Home | History | Annotate | Line # | Download | only in kern
subr_time.c revision 1.39
      1 /*	$NetBSD: subr_time.c,v 1.39 2024/10/10 11:14:28 kre Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1989, 1993
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the University nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  *
     31  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
     32  *	@(#)kern_time.c 8.4 (Berkeley) 5/26/95
     33  */
     34 
     35 #include <sys/cdefs.h>
     36 __KERNEL_RCSID(0, "$NetBSD: subr_time.c,v 1.39 2024/10/10 11:14:28 kre Exp $");
     37 
     38 #include <sys/param.h>
     39 #include <sys/kernel.h>
     40 #include <sys/proc.h>
     41 #include <sys/kauth.h>
     42 #include <sys/lwp.h>
     43 #include <sys/timex.h>
     44 #include <sys/time.h>
     45 #include <sys/timetc.h>
     46 #include <sys/intr.h>
     47 
     48 /*
     49  * Compute number of hz until specified time.  Used to compute second
     50  * argument to callout_reset() from an absolute time.
     51  */
     52 int
     53 tvhzto(const struct timeval *tvp)
     54 {
     55 	struct timeval now, tv;
     56 
     57 	tv = *tvp;	/* Don't modify original tvp. */
     58 	getmicrotime(&now);
     59 	timersub(&tv, &now, &tv);
     60 	return tvtohz(&tv);
     61 }
     62 
     63 /*
     64  * Compute number of ticks in the specified amount of time.
     65  */
     66 int
     67 tvtohz(const struct timeval *tv)
     68 {
     69 	unsigned long ticks;
     70 	long sec, usec;
     71 
     72 	/*
     73 	 * If the number of usecs in the whole seconds part of the time
     74 	 * difference fits in a long, then the total number of usecs will
     75 	 * fit in an unsigned long.  Compute the total and convert it to
     76 	 * ticks, rounding up and adding 1 to allow for the current tick
     77 	 * to expire.  Rounding also depends on unsigned long arithmetic
     78 	 * to avoid overflow.
     79 	 *
     80 	 * Otherwise, if the number of ticks in the whole seconds part of
     81 	 * the time difference fits in a long, then convert the parts to
     82 	 * ticks separately and add, using similar rounding methods and
     83 	 * overflow avoidance.  This method would work in the previous
     84 	 * case, but it is slightly slower and assumes that hz is integral.
     85 	 *
     86 	 * Otherwise, round the time difference down to the maximum
     87 	 * representable value.
     88 	 *
     89 	 * If ints are 32-bit, then the maximum value for any timeout in
     90 	 * 10ms ticks is 248 days.
     91 	 */
     92 	sec = tv->tv_sec;
     93 	usec = tv->tv_usec;
     94 
     95 	KASSERT(usec >= 0);
     96 	KASSERT(usec < 1000000);
     97 
     98 	/* catch overflows in conversion time_t->int */
     99 	if (tv->tv_sec > INT_MAX)
    100 		return INT_MAX;
    101 	if (tv->tv_sec < 0)
    102 		return 0;
    103 
    104 	if (sec < 0 || (sec == 0 && usec == 0)) {
    105 		/*
    106 		 * Would expire now or in the past.  Return 0 ticks.
    107 		 * This is different from the legacy tvhzto() interface,
    108 		 * and callers need to check for it.
    109 		 */
    110 		ticks = 0;
    111 	} else if (sec <= (LONG_MAX / 1000000))
    112 		ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
    113 		    / tick) + 1;
    114 	else if (sec <= (LONG_MAX / hz))
    115 		ticks = (sec * hz) +
    116 		    (((unsigned long)usec + (tick - 1)) / tick) + 1;
    117 	else
    118 		ticks = LONG_MAX;
    119 
    120 	if (ticks > INT_MAX)
    121 		ticks = INT_MAX;
    122 
    123 	return ((int)ticks);
    124 }
    125 
    126 int
    127 tshzto(const struct timespec *tsp)
    128 {
    129 	struct timespec now, ts;
    130 
    131 	ts = *tsp;	/* Don't modify original tsp. */
    132 	getnanotime(&now);
    133 	timespecsub(&ts, &now, &ts);
    134 	return tstohz(&ts);
    135 }
    136 
    137 int
    138 tshztoup(const struct timespec *tsp)
    139 {
    140 	struct timespec now, ts;
    141 
    142 	ts = *tsp;	/* Don't modify original tsp. */
    143 	getnanouptime(&now);
    144 	timespecsub(&ts, &now, &ts);
    145 	return tstohz(&ts);
    146 }
    147 
    148 /*
    149  * Compute number of ticks in the specified amount of time.
    150  */
    151 int
    152 tstohz(const struct timespec *ts)
    153 {
    154 	struct timeval tv;
    155 
    156 	/*
    157 	 * usec has great enough resolution for hz, so convert to a
    158 	 * timeval and use tvtohz() above.
    159 	 */
    160 	TIMESPEC_TO_TIMEVAL(&tv, ts);
    161 	return tvtohz(&tv);
    162 }
    163 
    164 /*
    165  * Check that a proposed value to load into the .it_value or
    166  * .it_interval part of an interval timer is acceptable, and
    167  * fix it to have at least minimal value (i.e. if it is less
    168  * than the resolution of the clock, round it up.). We don't
    169  * timeout the 0,0 value because this means to disable the
    170  * timer or the interval.
    171  */
    172 int
    173 itimerfix(struct timeval *tv)
    174 {
    175 
    176 	if (tv->tv_usec < 0 || tv->tv_usec >= 1000000)
    177 		return EINVAL;
    178 	if (tv->tv_sec < 0)
    179 		return ETIMEDOUT;
    180 	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
    181 		tv->tv_usec = tick;
    182 	return 0;
    183 }
    184 
    185 int
    186 itimespecfix(struct timespec *ts)
    187 {
    188 
    189 	if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
    190 		return EINVAL;
    191 	if (ts->tv_sec < 0)
    192 		return ETIMEDOUT;
    193 	if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
    194 		ts->tv_nsec = tick * 1000;
    195 	return 0;
    196 }
    197 
    198 int
    199 inittimeleft(struct timespec *ts, struct timespec *sleepts)
    200 {
    201 
    202 	if (itimespecfix(ts)) {
    203 		return -1;
    204 	}
    205 	KASSERT(ts->tv_sec >= 0);
    206 	getnanouptime(sleepts);
    207 	return 0;
    208 }
    209 
    210 int
    211 gettimeleft(struct timespec *ts, struct timespec *sleepts)
    212 {
    213 	struct timespec now, sleptts;
    214 
    215 	KASSERT(ts->tv_sec >= 0);
    216 
    217 	/*
    218 	 * Reduce ts by elapsed time based on monotonic time scale.
    219 	 */
    220 	getnanouptime(&now);
    221 	KASSERT(timespeccmp(sleepts, &now, <=));
    222 	timespecsub(&now, sleepts, &sleptts);
    223 	*sleepts = now;
    224 
    225 	if (timespeccmp(ts, &sleptts, <=)) { /* timed out */
    226 		timespecclear(ts);
    227 		return 0;
    228 	}
    229 	timespecsub(ts, &sleptts, ts);
    230 
    231 	return tstohz(ts);
    232 }
    233 
    234 void
    235 clock_timeleft(clockid_t clockid, struct timespec *ts, struct timespec *sleepts)
    236 {
    237 	struct timespec sleptts;
    238 
    239 	clock_gettime1(clockid, &sleptts);
    240 	timespecadd(ts, sleepts, ts);
    241 	timespecsub(ts, &sleptts, ts);
    242 	*sleepts = sleptts;
    243 }
    244 
    245 int
    246 clock_gettime1(clockid_t clock_id, struct timespec *ts)
    247 {
    248 	int error;
    249 	struct proc *p;
    250 
    251 #define CPUCLOCK_ID_MASK (~(CLOCK_THREAD_CPUTIME_ID|CLOCK_PROCESS_CPUTIME_ID))
    252 	if (clock_id & CLOCK_PROCESS_CPUTIME_ID) {
    253 		pid_t pid = clock_id & CPUCLOCK_ID_MASK;
    254 		struct timeval cputime;
    255 
    256 		mutex_enter(&proc_lock);
    257 		p = pid == 0 ? curproc : proc_find(pid);
    258 		if (p == NULL) {
    259 			mutex_exit(&proc_lock);
    260 			return ESRCH;
    261 		}
    262 		mutex_enter(p->p_lock);
    263 		calcru(p, /*usertime*/NULL, /*systime*/NULL, /*intrtime*/NULL,
    264 		    &cputime);
    265 		mutex_exit(p->p_lock);
    266 		mutex_exit(&proc_lock);
    267 
    268 		// XXX: Perhaps create a special kauth type
    269 		error = kauth_authorize_process(kauth_cred_get(),
    270 		    KAUTH_PROCESS_PTRACE, p,
    271 		    KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
    272 		if (error)
    273 			return error;
    274 
    275 		TIMEVAL_TO_TIMESPEC(&cputime, ts);
    276 		return 0;
    277 	} else if (clock_id & CLOCK_THREAD_CPUTIME_ID) {
    278 		struct lwp *l;
    279 		lwpid_t lid = clock_id & CPUCLOCK_ID_MASK;
    280 		struct bintime tm = {0, 0};
    281 
    282 		p = curproc;
    283 		mutex_enter(p->p_lock);
    284 		l = lid == 0 ? curlwp : lwp_find(p, lid);
    285 		if (l == NULL) {
    286 			mutex_exit(p->p_lock);
    287 			return ESRCH;
    288 		}
    289 		addrulwp(l, &tm);
    290 		mutex_exit(p->p_lock);
    291 
    292 		bintime2timespec(&tm, ts);
    293 		return 0;
    294 	}
    295 
    296 	switch (clock_id) {
    297 	case CLOCK_REALTIME:
    298 		nanotime(ts);
    299 		break;
    300 	case CLOCK_MONOTONIC:
    301 		nanouptime(ts);
    302 		break;
    303 	default:
    304 		return EINVAL;
    305 	}
    306 
    307 	return 0;
    308 }
    309 
    310 /*
    311  * Calculate delta and convert from struct timespec to the ticks.
    312  */
    313 int
    314 ts2timo(clockid_t clock_id, int flags, struct timespec *ts,
    315     int *timo, struct timespec *start)
    316 {
    317 	int error;
    318 	struct timespec tsd;
    319 
    320 	if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000L)
    321 		return EINVAL;
    322 
    323 	if ((flags & TIMER_ABSTIME) != 0 || start != NULL) {
    324 		error = clock_gettime1(clock_id, &tsd);
    325 		if (error != 0)
    326 			return error;
    327 		if (start != NULL)
    328 			*start = tsd;
    329 	}
    330 
    331 	if ((flags & TIMER_ABSTIME) != 0) {
    332 		if (!timespecsubok(ts, &tsd))
    333 			return EINVAL;
    334 		timespecsub(ts, &tsd, &tsd);
    335 		ts = &tsd;
    336 	}
    337 
    338 	error = itimespecfix(ts);
    339 	if (error != 0)
    340 		return error;
    341 
    342 	if (ts->tv_sec == 0 && ts->tv_nsec == 0)
    343 		return ETIMEDOUT;
    344 
    345 	*timo = tstohz(ts);
    346 	KASSERT(*timo > 0);
    347 
    348 	return 0;
    349 }
    350 
    351 bool
    352 timespecaddok(const struct timespec *tsp, const struct timespec *usp)
    353 {
    354 	enum { TIME_MIN = __type_min(time_t), TIME_MAX = __type_max(time_t) };
    355 	time_t a = tsp->tv_sec;
    356 	time_t b = usp->tv_sec;
    357 	bool carry;
    358 
    359 	/*
    360 	 * Caller is responsible for guaranteeing valid timespec
    361 	 * inputs.  Any user-controlled inputs must be validated or
    362 	 * adjusted.
    363 	 */
    364 	KASSERT(tsp->tv_nsec >= 0);
    365 	KASSERT(usp->tv_nsec >= 0);
    366 	KASSERT(tsp->tv_nsec < 1000000000L);
    367 	KASSERT(usp->tv_nsec < 1000000000L);
    368 	CTASSERT(1000000000L <= __type_max(long) - 1000000000L);
    369 
    370 	/*
    371 	 * Fail if a + b + carry overflows TIME_MAX, or if a + b
    372 	 * overflows TIME_MIN because timespecadd adds the carry after
    373 	 * computing a + b.
    374 	 *
    375 	 * Break it into two mutually exclusive and exhaustive cases:
    376 	 * I. a >= 0
    377 	 * II. a < 0
    378 	 */
    379 	carry = (tsp->tv_nsec + usp->tv_nsec >= 1000000000L);
    380 	if (a >= 0) {
    381 		/*
    382 		 * Case I: a >= 0.  If b < 0, then b + 1 <= 0, so
    383 		 *
    384 		 *	a + b + 1 <= a + 0 <= TIME_MAX,
    385 		 *
    386 		 * and
    387 		 *
    388 		 *	a + b >= 0 + b = b >= TIME_MIN,
    389 		 *
    390 		 * so this can't overflow.
    391 		 *
    392 		 * If b >= 0, then a + b + carry >= a + b >= 0, so
    393 		 * negative results and thus results below TIME_MIN are
    394 		 * impossible; we need only avoid
    395 		 *
    396 		 *	a + b + carry > TIME_MAX,
    397 		 *
    398 		 * which we will do by rejecting if
    399 		 *
    400 		 *	b > TIME_MAX - a - carry,
    401 		 *
    402 		 * which in turn is incidentally always false if b < 0
    403 		 * so we don't need extra logic to discriminate on the
    404 		 * b >= 0 and b < 0 cases.
    405 		 *
    406 		 * Since 0 <= a <= TIME_MAX, we know
    407 		 *
    408 		 *	0 <= TIME_MAX - a <= TIME_MAX,
    409 		 *
    410 		 * and hence
    411 		 *
    412 		 *	-1 <= TIME_MAX - a - 1 < TIME_MAX.
    413 		 *
    414 		 * So we can compute TIME_MAX - a - carry (i.e., either
    415 		 * TIME_MAX - a or TIME_MAX - a - 1) safely without
    416 		 * overflow.
    417 		 */
    418 		if (b > TIME_MAX - a - carry)
    419 			return false;
    420 	} else {
    421 		/*
    422 		 * Case II: a < 0.  If b >= 0, then since a + 1 <= 0,
    423 		 * we have
    424 		 *
    425 		 *	a + b + 1 <= b <= TIME_MAX,
    426 		 *
    427 		 * and
    428 		 *
    429 		 *	a + b >= a >= TIME_MIN,
    430 		 *
    431 		 * so this can't overflow.
    432 		 *
    433 		 * If b < 0, then the intermediate a + b is negative
    434 		 * and the outcome a + b + 1 is nonpositive, so we need
    435 		 * only avoid
    436 		 *
    437 		 *	a + b < TIME_MIN,
    438 		 *
    439 		 * which we will do by rejecting if
    440 		 *
    441 		 *	a < TIME_MIN - b.
    442 		 *
    443 		 * (Reminder: The carry is added afterward in
    444 		 * timespecadd, so to avoid overflow it is not enough
    445 		 * to merely reject a + b + carry < TIME_MIN.)
    446 		 *
    447 		 * It is safe to compute the difference TIME_MIN - b
    448 		 * because b is negative, so the result lies in
    449 		 * (TIME_MIN, 0].
    450 		 */
    451 		if (b < 0 && a < TIME_MIN - b)
    452 			return false;
    453 	}
    454 
    455 	return true;
    456 }
    457 
    458 bool
    459 timespecsubok(const struct timespec *tsp, const struct timespec *usp)
    460 {
    461 	enum { TIME_MIN = __type_min(time_t), TIME_MAX = __type_max(time_t) };
    462 	time_t a = tsp->tv_sec, b = usp->tv_sec;
    463 	bool borrow;
    464 
    465 	/*
    466 	 * Caller is responsible for guaranteeing valid timespec
    467 	 * inputs.  Any user-controlled inputs must be validated or
    468 	 * adjusted.
    469 	 */
    470 	KASSERT(tsp->tv_nsec >= 0);
    471 	KASSERT(usp->tv_nsec >= 0);
    472 	KASSERT(tsp->tv_nsec < 1000000000L);
    473 	KASSERT(usp->tv_nsec < 1000000000L);
    474 	CTASSERT(1000000000L <= __type_max(long) - 1000000000L);
    475 
    476 	/*
    477 	 * Fail if a - b - borrow overflows TIME_MIN, or if a - b
    478 	 * overflows TIME_MAX because timespecsub subtracts the borrow
    479 	 * after computing a - b.
    480 	 *
    481 	 * Break it into two mutually exclusive and exhaustive cases:
    482 	 * I. a < 0
    483 	 * II. a >= 0
    484 	 */
    485 	borrow = (tsp->tv_nsec - usp->tv_nsec < 0);
    486 	if (a < 0) {
    487 		/*
    488 		 * Case I: a < 0.  If b < 0, then -b - 1 >= 0, so
    489 		 *
    490 		 *	a - b - 1 >= a + 0 >= TIME_MIN,
    491 		 *
    492 		 * and, since a <= -1, provided that TIME_MIN <=
    493 		 * -TIME_MAX - 1 so that TIME_MAX <= -TIME_MIN - 1 (in
    494 		 * fact, equality holds, under the assumption of
    495 		 * two's-complement arithmetic),
    496 		 *
    497 		 *	a - b <= -1 - b = -b - 1 <= TIME_MAX,
    498 		 *
    499 		 * so this can't overflow.
    500 		 */
    501 		CTASSERT(TIME_MIN <= -TIME_MAX - 1);
    502 
    503 		/*
    504 		 * If b >= 0, then a - b - borrow <= a - b < 0, so
    505 		 * positive results and thus results above TIME_MAX are
    506 		 * impossible; we need only avoid
    507 		 *
    508 		 *	a - b - borrow < TIME_MIN,
    509 		 *
    510 		 * which we will do by rejecting if
    511 		 *
    512 		 *	a < TIME_MIN + b + borrow.
    513 		 *
    514 		 * The right-hand side is safe to evaluate for any
    515 		 * values of b and borrow as long as TIME_MIN +
    516 		 * TIME_MAX + 1 <= TIME_MAX, i.e., TIME_MIN <= -1.
    517 		 * (Note: If time_t were unsigned, this would fail!)
    518 		 *
    519 		 * Note: Unlike Case I in timespecaddok, this criterion
    520 		 * does not work for b < 0, nor can the roles of a and
    521 		 * b in the inequality be reversed (e.g., -b < TIME_MIN
    522 		 * - a + borrow) without extra cases like checking for
    523 		 * b = TEST_MIN.
    524 		 */
    525 		CTASSERT(TIME_MIN < -1);
    526 		if (b >= 0 && a < TIME_MIN + b + borrow)
    527 			return false;
    528 	} else {
    529 		/*
    530 		 * Case II: a >= 0.  If b >= 0, then
    531 		 *
    532 		 *	a - b <= a <= TIME_MAX,
    533 		 *
    534 		 * and, provided TIME_MIN <= -TIME_MAX - 1 (in fact,
    535 		 * equality holds, under the assumption of
    536 		 * two's-complement arithmetic)
    537 		 *
    538 		 *	a - b - 1 >= -b - 1 >= -TIME_MAX - 1 >= TIME_MIN,
    539 		 *
    540 		 * so this can't overflow.
    541 		 */
    542 		CTASSERT(TIME_MIN <= -TIME_MAX - 1);
    543 
    544 		/*
    545 		 * If b < 0, then a - b >= a >= 0, so negative results
    546 		 * and thus results below TIME_MIN are impossible; we
    547 		 * need only avoid
    548 		 *
    549 		 *	a - b > TIME_MAX,
    550 		 *
    551 		 * which we will do by rejecting if
    552 		 *
    553 		 *	a > TIME_MAX + b.
    554 		 *
    555 		 * (Reminder: The borrow is subtracted afterward in
    556 		 * timespecsub, so to avoid overflow it is not enough
    557 		 * to merely reject a - b - borrow > TIME_MAX.)
    558 		 *
    559 		 * It is safe to compute the sum TIME_MAX + b because b
    560 		 * is negative, so the result lies in [0, TIME_MAX).
    561 		 */
    562 		if (b < 0 && a > TIME_MAX + b)
    563 			return false;
    564 	}
    565 
    566 	return true;
    567 }
    568