Home | History | Annotate | Line # | Download | only in kern
subr_time.c revision 1.35
      1 /*	$NetBSD: subr_time.c,v 1.35 2022/06/28 02:04:51 riastradh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
     32  *	@(#)kern_time.c 8.4 (Berkeley) 5/26/95
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: subr_time.c,v 1.35 2022/06/28 02:04:51 riastradh Exp $");
     37 
     38 #include <sys/param.h>
     39 #include <sys/kernel.h>
     40 #include <sys/proc.h>
     41 #include <sys/kauth.h>
     42 #include <sys/lwp.h>
     43 #include <sys/timex.h>
     44 #include <sys/time.h>
     45 #include <sys/timetc.h>
     46 #include <sys/intr.h>
     47 
     48 #ifdef DEBUG_STICKS
     49 #define DPRINTF(a) uprintf a
     50 #else
     51 #define DPRINTF(a)
     52 #endif
     53 
     54 /*
     55  * Compute number of hz until specified time.  Used to compute second
     56  * argument to callout_reset() from an absolute time.
     57  */
     58 int
     59 tvhzto(const struct timeval *tvp)
     60 {
     61 	struct timeval now, tv;
     62 
     63 	tv = *tvp;	/* Don't modify original tvp. */
     64 	getmicrotime(&now);
     65 	timersub(&tv, &now, &tv);
     66 	return tvtohz(&tv);
     67 }
     68 
     69 /*
     70  * Compute number of ticks in the specified amount of time.
     71  */
     72 int
     73 tvtohz(const struct timeval *tv)
     74 {
     75 	unsigned long ticks;
     76 	long sec, usec;
     77 
     78 	/*
     79 	 * If the number of usecs in the whole seconds part of the time
     80 	 * difference fits in a long, then the total number of usecs will
     81 	 * fit in an unsigned long.  Compute the total and convert it to
     82 	 * ticks, rounding up and adding 1 to allow for the current tick
     83 	 * to expire.  Rounding also depends on unsigned long arithmetic
     84 	 * to avoid overflow.
     85 	 *
     86 	 * Otherwise, if the number of ticks in the whole seconds part of
     87 	 * the time difference fits in a long, then convert the parts to
     88 	 * ticks separately and add, using similar rounding methods and
     89 	 * overflow avoidance.  This method would work in the previous
     90 	 * case, but it is slightly slower and assumes that hz is integral.
     91 	 *
     92 	 * Otherwise, round the time difference down to the maximum
     93 	 * representable value.
     94 	 *
     95 	 * If ints are 32-bit, then the maximum value for any timeout in
     96 	 * 10ms ticks is 248 days.
     97 	 */
     98 	sec = tv->tv_sec;
     99 	usec = tv->tv_usec;
    100 
    101 	KASSERT(usec >= 0 && usec < 1000000);
    102 
    103 	/* catch overflows in conversion time_t->int */
    104 	if (tv->tv_sec > INT_MAX)
    105 		return INT_MAX;
    106 	if (tv->tv_sec < 0)
    107 		return 0;
    108 
    109 	if (sec < 0 || (sec == 0 && usec == 0)) {
    110 		/*
    111 		 * Would expire now or in the past.  Return 0 ticks.
    112 		 * This is different from the legacy tvhzto() interface,
    113 		 * and callers need to check for it.
    114 		 */
    115 		ticks = 0;
    116 	} else if (sec <= (LONG_MAX / 1000000))
    117 		ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
    118 		    / tick) + 1;
    119 	else if (sec <= (LONG_MAX / hz))
    120 		ticks = (sec * hz) +
    121 		    (((unsigned long)usec + (tick - 1)) / tick) + 1;
    122 	else
    123 		ticks = LONG_MAX;
    124 
    125 	if (ticks > INT_MAX)
    126 		ticks = INT_MAX;
    127 
    128 	return ((int)ticks);
    129 }
    130 
    131 int
    132 tshzto(const struct timespec *tsp)
    133 {
    134 	struct timespec now, ts;
    135 
    136 	ts = *tsp;	/* Don't modify original tsp. */
    137 	getnanotime(&now);
    138 	timespecsub(&ts, &now, &ts);
    139 	return tstohz(&ts);
    140 }
    141 
    142 int
    143 tshztoup(const struct timespec *tsp)
    144 {
    145 	struct timespec now, ts;
    146 
    147 	ts = *tsp;	/* Don't modify original tsp. */
    148 	getnanouptime(&now);
    149 	timespecsub(&ts, &now, &ts);
    150 	return tstohz(&ts);
    151 }
    152 
    153 /*
    154  * Compute number of ticks in the specified amount of time.
    155  */
    156 int
    157 tstohz(const struct timespec *ts)
    158 {
    159 	struct timeval tv;
    160 
    161 	/*
    162 	 * usec has great enough resolution for hz, so convert to a
    163 	 * timeval and use tvtohz() above.
    164 	 */
    165 	TIMESPEC_TO_TIMEVAL(&tv, ts);
    166 	return tvtohz(&tv);
    167 }
    168 
    169 /*
    170  * Check that a proposed value to load into the .it_value or
    171  * .it_interval part of an interval timer is acceptable, and
    172  * fix it to have at least minimal value (i.e. if it is less
    173  * than the resolution of the clock, round it up.). We don't
    174  * timeout the 0,0 value because this means to disable the
    175  * timer or the interval.
    176  */
    177 int
    178 itimerfix(struct timeval *tv)
    179 {
    180 
    181 	if (tv->tv_usec < 0 || tv->tv_usec >= 1000000)
    182 		return EINVAL;
    183 	if (tv->tv_sec < 0)
    184 		return ETIMEDOUT;
    185 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
    186 		tv->tv_usec = tick;
    187 	return 0;
    188 }
    189 
    190 int
    191 itimespecfix(struct timespec *ts)
    192 {
    193 
    194 	if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
    195 		return EINVAL;
    196 	if (ts->tv_sec < 0)
    197 		return ETIMEDOUT;
    198 	if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
    199 		ts->tv_nsec = tick * 1000;
    200 	return 0;
    201 }
    202 
    203 int
    204 inittimeleft(struct timespec *ts, struct timespec *sleepts)
    205 {
    206 
    207 	if (itimespecfix(ts)) {
    208 		return -1;
    209 	}
    210 	KASSERT(ts->tv_sec >= 0);
    211 	getnanouptime(sleepts);
    212 	return 0;
    213 }
    214 
    215 int
    216 gettimeleft(struct timespec *ts, struct timespec *sleepts)
    217 {
    218 	struct timespec now, sleptts;
    219 
    220 	KASSERT(ts->tv_sec >= 0);
    221 
    222 	/*
    223 	 * Reduce ts by elapsed time based on monotonic time scale.
    224 	 */
    225 	getnanouptime(&now);
    226 	KASSERT(timespeccmp(sleepts, &now, <=));
    227 	timespecsub(&now, sleepts, &sleptts);
    228 	*sleepts = now;
    229 
    230 	if (timespeccmp(ts, &sleptts, <=)) { /* timed out */
    231 		timespecclear(ts);
    232 		return 0;
    233 	}
    234 	timespecsub(ts, &sleptts, ts);
    235 
    236 	return tstohz(ts);
    237 }
    238 
    239 void
    240 clock_timeleft(clockid_t clockid, struct timespec *ts, struct timespec *sleepts)
    241 {
    242 	struct timespec sleptts;
    243 
    244 	clock_gettime1(clockid, &sleptts);
    245 	timespecadd(ts, sleepts, ts);
    246 	timespecsub(ts, &sleptts, ts);
    247 	*sleepts = sleptts;
    248 }
    249 
    250 static void
    251 ticks2ts(uint64_t ticks, struct timespec *ts)
    252 {
    253 	ts->tv_sec = ticks / hz;
    254 	uint64_t sticks = ticks - ts->tv_sec * hz;
    255 	if (sticks > BINTIME_SCALE_MS)	/* floor(2^64 / 1000) */
    256 		ts->tv_nsec = sticks / hz * 1000000000LL;
    257    	else if (sticks > BINTIME_SCALE_US)	/* floor(2^64 / 1000000) */
    258    		ts->tv_nsec = sticks * 1000LL / hz * 1000000LL;
    259 	else
    260    		ts->tv_nsec = sticks * 1000000000LL / hz;
    261 	DPRINTF(("%s: %ju/%ju -> %ju.%ju\n", __func__,
    262 	    (uintmax_t)ticks, (uintmax_t)sticks,
    263 	    (uintmax_t)ts->tv_sec, (uintmax_t)ts->tv_nsec));
    264 }
    265 
    266 int
    267 clock_gettime1(clockid_t clock_id, struct timespec *ts)
    268 {
    269 	int error;
    270 	uint64_t ticks;
    271 	struct proc *p;
    272 
    273 #define CPUCLOCK_ID_MASK (~(CLOCK_THREAD_CPUTIME_ID|CLOCK_PROCESS_CPUTIME_ID))
    274 	if (clock_id & CLOCK_PROCESS_CPUTIME_ID) {
    275 		pid_t pid = clock_id & CPUCLOCK_ID_MASK;
    276 
    277 		mutex_enter(&proc_lock);
    278 		p = pid == 0 ? curproc : proc_find(pid);
    279 		if (p == NULL) {
    280 			mutex_exit(&proc_lock);
    281 			return ESRCH;
    282 		}
    283 		ticks = p->p_uticks + p->p_sticks + p->p_iticks;
    284 		DPRINTF(("%s: u=%ju, s=%ju, i=%ju\n", __func__,
    285 		    (uintmax_t)p->p_uticks, (uintmax_t)p->p_sticks,
    286 		    (uintmax_t)p->p_iticks));
    287 		mutex_exit(&proc_lock);
    288 
    289 		// XXX: Perhaps create a special kauth type
    290 		error = kauth_authorize_process(kauth_cred_get(),
    291 		    KAUTH_PROCESS_PTRACE, p,
    292 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    293 		if (error)
    294 			return error;
    295 	} else if (clock_id & CLOCK_THREAD_CPUTIME_ID) {
    296 		struct lwp *l;
    297 		lwpid_t lid = clock_id & CPUCLOCK_ID_MASK;
    298 		p = curproc;
    299 		mutex_enter(p->p_lock);
    300 		l = lid == 0 ? curlwp : lwp_find(p, lid);
    301 		if (l == NULL) {
    302 			mutex_exit(p->p_lock);
    303 			return ESRCH;
    304 		}
    305 		ticks = l->l_rticksum + l->l_slpticksum;
    306 		DPRINTF(("%s: r=%ju, s=%ju\n", __func__,
    307 		    (uintmax_t)l->l_rticksum, (uintmax_t)l->l_slpticksum));
    308 		mutex_exit(p->p_lock);
    309         } else
    310 		ticks = (uint64_t)-1;
    311 
    312 	if (ticks != (uint64_t)-1) {
    313 		ticks2ts(ticks, ts);
    314 		return 0;
    315 	}
    316 
    317 	switch (clock_id) {
    318 	case CLOCK_REALTIME:
    319 		nanotime(ts);
    320 		break;
    321 	case CLOCK_MONOTONIC:
    322 		nanouptime(ts);
    323 		break;
    324 	default:
    325 		return EINVAL;
    326 	}
    327 
    328 	return 0;
    329 }
    330 
    331 /*
    332  * Calculate delta and convert from struct timespec to the ticks.
    333  */
    334 int
    335 ts2timo(clockid_t clock_id, int flags, struct timespec *ts,
    336     int *timo, struct timespec *start)
    337 {
    338 	int error;
    339 	struct timespec tsd;
    340 
    341 	if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000L)
    342 		return EINVAL;
    343 
    344 	if ((flags & TIMER_ABSTIME) != 0 || start != NULL) {
    345 		error = clock_gettime1(clock_id, &tsd);
    346 		if (error != 0)
    347 			return error;
    348 		if (start != NULL)
    349 			*start = tsd;
    350 	}
    351 
    352 	if ((flags & TIMER_ABSTIME) != 0) {
    353 		if (!timespecsubok(ts, &tsd))
    354 			return EINVAL;
    355 		timespecsub(ts, &tsd, ts);
    356 	}
    357 
    358 	error = itimespecfix(ts);
    359 	if (error != 0)
    360 		return error;
    361 
    362 	if (ts->tv_sec == 0 && ts->tv_nsec == 0)
    363 		return ETIMEDOUT;
    364 
    365 	*timo = tstohz(ts);
    366 	KASSERT(*timo > 0);
    367 
    368 	return 0;
    369 }
    370 
    371 bool
    372 timespecaddok(const struct timespec *tsp, const struct timespec *usp)
    373 {
    374 	enum { TIME_MIN = __type_min(time_t), TIME_MAX = __type_max(time_t) };
    375 	time_t a = tsp->tv_sec;
    376 	time_t b = usp->tv_sec;
    377 	bool carry;
    378 
    379 	/*
    380 	 * Caller is responsible for guaranteeing valid timespec
    381 	 * inputs.  Any user-controlled inputs must be validated or
    382 	 * adjusted.
    383 	 */
    384 	KASSERT(tsp->tv_nsec >= 0);
    385 	KASSERT(usp->tv_nsec >= 0);
    386 	KASSERT(tsp->tv_nsec < 1000000000L);
    387 	KASSERT(usp->tv_nsec < 1000000000L);
    388 	CTASSERT(1000000000L <= __type_max(long) - 1000000000L);
    389 
    390 	/*
    391 	 * Fail if a + b + carry overflows TIME_MAX, or if a + b
    392 	 * overflows TIME_MIN because timespecadd adds the carry after
    393 	 * computing a + b.
    394 	 *
    395 	 * Break it into two mutually exclusive and exhaustive cases:
    396 	 * I. a >= 0
    397 	 * II. a < 0
    398 	 */
    399 	carry = (tsp->tv_nsec + usp->tv_nsec >= 1000000000L);
    400 	if (a >= 0) {
    401 		/*
    402 		 * Case I: a >= 0.  If b < 0, then b + 1 <= 0, so
    403 		 *
    404 		 *	a + b + 1 <= a + 0 <= TIME_MAX,
    405 		 *
    406 		 * and
    407 		 *
    408 		 *	a + b >= 0 + b = b >= TIME_MIN,
    409 		 *
    410 		 * so this can't overflow.
    411 		 *
    412 		 * If b >= 0, then a + b + carry >= a + b >= 0, so
    413 		 * negative results and thus results below TIME_MIN are
    414 		 * impossible; we need only avoid
    415 		 *
    416 		 *	a + b + carry > TIME_MAX,
    417 		 *
    418 		 * which we will do by rejecting if
    419 		 *
    420 		 *	b > TIME_MAX - a - carry,
    421 		 *
    422 		 * which in turn is incidentally always false if b < 0
    423 		 * so we don't need extra logic to discriminate on the
    424 		 * b >= 0 and b < 0 cases.
    425 		 *
    426 		 * Since 0 <= a <= TIME_MAX, we know
    427 		 *
    428 		 *	0 <= TIME_MAX - a <= TIME_MAX,
    429 		 *
    430 		 * and hence
    431 		 *
    432 		 *	-1 <= TIME_MAX - a - 1 < TIME_MAX.
    433 		 *
    434 		 * So we can compute TIME_MAX - a - carry (i.e., either
    435 		 * TIME_MAX - a or TIME_MAX - a - 1) safely without
    436 		 * overflow.
    437 		 */
    438 		if (b > TIME_MAX - a - carry)
    439 			return false;
    440 	} else {
    441 		/*
    442 		 * Case II: a < 0.  If b >= 0, then since a + 1 <= 0,
    443 		 * we have
    444 		 *
    445 		 *	a + b + 1 <= b <= TIME_MAX,
    446 		 *
    447 		 * and
    448 		 *
    449 		 *	a + b >= a >= TIME_MIN,
    450 		 *
    451 		 * so this can't overflow.
    452 		 *
    453 		 * If b < 0, then the intermediate a + b is negative
    454 		 * and the outcome a + b + 1 is nonpositive, so we need
    455 		 * only avoid
    456 		 *
    457 		 *	a + b < TIME_MIN,
    458 		 *
    459 		 * which we will do by rejecting if
    460 		 *
    461 		 *	a < TIME_MIN - b.
    462 		 *
    463 		 * (Reminder: The carry is added afterward in
    464 		 * timespecadd, so to avoid overflow it is not enough
    465 		 * to merely reject a + b + carry < TIME_MIN.)
    466 		 *
    467 		 * It is safe to compute the difference TIME_MIN - b
    468 		 * because b is negative, so the result lies in
    469 		 * (TIME_MIN, 0].
    470 		 */
    471 		if (b < 0 && a < TIME_MIN - b)
    472 			return false;
    473 	}
    474 
    475 	return true;
    476 }
    477 
    478 bool
    479 timespecsubok(const struct timespec *tsp, const struct timespec *usp)
    480 {
    481 	enum { TIME_MIN = __type_min(time_t), TIME_MAX = __type_max(time_t) };
    482 	time_t a = tsp->tv_sec, b = usp->tv_sec;
    483 	bool borrow;
    484 
    485 	/*
    486 	 * Caller is responsible for guaranteeing valid timespec
    487 	 * inputs.  Any user-controlled inputs must be validated or
    488 	 * adjusted.
    489 	 */
    490 	KASSERT(tsp->tv_nsec >= 0);
    491 	KASSERT(usp->tv_nsec >= 0);
    492 	KASSERT(tsp->tv_nsec < 1000000000L);
    493 	KASSERT(usp->tv_nsec < 1000000000L);
    494 	CTASSERT(1000000000L <= __type_max(long) - 1000000000L);
    495 
    496 	/*
    497 	 * Fail if a - b - borrow overflows TIME_MIN, or if a - b
    498 	 * overflows TIME_MAX because timespecsub subtracts the borrow
    499 	 * after computing a - b.
    500 	 *
    501 	 * Break it into two mutually exclusive and exhaustive cases:
    502 	 * I. a < 0
    503 	 * II. a >= 0
    504 	 */
    505 	borrow = (tsp->tv_nsec - usp->tv_nsec < 0);
    506 	if (a < 0) {
    507 		/*
    508 		 * Case I: a < 0.  If b < 0, then -b - 1 >= 0, so
    509 		 *
    510 		 *	a - b - 1 >= a + 0 >= TIME_MIN,
    511 		 *
    512 		 * and, since a <= -1, provided that TIME_MIN <=
    513 		 * -TIME_MAX - 1 so that TIME_MAX <= -TIME_MIN - 1 (in
    514 		 * fact, equality holds, under the assumption of
    515 		 * two's-complement arithmetic),
    516 		 *
    517 		 *	a - b <= -1 - b = -b - 1 <= TIME_MAX,
    518 		 *
    519 		 * so this can't overflow.
    520 		 */
    521 		CTASSERT(TIME_MIN <= -TIME_MAX - 1);
    522 
    523 		/*
    524 		 * If b >= 0, then a - b - borrow <= a - b < 0, so
    525 		 * positive results and thus results above TIME_MAX are
    526 		 * impossible; we need only avoid
    527 		 *
    528 		 *	a - b - borrow < TIME_MIN,
    529 		 *
    530 		 * which we will do by rejecting if
    531 		 *
    532 		 *	a < TIME_MIN + b + borrow.
    533 		 *
    534 		 * The right-hand side is safe to evaluate for any
    535 		 * values of b and borrow as long as TIME_MIN +
    536 		 * TIME_MAX + 1 <= TIME_MAX, i.e., TIME_MIN <= -1.
    537 		 * (Note: If time_t were unsigned, this would fail!)
    538 		 *
    539 		 * Note: Unlike Case I in timespecaddok, this criterion
    540 		 * does not work for b < 0, nor can the roles of a and
    541 		 * b in the inequality be reversed (e.g., -b < TIME_MIN
    542 		 * - a + borrow) without extra cases like checking for
    543 		 * b = TEST_MIN.
    544 		 */
    545 		CTASSERT(TIME_MIN < -1);
    546 		if (b >= 0 && a < TIME_MIN + b + borrow)
    547 			return false;
    548 	} else {
    549 		/*
    550 		 * Case II: a >= 0.  If b >= 0, then
    551 		 *
    552 		 *	a - b <= a <= TIME_MAX,
    553 		 *
    554 		 * and, provided TIME_MIN <= -TIME_MAX - 1 (in fact,
    555 		 * equality holds, under the assumption of
    556 		 * two's-complement arithmetic)
    557 		 *
    558 		 *	a - b - 1 >= -b - 1 >= -TIME_MAX - 1 >= TIME_MIN,
    559 		 *
    560 		 * so this can't overflow.
    561 		 */
    562 		CTASSERT(TIME_MIN <= -TIME_MAX - 1);
    563 
    564 		/*
    565 		 * If b < 0, then a - b >= a >= 0, so negative results
    566 		 * and thus results below TIME_MIN are impossible; we
    567 		 * need only avoid
    568 		 *
    569 		 *	a - b > TIME_MAX,
    570 		 *
    571 		 * which we will do by rejecting if
    572 		 *
    573 		 *	a > TIME_MAX + b.
    574 		 *
    575 		 * (Reminder: The borrow is subtracted afterward in
    576 		 * timespecsub, so to avoid overflow it is not enough
    577 		 * to merely reject a - b - borrow > TIME_MAX.)
    578 		 *
    579 		 * It is safe to compute the sum TIME_MAX + b because b
    580 		 * is negative, so the result lies in [0, TIME_MAX).
    581 		 */
    582 		if (b < 0 && a > TIME_MAX + b)
    583 			return false;
    584 	}
    585 
    586 	return true;
    587 }
    588