos 			return ESRCH;
    282      1.18  christos 		}
    283      1.18  christos 		ticks = p->p_uticks + p->p_sticks + p->p_iticks;
    284      1.18  christos 		DPRINTF(("%s: u=%ju, s=%ju, i=%ju\n", __func__,
    285      1.18  christos 		    (uintmax_t)p->p_uticks, (uintmax_t)p->p_sticks,
    286      1.18  christos 		    (uintmax_t)p->p_iticks));
    287      1.25        ad 		mutex_exit(&proc_lock);
    288      1.18  christos 
    289      1.18  christos 		// XXX: Perhaps create a special kauth type
    290      1.31  christos 		error = kauth_authorize_process(kauth_cred_get(),
    291      1.18  christos 		    KAUTH_PROCESS_PTRACE, p,
    292      1.18  christos 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    293      1.18  christos 		if (error)
    294      1.18  christos 			return error;
    295      1.18  christos 	} else if (clock_id & CLOCK_THREAD_CPUTIME_ID) {
    296      1.18  christos 		struct lwp *l;
    297      1.18  christos 		lwpid_t lid = clock_id & CPUCLOCK_ID_MASK;
    298      1.18  christos 		p = curproc;
    299      1.18  christos 		mutex_enter(p->p_lock);
    300      1.18  christos 		l = lid == 0 ? curlwp : lwp_find(p, lid);
    301      1.18  christos 		if (l == NULL) {
    302      1.18  christos 			mutex_exit(p->p_lock);
    303      1.18  christos 			return ESRCH;
    304      1.18  christos 		}
    305      1.18  christos 		ticks = l->l_rticksum + l->l_slpticksum;
    306      1.18  christos 		DPRINTF(("%s: r=%ju, s=%ju\n", __func__,
    307      1.18  christos 		    (uintmax_t)l->l_rticksum, (uintmax_t)l->l_slpticksum));
    308      1.18  christos 		mutex_exit(p->p_lock);
    309      1.18  christos         } else
    310      1.18  christos 		ticks = (uint64_t)-1;
    311      1.18  christos 
    312      1.18  christos 	if (ticks != (uint64_t)-1) {
    313      1.18  christos 		ticks2ts(ticks, ts);
    314      1.18  christos 		return 0;
    315      1.18  christos 	}
    316      1.11    martin 
    317      1.11    martin 	switch (clock_id) {
    318      1.11    martin 	case CLOCK_REALTIME:
    319      1.11    martin 		nanotime(ts);
    320      1.11    martin 		break;
    321      1.11    martin 	case CLOCK_MONOTONIC:
    322      1.11    martin 		nanouptime(ts);
    323      1.11    martin 		break;
    324      1.11    martin 	default:
    325      1.11    martin 		return EINVAL;
    326      1.11    martin 	}
    327      1.11    martin 
    328      1.11    martin 	return 0;
    329      1.11    martin }
    330      1.11    martin 
    331       1.5     rmind /*
    332       1.5     rmind  * Calculate delta and convert from struct timespec to the ticks.
    333       1.5     rmind  */
    334       1.5     rmind int
    335      1.10  christos ts2timo(clockid_t clock_id, int flags, struct timespec *ts,
    336      1.10  christos     int *timo, struct timespec *start)
    337       1.5     rmind {
    338      1.14  christos 	int error;
    339      1.28       nia 	struct timespec tsd;
    340       1.5     rmind 
    341      1.21     kamil 	if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000L)
    342      1.21     kamil 		return EINVAL;
    343      1.21     kamil 
    344      1.30       nia 	if ((flags & TIMER_ABSTIME) != 0 || start != NULL) {
    345      1.29       nia 		error = clock_gettime1(clock_id, &tsd);
    346      1.26       nia 		if (error != 0)
    347      1.17  christos 			return error;
    348      1.29       nia 		if (start != NULL)
    349      1.29       nia 			*start = tsd;
    350      1.26       nia 	}
    351      1.10  christos 
    352      1.30       nia 	if ((flags & TIMER_ABSTIME) != 0) {
    353      1.34  riastrad 		if (!timespecsubok(ts, &tsd))
    354      1.29       nia 			return EINVAL;
    355  1.35.4.1    martin 		timespecsub(ts, &tsd, &tsd);
    356  1.35.4.1    martin 		ts = &tsd;
    357      1.29       nia 	}
    358      1.10  christos 
    359      1.26       nia 	error = itimespecfix(ts);
    360      1.26       nia 	if (error != 0)
    361       1.5     rmind 		return error;
    362      1.10  christos 
    363      1.15  christos 	if (ts->tv_sec == 0 && ts->tv_nsec == 0)
    364      1.15  christos 		return ETIMEDOUT;
    365      1.15  christos 
    366      1.14  christos 	*timo = tstohz(ts);
    367      1.14  christos 	KASSERT(*timo > 0);
    368       1.5     rmind 
    369       1.5     rmind 	return 0;
    370       1.5     rmind }
    371      1.33  riastrad 
    372      1.33  riastrad bool
    373      1.33  riastrad timespecaddok(const struct timespec *tsp, const struct timespec *usp)
    374      1.33  riastrad {
    375      1.33  riastrad 	enum { TIME_MIN = __type_min(time_t), TIME_MAX = __type_max(time_t) };
    376      1.33  riastrad 	time_t a = tsp->tv_sec;
    377      1.33  riastrad 	time_t b = usp->tv_sec;
    378      1.33  riastrad 	bool carry;
    379      1.33  riastrad 
    380      1.33  riastrad 	/*
    381      1.33  riastrad 	 * Caller is responsible for guaranteeing valid timespec
    382      1.33  riastrad 	 * inputs.  Any user-controlled inputs must be validated or
    383      1.33  riastrad 	 * adjusted.
    384      1.33  riastrad 	 */
    385      1.33  riastrad 	KASSERT(tsp->tv_nsec >= 0);
    386      1.33  riastrad 	KASSERT(usp->tv_nsec >= 0);
    387      1.33  riastrad 	KASSERT(tsp->tv_nsec < 1000000000L);
    388      1.33  riastrad 	KASSERT(usp->tv_nsec < 1000000000L);
    389      1.33  riastrad 	CTASSERT(1000000000L <= __type_max(long) - 1000000000L);
    390      1.33  riastrad 
    391      1.33  riastrad 	/*
    392      1.33  riastrad 	 * Fail if a + b + carry overflows TIME_MAX, or if a + b
    393      1.33  riastrad 	 * overflows TIME_MIN because timespecadd adds the carry after
    394      1.33  riastrad 	 * computing a + b.
    395      1.33  riastrad 	 *
    396      1.33  riastrad 	 * Break it into two mutually exclusive and exhaustive cases:
    397      1.33  riastrad 	 * I. a >= 0
    398      1.33  riastrad 	 * II. a < 0
    399      1.33  riastrad 	 */
    400      1.33  riastrad 	carry = (tsp->tv_nsec + usp->tv_nsec >= 1000000000L);
    401      1.33  riastrad 	if (a >= 0) {
    402      1.33  riastrad 		/*
    403      1.33  riastrad 		 * Case I: a >= 0.  If b < 0, then b + 1 <= 0, so
    404      1.33  riastrad 		 *
    405      1.33  riastrad 		 *	a + b + 1 <= a + 0 <= TIME_MAX,
    406      1.33  riastrad 		 *
    407      1.33  riastrad 		 * and
    408      1.33  riastrad 		 *
    409      1.33  riastrad 		 *	a + b >= 0 + b = b >= TIME_MIN,
    410      1.33  riastrad 		 *
    411      1.33  riastrad 		 * so this can't overflow.
    412      1.33  riastrad 		 *
    413      1.33  riastrad 		 * If b >= 0, then a + b + carry >= a + b >= 0, so
    414      1.33  riastrad 		 * negative results and thus results below TIME_MIN are
    415      1.33  riastrad 		 * impossible; we need only avoid
    416      1.33  riastrad 		 *
    417      1.33  riastrad 		 *	a + b + carry > TIME_MAX,
    418      1.33  riastrad 		 *
    419      1.33  riastrad 		 * which we will do by rejecting if
    420      1.33  riastrad 		 *
    421      1.33  riastrad 		 *	b > TIME_MAX - a - carry,
    422      1.33  riastrad 		 *
    423      1.33  riastrad 		 * which in turn is incidentally always false if b < 0
    424      1.33  riastrad 		 * so we don't need extra logic to discriminate on the
    425      1.33  riastrad 		 * b >= 0 and b < 0 cases.
    426      1.33  riastrad 		 *
    427      1.33  riastrad 		 * Since 0 <= a <= TIME_MAX, we know
    428      1.33  riastrad 		 *
    429      1.33  riastrad 		 *	0 <= TIME_MAX - a <= TIME_MAX,
    430      1.33  riastrad 		 *
    431      1.33  riastrad 		 * and hence
    432      1.33  riastrad 		 *
    433      1.33  riastrad 		 *	-1 <= TIME_MAX - a - 1 < TIME_MAX.
    434      1.33  riastrad 		 *
    435      1.33  riastrad 		 * So we can compute TIME_MAX - a - carry (i.e., either
    436      1.33  riastrad 		 * TIME_MAX - a or TIME_MAX - a - 1) safely without
    437      1.33  riastrad 		 * overflow.
    438      1.33  riastrad 		 */
    439      1.33  riastrad 		if (b > TIME_MAX - a - carry)
    440      1.33  riastrad 			return false;
    441      1.33  riastrad 	} else {
    442      1.33  riastrad 		/*
    443      1.33  riastrad 		 * Case II: a < 0.  If b >= 0, then since a + 1 <= 0,
    444      1.33  riastrad 		 * we have
    445      1.33  riastrad 		 *
    446      1.33  riastrad 		 *	a + b + 1 <= b <= TIME_MAX,
    447      1.33  riastrad 		 *
    448      1.33  riastrad 		 * and
    449      1.33  riastrad 		 *
    450      1.33  riastrad 		 *	a + b >= a >= TIME_MIN,
    451      1.33  riastrad 		 *
    452      1.33  riastrad 		 * so this can't overflow.
    453      1.33  riastrad 		 *
    454      1.33  riastrad 		 * If b < 0, then the intermediate a + b is negative
    455      1.33  riastrad 		 * and the outcome a + b + 1 is nonpositive, so we need
    456      1.33  riastrad 		 * only avoid
    457      1.33  riastrad 		 *
    458      1.33  riastrad 		 *	a + b < TIME_MIN,
    459      1.33  riastrad 		 *
    460      1.33  riastrad 		 * which we will do by rejecting if
    461      1.33  riastrad 		 *
    462      1.33  riastrad 		 *	a < TIME_MIN - b.
    463      1.33  riastrad 		 *
    464      1.33  riastrad 		 * (Reminder: The carry is added afterward in
    465      1.33  riastrad 		 * timespecadd, so to avoid overflow it is not enough
    466      1.33  riastrad 		 * to merely reject a + b + carry < TIME_MIN.)
    467      1.33  riastrad 		 *
    468      1.33  riastrad 		 * It is safe to compute the difference TIME_MIN - b
    469      1.33  riastrad 		 * because b is negative, so the result lies in
    470      1.33  riastrad 		 * (TIME_MIN, 0].
    471      1.33  riastrad 		 */
    472      1.33  riastrad 		if (b < 0 && a < TIME_MIN - b)
    473      1.33  riastrad 			return false;
    474      1.33  riastrad 	}
    475      1.33  riastrad 
    476      1.33  riastrad 	return true;
    477      1.33  riastrad }
    478      1.33  riastrad 
    479      1.33  riastrad bool
    480      1.33  riastrad timespecsubok(const struct timespec *tsp, const struct timespec *usp)
    481      1.33  riastrad {
    482      1.33  riastrad 	enum { TIME_MIN = __type_min(time_t), TIME_MAX = __type_max(time_t) };
    483      1.33  riastrad 	time_t a = tsp->tv_sec, b = usp->tv_sec;
    484      1.33  riastrad 	bool borrow;
    485      1.33  riastrad 
    486      1.33  riastrad 	/*
    487      1.33  riastrad 	 * Caller is responsible for guaranteeing valid timespec
    488      1.33  riastrad 	 * inputs.  Any user-controlled inputs must be validated or
    489      1.33  riastrad 	 * adjusted.
    490      1.33  riastrad 	 */
    491      1.33  riastrad 	KASSERT(tsp->tv_nsec >= 0);
    492      1.33  riastrad 	KASSERT(usp->tv_nsec >= 0);
    493      1.33  riastrad 	KASSERT(tsp->tv_nsec < 1000000000L);
    494      1.33  riastrad 	KASSERT(usp->tv_nsec < 1000000000L);
    495      1.33  riastrad 	CTASSERT(1000000000L <= __type_max(long) - 1000000000L);
    496      1.33  riastrad 
    497      1.33  riastrad 	/*
    498      1.33  riastrad 	 * Fail if a - b - borrow overflows TIME_MIN, or if a - b
    499      1.33  riastrad 	 * overflows TIME_MAX because timespecsub subtracts the borrow
    500      1.33  riastrad 	 * after computing a - b.
    501      1.33  riastrad 	 *
    502      1.33  riastrad 	 * Break it into two mutually exclusive and exhaustive cases:
    503      1.33  riastrad 	 * I. a < 0
    504      1.33  riastrad 	 * II. a >= 0
    505      1.33  riastrad 	 */
    506      1.33  riastrad 	borrow = (tsp->tv_nsec - usp->tv_nsec < 0);
    507      1.33  riastrad 	if (a < 0) {
    508      1.33  riastrad 		/*
    509      1.33  riastrad 		 * Case I: a < 0.  If b < 0, then -b - 1 >= 0, so
    510      1.33  riastrad 		 *
    511      1.33  riastrad 		 *	a - b - 1 >= a + 0 >= TIME_MIN,
    512      1.33  riastrad 		 *
    513      1.33  riastrad 		 * and, since a <= -1, provided that TIME_MIN <=
    514      1.33  riastrad 		 * -TIME_MAX - 1 so that TIME_MAX <= -TIME_MIN - 1 (in
    515      1.33  riastrad 		 * fact, equality holds, under the assumption of
    516      1.33  riastrad 		 * two's-complement arithmetic),
    517      1.33  riastrad 		 *
    518      1.33  riastrad 		 *	a - b <= -1 - b = -b - 1 <= TIME_MAX,
    519      1.33  riastrad 		 *
    520      1.33  riastrad 		 * so this can't overflow.
    521      1.33  riastrad 		 */
    522      1.33  riastrad 		CTASSERT(TIME_MIN <= -TIME_MAX - 1);
    523      1.33  riastrad 
    524      1.33  riastrad 		/*
    525      1.33  riastrad 		 * If b >= 0, then a - b - borrow <= a - b < 0, so
    526      1.33  riastrad 		 * positive results and thus results above TIME_MAX are
    527      1.33  riastrad 		 * impossible; we need only avoid
    528      1.33  riastrad 		 *
    529      1.33  riastrad 		 *	a - b - borrow < TIME_MIN,
    530      1.33  riastrad 		 *
    531      1.33  riastrad 		 * which we will do by rejecting if
    532      1.33  riastrad 		 *
    533      1.33  riastrad 		 *	a < TIME_MIN + b + borrow.
    534      1.33  riastrad 		 *
    535      1.33  riastrad 		 * The right-hand side is safe to evaluate for any
    536      1.33  riastrad 		 * values of b and borrow as long as TIME_MIN +
    537      1.33  riastrad 		 * TIME_MAX + 1 <= TIME_MAX, i.e., TIME_MIN <= -1.
    538      1.33  riastrad 		 * (Note: If time_t were unsigned, this would fail!)
    539      1.33  riastrad 		 *
    540      1.33  riastrad 		 * Note: Unlike Case I in timespecaddok, this criterion
    541      1.33  riastrad 		 * does not work for b < 0, nor can the roles of a and
    542      1.33  riastrad 		 * b in the inequality be reversed (e.g., -b < TIME_MIN
    543      1.33  riastrad 		 * - a + borrow) without extra cases like checking for
    544      1.33  riastrad 		 * b = TEST_MIN.
    545      1.33  riastrad 		 */
    546      1.33  riastrad 		CTASSERT(TIME_MIN < -1);
    547      1.33  riastrad 		if (b >= 0 && a < TIME_MIN + b + borrow)
    548      1.33  riastrad 			return false;
    549      1.33  riastrad 	} else {
    550      1.33  riastrad 		/*
    551      1.33  riastrad 		 * Case II: a >= 0.  If b >= 0, then
    552      1.33  riastrad 		 *
    553      1.33  riastrad 		 *	a - b <= a <= TIME_MAX,
    554      1.33  riastrad 		 *
    555      1.33  riastrad 		 * and, provided TIME_MIN <= -TIME_MAX - 1 (in fact,
    556      1.33  riastrad 		 * equality holds, under the assumption of
    557      1.33  riastrad 		 * two's-complement arithmetic)
    558      1.33  riastrad 		 *
    559      1.33  riastrad 		 *	a - b - 1 >= -b - 1 >= -TIME_MAX - 1 >= TIME_MIN,
    560      1.33  riastrad 		 *
    561      1.33  riastrad 		 * so this can't overflow.
    562      1.33  riastrad 		 */
    563      1.33  riastrad 		CTASSERT(TIME_MIN <= -TIME_MAX - 1);
    564      1.33  riastrad 
    565      1.33  riastrad 		/*
    566      1.33  riastrad 		 * If b < 0, then a - b >= a >= 0, so negative results
    567      1.33  riastrad 		 * and thus results below TIME_MIN are impossible; we
    568      1.33  riastrad 		 * need only avoid
    569      1.33  riastrad 		 *
    570      1.33  riastrad 		 *	a - b > TIME_MAX,
    571      1.33  riastrad 		 *
    572      1.33  riastrad 		 * which we will do by rejecting if
    573      1.33  riastrad 		 *
    574      1.33  riastrad 		 *	a > TIME_MAX + b.
    575      1.33  riastrad 		 *
    576      1.33  riastrad 		 * (Reminder: The borrow is subtracted afterward in
    577      1.33  riastrad 		 * timespecsub, so to avoid overflow it is not enough
    578      1.33  riastrad 		 * to merely reject a - b - borrow > TIME_MAX.)
    579      1.33  riastrad 		 *
    580      1.33  riastrad 		 * It is safe to compute the sum TIME_MAX + b because b
    581      1.33  riastrad 		 * is negative, so the result lies in [0, TIME_MAX).
    582      1.33  riastrad 		 */
    583      1.33  riastrad 		if (b < 0 && a > TIME_MAX + b)
    584      1.33  riastrad 			return false;
    585      1.33  riastrad 	}
    586      1.33  riastrad 
    587      1.33  riastrad 	return true;
    588      1.33  riastrad }
    589