subr_time.c revision 1.40 1 /* $NetBSD: subr_time.c,v 1.40 2024/12/22 23:18:47 riastradh Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1989, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the University nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 *
31 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94
32 * @(#)kern_time.c 8.4 (Berkeley) 5/26/95
33 */
34
35 #include <sys/cdefs.h>
36 __KERNEL_RCSID(0, "$NetBSD: subr_time.c,v 1.40 2024/12/22 23:18:47 riastradh Exp $");
37
38 #include <sys/param.h>
39 #include <sys/types.h>
40
41 #include <sys/intr.h>
42 #include <sys/kauth.h>
43 #include <sys/kernel.h>
44 #include <sys/lwp.h>
45 #include <sys/proc.h>
46 #include <sys/time.h>
47 #include <sys/timetc.h>
48 #include <sys/timex.h>
49
50 /*
51 * Compute number of hz until specified time. Used to compute second
52 * argument to callout_reset() from an absolute time.
53 */
54 int
55 tvhzto(const struct timeval *tvp)
56 {
57 struct timeval now, tv;
58
59 tv = *tvp; /* Don't modify original tvp. */
60 getmicrotime(&now);
61 timersub(&tv, &now, &tv);
62 return tvtohz(&tv);
63 }
64
65 /*
66 * Compute number of ticks in the specified amount of time.
67 */
68 int
69 tvtohz(const struct timeval *tv)
70 {
71 unsigned long ticks;
72 long sec, usec;
73
74 /*
75 * If the number of usecs in the whole seconds part of the time
76 * difference fits in a long, then the total number of usecs will
77 * fit in an unsigned long. Compute the total and convert it to
78 * ticks, rounding up and adding 1 to allow for the current tick
79 * to expire. Rounding also depends on unsigned long arithmetic
80 * to avoid overflow.
81 *
82 * Otherwise, if the number of ticks in the whole seconds part of
83 * the time difference fits in a long, then convert the parts to
84 * ticks separately and add, using similar rounding methods and
85 * overflow avoidance. This method would work in the previous
86 * case, but it is slightly slower and assumes that hz is integral.
87 *
88 * Otherwise, round the time difference down to the maximum
89 * representable value.
90 *
91 * If ints are 32-bit, then the maximum value for any timeout in
92 * 10ms ticks is 248 days.
93 */
94 sec = tv->tv_sec;
95 usec = tv->tv_usec;
96
97 KASSERT(usec >= 0);
98 KASSERT(usec < 1000000);
99
100 /* catch overflows in conversion time_t->int */
101 if (tv->tv_sec > INT_MAX)
102 return INT_MAX;
103 if (tv->tv_sec < 0)
104 return 0;
105
106 if (sec < 0 || (sec == 0 && usec == 0)) {
107 /*
108 * Would expire now or in the past. Return 0 ticks.
109 * This is different from the legacy tvhzto() interface,
110 * and callers need to check for it.
111 */
112 ticks = 0;
113 } else if (sec <= (LONG_MAX / 1000000))
114 ticks = (((sec * 1000000) + (unsigned long)usec + (tick - 1))
115 / tick) + 1;
116 else if (sec <= (LONG_MAX / hz))
117 ticks = (sec * hz) +
118 (((unsigned long)usec + (tick - 1)) / tick) + 1;
119 else
120 ticks = LONG_MAX;
121
122 if (ticks > INT_MAX)
123 ticks = INT_MAX;
124
125 return ((int)ticks);
126 }
127
128 int
129 tshzto(const struct timespec *tsp)
130 {
131 struct timespec now, ts;
132
133 ts = *tsp; /* Don't modify original tsp. */
134 getnanotime(&now);
135 timespecsub(&ts, &now, &ts);
136 return tstohz(&ts);
137 }
138
139 int
140 tshztoup(const struct timespec *tsp)
141 {
142 struct timespec now, ts;
143
144 ts = *tsp; /* Don't modify original tsp. */
145 getnanouptime(&now);
146 timespecsub(&ts, &now, &ts);
147 return tstohz(&ts);
148 }
149
150 /*
151 * Compute number of ticks in the specified amount of time.
152 */
153 int
154 tstohz(const struct timespec *ts)
155 {
156 struct timeval tv;
157
158 /*
159 * usec has great enough resolution for hz, so convert to a
160 * timeval and use tvtohz() above.
161 */
162 TIMESPEC_TO_TIMEVAL(&tv, ts);
163 return tvtohz(&tv);
164 }
165
166 /*
167 * Check that a proposed value to load into the .it_value or
168 * .it_interval part of an interval timer is acceptable, and
169 * fix it to have at least minimal value (i.e. if it is less
170 * than the resolution of the clock, round it up.). We don't
171 * timeout the 0,0 value because this means to disable the
172 * timer or the interval.
173 */
174 int
175 itimerfix(struct timeval *tv)
176 {
177
178 if (tv->tv_usec < 0 || tv->tv_usec >= 1000000)
179 return EINVAL;
180 if (tv->tv_sec < 0)
181 return ETIMEDOUT;
182 if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
183 tv->tv_usec = tick;
184 return 0;
185 }
186
187 int
188 itimespecfix(struct timespec *ts)
189 {
190
191 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000)
192 return EINVAL;
193 if (ts->tv_sec < 0)
194 return ETIMEDOUT;
195 if (ts->tv_sec == 0 && ts->tv_nsec != 0 && ts->tv_nsec < tick * 1000)
196 ts->tv_nsec = tick * 1000;
197 return 0;
198 }
199
200 int
201 inittimeleft(struct timespec *ts, struct timespec *sleepts)
202 {
203
204 if (itimespecfix(ts)) {
205 return -1;
206 }
207 KASSERT(ts->tv_sec >= 0);
208 getnanouptime(sleepts);
209 return 0;
210 }
211
212 int
213 gettimeleft(struct timespec *ts, struct timespec *sleepts)
214 {
215 struct timespec now, sleptts;
216
217 KASSERT(ts->tv_sec >= 0);
218
219 /*
220 * Reduce ts by elapsed time based on monotonic time scale.
221 */
222 getnanouptime(&now);
223 KASSERT(timespeccmp(sleepts, &now, <=));
224 timespecsub(&now, sleepts, &sleptts);
225 *sleepts = now;
226
227 if (timespeccmp(ts, &sleptts, <=)) { /* timed out */
228 timespecclear(ts);
229 return 0;
230 }
231 timespecsub(ts, &sleptts, ts);
232
233 return tstohz(ts);
234 }
235
236 void
237 clock_timeleft(clockid_t clockid, struct timespec *ts, struct timespec *sleepts)
238 {
239 struct timespec sleptts;
240
241 clock_gettime1(clockid, &sleptts);
242 timespecadd(ts, sleepts, ts);
243 timespecsub(ts, &sleptts, ts);
244 *sleepts = sleptts;
245 }
246
247 int
248 clock_gettime1(clockid_t clock_id, struct timespec *ts)
249 {
250 int error;
251 struct proc *p;
252
253 #define CPUCLOCK_ID_MASK (~(CLOCK_THREAD_CPUTIME_ID|CLOCK_PROCESS_CPUTIME_ID))
254 if (clock_id & CLOCK_PROCESS_CPUTIME_ID) {
255 pid_t pid = clock_id & CPUCLOCK_ID_MASK;
256 struct timeval cputime;
257
258 mutex_enter(&proc_lock);
259 p = pid == 0 ? curproc : proc_find(pid);
260 if (p == NULL) {
261 mutex_exit(&proc_lock);
262 return ESRCH;
263 }
264 mutex_enter(p->p_lock);
265 calcru(p, /*usertime*/NULL, /*systime*/NULL, /*intrtime*/NULL,
266 &cputime);
267 mutex_exit(p->p_lock);
268 mutex_exit(&proc_lock);
269
270 // XXX: Perhaps create a special kauth type
271 error = kauth_authorize_process(kauth_cred_get(),
272 KAUTH_PROCESS_PTRACE, p,
273 KAUTH_ARG(KAUTH_REQ_PROCESS_CANSEE_ENTRY), NULL, NULL);
274 if (error)
275 return error;
276
277 TIMEVAL_TO_TIMESPEC(&cputime, ts);
278 return 0;
279 } else if (clock_id & CLOCK_THREAD_CPUTIME_ID) {
280 struct lwp *l;
281 lwpid_t lid = clock_id & CPUCLOCK_ID_MASK;
282 struct bintime tm = {0, 0};
283
284 p = curproc;
285 mutex_enter(p->p_lock);
286 l = lid == 0 ? curlwp : lwp_find(p, lid);
287 if (l == NULL) {
288 mutex_exit(p->p_lock);
289 return ESRCH;
290 }
291 addrulwp(l, &tm);
292 mutex_exit(p->p_lock);
293
294 bintime2timespec(&tm, ts);
295 return 0;
296 }
297
298 switch (clock_id) {
299 case CLOCK_REALTIME:
300 nanotime(ts);
301 break;
302 case CLOCK_MONOTONIC:
303 nanouptime(ts);
304 break;
305 default:
306 return EINVAL;
307 }
308
309 return 0;
310 }
311
312 /*
313 * Calculate delta and convert from struct timespec to the ticks.
314 */
315 int
316 ts2timo(clockid_t clock_id, int flags, struct timespec *ts,
317 int *timo, struct timespec *start)
318 {
319 int error;
320 struct timespec tsd;
321
322 if (ts->tv_nsec < 0 || ts->tv_nsec >= 1000000000L)
323 return EINVAL;
324
325 if ((flags & TIMER_ABSTIME) != 0 || start != NULL) {
326 error = clock_gettime1(clock_id, &tsd);
327 if (error != 0)
328 return error;
329 if (start != NULL)
330 *start = tsd;
331 }
332
333 if ((flags & TIMER_ABSTIME) != 0) {
334 if (!timespecsubok(ts, &tsd))
335 return EINVAL;
336 timespecsub(ts, &tsd, &tsd);
337 ts = &tsd;
338 }
339
340 error = itimespecfix(ts);
341 if (error != 0)
342 return error;
343
344 if (ts->tv_sec == 0 && ts->tv_nsec == 0)
345 return ETIMEDOUT;
346
347 *timo = tstohz(ts);
348 KASSERT(*timo > 0);
349
350 return 0;
351 }
352
353 bool
354 timespecaddok(const struct timespec *tsp, const struct timespec *usp)
355 {
356 enum { TIME_MIN = __type_min(time_t), TIME_MAX = __type_max(time_t) };
357 time_t a = tsp->tv_sec;
358 time_t b = usp->tv_sec;
359 bool carry;
360
361 /*
362 * Caller is responsible for guaranteeing valid timespec
363 * inputs. Any user-controlled inputs must be validated or
364 * adjusted.
365 */
366 KASSERT(tsp->tv_nsec >= 0);
367 KASSERT(usp->tv_nsec >= 0);
368 KASSERT(tsp->tv_nsec < 1000000000L);
369 KASSERT(usp->tv_nsec < 1000000000L);
370 CTASSERT(1000000000L <= __type_max(long) - 1000000000L);
371
372 /*
373 * Fail if a + b + carry overflows TIME_MAX, or if a + b
374 * overflows TIME_MIN because timespecadd adds the carry after
375 * computing a + b.
376 *
377 * Break it into two mutually exclusive and exhaustive cases:
378 * I. a >= 0
379 * II. a < 0
380 */
381 carry = (tsp->tv_nsec + usp->tv_nsec >= 1000000000L);
382 if (a >= 0) {
383 /*
384 * Case I: a >= 0. If b < 0, then b + 1 <= 0, so
385 *
386 * a + b + 1 <= a + 0 <= TIME_MAX,
387 *
388 * and
389 *
390 * a + b >= 0 + b = b >= TIME_MIN,
391 *
392 * so this can't overflow.
393 *
394 * If b >= 0, then a + b + carry >= a + b >= 0, so
395 * negative results and thus results below TIME_MIN are
396 * impossible; we need only avoid
397 *
398 * a + b + carry > TIME_MAX,
399 *
400 * which we will do by rejecting if
401 *
402 * b > TIME_MAX - a - carry,
403 *
404 * which in turn is incidentally always false if b < 0
405 * so we don't need extra logic to discriminate on the
406 * b >= 0 and b < 0 cases.
407 *
408 * Since 0 <= a <= TIME_MAX, we know
409 *
410 * 0 <= TIME_MAX - a <= TIME_MAX,
411 *
412 * and hence
413 *
414 * -1 <= TIME_MAX - a - 1 < TIME_MAX.
415 *
416 * So we can compute TIME_MAX - a - carry (i.e., either
417 * TIME_MAX - a or TIME_MAX - a - 1) safely without
418 * overflow.
419 */
420 if (b > TIME_MAX - a - carry)
421 return false;
422 } else {
423 /*
424 * Case II: a < 0. If b >= 0, then since a + 1 <= 0,
425 * we have
426 *
427 * a + b + 1 <= b <= TIME_MAX,
428 *
429 * and
430 *
431 * a + b >= a >= TIME_MIN,
432 *
433 * so this can't overflow.
434 *
435 * If b < 0, then the intermediate a + b is negative
436 * and the outcome a + b + 1 is nonpositive, so we need
437 * only avoid
438 *
439 * a + b < TIME_MIN,
440 *
441 * which we will do by rejecting if
442 *
443 * a < TIME_MIN - b.
444 *
445 * (Reminder: The carry is added afterward in
446 * timespecadd, so to avoid overflow it is not enough
447 * to merely reject a + b + carry < TIME_MIN.)
448 *
449 * It is safe to compute the difference TIME_MIN - b
450 * because b is negative, so the result lies in
451 * (TIME_MIN, 0].
452 */
453 if (b < 0 && a < TIME_MIN - b)
454 return false;
455 }
456
457 return true;
458 }
459
460 bool
461 timespecsubok(const struct timespec *tsp, const struct timespec *usp)
462 {
463 enum { TIME_MIN = __type_min(time_t), TIME_MAX = __type_max(time_t) };
464 time_t a = tsp->tv_sec, b = usp->tv_sec;
465 bool borrow;
466
467 /*
468 * Caller is responsible for guaranteeing valid timespec
469 * inputs. Any user-controlled inputs must be validated or
470 * adjusted.
471 */
472 KASSERT(tsp->tv_nsec >= 0);
473 KASSERT(usp->tv_nsec >= 0);
474 KASSERT(tsp->tv_nsec < 1000000000L);
475 KASSERT(usp->tv_nsec < 1000000000L);
476 CTASSERT(1000000000L <= __type_max(long) - 1000000000L);
477
478 /*
479 * Fail if a - b - borrow overflows TIME_MIN, or if a - b
480 * overflows TIME_MAX because timespecsub subtracts the borrow
481 * after computing a - b.
482 *
483 * Break it into two mutually exclusive and exhaustive cases:
484 * I. a < 0
485 * II. a >= 0
486 */
487 borrow = (tsp->tv_nsec - usp->tv_nsec < 0);
488 if (a < 0) {
489 /*
490 * Case I: a < 0. If b < 0, then -b - 1 >= 0, so
491 *
492 * a - b - 1 >= a + 0 >= TIME_MIN,
493 *
494 * and, since a <= -1, provided that TIME_MIN <=
495 * -TIME_MAX - 1 so that TIME_MAX <= -TIME_MIN - 1 (in
496 * fact, equality holds, under the assumption of
497 * two's-complement arithmetic),
498 *
499 * a - b <= -1 - b = -b - 1 <= TIME_MAX,
500 *
501 * so this can't overflow.
502 */
503 CTASSERT(TIME_MIN <= -TIME_MAX - 1);
504
505 /*
506 * If b >= 0, then a - b - borrow <= a - b < 0, so
507 * positive results and thus results above TIME_MAX are
508 * impossible; we need only avoid
509 *
510 * a - b - borrow < TIME_MIN,
511 *
512 * which we will do by rejecting if
513 *
514 * a < TIME_MIN + b + borrow.
515 *
516 * The right-hand side is safe to evaluate for any
517 * values of b and borrow as long as TIME_MIN +
518 * TIME_MAX + 1 <= TIME_MAX, i.e., TIME_MIN <= -1.
519 * (Note: If time_t were unsigned, this would fail!)
520 *
521 * Note: Unlike Case I in timespecaddok, this criterion
522 * does not work for b < 0, nor can the roles of a and
523 * b in the inequality be reversed (e.g., -b < TIME_MIN
524 * - a + borrow) without extra cases like checking for
525 * b = TEST_MIN.
526 */
527 CTASSERT(TIME_MIN < -1);
528 if (b >= 0 && a < TIME_MIN + b + borrow)
529 return false;
530 } else {
531 /*
532 * Case II: a >= 0. If b >= 0, then
533 *
534 * a - b <= a <= TIME_MAX,
535 *
536 * and, provided TIME_MIN <= -TIME_MAX - 1 (in fact,
537 * equality holds, under the assumption of
538 * two's-complement arithmetic)
539 *
540 * a - b - 1 >= -b - 1 >= -TIME_MAX - 1 >= TIME_MIN,
541 *
542 * so this can't overflow.
543 */
544 CTASSERT(TIME_MIN <= -TIME_MAX - 1);
545
546 /*
547 * If b < 0, then a - b >= a >= 0, so negative results
548 * and thus results below TIME_MIN are impossible; we
549 * need only avoid
550 *
551 * a - b > TIME_MAX,
552 *
553 * which we will do by rejecting if
554 *
555 * a > TIME_MAX + b.
556 *
557 * (Reminder: The borrow is subtracted afterward in
558 * timespecsub, so to avoid overflow it is not enough
559 * to merely reject a - b - borrow > TIME_MAX.)
560 *
561 * It is safe to compute the sum TIME_MAX + b because b
562 * is negative, so the result lies in [0, TIME_MAX).
563 */
564 if (b < 0 && a > TIME_MAX + b)
565 return false;
566 }
567
568 return true;
569 }
570