subr_time.c revision 1.37 1 /* $NetBSD: subr_time.c,v 1.37 2023/04/29 03:36:55 isaki Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
32 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: subr_time.c,v 1.37 2023/04/29 03:36:55 isaki Exp $");
37
38 #include <sys/param.h>
39 #include <sys/kernel.h>
40 #include <sys/proc.h>
41 #include <sys/kauth.h>
42 #include <sys/lwp.h>
43 #include <sys/timex.h>
44 #include <sys/time.h>
45 #include <sys/timetc.h>
46 #include <sys/intr.h>
47
48 #ifdef DEBUG_STICKS
49 #define DPRINTF(a) uprintf a
50 #else
51 #define DPRINTF(a)
52 #endif
53
54 /*
55 * Compute number of hz until specified time. Used to compute second
56 * argument to callout_reset() from an absolute time.
57 */
58 int
59 tvhzto(const struct timeval *tvp)
60 {
61 struct timeval now, tv;
62
63 tv = *tvp; /* Don't modify original tvp. */
64 getmicrotime(&now);
65 timersub(&tv, &now, &tv);
66 return tvtohz(&tv);
67 }
68
69 /*
70 * Compute number of ticks in the specified amount of time.
71 */
72 int
73 tvtohz(const struct timeval *tv)
74 {
75 unsigned long ticks;
76 long sec, usec;
77
78 /*
79 * If the number of usecs in the whole seconds part of the time
80 * difference fits in a long, then the total number of usecs will
81 * fit in an unsigned long. Compute the total and convert it to
82 * ticks, rounding up and adding 1 to allow for the current tick
83 * to expire. Rounding also depends on unsigned long arithmetic
84 * to avoid overflow.
85 *
86 * Otherwise, if the number of ticks in the whole seconds part of
87 * the time difference fits in a long, then convert the parts to
88 * ticks separately and add, using similar rounding methods and
89 * overflow avoidance. This method would work in the previous
90 * case, but it is slightly slower and assumes that hz is integral.
91 *
92 * Otherwise, round the time difference down to the maximum
93 * representable value.
94 *
95 * If ints are 32-bit, then the maximum value for any timeout in
96 * 10ms ticks is 248 days.
97 */
98 sec = tv->tv_sec;
99 usec = tv->tv_usec;
100
101 KASSERT(usec >= 0);
102 KASSERT(usec < 1000000);
103
104 /* catch overflows in conversion time_t->int */
105 if (tv->tv_sec > INT_MAX)
106 return INT_MAX;
107 if (tv->tv_sec < 0)
108 return 0;
109
110 if (sec < 0 || (sec == 0 && usec == 0)) {
111 /*
112 * Would expire now or in the past. Return 0 ticks.
113 * This is different from the legacy tvhzto() interface,
114 * and callers need to check for it.
115 */
116 ticks = 0;
117 } else if (sec <= (LONG_MAX / 1000000))
118 ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
119 / tick) + 1;
120 else if (sec <= (LONG_MAX / hz))
121 ticks = (sec * hz) +
122 (((unsigned long)usec + (tick - 1)) / tick) + 1;
123 else
124 ticks = LONG_MAX;
125
126 if (ticks > INT_MAX)
127 ticks = INT_MAX;
128
129 return ((int)ticks);
130 }
131
132 int
133 tshzto(const struct timespec *tsp)
134 {
135 struct timespec now, ts;
136
137 ts = *tsp; /* Don't modify original tsp. */
138 getnanotime(&now);
139 timespecsub(&ts, &now, &ts);
140 return tstohz(&ts);
141 }
142
143 int
144 tshztoup(const struct timespec *tsp)
145 {
146 struct timespec now, ts;
147
148 ts = *tsp; /* Don't modify original tsp. */
149 getnanouptime(&now);
150 timespecsub(&ts, &now, &ts);
151 return tstohz(&ts);
152 }
153
154 /*
155 * Compute number of ticks in the specified amount of time.
156 */
157 int
158 tstohz(const struct timespec *ts)
159 {
160 struct timeval tv;
161
162 /*
163 * usec has great enough resolution for hz, so convert to a
164 * timeval and use tvtohz() above.
165 */
166 TIMESPEC_TO_TIMEVAL(&tv, ts);
167 return tvtohz(&tv);
168 }
169
170 /*
171 * Check that a proposed value to load into the .it_value or
172 * .it_interval part of an interval timer is acceptable, and
173 * fix it to have at least minimal value (i.e. if it is less
174 * than the resolution of the clock, round it up.). We don't
175 * timeout the 0,0 value because this means to disable the
176 * timer or the interval.
177 */
178 int
179 itimerfix(struct timeval *tv)
180 {
181
182 if (tv->tv_usec < 0 || tv->tv_usec >= 1000000)
183 return EINVAL;
184 if (tv->tv_sec < 0)
185 return ETIMEDOUT;
186 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
187 tv->tv_usec = tick;
188 return 0;
189 }
190
191 int
192 itimespecfix(struct timespec *ts)
193 {
194
195 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
196 return EINVAL;
197 if (ts->tv_sec < 0)
198 return ETIMEDOUT;
199 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
200 ts->tv_nsec = tick * 1000;
201 return 0;
202 }
203
204 int
205 inittimeleft(struct timespec *ts, struct timespec *sleepts)
206 {
207
208 if (itimespecfix(ts)) {
209 return -1;
210 }
211 KASSERT(ts->tv_sec >= 0);
212 getnanouptime(sleepts);
213 return 0;
214 }
215
216 int
217 gettimeleft(struct timespec *ts, struct timespec *sleepts)
218 {
219 struct timespec now, sleptts;
220
221 KASSERT(ts->tv_sec >= 0);
222
223 /*
224 * Reduce ts by elapsed time based on monotonic time scale.
225 */
226 getnanouptime(&now);
227 KASSERT(timespeccmp(sleepts, &now, <=));
228 timespecsub(&now, sleepts, &sleptts);
229 *sleepts = now;
230
231 if (timespeccmp(ts, &sleptts, <=)) { /* timed out */
232 timespecclear(ts);
233 return 0;
234 }
235 timespecsub(ts, &sleptts, ts);
236
237 return tstohz(ts);
238 }
239
240 void
241 clock_timeleft(clockid_t clockid, struct timespec *ts, struct timespec *sleepts)
242 {
243 struct timespec sleptts;
244
245 clock_gettime1(clockid, &sleptts);
246 timespecadd(ts, sleepts, ts);
247 timespecsub(ts, &sleptts, ts);
248 *sleepts = sleptts;
249 }
250
251 static void
252 ticks2ts(uint64_t ticks, struct timespec *ts)
253 {
254 ts->tv_sec = ticks / hz;
255 uint64_t sticks = ticks - ts->tv_sec * hz;
256 if (sticks > BINTIME_SCALE_MS) /* floor(2^64 / 1000) */
257 ts->tv_nsec = sticks / hz * 1000000000LL;
258 else if (sticks > BINTIME_SCALE_US) /* floor(2^64 / 1000000) */
259 ts->tv_nsec = sticks * 1000LL / hz * 1000000LL;
260 else
261 ts->tv_nsec = sticks * 1000000000LL / hz;
262 DPRINTF(("%s: %ju/%ju -> %ju.%ju\n", __func__,
263 (uintmax_t)ticks, (uintmax_t)sticks,
264 (uintmax_t)ts->tv_sec, (uintmax_t)ts->tv_nsec));
265 }
266
267 int
268 clock_gettime1(clockid_t clock_id, struct timespec *ts)
269 {
270 int error;
271 uint64_t ticks;
272 struct proc *p;
273
274 #define CPUCLOCK_ID_MASK (~(CLOCK_THREAD_CPUTIME_ID|CLOCK_PROCESS_CPUTIME_ID))
275 if (clock_id & CLOCK_PROCESS_CPUTIME_ID) {
276 pid_t pid = clock_id & CPUCLOCK_ID_MASK;
277
278 mutex_enter(&proc_lock);
279 p = pid == 0 ? curproc : proc_find(pid);
280 if (p == NULL) {
281 mutex_exit(&proc_lock);
282 return ESRCH;
283 }
284 ticks = p->p_uticks + p->p_sticks + p->p_iticks;
285 DPRINTF(("%s: u=%ju, s=%ju, i=%ju\n", __func__,
286 (uintmax_t)p->p_uticks, (uintmax_t)p->p_sticks,
287 (uintmax_t)p->p_iticks));
288 mutex_exit(&proc_lock);
289
290 // XXX: Perhaps create a special kauth type
291 error = kauth_authorize_process(kauth_cred_get(),
292 KAUTH_PROCESS_PTRACE, p,
293 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
294 if (error)
295 return error;
296 } else if (clock_id & CLOCK_THREAD_CPUTIME_ID) {
297 struct lwp *l;
298 lwpid_t lid = clock_id & CPUCLOCK_ID_MASK;
299 p = curproc;
300 mutex_enter(p->p_lock);
301 l = lid == 0 ? curlwp : lwp_find(p, lid);
302 if (l == NULL) {
303 mutex_exit(p->p_lock);
304 return ESRCH;
305 }
306 ticks = l->l_rticksum + l->l_slpticksum;
307 DPRINTF(("%s: r=%ju, s=%ju\n", __func__,
308 (uintmax_t)l->l_rticksum, (uintmax_t)l->l_slpticksum));
309 mutex_exit(p->p_lock);
310 } else
311 ticks = (uint64_t)-1;
312
313 if (ticks != (uint64_t)-1) {
314 ticks2ts(ticks, ts);
315 return 0;
316 }
317
318 switch (clock_id) {
319 case CLOCK_REALTIME:
320 nanotime(ts);
321 break;
322 case CLOCK_MONOTONIC:
323 nanouptime(ts);
324 break;
325 default:
326 return EINVAL;
327 }
328
329 return 0;
330 }
331
332 /*
333 * Calculate delta and convert from struct timespec to the ticks.
334 */
335 int
336 ts2timo(clockid_t clock_id, int flags, struct timespec *ts,
337 int *timo, struct timespec *start)
338 {
339 int error;
340 struct timespec tsd;
341
342 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000L)
343 return EINVAL;
344
345 if ((flags & TIMER_ABSTIME) != 0 || start != NULL) {
346 error = clock_gettime1(clock_id, &tsd);
347 if (error != 0)
348 return error;
349 if (start != NULL)
350 *start = tsd;
351 }
352
353 if ((flags & TIMER_ABSTIME) != 0) {
354 if (!timespecsubok(ts, &tsd))
355 return EINVAL;
356 timespecsub(ts, &tsd, ts);
357 }
358
359 error = itimespecfix(ts);
360 if (error != 0)
361 return error;
362
363 if (ts->tv_sec == 0 && ts->tv_nsec == 0)
364 return ETIMEDOUT;
365
366 *timo = tstohz(ts);
367 KASSERT(*timo > 0);
368
369 return 0;
370 }
371
372 bool
373 timespecaddok(const struct timespec *tsp, const struct timespec *usp)
374 {
375 enum { TIME_MIN = __type_min(time_t), TIME_MAX = __type_max(time_t) };
376 time_t a = tsp->tv_sec;
377 time_t b = usp->tv_sec;
378 bool carry;
379
380 /*
381 * Caller is responsible for guaranteeing valid timespec
382 * inputs. Any user-controlled inputs must be validated or
383 * adjusted.
384 */
385 KASSERT(tsp->tv_nsec >= 0);
386 KASSERT(usp->tv_nsec >= 0);
387 KASSERT(tsp->tv_nsec < 1000000000L);
388 KASSERT(usp->tv_nsec < 1000000000L);
389 CTASSERT(1000000000L <= __type_max(long) - 1000000000L);
390
391 /*
392 * Fail if a + b + carry overflows TIME_MAX, or if a + b
393 * overflows TIME_MIN because timespecadd adds the carry after
394 * computing a + b.
395 *
396 * Break it into two mutually exclusive and exhaustive cases:
397 * I. a >= 0
398 * II. a < 0
399 */
400 carry = (tsp->tv_nsec + usp->tv_nsec >= 1000000000L);
401 if (a >= 0) {
402 /*
403 * Case I: a >= 0. If b < 0, then b + 1 <= 0, so
404 *
405 * a + b + 1 <= a + 0 <= TIME_MAX,
406 *
407 * and
408 *
409 * a + b >= 0 + b = b >= TIME_MIN,
410 *
411 * so this can't overflow.
412 *
413 * If b >= 0, then a + b + carry >= a + b >= 0, so
414 * negative results and thus results below TIME_MIN are
415 * impossible; we need only avoid
416 *
417 * a + b + carry > TIME_MAX,
418 *
419 * which we will do by rejecting if
420 *
421 * b > TIME_MAX - a - carry,
422 *
423 * which in turn is incidentally always false if b < 0
424 * so we don't need extra logic to discriminate on the
425 * b >= 0 and b < 0 cases.
426 *
427 * Since 0 <= a <= TIME_MAX, we know
428 *
429 * 0 <= TIME_MAX - a <= TIME_MAX,
430 *
431 * and hence
432 *
433 * -1 <= TIME_MAX - a - 1 < TIME_MAX.
434 *
435 * So we can compute TIME_MAX - a - carry (i.e., either
436 * TIME_MAX - a or TIME_MAX - a - 1) safely without
437 * overflow.
438 */
439 if (b > TIME_MAX - a - carry)
440 return false;
441 } else {
442 /*
443 * Case II: a < 0. If b >= 0, then since a + 1 <= 0,
444 * we have
445 *
446 * a + b + 1 <= b <= TIME_MAX,
447 *
448 * and
449 *
450 * a + b >= a >= TIME_MIN,
451 *
452 * so this can't overflow.
453 *
454 * If b < 0, then the intermediate a + b is negative
455 * and the outcome a + b + 1 is nonpositive, so we need
456 * only avoid
457 *
458 * a + b < TIME_MIN,
459 *
460 * which we will do by rejecting if
461 *
462 * a < TIME_MIN - b.
463 *
464 * (Reminder: The carry is added afterward in
465 * timespecadd, so to avoid overflow it is not enough
466 * to merely reject a + b + carry < TIME_MIN.)
467 *
468 * It is safe to compute the difference TIME_MIN - b
469 * because b is negative, so the result lies in
470 * (TIME_MIN, 0].
471 */
472 if (b < 0 && a < TIME_MIN - b)
473 return false;
474 }
475
476 return true;
477 }
478
479 bool
480 timespecsubok(const struct timespec *tsp, const struct timespec *usp)
481 {
482 enum { TIME_MIN = __type_min(time_t), TIME_MAX = __type_max(time_t) };
483 time_t a = tsp->tv_sec, b = usp->tv_sec;
484 bool borrow;
485
486 /*
487 * Caller is responsible for guaranteeing valid timespec
488 * inputs. Any user-controlled inputs must be validated or
489 * adjusted.
490 */
491 KASSERT(tsp->tv_nsec >= 0);
492 KASSERT(usp->tv_nsec >= 0);
493 KASSERT(tsp->tv_nsec < 1000000000L);
494 KASSERT(usp->tv_nsec < 1000000000L);
495 CTASSERT(1000000000L <= __type_max(long) - 1000000000L);
496
497 /*
498 * Fail if a - b - borrow overflows TIME_MIN, or if a - b
499 * overflows TIME_MAX because timespecsub subtracts the borrow
500 * after computing a - b.
501 *
502 * Break it into two mutually exclusive and exhaustive cases:
503 * I. a < 0
504 * II. a >= 0
505 */
506 borrow = (tsp->tv_nsec - usp->tv_nsec < 0);
507 if (a < 0) {
508 /*
509 * Case I: a < 0. If b < 0, then -b - 1 >= 0, so
510 *
511 * a - b - 1 >= a + 0 >= TIME_MIN,
512 *
513 * and, since a <= -1, provided that TIME_MIN <=
514 * -TIME_MAX - 1 so that TIME_MAX <= -TIME_MIN - 1 (in
515 * fact, equality holds, under the assumption of
516 * two's-complement arithmetic),
517 *
518 * a - b <= -1 - b = -b - 1 <= TIME_MAX,
519 *
520 * so this can't overflow.
521 */
522 CTASSERT(TIME_MIN <= -TIME_MAX - 1);
523
524 /*
525 * If b >= 0, then a - b - borrow <= a - b < 0, so
526 * positive results and thus results above TIME_MAX are
527 * impossible; we need only avoid
528 *
529 * a - b - borrow < TIME_MIN,
530 *
531 * which we will do by rejecting if
532 *
533 * a < TIME_MIN + b + borrow.
534 *
535 * The right-hand side is safe to evaluate for any
536 * values of b and borrow as long as TIME_MIN +
537 * TIME_MAX + 1 <= TIME_MAX, i.e., TIME_MIN <= -1.
538 * (Note: If time_t were unsigned, this would fail!)
539 *
540 * Note: Unlike Case I in timespecaddok, this criterion
541 * does not work for b < 0, nor can the roles of a and
542 * b in the inequality be reversed (e.g., -b < TIME_MIN
543 * - a + borrow) without extra cases like checking for
544 * b = TEST_MIN.
545 */
546 CTASSERT(TIME_MIN < -1);
547 if (b >= 0 && a < TIME_MIN + b + borrow)
548 return false;
549 } else {
550 /*
551 * Case II: a >= 0. If b >= 0, then
552 *
553 * a - b <= a <= TIME_MAX,
554 *
555 * and, provided TIME_MIN <= -TIME_MAX - 1 (in fact,
556 * equality holds, under the assumption of
557 * two's-complement arithmetic)
558 *
559 * a - b - 1 >= -b - 1 >= -TIME_MAX - 1 >= TIME_MIN,
560 *
561 * so this can't overflow.
562 */
563 CTASSERT(TIME_MIN <= -TIME_MAX - 1);
564
565 /*
566 * If b < 0, then a - b >= a >= 0, so negative results
567 * and thus results below TIME_MIN are impossible; we
568 * need only avoid
569 *
570 * a - b > TIME_MAX,
571 *
572 * which we will do by rejecting if
573 *
574 * a > TIME_MAX + b.
575 *
576 * (Reminder: The borrow is subtracted afterward in
577 * timespecsub, so to avoid overflow it is not enough
578 * to merely reject a - b - borrow > TIME_MAX.)
579 *
580 * It is safe to compute the sum TIME_MAX + b because b
581 * is negative, so the result lies in [0, TIME_MAX).
582 */
583 if (b < 0 && a > TIME_MAX + b)
584 return false;
585 }
586
587 return true;
588 }
589