Home | History | Annotate | Line # | Download | only in kern
subr_time.c revision 1.38
      1  1.38  riastrad /*	$NetBSD: subr_time.c,v 1.38 2023/07/08 20:02:10 riastradh Exp $	*/
      2   1.1     pooka 
      3   1.1     pooka /*
      4   1.1     pooka  * Copyright (c) 1982, 1986, 1989, 1993
      5   1.1     pooka  *	The Regents of the University of California.  All rights reserved.
      6   1.1     pooka  *
      7   1.1     pooka  * Redistribution and use in source and binary forms, with or without
      8   1.1     pooka  * modification, are permitted provided that the following conditions
      9   1.1     pooka  * are met:
     10   1.1     pooka  * 1. Redistributions of source code must retain the above copyright
     11   1.1     pooka  *    notice, this list of conditions and the following disclaimer.
     12   1.1     pooka  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1     pooka  *    notice, this list of conditions and the following disclaimer in the
     14   1.1     pooka  *    documentation and/or other materials provided with the distribution.
     15   1.1     pooka  * 3. Neither the name of the University nor the names of its contributors
     16   1.1     pooka  *    may be used to endorse or promote products derived from this software
     17   1.1     pooka  *    without specific prior written permission.
     18   1.1     pooka  *
     19   1.1     pooka  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20   1.1     pooka  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21   1.1     pooka  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22   1.1     pooka  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23   1.1     pooka  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24   1.1     pooka  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25   1.1     pooka  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26   1.1     pooka  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27   1.1     pooka  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28   1.1     pooka  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29   1.1     pooka  * SUCH DAMAGE.
     30   1.1     pooka  *
     31   1.1     pooka  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
     32   1.1     pooka  *	@(#)kern_time.c 8.4 (Berkeley) 5/26/95
     33   1.1     pooka  */
     34   1.1     pooka 
     35   1.1     pooka #include <sys/cdefs.h>
     36  1.38  riastrad __KERNEL_RCSID(0, "$NetBSD: subr_time.c,v 1.38 2023/07/08 20:02:10 riastradh Exp $");
     37   1.1     pooka 
     38   1.1     pooka #include <sys/param.h>
     39   1.1     pooka #include <sys/kernel.h>
     40  1.18  christos #include <sys/proc.h>
     41  1.18  christos #include <sys/kauth.h>
     42  1.18  christos #include <sys/lwp.h>
     43   1.1     pooka #include <sys/timex.h>
     44   1.1     pooka #include <sys/time.h>
     45   1.1     pooka #include <sys/timetc.h>
     46   1.2        ad #include <sys/intr.h>
     47   1.1     pooka 
     48   1.1     pooka /*
     49   1.1     pooka  * Compute number of hz until specified time.  Used to compute second
     50   1.1     pooka  * argument to callout_reset() from an absolute time.
     51   1.1     pooka  */
     52   1.1     pooka int
     53   1.4  christos tvhzto(const struct timeval *tvp)
     54   1.1     pooka {
     55   1.1     pooka 	struct timeval now, tv;
     56   1.1     pooka 
     57   1.1     pooka 	tv = *tvp;	/* Don't modify original tvp. */
     58   1.1     pooka 	getmicrotime(&now);
     59   1.1     pooka 	timersub(&tv, &now, &tv);
     60   1.1     pooka 	return tvtohz(&tv);
     61   1.1     pooka }
     62   1.1     pooka 
     63   1.1     pooka /*
     64   1.1     pooka  * Compute number of ticks in the specified amount of time.
     65   1.1     pooka  */
     66   1.1     pooka int
     67   1.4  christos tvtohz(const struct timeval *tv)
     68   1.1     pooka {
     69   1.1     pooka 	unsigned long ticks;
     70   1.1     pooka 	long sec, usec;
     71   1.1     pooka 
     72   1.1     pooka 	/*
     73   1.1     pooka 	 * If the number of usecs in the whole seconds part of the time
     74   1.1     pooka 	 * difference fits in a long, then the total number of usecs will
     75   1.1     pooka 	 * fit in an unsigned long.  Compute the total and convert it to
     76   1.1     pooka 	 * ticks, rounding up and adding 1 to allow for the current tick
     77   1.1     pooka 	 * to expire.  Rounding also depends on unsigned long arithmetic
     78   1.1     pooka 	 * to avoid overflow.
     79   1.1     pooka 	 *
     80   1.1     pooka 	 * Otherwise, if the number of ticks in the whole seconds part of
     81   1.1     pooka 	 * the time difference fits in a long, then convert the parts to
     82   1.1     pooka 	 * ticks separately and add, using similar rounding methods and
     83   1.1     pooka 	 * overflow avoidance.  This method would work in the previous
     84   1.1     pooka 	 * case, but it is slightly slower and assumes that hz is integral.
     85   1.1     pooka 	 *
     86   1.1     pooka 	 * Otherwise, round the time difference down to the maximum
     87   1.1     pooka 	 * representable value.
     88   1.1     pooka 	 *
     89   1.1     pooka 	 * If ints are 32-bit, then the maximum value for any timeout in
     90   1.1     pooka 	 * 10ms ticks is 248 days.
     91   1.1     pooka 	 */
     92   1.1     pooka 	sec = tv->tv_sec;
     93   1.1     pooka 	usec = tv->tv_usec;
     94   1.1     pooka 
     95  1.36  riastrad 	KASSERT(usec >= 0);
     96  1.36  riastrad 	KASSERT(usec < 1000000);
     97   1.8  drochner 
     98   1.8  drochner 	/* catch overflows in conversion time_t->int */
     99   1.8  drochner 	if (tv->tv_sec > INT_MAX)
    100   1.8  drochner 		return INT_MAX;
    101   1.8  drochner 	if (tv->tv_sec < 0)
    102   1.8  drochner 		return 0;
    103   1.1     pooka 
    104   1.8  drochner 	if (sec < 0 || (sec == 0 && usec == 0)) {
    105   1.1     pooka 		/*
    106   1.1     pooka 		 * Would expire now or in the past.  Return 0 ticks.
    107   1.4  christos 		 * This is different from the legacy tvhzto() interface,
    108   1.1     pooka 		 * and callers need to check for it.
    109   1.1     pooka 		 */
    110   1.1     pooka 		ticks = 0;
    111   1.1     pooka 	} else if (sec <= (LONG_MAX / 1000000))
    112   1.1     pooka 		ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
    113   1.1     pooka 		    / tick) + 1;
    114   1.1     pooka 	else if (sec <= (LONG_MAX / hz))
    115   1.1     pooka 		ticks = (sec * hz) +
    116   1.1     pooka 		    (((unsigned long)usec + (tick - 1)) / tick) + 1;
    117   1.1     pooka 	else
    118   1.1     pooka 		ticks = LONG_MAX;
    119   1.1     pooka 
    120   1.1     pooka 	if (ticks > INT_MAX)
    121   1.1     pooka 		ticks = INT_MAX;
    122   1.1     pooka 
    123   1.1     pooka 	return ((int)ticks);
    124   1.1     pooka }
    125   1.1     pooka 
    126   1.4  christos int
    127   1.4  christos tshzto(const struct timespec *tsp)
    128   1.4  christos {
    129   1.4  christos 	struct timespec now, ts;
    130   1.4  christos 
    131   1.4  christos 	ts = *tsp;	/* Don't modify original tsp. */
    132   1.4  christos 	getnanotime(&now);
    133   1.4  christos 	timespecsub(&ts, &now, &ts);
    134   1.4  christos 	return tstohz(&ts);
    135   1.4  christos }
    136   1.9  christos 
    137   1.9  christos int
    138   1.9  christos tshztoup(const struct timespec *tsp)
    139   1.9  christos {
    140   1.9  christos 	struct timespec now, ts;
    141   1.9  christos 
    142   1.9  christos 	ts = *tsp;	/* Don't modify original tsp. */
    143   1.9  christos 	getnanouptime(&now);
    144   1.9  christos 	timespecsub(&ts, &now, &ts);
    145   1.9  christos 	return tstohz(&ts);
    146   1.9  christos }
    147   1.9  christos 
    148   1.1     pooka /*
    149   1.1     pooka  * Compute number of ticks in the specified amount of time.
    150   1.1     pooka  */
    151   1.1     pooka int
    152   1.4  christos tstohz(const struct timespec *ts)
    153   1.1     pooka {
    154   1.1     pooka 	struct timeval tv;
    155   1.1     pooka 
    156   1.1     pooka 	/*
    157   1.1     pooka 	 * usec has great enough resolution for hz, so convert to a
    158   1.1     pooka 	 * timeval and use tvtohz() above.
    159   1.1     pooka 	 */
    160   1.1     pooka 	TIMESPEC_TO_TIMEVAL(&tv, ts);
    161   1.1     pooka 	return tvtohz(&tv);
    162   1.1     pooka }
    163   1.1     pooka 
    164   1.1     pooka /*
    165   1.1     pooka  * Check that a proposed value to load into the .it_value or
    166   1.1     pooka  * .it_interval part of an interval timer is acceptable, and
    167   1.1     pooka  * fix it to have at least minimal value (i.e. if it is less
    168  1.15  christos  * than the resolution of the clock, round it up.). We don't
    169  1.15  christos  * timeout the 0,0 value because this means to disable the
    170  1.15  christos  * timer or the interval.
    171   1.1     pooka  */
    172   1.1     pooka int
    173   1.1     pooka itimerfix(struct timeval *tv)
    174   1.1     pooka {
    175   1.1     pooka 
    176  1.12  christos 	if (tv->tv_usec < 0 || tv->tv_usec >= 1000000)
    177  1.12  christos 		return EINVAL;
    178  1.15  christos 	if (tv->tv_sec < 0)
    179  1.12  christos 		return ETIMEDOUT;
    180  1.15  christos 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
    181   1.1     pooka 		tv->tv_usec = tick;
    182  1.12  christos 	return 0;
    183   1.1     pooka }
    184   1.1     pooka 
    185   1.1     pooka int
    186   1.1     pooka itimespecfix(struct timespec *ts)
    187   1.1     pooka {
    188   1.1     pooka 
    189  1.12  christos 	if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
    190  1.12  christos 		return EINVAL;
    191  1.15  christos 	if (ts->tv_sec < 0)
    192  1.12  christos 		return ETIMEDOUT;
    193  1.15  christos 	if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
    194   1.1     pooka 		ts->tv_nsec = tick * 1000;
    195  1.12  christos 	return 0;
    196   1.1     pooka }
    197   1.5     rmind 
    198   1.5     rmind int
    199   1.5     rmind inittimeleft(struct timespec *ts, struct timespec *sleepts)
    200   1.5     rmind {
    201   1.5     rmind 
    202   1.5     rmind 	if (itimespecfix(ts)) {
    203   1.5     rmind 		return -1;
    204   1.5     rmind 	}
    205  1.35  riastrad 	KASSERT(ts->tv_sec >= 0);
    206   1.5     rmind 	getnanouptime(sleepts);
    207   1.5     rmind 	return 0;
    208   1.5     rmind }
    209   1.5     rmind 
    210   1.5     rmind int
    211   1.5     rmind gettimeleft(struct timespec *ts, struct timespec *sleepts)
    212   1.5     rmind {
    213  1.35  riastrad 	struct timespec now, sleptts;
    214  1.35  riastrad 
    215  1.35  riastrad 	KASSERT(ts->tv_sec >= 0);
    216   1.5     rmind 
    217   1.5     rmind 	/*
    218   1.5     rmind 	 * Reduce ts by elapsed time based on monotonic time scale.
    219   1.5     rmind 	 */
    220  1.35  riastrad 	getnanouptime(&now);
    221  1.35  riastrad 	KASSERT(timespeccmp(sleepts, &now, <=));
    222  1.35  riastrad 	timespecsub(&now, sleepts, &sleptts);
    223  1.35  riastrad 	*sleepts = now;
    224  1.35  riastrad 
    225  1.35  riastrad 	if (timespeccmp(ts, &sleptts, <=)) { /* timed out */
    226  1.35  riastrad 		timespecclear(ts);
    227  1.35  riastrad 		return 0;
    228  1.35  riastrad 	}
    229   1.5     rmind 	timespecsub(ts, &sleptts, ts);
    230   1.5     rmind 
    231   1.5     rmind 	return tstohz(ts);
    232   1.5     rmind }
    233   1.5     rmind 
    234  1.20  christos void
    235  1.20  christos clock_timeleft(clockid_t clockid, struct timespec *ts, struct timespec *sleepts)
    236  1.20  christos {
    237  1.20  christos 	struct timespec sleptts;
    238  1.20  christos 
    239  1.20  christos 	clock_gettime1(clockid, &sleptts);
    240  1.20  christos 	timespecadd(ts, sleepts, ts);
    241  1.20  christos 	timespecsub(ts, &sleptts, ts);
    242  1.20  christos 	*sleepts = sleptts;
    243  1.20  christos }
    244  1.20  christos 
    245  1.11    martin int
    246  1.11    martin clock_gettime1(clockid_t clock_id, struct timespec *ts)
    247  1.11    martin {
    248  1.18  christos 	int error;
    249  1.18  christos 	struct proc *p;
    250  1.18  christos 
    251  1.18  christos #define CPUCLOCK_ID_MASK (~(CLOCK_THREAD_CPUTIME_ID|CLOCK_PROCESS_CPUTIME_ID))
    252  1.18  christos 	if (clock_id & CLOCK_PROCESS_CPUTIME_ID) {
    253  1.18  christos 		pid_t pid = clock_id & CPUCLOCK_ID_MASK;
    254  1.38  riastrad 		struct timeval cputime;
    255  1.18  christos 
    256  1.25        ad 		mutex_enter(&proc_lock);
    257  1.18  christos 		p = pid == 0 ? curproc : proc_find(pid);
    258  1.18  christos 		if (p == NULL) {
    259  1.25        ad 			mutex_exit(&proc_lock);
    260  1.18  christos 			return ESRCH;
    261  1.18  christos 		}
    262  1.38  riastrad 		mutex_enter(p->p_lock);
    263  1.38  riastrad 		calcru(p, /*usertime*/NULL, /*systime*/NULL, /*intrtime*/NULL,
    264  1.38  riastrad 		    &cputime);
    265  1.38  riastrad 		mutex_exit(p->p_lock);
    266  1.25        ad 		mutex_exit(&proc_lock);
    267  1.18  christos 
    268  1.18  christos 		// XXX: Perhaps create a special kauth type
    269  1.31  christos 		error = kauth_authorize_process(kauth_cred_get(),
    270  1.18  christos 		    KAUTH_PROCESS_PTRACE, p,
    271  1.18  christos 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    272  1.18  christos 		if (error)
    273  1.18  christos 			return error;
    274  1.38  riastrad 
    275  1.38  riastrad 		TIMEVAL_TO_TIMESPEC(&cputime, ts);
    276  1.38  riastrad 		return 0;
    277  1.18  christos 	} else if (clock_id & CLOCK_THREAD_CPUTIME_ID) {
    278  1.18  christos 		struct lwp *l;
    279  1.18  christos 		lwpid_t lid = clock_id & CPUCLOCK_ID_MASK;
    280  1.38  riastrad 		struct bintime tm = {0, 0};
    281  1.38  riastrad 
    282  1.18  christos 		p = curproc;
    283  1.18  christos 		mutex_enter(p->p_lock);
    284  1.18  christos 		l = lid == 0 ? curlwp : lwp_find(p, lid);
    285  1.18  christos 		if (l == NULL) {
    286  1.18  christos 			mutex_exit(p->p_lock);
    287  1.18  christos 			return ESRCH;
    288  1.18  christos 		}
    289  1.38  riastrad 		addrulwp(l, &tm);
    290  1.18  christos 		mutex_exit(p->p_lock);
    291  1.18  christos 
    292  1.38  riastrad 		bintime2timespec(&tm, ts);
    293  1.18  christos 		return 0;
    294  1.18  christos 	}
    295  1.11    martin 
    296  1.11    martin 	switch (clock_id) {
    297  1.11    martin 	case CLOCK_REALTIME:
    298  1.11    martin 		nanotime(ts);
    299  1.11    martin 		break;
    300  1.11    martin 	case CLOCK_MONOTONIC:
    301  1.11    martin 		nanouptime(ts);
    302  1.11    martin 		break;
    303  1.11    martin 	default:
    304  1.11    martin 		return EINVAL;
    305  1.11    martin 	}
    306  1.11    martin 
    307  1.11    martin 	return 0;
    308  1.11    martin }
    309  1.11    martin 
    310   1.5     rmind /*
    311   1.5     rmind  * Calculate delta and convert from struct timespec to the ticks.
    312   1.5     rmind  */
    313   1.5     rmind int
    314  1.10  christos ts2timo(clockid_t clock_id, int flags, struct timespec *ts,
    315  1.10  christos     int *timo, struct timespec *start)
    316   1.5     rmind {
    317  1.14  christos 	int error;
    318  1.28       nia 	struct timespec tsd;
    319   1.5     rmind 
    320  1.21     kamil 	if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000L)
    321  1.21     kamil 		return EINVAL;
    322  1.21     kamil 
    323  1.30       nia 	if ((flags & TIMER_ABSTIME) != 0 || start != NULL) {
    324  1.29       nia 		error = clock_gettime1(clock_id, &tsd);
    325  1.26       nia 		if (error != 0)
    326  1.17  christos 			return error;
    327  1.29       nia 		if (start != NULL)
    328  1.29       nia 			*start = tsd;
    329  1.26       nia 	}
    330  1.10  christos 
    331  1.30       nia 	if ((flags & TIMER_ABSTIME) != 0) {
    332  1.34  riastrad 		if (!timespecsubok(ts, &tsd))
    333  1.29       nia 			return EINVAL;
    334  1.29       nia 		timespecsub(ts, &tsd, ts);
    335  1.29       nia 	}
    336  1.10  christos 
    337  1.26       nia 	error = itimespecfix(ts);
    338  1.26       nia 	if (error != 0)
    339   1.5     rmind 		return error;
    340  1.10  christos 
    341  1.15  christos 	if (ts->tv_sec == 0 && ts->tv_nsec == 0)
    342  1.15  christos 		return ETIMEDOUT;
    343  1.15  christos 
    344  1.14  christos 	*timo = tstohz(ts);
    345  1.14  christos 	KASSERT(*timo > 0);
    346   1.5     rmind 
    347   1.5     rmind 	return 0;
    348   1.5     rmind }
    349  1.33  riastrad 
    350  1.33  riastrad bool
    351  1.33  riastrad timespecaddok(const struct timespec *tsp, const struct timespec *usp)
    352  1.33  riastrad {
    353  1.33  riastrad 	enum { TIME_MIN = __type_min(time_t), TIME_MAX = __type_max(time_t) };
    354  1.33  riastrad 	time_t a = tsp->tv_sec;
    355  1.33  riastrad 	time_t b = usp->tv_sec;
    356  1.33  riastrad 	bool carry;
    357  1.33  riastrad 
    358  1.33  riastrad 	/*
    359  1.33  riastrad 	 * Caller is responsible for guaranteeing valid timespec
    360  1.33  riastrad 	 * inputs.  Any user-controlled inputs must be validated or
    361  1.33  riastrad 	 * adjusted.
    362  1.33  riastrad 	 */
    363  1.33  riastrad 	KASSERT(tsp->tv_nsec >= 0);
    364  1.33  riastrad 	KASSERT(usp->tv_nsec >= 0);
    365  1.33  riastrad 	KASSERT(tsp->tv_nsec < 1000000000L);
    366  1.33  riastrad 	KASSERT(usp->tv_nsec < 1000000000L);
    367  1.33  riastrad 	CTASSERT(1000000000L <= __type_max(long) - 1000000000L);
    368  1.33  riastrad 
    369  1.33  riastrad 	/*
    370  1.33  riastrad 	 * Fail if a + b + carry overflows TIME_MAX, or if a + b
    371  1.33  riastrad 	 * overflows TIME_MIN because timespecadd adds the carry after
    372  1.33  riastrad 	 * computing a + b.
    373  1.33  riastrad 	 *
    374  1.33  riastrad 	 * Break it into two mutually exclusive and exhaustive cases:
    375  1.33  riastrad 	 * I. a >= 0
    376  1.33  riastrad 	 * II. a < 0
    377  1.33  riastrad 	 */
    378  1.33  riastrad 	carry = (tsp->tv_nsec + usp->tv_nsec >= 1000000000L);
    379  1.33  riastrad 	if (a >= 0) {
    380  1.33  riastrad 		/*
    381  1.33  riastrad 		 * Case I: a >= 0.  If b < 0, then b + 1 <= 0, so
    382  1.33  riastrad 		 *
    383  1.33  riastrad 		 *	a + b + 1 <= a + 0 <= TIME_MAX,
    384  1.33  riastrad 		 *
    385  1.33  riastrad 		 * and
    386  1.33  riastrad 		 *
    387  1.33  riastrad 		 *	a + b >= 0 + b = b >= TIME_MIN,
    388  1.33  riastrad 		 *
    389  1.33  riastrad 		 * so this can't overflow.
    390  1.33  riastrad 		 *
    391  1.33  riastrad 		 * If b >= 0, then a + b + carry >= a + b >= 0, so
    392  1.33  riastrad 		 * negative results and thus results below TIME_MIN are
    393  1.33  riastrad 		 * impossible; we need only avoid
    394  1.33  riastrad 		 *
    395  1.33  riastrad 		 *	a + b + carry > TIME_MAX,
    396  1.33  riastrad 		 *
    397  1.33  riastrad 		 * which we will do by rejecting if
    398  1.33  riastrad 		 *
    399  1.33  riastrad 		 *	b > TIME_MAX - a - carry,
    400  1.33  riastrad 		 *
    401  1.33  riastrad 		 * which in turn is incidentally always false if b < 0
    402  1.33  riastrad 		 * so we don't need extra logic to discriminate on the
    403  1.33  riastrad 		 * b >= 0 and b < 0 cases.
    404  1.33  riastrad 		 *
    405  1.33  riastrad 		 * Since 0 <= a <= TIME_MAX, we know
    406  1.33  riastrad 		 *
    407  1.33  riastrad 		 *	0 <= TIME_MAX - a <= TIME_MAX,
    408  1.33  riastrad 		 *
    409  1.33  riastrad 		 * and hence
    410  1.33  riastrad 		 *
    411  1.33  riastrad 		 *	-1 <= TIME_MAX - a - 1 < TIME_MAX.
    412  1.33  riastrad 		 *
    413  1.33  riastrad 		 * So we can compute TIME_MAX - a - carry (i.e., either
    414  1.33  riastrad 		 * TIME_MAX - a or TIME_MAX - a - 1) safely without
    415  1.33  riastrad 		 * overflow.
    416  1.33  riastrad 		 */
    417  1.33  riastrad 		if (b > TIME_MAX - a - carry)
    418  1.33  riastrad 			return false;
    419  1.33  riastrad 	} else {
    420  1.33  riastrad 		/*
    421  1.33  riastrad 		 * Case II: a < 0.  If b >= 0, then since a + 1 <= 0,
    422  1.33  riastrad 		 * we have
    423  1.33  riastrad 		 *
    424  1.33  riastrad 		 *	a + b + 1 <= b <= TIME_MAX,
    425  1.33  riastrad 		 *
    426  1.33  riastrad 		 * and
    427  1.33  riastrad 		 *
    428  1.33  riastrad 		 *	a + b >= a >= TIME_MIN,
    429  1.33  riastrad 		 *
    430  1.33  riastrad 		 * so this can't overflow.
    431  1.33  riastrad 		 *
    432  1.33  riastrad 		 * If b < 0, then the intermediate a + b is negative
    433  1.33  riastrad 		 * and the outcome a + b + 1 is nonpositive, so we need
    434  1.33  riastrad 		 * only avoid
    435  1.33  riastrad 		 *
    436  1.33  riastrad 		 *	a + b < TIME_MIN,
    437  1.33  riastrad 		 *
    438  1.33  riastrad 		 * which we will do by rejecting if
    439  1.33  riastrad 		 *
    440  1.33  riastrad 		 *	a < TIME_MIN - b.
    441  1.33  riastrad 		 *
    442  1.33  riastrad 		 * (Reminder: The carry is added afterward in
    443  1.33  riastrad 		 * timespecadd, so to avoid overflow it is not enough
    444  1.33  riastrad 		 * to merely reject a + b + carry < TIME_MIN.)
    445  1.33  riastrad 		 *
    446  1.33  riastrad 		 * It is safe to compute the difference TIME_MIN - b
    447  1.33  riastrad 		 * because b is negative, so the result lies in
    448  1.33  riastrad 		 * (TIME_MIN, 0].
    449  1.33  riastrad 		 */
    450  1.33  riastrad 		if (b < 0 && a < TIME_MIN - b)
    451  1.33  riastrad 			return false;
    452  1.33  riastrad 	}
    453  1.33  riastrad 
    454  1.33  riastrad 	return true;
    455  1.33  riastrad }
    456  1.33  riastrad 
    457  1.33  riastrad bool
    458  1.33  riastrad timespecsubok(const struct timespec *tsp, const struct timespec *usp)
    459  1.33  riastrad {
    460  1.33  riastrad 	enum { TIME_MIN = __type_min(time_t), TIME_MAX = __type_max(time_t) };
    461  1.33  riastrad 	time_t a = tsp->tv_sec, b = usp->tv_sec;
    462  1.33  riastrad 	bool borrow;
    463  1.33  riastrad 
    464  1.33  riastrad 	/*
    465  1.33  riastrad 	 * Caller is responsible for guaranteeing valid timespec
    466  1.33  riastrad 	 * inputs.  Any user-controlled inputs must be validated or
    467  1.33  riastrad 	 * adjusted.
    468  1.33  riastrad 	 */
    469  1.33  riastrad 	KASSERT(tsp->tv_nsec >= 0);
    470  1.33  riastrad 	KASSERT(usp->tv_nsec >= 0);
    471  1.33  riastrad 	KASSERT(tsp->tv_nsec < 1000000000L);
    472  1.33  riastrad 	KASSERT(usp->tv_nsec < 1000000000L);
    473  1.33  riastrad 	CTASSERT(1000000000L <= __type_max(long) - 1000000000L);
    474  1.33  riastrad 
    475  1.33  riastrad 	/*
    476  1.33  riastrad 	 * Fail if a - b - borrow overflows TIME_MIN, or if a - b
    477  1.33  riastrad 	 * overflows TIME_MAX because timespecsub subtracts the borrow
    478  1.33  riastrad 	 * after computing a - b.
    479  1.33  riastrad 	 *
    480  1.33  riastrad 	 * Break it into two mutually exclusive and exhaustive cases:
    481  1.33  riastrad 	 * I. a < 0
    482  1.33  riastrad 	 * II. a >= 0
    483  1.33  riastrad 	 */
    484  1.33  riastrad 	borrow = (tsp->tv_nsec - usp->tv_nsec < 0);
    485  1.33  riastrad 	if (a < 0) {
    486  1.33  riastrad 		/*
    487  1.33  riastrad 		 * Case I: a < 0.  If b < 0, then -b - 1 >= 0, so
    488  1.33  riastrad 		 *
    489  1.33  riastrad 		 *	a - b - 1 >= a + 0 >= TIME_MIN,
    490  1.33  riastrad 		 *
    491  1.33  riastrad 		 * and, since a <= -1, provided that TIME_MIN <=
    492  1.33  riastrad 		 * -TIME_MAX - 1 so that TIME_MAX <= -TIME_MIN - 1 (in
    493  1.33  riastrad 		 * fact, equality holds, under the assumption of
    494  1.33  riastrad 		 * two's-complement arithmetic),
    495  1.33  riastrad 		 *
    496  1.33  riastrad 		 *	a - b <= -1 - b = -b - 1 <= TIME_MAX,
    497  1.33  riastrad 		 *
    498  1.33  riastrad 		 * so this can't overflow.
    499  1.33  riastrad 		 */
    500  1.33  riastrad 		CTASSERT(TIME_MIN <= -TIME_MAX - 1);
    501  1.33  riastrad 
    502  1.33  riastrad 		/*
    503  1.33  riastrad 		 * If b >= 0, then a - b - borrow <= a - b < 0, so
    504  1.33  riastrad 		 * positive results and thus results above TIME_MAX are
    505  1.33  riastrad 		 * impossible; we need only avoid
    506  1.33  riastrad 		 *
    507  1.33  riastrad 		 *	a - b - borrow < TIME_MIN,
    508  1.33  riastrad 		 *
    509  1.33  riastrad 		 * which we will do by rejecting if
    510  1.33  riastrad 		 *
    511  1.33  riastrad 		 *	a < TIME_MIN + b + borrow.
    512  1.33  riastrad 		 *
    513  1.33  riastrad 		 * The right-hand side is safe to evaluate for any
    514  1.33  riastrad 		 * values of b and borrow as long as TIME_MIN +
    515  1.33  riastrad 		 * TIME_MAX + 1 <= TIME_MAX, i.e., TIME_MIN <= -1.
    516  1.33  riastrad 		 * (Note: If time_t were unsigned, this would fail!)
    517  1.33  riastrad 		 *
    518  1.33  riastrad 		 * Note: Unlike Case I in timespecaddok, this criterion
    519  1.33  riastrad 		 * does not work for b < 0, nor can the roles of a and
    520  1.33  riastrad 		 * b in the inequality be reversed (e.g., -b < TIME_MIN
    521  1.33  riastrad 		 * - a + borrow) without extra cases like checking for
    522  1.33  riastrad 		 * b = TEST_MIN.
    523  1.33  riastrad 		 */
    524  1.33  riastrad 		CTASSERT(TIME_MIN < -1);
    525  1.33  riastrad 		if (b >= 0 && a < TIME_MIN + b + borrow)
    526  1.33  riastrad 			return false;
    527  1.33  riastrad 	} else {
    528  1.33  riastrad 		/*
    529  1.33  riastrad 		 * Case II: a >= 0.  If b >= 0, then
    530  1.33  riastrad 		 *
    531  1.33  riastrad 		 *	a - b <= a <= TIME_MAX,
    532  1.33  riastrad 		 *
    533  1.33  riastrad 		 * and, provided TIME_MIN <= -TIME_MAX - 1 (in fact,
    534  1.33  riastrad 		 * equality holds, under the assumption of
    535  1.33  riastrad 		 * two's-complement arithmetic)
    536  1.33  riastrad 		 *
    537  1.33  riastrad 		 *	a - b - 1 >= -b - 1 >= -TIME_MAX - 1 >= TIME_MIN,
    538  1.33  riastrad 		 *
    539  1.33  riastrad 		 * so this can't overflow.
    540  1.33  riastrad 		 */
    541  1.33  riastrad 		CTASSERT(TIME_MIN <= -TIME_MAX - 1);
    542  1.33  riastrad 
    543  1.33  riastrad 		/*
    544  1.33  riastrad 		 * If b < 0, then a - b >= a >= 0, so negative results
    545  1.33  riastrad 		 * and thus results below TIME_MIN are impossible; we
    546  1.33  riastrad 		 * need only avoid
    547  1.33  riastrad 		 *
    548  1.33  riastrad 		 *	a - b > TIME_MAX,
    549  1.33  riastrad 		 *
    550  1.33  riastrad 		 * which we will do by rejecting if
    551  1.33  riastrad 		 *
    552  1.33  riastrad 		 *	a > TIME_MAX + b.
    553  1.33  riastrad 		 *
    554  1.33  riastrad 		 * (Reminder: The borrow is subtracted afterward in
    555  1.33  riastrad 		 * timespecsub, so to avoid overflow it is not enough
    556  1.33  riastrad 		 * to merely reject a - b - borrow > TIME_MAX.)
    557  1.33  riastrad 		 *
    558  1.33  riastrad 		 * It is safe to compute the sum TIME_MAX + b because b
    559  1.33  riastrad 		 * is negative, so the result lies in [0, TIME_MAX).
    560  1.33  riastrad 		 */
    561  1.33  riastrad 		if (b < 0 && a > TIME_MAX + b)
    562  1.33  riastrad 			return false;
    563  1.33  riastrad 	}
    564  1.33  riastrad 
    565  1.33  riastrad 	return true;
    566  1.33  riastrad }
    567