subr_time.c revision 1.39 1 /* $NetBSD: subr_time.c,v 1.39 2024/10/10 11:14:28 kre Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
32 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: subr_time.c,v 1.39 2024/10/10 11:14:28 kre Exp $");
37
38 #include <sys/param.h>
39 #include <sys/kernel.h>
40 #include <sys/proc.h>
41 #include <sys/kauth.h>
42 #include <sys/lwp.h>
43 #include <sys/timex.h>
44 #include <sys/time.h>
45 #include <sys/timetc.h>
46 #include <sys/intr.h>
47
48 /*
49 * Compute number of hz until specified time. Used to compute second
50 * argument to callout_reset() from an absolute time.
51 */
52 int
53 tvhzto(const struct timeval *tvp)
54 {
55 struct timeval now, tv;
56
57 tv = *tvp; /* Don't modify original tvp. */
58 getmicrotime(&now);
59 timersub(&tv, &now, &tv);
60 return tvtohz(&tv);
61 }
62
63 /*
64 * Compute number of ticks in the specified amount of time.
65 */
66 int
67 tvtohz(const struct timeval *tv)
68 {
69 unsigned long ticks;
70 long sec, usec;
71
72 /*
73 * If the number of usecs in the whole seconds part of the time
74 * difference fits in a long, then the total number of usecs will
75 * fit in an unsigned long. Compute the total and convert it to
76 * ticks, rounding up and adding 1 to allow for the current tick
77 * to expire. Rounding also depends on unsigned long arithmetic
78 * to avoid overflow.
79 *
80 * Otherwise, if the number of ticks in the whole seconds part of
81 * the time difference fits in a long, then convert the parts to
82 * ticks separately and add, using similar rounding methods and
83 * overflow avoidance. This method would work in the previous
84 * case, but it is slightly slower and assumes that hz is integral.
85 *
86 * Otherwise, round the time difference down to the maximum
87 * representable value.
88 *
89 * If ints are 32-bit, then the maximum value for any timeout in
90 * 10ms ticks is 248 days.
91 */
92 sec = tv->tv_sec;
93 usec = tv->tv_usec;
94
95 KASSERT(usec >= 0);
96 KASSERT(usec < 1000000);
97
98 /* catch overflows in conversion time_t->int */
99 if (tv->tv_sec > INT_MAX)
100 return INT_MAX;
101 if (tv->tv_sec < 0)
102 return 0;
103
104 if (sec < 0 || (sec == 0 && usec == 0)) {
105 /*
106 * Would expire now or in the past. Return 0 ticks.
107 * This is different from the legacy tvhzto() interface,
108 * and callers need to check for it.
109 */
110 ticks = 0;
111 } else if (sec <= (LONG_MAX / 1000000))
112 ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
113 / tick) + 1;
114 else if (sec <= (LONG_MAX / hz))
115 ticks = (sec * hz) +
116 (((unsigned long)usec + (tick - 1)) / tick) + 1;
117 else
118 ticks = LONG_MAX;
119
120 if (ticks > INT_MAX)
121 ticks = INT_MAX;
122
123 return ((int)ticks);
124 }
125
126 int
127 tshzto(const struct timespec *tsp)
128 {
129 struct timespec now, ts;
130
131 ts = *tsp; /* Don't modify original tsp. */
132 getnanotime(&now);
133 timespecsub(&ts, &now, &ts);
134 return tstohz(&ts);
135 }
136
137 int
138 tshztoup(const struct timespec *tsp)
139 {
140 struct timespec now, ts;
141
142 ts = *tsp; /* Don't modify original tsp. */
143 getnanouptime(&now);
144 timespecsub(&ts, &now, &ts);
145 return tstohz(&ts);
146 }
147
148 /*
149 * Compute number of ticks in the specified amount of time.
150 */
151 int
152 tstohz(const struct timespec *ts)
153 {
154 struct timeval tv;
155
156 /*
157 * usec has great enough resolution for hz, so convert to a
158 * timeval and use tvtohz() above.
159 */
160 TIMESPEC_TO_TIMEVAL(&tv, ts);
161 return tvtohz(&tv);
162 }
163
164 /*
165 * Check that a proposed value to load into the .it_value or
166 * .it_interval part of an interval timer is acceptable, and
167 * fix it to have at least minimal value (i.e. if it is less
168 * than the resolution of the clock, round it up.). We don't
169 * timeout the 0,0 value because this means to disable the
170 * timer or the interval.
171 */
172 int
173 itimerfix(struct timeval *tv)
174 {
175
176 if (tv->tv_usec < 0 || tv->tv_usec >= 1000000)
177 return EINVAL;
178 if (tv->tv_sec < 0)
179 return ETIMEDOUT;
180 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
181 tv->tv_usec = tick;
182 return 0;
183 }
184
185 int
186 itimespecfix(struct timespec *ts)
187 {
188
189 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
190 return EINVAL;
191 if (ts->tv_sec < 0)
192 return ETIMEDOUT;
193 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
194 ts->tv_nsec = tick * 1000;
195 return 0;
196 }
197
198 int
199 inittimeleft(struct timespec *ts, struct timespec *sleepts)
200 {
201
202 if (itimespecfix(ts)) {
203 return -1;
204 }
205 KASSERT(ts->tv_sec >= 0);
206 getnanouptime(sleepts);
207 return 0;
208 }
209
210 int
211 gettimeleft(struct timespec *ts, struct timespec *sleepts)
212 {
213 struct timespec now, sleptts;
214
215 KASSERT(ts->tv_sec >= 0);
216
217 /*
218 * Reduce ts by elapsed time based on monotonic time scale.
219 */
220 getnanouptime(&now);
221 KASSERT(timespeccmp(sleepts, &now, <=));
222 timespecsub(&now, sleepts, &sleptts);
223 *sleepts = now;
224
225 if (timespeccmp(ts, &sleptts, <=)) { /* timed out */
226 timespecclear(ts);
227 return 0;
228 }
229 timespecsub(ts, &sleptts, ts);
230
231 return tstohz(ts);
232 }
233
234 void
235 clock_timeleft(clockid_t clockid, struct timespec *ts, struct timespec *sleepts)
236 {
237 struct timespec sleptts;
238
239 clock_gettime1(clockid, &sleptts);
240 timespecadd(ts, sleepts, ts);
241 timespecsub(ts, &sleptts, ts);
242 *sleepts = sleptts;
243 }
244
245 int
246 clock_gettime1(clockid_t clock_id, struct timespec *ts)
247 {
248 int error;
249 struct proc *p;
250
251 #define CPUCLOCK_ID_MASK (~(CLOCK_THREAD_CPUTIME_ID|CLOCK_PROCESS_CPUTIME_ID))
252 if (clock_id & CLOCK_PROCESS_CPUTIME_ID) {
253 pid_t pid = clock_id & CPUCLOCK_ID_MASK;
254 struct timeval cputime;
255
256 mutex_enter(&proc_lock);
257 p = pid == 0 ? curproc : proc_find(pid);
258 if (p == NULL) {
259 mutex_exit(&proc_lock);
260 return ESRCH;
261 }
262 mutex_enter(p->p_lock);
263 calcru(p, /*usertime*/NULL, /*systime*/NULL, /*intrtime*/NULL,
264 &cputime);
265 mutex_exit(p->p_lock);
266 mutex_exit(&proc_lock);
267
268 // XXX: Perhaps create a special kauth type
269 error = kauth_authorize_process(kauth_cred_get(),
270 KAUTH_PROCESS_PTRACE, p,
271 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
272 if (error)
273 return error;
274
275 TIMEVAL_TO_TIMESPEC(&cputime, ts);
276 return 0;
277 } else if (clock_id & CLOCK_THREAD_CPUTIME_ID) {
278 struct lwp *l;
279 lwpid_t lid = clock_id & CPUCLOCK_ID_MASK;
280 struct bintime tm = {0, 0};
281
282 p = curproc;
283 mutex_enter(p->p_lock);
284 l = lid == 0 ? curlwp : lwp_find(p, lid);
285 if (l == NULL) {
286 mutex_exit(p->p_lock);
287 return ESRCH;
288 }
289 addrulwp(l, &tm);
290 mutex_exit(p->p_lock);
291
292 bintime2timespec(&tm, ts);
293 return 0;
294 }
295
296 switch (clock_id) {
297 case CLOCK_REALTIME:
298 nanotime(ts);
299 break;
300 case CLOCK_MONOTONIC:
301 nanouptime(ts);
302 break;
303 default:
304 return EINVAL;
305 }
306
307 return 0;
308 }
309
310 /*
311 * Calculate delta and convert from struct timespec to the ticks.
312 */
313 int
314 ts2timo(clockid_t clock_id, int flags, struct timespec *ts,
315 int *timo, struct timespec *start)
316 {
317 int error;
318 struct timespec tsd;
319
320 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000L)
321 return EINVAL;
322
323 if ((flags & TIMER_ABSTIME) != 0 || start != NULL) {
324 error = clock_gettime1(clock_id, &tsd);
325 if (error != 0)
326 return error;
327 if (start != NULL)
328 *start = tsd;
329 }
330
331 if ((flags & TIMER_ABSTIME) != 0) {
332 if (!timespecsubok(ts, &tsd))
333 return EINVAL;
334 timespecsub(ts, &tsd, &tsd);
335 ts = &tsd;
336 }
337
338 error = itimespecfix(ts);
339 if (error != 0)
340 return error;
341
342 if (ts->tv_sec == 0 && ts->tv_nsec == 0)
343 return ETIMEDOUT;
344
345 *timo = tstohz(ts);
346 KASSERT(*timo > 0);
347
348 return 0;
349 }
350
351 bool
352 timespecaddok(const struct timespec *tsp, const struct timespec *usp)
353 {
354 enum { TIME_MIN = __type_min(time_t), TIME_MAX = __type_max(time_t) };
355 time_t a = tsp->tv_sec;
356 time_t b = usp->tv_sec;
357 bool carry;
358
359 /*
360 * Caller is responsible for guaranteeing valid timespec
361 * inputs. Any user-controlled inputs must be validated or
362 * adjusted.
363 */
364 KASSERT(tsp->tv_nsec >= 0);
365 KASSERT(usp->tv_nsec >= 0);
366 KASSERT(tsp->tv_nsec < 1000000000L);
367 KASSERT(usp->tv_nsec < 1000000000L);
368 CTASSERT(1000000000L <= __type_max(long) - 1000000000L);
369
370 /*
371 * Fail if a + b + carry overflows TIME_MAX, or if a + b
372 * overflows TIME_MIN because timespecadd adds the carry after
373 * computing a + b.
374 *
375 * Break it into two mutually exclusive and exhaustive cases:
376 * I. a >= 0
377 * II. a < 0
378 */
379 carry = (tsp->tv_nsec + usp->tv_nsec >= 1000000000L);
380 if (a >= 0) {
381 /*
382 * Case I: a >= 0. If b < 0, then b + 1 <= 0, so
383 *
384 * a + b + 1 <= a + 0 <= TIME_MAX,
385 *
386 * and
387 *
388 * a + b >= 0 + b = b >= TIME_MIN,
389 *
390 * so this can't overflow.
391 *
392 * If b >= 0, then a + b + carry >= a + b >= 0, so
393 * negative results and thus results below TIME_MIN are
394 * impossible; we need only avoid
395 *
396 * a + b + carry > TIME_MAX,
397 *
398 * which we will do by rejecting if
399 *
400 * b > TIME_MAX - a - carry,
401 *
402 * which in turn is incidentally always false if b < 0
403 * so we don't need extra logic to discriminate on the
404 * b >= 0 and b < 0 cases.
405 *
406 * Since 0 <= a <= TIME_MAX, we know
407 *
408 * 0 <= TIME_MAX - a <= TIME_MAX,
409 *
410 * and hence
411 *
412 * -1 <= TIME_MAX - a - 1 < TIME_MAX.
413 *
414 * So we can compute TIME_MAX - a - carry (i.e., either
415 * TIME_MAX - a or TIME_MAX - a - 1) safely without
416 * overflow.
417 */
418 if (b > TIME_MAX - a - carry)
419 return false;
420 } else {
421 /*
422 * Case II: a < 0. If b >= 0, then since a + 1 <= 0,
423 * we have
424 *
425 * a + b + 1 <= b <= TIME_MAX,
426 *
427 * and
428 *
429 * a + b >= a >= TIME_MIN,
430 *
431 * so this can't overflow.
432 *
433 * If b < 0, then the intermediate a + b is negative
434 * and the outcome a + b + 1 is nonpositive, so we need
435 * only avoid
436 *
437 * a + b < TIME_MIN,
438 *
439 * which we will do by rejecting if
440 *
441 * a < TIME_MIN - b.
442 *
443 * (Reminder: The carry is added afterward in
444 * timespecadd, so to avoid overflow it is not enough
445 * to merely reject a + b + carry < TIME_MIN.)
446 *
447 * It is safe to compute the difference TIME_MIN - b
448 * because b is negative, so the result lies in
449 * (TIME_MIN, 0].
450 */
451 if (b < 0 && a < TIME_MIN - b)
452 return false;
453 }
454
455 return true;
456 }
457
458 bool
459 timespecsubok(const struct timespec *tsp, const struct timespec *usp)
460 {
461 enum { TIME_MIN = __type_min(time_t), TIME_MAX = __type_max(time_t) };
462 time_t a = tsp->tv_sec, b = usp->tv_sec;
463 bool borrow;
464
465 /*
466 * Caller is responsible for guaranteeing valid timespec
467 * inputs. Any user-controlled inputs must be validated or
468 * adjusted.
469 */
470 KASSERT(tsp->tv_nsec >= 0);
471 KASSERT(usp->tv_nsec >= 0);
472 KASSERT(tsp->tv_nsec < 1000000000L);
473 KASSERT(usp->tv_nsec < 1000000000L);
474 CTASSERT(1000000000L <= __type_max(long) - 1000000000L);
475
476 /*
477 * Fail if a - b - borrow overflows TIME_MIN, or if a - b
478 * overflows TIME_MAX because timespecsub subtracts the borrow
479 * after computing a - b.
480 *
481 * Break it into two mutually exclusive and exhaustive cases:
482 * I. a < 0
483 * II. a >= 0
484 */
485 borrow = (tsp->tv_nsec - usp->tv_nsec < 0);
486 if (a < 0) {
487 /*
488 * Case I: a < 0. If b < 0, then -b - 1 >= 0, so
489 *
490 * a - b - 1 >= a + 0 >= TIME_MIN,
491 *
492 * and, since a <= -1, provided that TIME_MIN <=
493 * -TIME_MAX - 1 so that TIME_MAX <= -TIME_MIN - 1 (in
494 * fact, equality holds, under the assumption of
495 * two's-complement arithmetic),
496 *
497 * a - b <= -1 - b = -b - 1 <= TIME_MAX,
498 *
499 * so this can't overflow.
500 */
501 CTASSERT(TIME_MIN <= -TIME_MAX - 1);
502
503 /*
504 * If b >= 0, then a - b - borrow <= a - b < 0, so
505 * positive results and thus results above TIME_MAX are
506 * impossible; we need only avoid
507 *
508 * a - b - borrow < TIME_MIN,
509 *
510 * which we will do by rejecting if
511 *
512 * a < TIME_MIN + b + borrow.
513 *
514 * The right-hand side is safe to evaluate for any
515 * values of b and borrow as long as TIME_MIN +
516 * TIME_MAX + 1 <= TIME_MAX, i.e., TIME_MIN <= -1.
517 * (Note: If time_t were unsigned, this would fail!)
518 *
519 * Note: Unlike Case I in timespecaddok, this criterion
520 * does not work for b < 0, nor can the roles of a and
521 * b in the inequality be reversed (e.g., -b < TIME_MIN
522 * - a + borrow) without extra cases like checking for
523 * b = TEST_MIN.
524 */
525 CTASSERT(TIME_MIN < -1);
526 if (b >= 0 && a < TIME_MIN + b + borrow)
527 return false;
528 } else {
529 /*
530 * Case II: a >= 0. If b >= 0, then
531 *
532 * a - b <= a <= TIME_MAX,
533 *
534 * and, provided TIME_MIN <= -TIME_MAX - 1 (in fact,
535 * equality holds, under the assumption of
536 * two's-complement arithmetic)
537 *
538 * a - b - 1 >= -b - 1 >= -TIME_MAX - 1 >= TIME_MIN,
539 *
540 * so this can't overflow.
541 */
542 CTASSERT(TIME_MIN <= -TIME_MAX - 1);
543
544 /*
545 * If b < 0, then a - b >= a >= 0, so negative results
546 * and thus results below TIME_MIN are impossible; we
547 * need only avoid
548 *
549 * a - b > TIME_MAX,
550 *
551 * which we will do by rejecting if
552 *
553 * a > TIME_MAX + b.
554 *
555 * (Reminder: The borrow is subtracted afterward in
556 * timespecsub, so to avoid overflow it is not enough
557 * to merely reject a - b - borrow > TIME_MAX.)
558 *
559 * It is safe to compute the sum TIME_MAX + b because b
560 * is negative, so the result lies in [0, TIME_MAX).
561 */
562 if (b < 0 && a > TIME_MAX + b)
563 return false;
564 }
565
566 return true;
567 }
568