subr_time.c revision 1.36 1 1.36 riastrad /* $NetBSD: subr_time.c,v 1.36 2023/04/09 09:18:09 riastradh Exp $ */
2 1.1 pooka
3 1.1 pooka /*
4 1.1 pooka * Copyright (c) 1982, 1986, 1989, 1993
5 1.1 pooka * The Regents of the University of California. All rights reserved.
6 1.1 pooka *
7 1.1 pooka * Redistribution and use in source and binary forms, with or without
8 1.1 pooka * modification, are permitted provided that the following conditions
9 1.1 pooka * are met:
10 1.1 pooka * 1. Redistributions of source code must retain the above copyright
11 1.1 pooka * notice, this list of conditions and the following disclaimer.
12 1.1 pooka * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 pooka * notice, this list of conditions and the following disclaimer in the
14 1.1 pooka * documentation and/or other materials provided with the distribution.
15 1.1 pooka * 3. Neither the name of the University nor the names of its contributors
16 1.1 pooka * may be used to endorse or promote products derived from this software
17 1.1 pooka * without specific prior written permission.
18 1.1 pooka *
19 1.1 pooka * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 1.1 pooka * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 1.1 pooka * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 1.1 pooka * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 1.1 pooka * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 1.1 pooka * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 1.1 pooka * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 1.1 pooka * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 1.1 pooka * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 1.1 pooka * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 1.1 pooka * SUCH DAMAGE.
30 1.1 pooka *
31 1.1 pooka * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
32 1.1 pooka * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
33 1.1 pooka */
34 1.1 pooka
35 1.1 pooka #include <sys/cdefs.h>
36 1.36 riastrad __KERNEL_RCSID(0, "$NetBSD: subr_time.c,v 1.36 2023/04/09 09:18:09 riastradh Exp $");
37 1.1 pooka
38 1.1 pooka #include <sys/param.h>
39 1.1 pooka #include <sys/kernel.h>
40 1.18 christos #include <sys/proc.h>
41 1.18 christos #include <sys/kauth.h>
42 1.18 christos #include <sys/lwp.h>
43 1.1 pooka #include <sys/timex.h>
44 1.1 pooka #include <sys/time.h>
45 1.1 pooka #include <sys/timetc.h>
46 1.2 ad #include <sys/intr.h>
47 1.1 pooka
48 1.18 christos #ifdef DEBUG_STICKS
49 1.18 christos #define DPRINTF(a) uprintf a
50 1.18 christos #else
51 1.18 christos #define DPRINTF(a)
52 1.18 christos #endif
53 1.18 christos
54 1.1 pooka /*
55 1.1 pooka * Compute number of hz until specified time. Used to compute second
56 1.1 pooka * argument to callout_reset() from an absolute time.
57 1.1 pooka */
58 1.1 pooka int
59 1.4 christos tvhzto(const struct timeval *tvp)
60 1.1 pooka {
61 1.1 pooka struct timeval now, tv;
62 1.1 pooka
63 1.1 pooka tv = *tvp; /* Don't modify original tvp. */
64 1.1 pooka getmicrotime(&now);
65 1.1 pooka timersub(&tv, &now, &tv);
66 1.1 pooka return tvtohz(&tv);
67 1.1 pooka }
68 1.1 pooka
69 1.1 pooka /*
70 1.1 pooka * Compute number of ticks in the specified amount of time.
71 1.1 pooka */
72 1.1 pooka int
73 1.4 christos tvtohz(const struct timeval *tv)
74 1.1 pooka {
75 1.1 pooka unsigned long ticks;
76 1.1 pooka long sec, usec;
77 1.1 pooka
78 1.1 pooka /*
79 1.1 pooka * If the number of usecs in the whole seconds part of the time
80 1.1 pooka * difference fits in a long, then the total number of usecs will
81 1.1 pooka * fit in an unsigned long. Compute the total and convert it to
82 1.1 pooka * ticks, rounding up and adding 1 to allow for the current tick
83 1.1 pooka * to expire. Rounding also depends on unsigned long arithmetic
84 1.1 pooka * to avoid overflow.
85 1.1 pooka *
86 1.1 pooka * Otherwise, if the number of ticks in the whole seconds part of
87 1.1 pooka * the time difference fits in a long, then convert the parts to
88 1.1 pooka * ticks separately and add, using similar rounding methods and
89 1.1 pooka * overflow avoidance. This method would work in the previous
90 1.1 pooka * case, but it is slightly slower and assumes that hz is integral.
91 1.1 pooka *
92 1.1 pooka * Otherwise, round the time difference down to the maximum
93 1.1 pooka * representable value.
94 1.1 pooka *
95 1.1 pooka * If ints are 32-bit, then the maximum value for any timeout in
96 1.1 pooka * 10ms ticks is 248 days.
97 1.1 pooka */
98 1.1 pooka sec = tv->tv_sec;
99 1.1 pooka usec = tv->tv_usec;
100 1.1 pooka
101 1.36 riastrad KASSERT(usec >= 0);
102 1.36 riastrad KASSERT(usec < 1000000);
103 1.8 drochner
104 1.8 drochner /* catch overflows in conversion time_t->int */
105 1.8 drochner if (tv->tv_sec > INT_MAX)
106 1.8 drochner return INT_MAX;
107 1.8 drochner if (tv->tv_sec < 0)
108 1.8 drochner return 0;
109 1.1 pooka
110 1.8 drochner if (sec < 0 || (sec == 0 && usec == 0)) {
111 1.1 pooka /*
112 1.1 pooka * Would expire now or in the past. Return 0 ticks.
113 1.4 christos * This is different from the legacy tvhzto() interface,
114 1.1 pooka * and callers need to check for it.
115 1.1 pooka */
116 1.1 pooka ticks = 0;
117 1.1 pooka } else if (sec <= (LONG_MAX / 1000000))
118 1.1 pooka ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
119 1.1 pooka / tick) + 1;
120 1.1 pooka else if (sec <= (LONG_MAX / hz))
121 1.1 pooka ticks = (sec * hz) +
122 1.1 pooka (((unsigned long)usec + (tick - 1)) / tick) + 1;
123 1.1 pooka else
124 1.1 pooka ticks = LONG_MAX;
125 1.1 pooka
126 1.1 pooka if (ticks > INT_MAX)
127 1.1 pooka ticks = INT_MAX;
128 1.1 pooka
129 1.1 pooka return ((int)ticks);
130 1.1 pooka }
131 1.1 pooka
132 1.4 christos int
133 1.4 christos tshzto(const struct timespec *tsp)
134 1.4 christos {
135 1.4 christos struct timespec now, ts;
136 1.4 christos
137 1.4 christos ts = *tsp; /* Don't modify original tsp. */
138 1.4 christos getnanotime(&now);
139 1.4 christos timespecsub(&ts, &now, &ts);
140 1.4 christos return tstohz(&ts);
141 1.4 christos }
142 1.9 christos
143 1.9 christos int
144 1.9 christos tshztoup(const struct timespec *tsp)
145 1.9 christos {
146 1.9 christos struct timespec now, ts;
147 1.9 christos
148 1.9 christos ts = *tsp; /* Don't modify original tsp. */
149 1.9 christos getnanouptime(&now);
150 1.9 christos timespecsub(&ts, &now, &ts);
151 1.9 christos return tstohz(&ts);
152 1.9 christos }
153 1.9 christos
154 1.1 pooka /*
155 1.1 pooka * Compute number of ticks in the specified amount of time.
156 1.1 pooka */
157 1.1 pooka int
158 1.4 christos tstohz(const struct timespec *ts)
159 1.1 pooka {
160 1.1 pooka struct timeval tv;
161 1.1 pooka
162 1.1 pooka /*
163 1.1 pooka * usec has great enough resolution for hz, so convert to a
164 1.1 pooka * timeval and use tvtohz() above.
165 1.1 pooka */
166 1.1 pooka TIMESPEC_TO_TIMEVAL(&tv, ts);
167 1.1 pooka return tvtohz(&tv);
168 1.1 pooka }
169 1.1 pooka
170 1.1 pooka /*
171 1.1 pooka * Check that a proposed value to load into the .it_value or
172 1.1 pooka * .it_interval part of an interval timer is acceptable, and
173 1.1 pooka * fix it to have at least minimal value (i.e. if it is less
174 1.15 christos * than the resolution of the clock, round it up.). We don't
175 1.15 christos * timeout the 0,0 value because this means to disable the
176 1.15 christos * timer or the interval.
177 1.1 pooka */
178 1.1 pooka int
179 1.1 pooka itimerfix(struct timeval *tv)
180 1.1 pooka {
181 1.1 pooka
182 1.12 christos if (tv->tv_usec < 0 || tv->tv_usec >= 1000000)
183 1.12 christos return EINVAL;
184 1.15 christos if (tv->tv_sec < 0)
185 1.12 christos return ETIMEDOUT;
186 1.15 christos if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
187 1.1 pooka tv->tv_usec = tick;
188 1.12 christos return 0;
189 1.1 pooka }
190 1.1 pooka
191 1.1 pooka int
192 1.1 pooka itimespecfix(struct timespec *ts)
193 1.1 pooka {
194 1.1 pooka
195 1.12 christos if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
196 1.12 christos return EINVAL;
197 1.15 christos if (ts->tv_sec < 0)
198 1.12 christos return ETIMEDOUT;
199 1.15 christos if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
200 1.1 pooka ts->tv_nsec = tick * 1000;
201 1.12 christos return 0;
202 1.1 pooka }
203 1.5 rmind
204 1.5 rmind int
205 1.5 rmind inittimeleft(struct timespec *ts, struct timespec *sleepts)
206 1.5 rmind {
207 1.5 rmind
208 1.5 rmind if (itimespecfix(ts)) {
209 1.5 rmind return -1;
210 1.5 rmind }
211 1.35 riastrad KASSERT(ts->tv_sec >= 0);
212 1.5 rmind getnanouptime(sleepts);
213 1.5 rmind return 0;
214 1.5 rmind }
215 1.5 rmind
216 1.5 rmind int
217 1.5 rmind gettimeleft(struct timespec *ts, struct timespec *sleepts)
218 1.5 rmind {
219 1.35 riastrad struct timespec now, sleptts;
220 1.35 riastrad
221 1.35 riastrad KASSERT(ts->tv_sec >= 0);
222 1.5 rmind
223 1.5 rmind /*
224 1.5 rmind * Reduce ts by elapsed time based on monotonic time scale.
225 1.5 rmind */
226 1.35 riastrad getnanouptime(&now);
227 1.35 riastrad KASSERT(timespeccmp(sleepts, &now, <=));
228 1.35 riastrad timespecsub(&now, sleepts, &sleptts);
229 1.35 riastrad *sleepts = now;
230 1.35 riastrad
231 1.35 riastrad if (timespeccmp(ts, &sleptts, <=)) { /* timed out */
232 1.35 riastrad timespecclear(ts);
233 1.35 riastrad return 0;
234 1.35 riastrad }
235 1.5 rmind timespecsub(ts, &sleptts, ts);
236 1.5 rmind
237 1.5 rmind return tstohz(ts);
238 1.5 rmind }
239 1.5 rmind
240 1.20 christos void
241 1.20 christos clock_timeleft(clockid_t clockid, struct timespec *ts, struct timespec *sleepts)
242 1.20 christos {
243 1.20 christos struct timespec sleptts;
244 1.20 christos
245 1.20 christos clock_gettime1(clockid, &sleptts);
246 1.20 christos timespecadd(ts, sleepts, ts);
247 1.20 christos timespecsub(ts, &sleptts, ts);
248 1.20 christos *sleepts = sleptts;
249 1.20 christos }
250 1.20 christos
251 1.18 christos static void
252 1.18 christos ticks2ts(uint64_t ticks, struct timespec *ts)
253 1.18 christos {
254 1.18 christos ts->tv_sec = ticks / hz;
255 1.18 christos uint64_t sticks = ticks - ts->tv_sec * hz;
256 1.19 pgoyette if (sticks > BINTIME_SCALE_MS) /* floor(2^64 / 1000) */
257 1.18 christos ts->tv_nsec = sticks / hz * 1000000000LL;
258 1.19 pgoyette else if (sticks > BINTIME_SCALE_US) /* floor(2^64 / 1000000) */
259 1.18 christos ts->tv_nsec = sticks * 1000LL / hz * 1000000LL;
260 1.18 christos else
261 1.18 christos ts->tv_nsec = sticks * 1000000000LL / hz;
262 1.18 christos DPRINTF(("%s: %ju/%ju -> %ju.%ju\n", __func__,
263 1.18 christos (uintmax_t)ticks, (uintmax_t)sticks,
264 1.18 christos (uintmax_t)ts->tv_sec, (uintmax_t)ts->tv_nsec));
265 1.18 christos }
266 1.18 christos
267 1.11 martin int
268 1.11 martin clock_gettime1(clockid_t clock_id, struct timespec *ts)
269 1.11 martin {
270 1.18 christos int error;
271 1.18 christos uint64_t ticks;
272 1.18 christos struct proc *p;
273 1.18 christos
274 1.18 christos #define CPUCLOCK_ID_MASK (~(CLOCK_THREAD_CPUTIME_ID|CLOCK_PROCESS_CPUTIME_ID))
275 1.18 christos if (clock_id & CLOCK_PROCESS_CPUTIME_ID) {
276 1.18 christos pid_t pid = clock_id & CPUCLOCK_ID_MASK;
277 1.18 christos
278 1.25 ad mutex_enter(&proc_lock);
279 1.18 christos p = pid == 0 ? curproc : proc_find(pid);
280 1.18 christos if (p == NULL) {
281 1.25 ad mutex_exit(&proc_lock);
282 1.18 christos return ESRCH;
283 1.18 christos }
284 1.18 christos ticks = p->p_uticks + p->p_sticks + p->p_iticks;
285 1.18 christos DPRINTF(("%s: u=%ju, s=%ju, i=%ju\n", __func__,
286 1.18 christos (uintmax_t)p->p_uticks, (uintmax_t)p->p_sticks,
287 1.18 christos (uintmax_t)p->p_iticks));
288 1.25 ad mutex_exit(&proc_lock);
289 1.18 christos
290 1.18 christos // XXX: Perhaps create a special kauth type
291 1.31 christos error = kauth_authorize_process(kauth_cred_get(),
292 1.18 christos KAUTH_PROCESS_PTRACE, p,
293 1.18 christos KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
294 1.18 christos if (error)
295 1.18 christos return error;
296 1.18 christos } else if (clock_id & CLOCK_THREAD_CPUTIME_ID) {
297 1.18 christos struct lwp *l;
298 1.18 christos lwpid_t lid = clock_id & CPUCLOCK_ID_MASK;
299 1.18 christos p = curproc;
300 1.18 christos mutex_enter(p->p_lock);
301 1.18 christos l = lid == 0 ? curlwp : lwp_find(p, lid);
302 1.18 christos if (l == NULL) {
303 1.18 christos mutex_exit(p->p_lock);
304 1.18 christos return ESRCH;
305 1.18 christos }
306 1.18 christos ticks = l->l_rticksum + l->l_slpticksum;
307 1.18 christos DPRINTF(("%s: r=%ju, s=%ju\n", __func__,
308 1.18 christos (uintmax_t)l->l_rticksum, (uintmax_t)l->l_slpticksum));
309 1.18 christos mutex_exit(p->p_lock);
310 1.18 christos } else
311 1.18 christos ticks = (uint64_t)-1;
312 1.18 christos
313 1.18 christos if (ticks != (uint64_t)-1) {
314 1.18 christos ticks2ts(ticks, ts);
315 1.18 christos return 0;
316 1.18 christos }
317 1.11 martin
318 1.11 martin switch (clock_id) {
319 1.11 martin case CLOCK_REALTIME:
320 1.11 martin nanotime(ts);
321 1.11 martin break;
322 1.11 martin case CLOCK_MONOTONIC:
323 1.11 martin nanouptime(ts);
324 1.11 martin break;
325 1.11 martin default:
326 1.11 martin return EINVAL;
327 1.11 martin }
328 1.11 martin
329 1.11 martin return 0;
330 1.11 martin }
331 1.11 martin
332 1.5 rmind /*
333 1.5 rmind * Calculate delta and convert from struct timespec to the ticks.
334 1.5 rmind */
335 1.5 rmind int
336 1.10 christos ts2timo(clockid_t clock_id, int flags, struct timespec *ts,
337 1.10 christos int *timo, struct timespec *start)
338 1.5 rmind {
339 1.14 christos int error;
340 1.28 nia struct timespec tsd;
341 1.5 rmind
342 1.21 kamil if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000L)
343 1.21 kamil return EINVAL;
344 1.21 kamil
345 1.30 nia if ((flags & TIMER_ABSTIME) != 0 || start != NULL) {
346 1.29 nia error = clock_gettime1(clock_id, &tsd);
347 1.26 nia if (error != 0)
348 1.17 christos return error;
349 1.29 nia if (start != NULL)
350 1.29 nia *start = tsd;
351 1.26 nia }
352 1.10 christos
353 1.30 nia if ((flags & TIMER_ABSTIME) != 0) {
354 1.34 riastrad if (!timespecsubok(ts, &tsd))
355 1.29 nia return EINVAL;
356 1.29 nia timespecsub(ts, &tsd, ts);
357 1.29 nia }
358 1.10 christos
359 1.26 nia error = itimespecfix(ts);
360 1.26 nia if (error != 0)
361 1.5 rmind return error;
362 1.10 christos
363 1.15 christos if (ts->tv_sec == 0 && ts->tv_nsec == 0)
364 1.15 christos return ETIMEDOUT;
365 1.15 christos
366 1.14 christos *timo = tstohz(ts);
367 1.14 christos KASSERT(*timo > 0);
368 1.5 rmind
369 1.5 rmind return 0;
370 1.5 rmind }
371 1.33 riastrad
372 1.33 riastrad bool
373 1.33 riastrad timespecaddok(const struct timespec *tsp, const struct timespec *usp)
374 1.33 riastrad {
375 1.33 riastrad enum { TIME_MIN = __type_min(time_t), TIME_MAX = __type_max(time_t) };
376 1.33 riastrad time_t a = tsp->tv_sec;
377 1.33 riastrad time_t b = usp->tv_sec;
378 1.33 riastrad bool carry;
379 1.33 riastrad
380 1.33 riastrad /*
381 1.33 riastrad * Caller is responsible for guaranteeing valid timespec
382 1.33 riastrad * inputs. Any user-controlled inputs must be validated or
383 1.33 riastrad * adjusted.
384 1.33 riastrad */
385 1.33 riastrad KASSERT(tsp->tv_nsec >= 0);
386 1.33 riastrad KASSERT(usp->tv_nsec >= 0);
387 1.33 riastrad KASSERT(tsp->tv_nsec < 1000000000L);
388 1.33 riastrad KASSERT(usp->tv_nsec < 1000000000L);
389 1.33 riastrad CTASSERT(1000000000L <= __type_max(long) - 1000000000L);
390 1.33 riastrad
391 1.33 riastrad /*
392 1.33 riastrad * Fail if a + b + carry overflows TIME_MAX, or if a + b
393 1.33 riastrad * overflows TIME_MIN because timespecadd adds the carry after
394 1.33 riastrad * computing a + b.
395 1.33 riastrad *
396 1.33 riastrad * Break it into two mutually exclusive and exhaustive cases:
397 1.33 riastrad * I. a >= 0
398 1.33 riastrad * II. a < 0
399 1.33 riastrad */
400 1.33 riastrad carry = (tsp->tv_nsec + usp->tv_nsec >= 1000000000L);
401 1.33 riastrad if (a >= 0) {
402 1.33 riastrad /*
403 1.33 riastrad * Case I: a >= 0. If b < 0, then b + 1 <= 0, so
404 1.33 riastrad *
405 1.33 riastrad * a + b + 1 <= a + 0 <= TIME_MAX,
406 1.33 riastrad *
407 1.33 riastrad * and
408 1.33 riastrad *
409 1.33 riastrad * a + b >= 0 + b = b >= TIME_MIN,
410 1.33 riastrad *
411 1.33 riastrad * so this can't overflow.
412 1.33 riastrad *
413 1.33 riastrad * If b >= 0, then a + b + carry >= a + b >= 0, so
414 1.33 riastrad * negative results and thus results below TIME_MIN are
415 1.33 riastrad * impossible; we need only avoid
416 1.33 riastrad *
417 1.33 riastrad * a + b + carry > TIME_MAX,
418 1.33 riastrad *
419 1.33 riastrad * which we will do by rejecting if
420 1.33 riastrad *
421 1.33 riastrad * b > TIME_MAX - a - carry,
422 1.33 riastrad *
423 1.33 riastrad * which in turn is incidentally always false if b < 0
424 1.33 riastrad * so we don't need extra logic to discriminate on the
425 1.33 riastrad * b >= 0 and b < 0 cases.
426 1.33 riastrad *
427 1.33 riastrad * Since 0 <= a <= TIME_MAX, we know
428 1.33 riastrad *
429 1.33 riastrad * 0 <= TIME_MAX - a <= TIME_MAX,
430 1.33 riastrad *
431 1.33 riastrad * and hence
432 1.33 riastrad *
433 1.33 riastrad * -1 <= TIME_MAX - a - 1 < TIME_MAX.
434 1.33 riastrad *
435 1.33 riastrad * So we can compute TIME_MAX - a - carry (i.e., either
436 1.33 riastrad * TIME_MAX - a or TIME_MAX - a - 1) safely without
437 1.33 riastrad * overflow.
438 1.33 riastrad */
439 1.33 riastrad if (b > TIME_MAX - a - carry)
440 1.33 riastrad return false;
441 1.33 riastrad } else {
442 1.33 riastrad /*
443 1.33 riastrad * Case II: a < 0. If b >= 0, then since a + 1 <= 0,
444 1.33 riastrad * we have
445 1.33 riastrad *
446 1.33 riastrad * a + b + 1 <= b <= TIME_MAX,
447 1.33 riastrad *
448 1.33 riastrad * and
449 1.33 riastrad *
450 1.33 riastrad * a + b >= a >= TIME_MIN,
451 1.33 riastrad *
452 1.33 riastrad * so this can't overflow.
453 1.33 riastrad *
454 1.33 riastrad * If b < 0, then the intermediate a + b is negative
455 1.33 riastrad * and the outcome a + b + 1 is nonpositive, so we need
456 1.33 riastrad * only avoid
457 1.33 riastrad *
458 1.33 riastrad * a + b < TIME_MIN,
459 1.33 riastrad *
460 1.33 riastrad * which we will do by rejecting if
461 1.33 riastrad *
462 1.33 riastrad * a < TIME_MIN - b.
463 1.33 riastrad *
464 1.33 riastrad * (Reminder: The carry is added afterward in
465 1.33 riastrad * timespecadd, so to avoid overflow it is not enough
466 1.33 riastrad * to merely reject a + b + carry < TIME_MIN.)
467 1.33 riastrad *
468 1.33 riastrad * It is safe to compute the difference TIME_MIN - b
469 1.33 riastrad * because b is negative, so the result lies in
470 1.33 riastrad * (TIME_MIN, 0].
471 1.33 riastrad */
472 1.33 riastrad if (b < 0 && a < TIME_MIN - b)
473 1.33 riastrad return false;
474 1.33 riastrad }
475 1.33 riastrad
476 1.33 riastrad return true;
477 1.33 riastrad }
478 1.33 riastrad
479 1.33 riastrad bool
480 1.33 riastrad timespecsubok(const struct timespec *tsp, const struct timespec *usp)
481 1.33 riastrad {
482 1.33 riastrad enum { TIME_MIN = __type_min(time_t), TIME_MAX = __type_max(time_t) };
483 1.33 riastrad time_t a = tsp->tv_sec, b = usp->tv_sec;
484 1.33 riastrad bool borrow;
485 1.33 riastrad
486 1.33 riastrad /*
487 1.33 riastrad * Caller is responsible for guaranteeing valid timespec
488 1.33 riastrad * inputs. Any user-controlled inputs must be validated or
489 1.33 riastrad * adjusted.
490 1.33 riastrad */
491 1.33 riastrad KASSERT(tsp->tv_nsec >= 0);
492 1.33 riastrad KASSERT(usp->tv_nsec >= 0);
493 1.33 riastrad KASSERT(tsp->tv_nsec < 1000000000L);
494 1.33 riastrad KASSERT(usp->tv_nsec < 1000000000L);
495 1.33 riastrad CTASSERT(1000000000L <= __type_max(long) - 1000000000L);
496 1.33 riastrad
497 1.33 riastrad /*
498 1.33 riastrad * Fail if a - b - borrow overflows TIME_MIN, or if a - b
499 1.33 riastrad * overflows TIME_MAX because timespecsub subtracts the borrow
500 1.33 riastrad * after computing a - b.
501 1.33 riastrad *
502 1.33 riastrad * Break it into two mutually exclusive and exhaustive cases:
503 1.33 riastrad * I. a < 0
504 1.33 riastrad * II. a >= 0
505 1.33 riastrad */
506 1.33 riastrad borrow = (tsp->tv_nsec - usp->tv_nsec < 0);
507 1.33 riastrad if (a < 0) {
508 1.33 riastrad /*
509 1.33 riastrad * Case I: a < 0. If b < 0, then -b - 1 >= 0, so
510 1.33 riastrad *
511 1.33 riastrad * a - b - 1 >= a + 0 >= TIME_MIN,
512 1.33 riastrad *
513 1.33 riastrad * and, since a <= -1, provided that TIME_MIN <=
514 1.33 riastrad * -TIME_MAX - 1 so that TIME_MAX <= -TIME_MIN - 1 (in
515 1.33 riastrad * fact, equality holds, under the assumption of
516 1.33 riastrad * two's-complement arithmetic),
517 1.33 riastrad *
518 1.33 riastrad * a - b <= -1 - b = -b - 1 <= TIME_MAX,
519 1.33 riastrad *
520 1.33 riastrad * so this can't overflow.
521 1.33 riastrad */
522 1.33 riastrad CTASSERT(TIME_MIN <= -TIME_MAX - 1);
523 1.33 riastrad
524 1.33 riastrad /*
525 1.33 riastrad * If b >= 0, then a - b - borrow <= a - b < 0, so
526 1.33 riastrad * positive results and thus results above TIME_MAX are
527 1.33 riastrad * impossible; we need only avoid
528 1.33 riastrad *
529 1.33 riastrad * a - b - borrow < TIME_MIN,
530 1.33 riastrad *
531 1.33 riastrad * which we will do by rejecting if
532 1.33 riastrad *
533 1.33 riastrad * a < TIME_MIN + b + borrow.
534 1.33 riastrad *
535 1.33 riastrad * The right-hand side is safe to evaluate for any
536 1.33 riastrad * values of b and borrow as long as TIME_MIN +
537 1.33 riastrad * TIME_MAX + 1 <= TIME_MAX, i.e., TIME_MIN <= -1.
538 1.33 riastrad * (Note: If time_t were unsigned, this would fail!)
539 1.33 riastrad *
540 1.33 riastrad * Note: Unlike Case I in timespecaddok, this criterion
541 1.33 riastrad * does not work for b < 0, nor can the roles of a and
542 1.33 riastrad * b in the inequality be reversed (e.g., -b < TIME_MIN
543 1.33 riastrad * - a + borrow) without extra cases like checking for
544 1.33 riastrad * b = TEST_MIN.
545 1.33 riastrad */
546 1.33 riastrad CTASSERT(TIME_MIN < -1);
547 1.33 riastrad if (b >= 0 && a < TIME_MIN + b + borrow)
548 1.33 riastrad return false;
549 1.33 riastrad } else {
550 1.33 riastrad /*
551 1.33 riastrad * Case II: a >= 0. If b >= 0, then
552 1.33 riastrad *
553 1.33 riastrad * a - b <= a <= TIME_MAX,
554 1.33 riastrad *
555 1.33 riastrad * and, provided TIME_MIN <= -TIME_MAX - 1 (in fact,
556 1.33 riastrad * equality holds, under the assumption of
557 1.33 riastrad * two's-complement arithmetic)
558 1.33 riastrad *
559 1.33 riastrad * a - b - 1 >= -b - 1 >= -TIME_MAX - 1 >= TIME_MIN,
560 1.33 riastrad *
561 1.33 riastrad * so this can't overflow.
562 1.33 riastrad */
563 1.33 riastrad CTASSERT(TIME_MIN <= -TIME_MAX - 1);
564 1.33 riastrad
565 1.33 riastrad /*
566 1.33 riastrad * If b < 0, then a - b >= a >= 0, so negative results
567 1.33 riastrad * and thus results below TIME_MIN are impossible; we
568 1.33 riastrad * need only avoid
569 1.33 riastrad *
570 1.33 riastrad * a - b > TIME_MAX,
571 1.33 riastrad *
572 1.33 riastrad * which we will do by rejecting if
573 1.33 riastrad *
574 1.33 riastrad * a > TIME_MAX + b.
575 1.33 riastrad *
576 1.33 riastrad * (Reminder: The borrow is subtracted afterward in
577 1.33 riastrad * timespecsub, so to avoid overflow it is not enough
578 1.33 riastrad * to merely reject a - b - borrow > TIME_MAX.)
579 1.33 riastrad *
580 1.33 riastrad * It is safe to compute the sum TIME_MAX + b because b
581 1.33 riastrad * is negative, so the result lies in [0, TIME_MAX).
582 1.33 riastrad */
583 1.33 riastrad if (b < 0 && a > TIME_MAX + b)
584 1.33 riastrad return false;
585 1.33 riastrad }
586 1.33 riastrad
587 1.33 riastrad return true;
588 1.33 riastrad }
589