subr_vmem.c revision 1.111 1 1.111 thorpej /* $NetBSD: subr_vmem.c,v 1.111 2023/12/02 21:02:12 thorpej Exp $ */
2 1.1 yamt
3 1.1 yamt /*-
4 1.55 yamt * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
5 1.1 yamt * All rights reserved.
6 1.1 yamt *
7 1.1 yamt * Redistribution and use in source and binary forms, with or without
8 1.1 yamt * modification, are permitted provided that the following conditions
9 1.1 yamt * are met:
10 1.1 yamt * 1. Redistributions of source code must retain the above copyright
11 1.1 yamt * notice, this list of conditions and the following disclaimer.
12 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 yamt * notice, this list of conditions and the following disclaimer in the
14 1.1 yamt * documentation and/or other materials provided with the distribution.
15 1.1 yamt *
16 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 yamt * SUCH DAMAGE.
27 1.1 yamt */
28 1.1 yamt
29 1.1 yamt /*
30 1.1 yamt * reference:
31 1.1 yamt * - Magazines and Vmem: Extending the Slab Allocator
32 1.1 yamt * to Many CPUs and Arbitrary Resources
33 1.1 yamt * http://www.usenix.org/event/usenix01/bonwick.html
34 1.88 para *
35 1.88 para * locking & the boundary tag pool:
36 1.88 para * - A pool(9) is used for vmem boundary tags
37 1.88 para * - During a pool get call the global vmem_btag_refill_lock is taken,
38 1.88 para * to serialize access to the allocation reserve, but no other
39 1.88 para * vmem arena locks.
40 1.88 para * - During pool_put calls no vmem mutexes are locked.
41 1.88 para * - pool_drain doesn't hold the pool's mutex while releasing memory to
42 1.108 andvar * its backing therefore no interference with any vmem mutexes.
43 1.88 para * - The boundary tag pool is forced to put page headers into pool pages
44 1.88 para * (PR_PHINPAGE) and not off page to avoid pool recursion.
45 1.88 para * (due to sizeof(bt_t) it should be the case anyway)
46 1.1 yamt */
47 1.1 yamt
48 1.1 yamt #include <sys/cdefs.h>
49 1.111 thorpej __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.111 2023/12/02 21:02:12 thorpej Exp $");
50 1.1 yamt
51 1.93 pooka #if defined(_KERNEL) && defined(_KERNEL_OPT)
52 1.37 yamt #include "opt_ddb.h"
53 1.93 pooka #endif /* defined(_KERNEL) && defined(_KERNEL_OPT) */
54 1.1 yamt
55 1.1 yamt #include <sys/param.h>
56 1.1 yamt #include <sys/hash.h>
57 1.1 yamt #include <sys/queue.h>
58 1.62 rmind #include <sys/bitops.h>
59 1.1 yamt
60 1.1 yamt #if defined(_KERNEL)
61 1.1 yamt #include <sys/systm.h>
62 1.30 yamt #include <sys/kernel.h> /* hz */
63 1.30 yamt #include <sys/callout.h>
64 1.66 para #include <sys/kmem.h>
65 1.1 yamt #include <sys/pool.h>
66 1.1 yamt #include <sys/vmem.h>
67 1.80 para #include <sys/vmem_impl.h>
68 1.30 yamt #include <sys/workqueue.h>
69 1.66 para #include <sys/atomic.h>
70 1.66 para #include <uvm/uvm.h>
71 1.66 para #include <uvm/uvm_extern.h>
72 1.66 para #include <uvm/uvm_km.h>
73 1.66 para #include <uvm/uvm_page.h>
74 1.66 para #include <uvm/uvm_pdaemon.h>
75 1.1 yamt #else /* defined(_KERNEL) */
76 1.80 para #include <stdio.h>
77 1.80 para #include <errno.h>
78 1.80 para #include <assert.h>
79 1.80 para #include <stdlib.h>
80 1.80 para #include <string.h>
81 1.1 yamt #include "../sys/vmem.h"
82 1.80 para #include "../sys/vmem_impl.h"
83 1.1 yamt #endif /* defined(_KERNEL) */
84 1.1 yamt
85 1.66 para
86 1.1 yamt #if defined(_KERNEL)
87 1.66 para #include <sys/evcnt.h>
88 1.66 para #define VMEM_EVCNT_DEFINE(name) \
89 1.66 para struct evcnt vmem_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \
90 1.88 para "vmem", #name); \
91 1.66 para EVCNT_ATTACH_STATIC(vmem_evcnt_##name);
92 1.66 para #define VMEM_EVCNT_INCR(ev) vmem_evcnt_##ev.ev_count++
93 1.66 para #define VMEM_EVCNT_DECR(ev) vmem_evcnt_##ev.ev_count--
94 1.66 para
95 1.88 para VMEM_EVCNT_DEFINE(static_bt_count)
96 1.88 para VMEM_EVCNT_DEFINE(static_bt_inuse)
97 1.66 para
98 1.80 para #define VMEM_CONDVAR_INIT(vm, wchan) cv_init(&vm->vm_cv, wchan)
99 1.80 para #define VMEM_CONDVAR_DESTROY(vm) cv_destroy(&vm->vm_cv)
100 1.80 para #define VMEM_CONDVAR_WAIT(vm) cv_wait(&vm->vm_cv, &vm->vm_lock)
101 1.80 para #define VMEM_CONDVAR_BROADCAST(vm) cv_broadcast(&vm->vm_cv)
102 1.66 para
103 1.1 yamt #else /* defined(_KERNEL) */
104 1.1 yamt
105 1.66 para #define VMEM_EVCNT_INCR(ev) /* nothing */
106 1.66 para #define VMEM_EVCNT_DECR(ev) /* nothing */
107 1.66 para
108 1.80 para #define VMEM_CONDVAR_INIT(vm, wchan) /* nothing */
109 1.80 para #define VMEM_CONDVAR_DESTROY(vm) /* nothing */
110 1.80 para #define VMEM_CONDVAR_WAIT(vm) /* nothing */
111 1.80 para #define VMEM_CONDVAR_BROADCAST(vm) /* nothing */
112 1.80 para
113 1.79 para #define UNITTEST
114 1.79 para #define KASSERT(a) assert(a)
115 1.110 thorpej #define KASSERTMSG(a, m, ...) assert(a)
116 1.31 ad #define mutex_init(a, b, c) /* nothing */
117 1.31 ad #define mutex_destroy(a) /* nothing */
118 1.31 ad #define mutex_enter(a) /* nothing */
119 1.55 yamt #define mutex_tryenter(a) true
120 1.31 ad #define mutex_exit(a) /* nothing */
121 1.110 thorpej #define mutex_owned(a) true
122 1.55 yamt #define ASSERT_SLEEPABLE() /* nothing */
123 1.55 yamt #define panic(...) printf(__VA_ARGS__); abort()
124 1.1 yamt #endif /* defined(_KERNEL) */
125 1.1 yamt
126 1.55 yamt #if defined(VMEM_SANITY)
127 1.55 yamt static void vmem_check(vmem_t *);
128 1.55 yamt #else /* defined(VMEM_SANITY) */
129 1.55 yamt #define vmem_check(vm) /* nothing */
130 1.55 yamt #endif /* defined(VMEM_SANITY) */
131 1.1 yamt
132 1.30 yamt #define VMEM_HASHSIZE_MIN 1 /* XXX */
133 1.54 yamt #define VMEM_HASHSIZE_MAX 65536 /* XXX */
134 1.66 para #define VMEM_HASHSIZE_INIT 1
135 1.1 yamt
136 1.1 yamt #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
137 1.1 yamt
138 1.80 para #if defined(_KERNEL)
139 1.80 para static bool vmem_bootstrapped = false;
140 1.80 para static kmutex_t vmem_list_lock;
141 1.80 para static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
142 1.80 para #endif /* defined(_KERNEL) */
143 1.79 para
144 1.80 para /* ---- misc */
145 1.1 yamt
146 1.110 thorpej #define VMEM_LOCK(vm) mutex_enter(&(vm)->vm_lock)
147 1.110 thorpej #define VMEM_TRYLOCK(vm) mutex_tryenter(&(vm)->vm_lock)
148 1.110 thorpej #define VMEM_UNLOCK(vm) mutex_exit(&(vm)->vm_lock)
149 1.110 thorpej #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&(vm)->vm_lock, MUTEX_DEFAULT, (ipl))
150 1.110 thorpej #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&(vm)->vm_lock)
151 1.110 thorpej #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&(vm)->vm_lock))
152 1.1 yamt
153 1.19 yamt #define VMEM_ALIGNUP(addr, align) \
154 1.19 yamt (-(-(addr) & -(align)))
155 1.62 rmind
156 1.19 yamt #define VMEM_CROSS_P(addr1, addr2, boundary) \
157 1.19 yamt ((((addr1) ^ (addr2)) & -(boundary)) != 0)
158 1.19 yamt
159 1.4 yamt #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
160 1.62 rmind #define SIZE2ORDER(size) ((int)ilog2(size))
161 1.4 yamt
162 1.110 thorpej static void
163 1.110 thorpej vmem_kick_pdaemon(void)
164 1.110 thorpej {
165 1.110 thorpej #if defined(_KERNEL)
166 1.110 thorpej uvm_kick_pdaemon();
167 1.110 thorpej #endif
168 1.110 thorpej }
169 1.110 thorpej
170 1.110 thorpej static void vmem_xfree_bt(vmem_t *, bt_t *);
171 1.110 thorpej
172 1.62 rmind #if !defined(_KERNEL)
173 1.62 rmind #define xmalloc(sz, flags) malloc(sz)
174 1.67 rmind #define xfree(p, sz) free(p)
175 1.62 rmind #define bt_alloc(vm, flags) malloc(sizeof(bt_t))
176 1.62 rmind #define bt_free(vm, bt) free(bt)
177 1.110 thorpej #define bt_freetrim(vm, l) /* nothing */
178 1.66 para #else /* defined(_KERNEL) */
179 1.1 yamt
180 1.67 rmind #define xmalloc(sz, flags) \
181 1.80 para kmem_alloc(sz, ((flags) & VM_SLEEP) ? KM_SLEEP : KM_NOSLEEP);
182 1.80 para #define xfree(p, sz) kmem_free(p, sz);
183 1.66 para
184 1.75 para /*
185 1.75 para * BT_RESERVE calculation:
186 1.106 andvar * we allocate memory for boundary tags with vmem; therefore we have
187 1.105 riastrad * to keep a reserve of bts used to allocated memory for bts.
188 1.75 para * This reserve is 4 for each arena involved in allocating vmems memory.
189 1.75 para * BT_MAXFREE: don't cache excessive counts of bts in arenas
190 1.75 para */
191 1.75 para #define STATIC_BT_COUNT 200
192 1.75 para #define BT_MINRESERVE 4
193 1.66 para #define BT_MAXFREE 64
194 1.66 para
195 1.66 para static struct vmem_btag static_bts[STATIC_BT_COUNT];
196 1.66 para static int static_bt_count = STATIC_BT_COUNT;
197 1.66 para
198 1.80 para static struct vmem kmem_va_meta_arena_store;
199 1.66 para vmem_t *kmem_va_meta_arena;
200 1.80 para static struct vmem kmem_meta_arena_store;
201 1.88 para vmem_t *kmem_meta_arena = NULL;
202 1.66 para
203 1.88 para static kmutex_t vmem_btag_refill_lock;
204 1.66 para static kmutex_t vmem_btag_lock;
205 1.66 para static LIST_HEAD(, vmem_btag) vmem_btag_freelist;
206 1.66 para static size_t vmem_btag_freelist_count = 0;
207 1.88 para static struct pool vmem_btag_pool;
208 1.66 para
209 1.1 yamt /* ---- boundary tag */
210 1.1 yamt
211 1.94 chs static int bt_refill(vmem_t *vm);
212 1.101 ad static int bt_refill_locked(vmem_t *vm);
213 1.66 para
214 1.88 para static void *
215 1.88 para pool_page_alloc_vmem_meta(struct pool *pp, int flags)
216 1.66 para {
217 1.88 para const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
218 1.66 para vmem_addr_t va;
219 1.88 para int ret;
220 1.66 para
221 1.88 para ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
222 1.88 para (vflags & ~VM_FITMASK) | VM_INSTANTFIT | VM_POPULATING, &va);
223 1.77 para
224 1.88 para return ret ? NULL : (void *)va;
225 1.88 para }
226 1.66 para
227 1.88 para static void
228 1.88 para pool_page_free_vmem_meta(struct pool *pp, void *v)
229 1.88 para {
230 1.66 para
231 1.88 para vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
232 1.88 para }
233 1.66 para
234 1.88 para /* allocator for vmem-pool metadata */
235 1.88 para struct pool_allocator pool_allocator_vmem_meta = {
236 1.88 para .pa_alloc = pool_page_alloc_vmem_meta,
237 1.88 para .pa_free = pool_page_free_vmem_meta,
238 1.88 para .pa_pagesz = 0
239 1.88 para };
240 1.66 para
241 1.66 para static int
242 1.101 ad bt_refill_locked(vmem_t *vm)
243 1.66 para {
244 1.66 para bt_t *bt;
245 1.66 para
246 1.101 ad VMEM_ASSERT_LOCKED(vm);
247 1.101 ad
248 1.88 para if (vm->vm_nfreetags > BT_MINRESERVE) {
249 1.88 para return 0;
250 1.77 para }
251 1.66 para
252 1.66 para mutex_enter(&vmem_btag_lock);
253 1.66 para while (!LIST_EMPTY(&vmem_btag_freelist) &&
254 1.75 para vm->vm_nfreetags <= BT_MINRESERVE) {
255 1.66 para bt = LIST_FIRST(&vmem_btag_freelist);
256 1.66 para LIST_REMOVE(bt, bt_freelist);
257 1.66 para LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
258 1.66 para vm->vm_nfreetags++;
259 1.66 para vmem_btag_freelist_count--;
260 1.88 para VMEM_EVCNT_INCR(static_bt_inuse);
261 1.66 para }
262 1.66 para mutex_exit(&vmem_btag_lock);
263 1.66 para
264 1.88 para while (vm->vm_nfreetags <= BT_MINRESERVE) {
265 1.88 para VMEM_UNLOCK(vm);
266 1.88 para mutex_enter(&vmem_btag_refill_lock);
267 1.91 para bt = pool_get(&vmem_btag_pool, PR_NOWAIT);
268 1.88 para mutex_exit(&vmem_btag_refill_lock);
269 1.88 para VMEM_LOCK(vm);
270 1.91 para if (bt == NULL)
271 1.88 para break;
272 1.88 para LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
273 1.88 para vm->vm_nfreetags++;
274 1.88 para }
275 1.88 para
276 1.92 para if (vm->vm_nfreetags <= BT_MINRESERVE) {
277 1.66 para return ENOMEM;
278 1.66 para }
279 1.88 para
280 1.88 para if (kmem_meta_arena != NULL) {
281 1.101 ad VMEM_UNLOCK(vm);
282 1.94 chs (void)bt_refill(kmem_arena);
283 1.94 chs (void)bt_refill(kmem_va_meta_arena);
284 1.94 chs (void)bt_refill(kmem_meta_arena);
285 1.101 ad VMEM_LOCK(vm);
286 1.88 para }
287 1.66 para
288 1.66 para return 0;
289 1.66 para }
290 1.1 yamt
291 1.101 ad static int
292 1.101 ad bt_refill(vmem_t *vm)
293 1.101 ad {
294 1.101 ad int rv;
295 1.101 ad
296 1.101 ad VMEM_LOCK(vm);
297 1.101 ad rv = bt_refill_locked(vm);
298 1.101 ad VMEM_UNLOCK(vm);
299 1.101 ad return rv;
300 1.101 ad }
301 1.101 ad
302 1.88 para static bt_t *
303 1.17 yamt bt_alloc(vmem_t *vm, vm_flag_t flags)
304 1.1 yamt {
305 1.66 para bt_t *bt;
306 1.101 ad
307 1.101 ad VMEM_ASSERT_LOCKED(vm);
308 1.101 ad
309 1.88 para while (vm->vm_nfreetags <= BT_MINRESERVE && (flags & VM_POPULATING) == 0) {
310 1.101 ad if (bt_refill_locked(vm)) {
311 1.94 chs if ((flags & VM_NOSLEEP) != 0) {
312 1.94 chs return NULL;
313 1.94 chs }
314 1.94 chs
315 1.94 chs /*
316 1.94 chs * It would be nice to wait for something specific here
317 1.94 chs * but there are multiple ways that a retry could
318 1.94 chs * succeed and we can't wait for multiple things
319 1.94 chs * simultaneously. So we'll just sleep for an arbitrary
320 1.94 chs * short period of time and retry regardless.
321 1.94 chs * This should be a very rare case.
322 1.94 chs */
323 1.94 chs
324 1.94 chs vmem_kick_pdaemon();
325 1.101 ad kpause("btalloc", false, 1, &vm->vm_lock);
326 1.66 para }
327 1.66 para }
328 1.66 para bt = LIST_FIRST(&vm->vm_freetags);
329 1.66 para LIST_REMOVE(bt, bt_freelist);
330 1.66 para vm->vm_nfreetags--;
331 1.66 para
332 1.66 para return bt;
333 1.1 yamt }
334 1.1 yamt
335 1.88 para static void
336 1.17 yamt bt_free(vmem_t *vm, bt_t *bt)
337 1.1 yamt {
338 1.66 para
339 1.101 ad VMEM_ASSERT_LOCKED(vm);
340 1.101 ad
341 1.66 para LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
342 1.66 para vm->vm_nfreetags++;
343 1.88 para }
344 1.88 para
345 1.88 para static void
346 1.88 para bt_freetrim(vmem_t *vm, int freelimit)
347 1.88 para {
348 1.88 para bt_t *t;
349 1.88 para LIST_HEAD(, vmem_btag) tofree;
350 1.88 para
351 1.101 ad VMEM_ASSERT_LOCKED(vm);
352 1.101 ad
353 1.88 para LIST_INIT(&tofree);
354 1.88 para
355 1.88 para while (vm->vm_nfreetags > freelimit) {
356 1.88 para bt_t *bt = LIST_FIRST(&vm->vm_freetags);
357 1.66 para LIST_REMOVE(bt, bt_freelist);
358 1.66 para vm->vm_nfreetags--;
359 1.88 para if (bt >= static_bts
360 1.90 mlelstv && bt < &static_bts[STATIC_BT_COUNT]) {
361 1.88 para mutex_enter(&vmem_btag_lock);
362 1.88 para LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
363 1.88 para vmem_btag_freelist_count++;
364 1.88 para mutex_exit(&vmem_btag_lock);
365 1.88 para VMEM_EVCNT_DECR(static_bt_inuse);
366 1.88 para } else {
367 1.88 para LIST_INSERT_HEAD(&tofree, bt, bt_freelist);
368 1.88 para }
369 1.66 para }
370 1.88 para
371 1.66 para VMEM_UNLOCK(vm);
372 1.88 para while (!LIST_EMPTY(&tofree)) {
373 1.88 para t = LIST_FIRST(&tofree);
374 1.88 para LIST_REMOVE(t, bt_freelist);
375 1.88 para pool_put(&vmem_btag_pool, t);
376 1.88 para }
377 1.1 yamt }
378 1.67 rmind #endif /* defined(_KERNEL) */
379 1.62 rmind
380 1.1 yamt /*
381 1.67 rmind * freelist[0] ... [1, 1]
382 1.1 yamt * freelist[1] ... [2, 3]
383 1.1 yamt * freelist[2] ... [4, 7]
384 1.1 yamt * freelist[3] ... [8, 15]
385 1.1 yamt * :
386 1.1 yamt * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
387 1.1 yamt * :
388 1.1 yamt */
389 1.1 yamt
390 1.1 yamt static struct vmem_freelist *
391 1.1 yamt bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
392 1.1 yamt {
393 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
394 1.62 rmind const int idx = SIZE2ORDER(qsize);
395 1.1 yamt
396 1.109 riastrad KASSERT(size != 0);
397 1.109 riastrad KASSERT(qsize != 0);
398 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
399 1.1 yamt KASSERT(idx >= 0);
400 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
401 1.1 yamt
402 1.1 yamt return &vm->vm_freelist[idx];
403 1.1 yamt }
404 1.1 yamt
405 1.59 yamt /*
406 1.59 yamt * bt_freehead_toalloc: return the freelist for the given size and allocation
407 1.59 yamt * strategy.
408 1.59 yamt *
409 1.59 yamt * for VM_INSTANTFIT, return the list in which any blocks are large enough
410 1.59 yamt * for the requested size. otherwise, return the list which can have blocks
411 1.59 yamt * large enough for the requested size.
412 1.59 yamt */
413 1.59 yamt
414 1.1 yamt static struct vmem_freelist *
415 1.1 yamt bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
416 1.1 yamt {
417 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
418 1.62 rmind int idx = SIZE2ORDER(qsize);
419 1.1 yamt
420 1.109 riastrad KASSERT(size != 0);
421 1.109 riastrad KASSERT(qsize != 0);
422 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
423 1.1 yamt
424 1.4 yamt if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
425 1.1 yamt idx++;
426 1.1 yamt /* check too large request? */
427 1.1 yamt }
428 1.1 yamt KASSERT(idx >= 0);
429 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
430 1.1 yamt
431 1.1 yamt return &vm->vm_freelist[idx];
432 1.1 yamt }
433 1.1 yamt
434 1.1 yamt /* ---- boundary tag hash */
435 1.1 yamt
436 1.1 yamt static struct vmem_hashlist *
437 1.1 yamt bt_hashhead(vmem_t *vm, vmem_addr_t addr)
438 1.1 yamt {
439 1.1 yamt struct vmem_hashlist *list;
440 1.1 yamt unsigned int hash;
441 1.1 yamt
442 1.1 yamt hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
443 1.101 ad list = &vm->vm_hashlist[hash & vm->vm_hashmask];
444 1.1 yamt
445 1.1 yamt return list;
446 1.1 yamt }
447 1.1 yamt
448 1.1 yamt static bt_t *
449 1.1 yamt bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
450 1.1 yamt {
451 1.1 yamt struct vmem_hashlist *list;
452 1.1 yamt bt_t *bt;
453 1.1 yamt
454 1.95 msaitoh list = bt_hashhead(vm, addr);
455 1.1 yamt LIST_FOREACH(bt, list, bt_hashlist) {
456 1.1 yamt if (bt->bt_start == addr) {
457 1.1 yamt break;
458 1.1 yamt }
459 1.1 yamt }
460 1.1 yamt
461 1.1 yamt return bt;
462 1.1 yamt }
463 1.1 yamt
464 1.1 yamt static void
465 1.1 yamt bt_rembusy(vmem_t *vm, bt_t *bt)
466 1.1 yamt {
467 1.1 yamt
468 1.1 yamt KASSERT(vm->vm_nbusytag > 0);
469 1.73 para vm->vm_inuse -= bt->bt_size;
470 1.1 yamt vm->vm_nbusytag--;
471 1.1 yamt LIST_REMOVE(bt, bt_hashlist);
472 1.1 yamt }
473 1.1 yamt
474 1.1 yamt static void
475 1.1 yamt bt_insbusy(vmem_t *vm, bt_t *bt)
476 1.1 yamt {
477 1.1 yamt struct vmem_hashlist *list;
478 1.1 yamt
479 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
480 1.1 yamt
481 1.1 yamt list = bt_hashhead(vm, bt->bt_start);
482 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_hashlist);
483 1.101 ad if (++vm->vm_nbusytag > vm->vm_maxbusytag) {
484 1.101 ad vm->vm_maxbusytag = vm->vm_nbusytag;
485 1.101 ad }
486 1.73 para vm->vm_inuse += bt->bt_size;
487 1.1 yamt }
488 1.1 yamt
489 1.1 yamt /* ---- boundary tag list */
490 1.1 yamt
491 1.1 yamt static void
492 1.1 yamt bt_remseg(vmem_t *vm, bt_t *bt)
493 1.1 yamt {
494 1.1 yamt
495 1.87 christos TAILQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
496 1.1 yamt }
497 1.1 yamt
498 1.1 yamt static void
499 1.1 yamt bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
500 1.1 yamt {
501 1.1 yamt
502 1.87 christos TAILQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
503 1.1 yamt }
504 1.1 yamt
505 1.1 yamt static void
506 1.1 yamt bt_insseg_tail(vmem_t *vm, bt_t *bt)
507 1.1 yamt {
508 1.1 yamt
509 1.87 christos TAILQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
510 1.1 yamt }
511 1.1 yamt
512 1.1 yamt static void
513 1.17 yamt bt_remfree(vmem_t *vm, bt_t *bt)
514 1.1 yamt {
515 1.1 yamt
516 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
517 1.1 yamt
518 1.1 yamt LIST_REMOVE(bt, bt_freelist);
519 1.1 yamt }
520 1.1 yamt
521 1.1 yamt static void
522 1.1 yamt bt_insfree(vmem_t *vm, bt_t *bt)
523 1.1 yamt {
524 1.1 yamt struct vmem_freelist *list;
525 1.1 yamt
526 1.1 yamt list = bt_freehead_tofree(vm, bt->bt_size);
527 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_freelist);
528 1.1 yamt }
529 1.1 yamt
530 1.1 yamt /* ---- vmem internal functions */
531 1.1 yamt
532 1.5 yamt #if defined(QCACHE)
533 1.5 yamt static inline vm_flag_t
534 1.5 yamt prf_to_vmf(int prflags)
535 1.5 yamt {
536 1.5 yamt vm_flag_t vmflags;
537 1.5 yamt
538 1.5 yamt KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
539 1.5 yamt if ((prflags & PR_WAITOK) != 0) {
540 1.5 yamt vmflags = VM_SLEEP;
541 1.5 yamt } else {
542 1.5 yamt vmflags = VM_NOSLEEP;
543 1.5 yamt }
544 1.5 yamt return vmflags;
545 1.5 yamt }
546 1.5 yamt
547 1.5 yamt static inline int
548 1.5 yamt vmf_to_prf(vm_flag_t vmflags)
549 1.5 yamt {
550 1.5 yamt int prflags;
551 1.5 yamt
552 1.7 yamt if ((vmflags & VM_SLEEP) != 0) {
553 1.5 yamt prflags = PR_WAITOK;
554 1.7 yamt } else {
555 1.5 yamt prflags = PR_NOWAIT;
556 1.5 yamt }
557 1.5 yamt return prflags;
558 1.5 yamt }
559 1.5 yamt
560 1.5 yamt static size_t
561 1.5 yamt qc_poolpage_size(size_t qcache_max)
562 1.5 yamt {
563 1.5 yamt int i;
564 1.5 yamt
565 1.5 yamt for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
566 1.5 yamt /* nothing */
567 1.5 yamt }
568 1.5 yamt return ORDER2SIZE(i);
569 1.5 yamt }
570 1.5 yamt
571 1.5 yamt static void *
572 1.5 yamt qc_poolpage_alloc(struct pool *pool, int prflags)
573 1.5 yamt {
574 1.5 yamt qcache_t *qc = QC_POOL_TO_QCACHE(pool);
575 1.5 yamt vmem_t *vm = qc->qc_vmem;
576 1.61 dyoung vmem_addr_t addr;
577 1.5 yamt
578 1.61 dyoung if (vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
579 1.61 dyoung prf_to_vmf(prflags) | VM_INSTANTFIT, &addr) != 0)
580 1.61 dyoung return NULL;
581 1.61 dyoung return (void *)addr;
582 1.5 yamt }
583 1.5 yamt
584 1.5 yamt static void
585 1.5 yamt qc_poolpage_free(struct pool *pool, void *addr)
586 1.5 yamt {
587 1.5 yamt qcache_t *qc = QC_POOL_TO_QCACHE(pool);
588 1.5 yamt vmem_t *vm = qc->qc_vmem;
589 1.5 yamt
590 1.5 yamt vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
591 1.5 yamt }
592 1.5 yamt
593 1.5 yamt static void
594 1.31 ad qc_init(vmem_t *vm, size_t qcache_max, int ipl)
595 1.5 yamt {
596 1.22 yamt qcache_t *prevqc;
597 1.5 yamt struct pool_allocator *pa;
598 1.5 yamt int qcache_idx_max;
599 1.5 yamt int i;
600 1.5 yamt
601 1.5 yamt KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
602 1.5 yamt if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
603 1.5 yamt qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
604 1.5 yamt }
605 1.5 yamt vm->vm_qcache_max = qcache_max;
606 1.5 yamt pa = &vm->vm_qcache_allocator;
607 1.5 yamt memset(pa, 0, sizeof(*pa));
608 1.5 yamt pa->pa_alloc = qc_poolpage_alloc;
609 1.5 yamt pa->pa_free = qc_poolpage_free;
610 1.5 yamt pa->pa_pagesz = qc_poolpage_size(qcache_max);
611 1.5 yamt
612 1.5 yamt qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
613 1.22 yamt prevqc = NULL;
614 1.22 yamt for (i = qcache_idx_max; i > 0; i--) {
615 1.22 yamt qcache_t *qc = &vm->vm_qcache_store[i - 1];
616 1.5 yamt size_t size = i << vm->vm_quantum_shift;
617 1.66 para pool_cache_t pc;
618 1.5 yamt
619 1.5 yamt qc->qc_vmem = vm;
620 1.8 martin snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
621 1.5 yamt vm->vm_name, size);
622 1.66 para
623 1.80 para pc = pool_cache_init(size,
624 1.80 para ORDER2SIZE(vm->vm_quantum_shift), 0,
625 1.80 para PR_NOALIGN | PR_NOTOUCH | PR_RECURSIVE /* XXX */,
626 1.80 para qc->qc_name, pa, ipl, NULL, NULL, NULL);
627 1.80 para
628 1.80 para KASSERT(pc);
629 1.80 para
630 1.66 para qc->qc_cache = pc;
631 1.35 ad KASSERT(qc->qc_cache != NULL); /* XXX */
632 1.22 yamt if (prevqc != NULL &&
633 1.35 ad qc->qc_cache->pc_pool.pr_itemsperpage ==
634 1.35 ad prevqc->qc_cache->pc_pool.pr_itemsperpage) {
635 1.80 para pool_cache_destroy(qc->qc_cache);
636 1.22 yamt vm->vm_qcache[i - 1] = prevqc;
637 1.27 ad continue;
638 1.22 yamt }
639 1.35 ad qc->qc_cache->pc_pool.pr_qcache = qc;
640 1.22 yamt vm->vm_qcache[i - 1] = qc;
641 1.22 yamt prevqc = qc;
642 1.5 yamt }
643 1.5 yamt }
644 1.6 yamt
645 1.23 yamt static void
646 1.23 yamt qc_destroy(vmem_t *vm)
647 1.23 yamt {
648 1.23 yamt const qcache_t *prevqc;
649 1.23 yamt int i;
650 1.23 yamt int qcache_idx_max;
651 1.23 yamt
652 1.23 yamt qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
653 1.23 yamt prevqc = NULL;
654 1.24 yamt for (i = 0; i < qcache_idx_max; i++) {
655 1.24 yamt qcache_t *qc = vm->vm_qcache[i];
656 1.23 yamt
657 1.23 yamt if (prevqc == qc) {
658 1.23 yamt continue;
659 1.23 yamt }
660 1.80 para pool_cache_destroy(qc->qc_cache);
661 1.23 yamt prevqc = qc;
662 1.23 yamt }
663 1.23 yamt }
664 1.66 para #endif
665 1.23 yamt
666 1.66 para #if defined(_KERNEL)
667 1.80 para static void
668 1.66 para vmem_bootstrap(void)
669 1.6 yamt {
670 1.6 yamt
671 1.103 ad mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_NONE);
672 1.66 para mutex_init(&vmem_btag_lock, MUTEX_DEFAULT, IPL_VM);
673 1.88 para mutex_init(&vmem_btag_refill_lock, MUTEX_DEFAULT, IPL_VM);
674 1.6 yamt
675 1.66 para while (static_bt_count-- > 0) {
676 1.66 para bt_t *bt = &static_bts[static_bt_count];
677 1.66 para LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
678 1.88 para VMEM_EVCNT_INCR(static_bt_count);
679 1.66 para vmem_btag_freelist_count++;
680 1.6 yamt }
681 1.80 para vmem_bootstrapped = TRUE;
682 1.6 yamt }
683 1.5 yamt
684 1.66 para void
685 1.80 para vmem_subsystem_init(vmem_t *vm)
686 1.1 yamt {
687 1.1 yamt
688 1.80 para kmem_va_meta_arena = vmem_init(&kmem_va_meta_arena_store, "vmem-va",
689 1.80 para 0, 0, PAGE_SIZE, vmem_alloc, vmem_free, vm,
690 1.66 para 0, VM_NOSLEEP | VM_BOOTSTRAP | VM_LARGEIMPORT,
691 1.66 para IPL_VM);
692 1.66 para
693 1.80 para kmem_meta_arena = vmem_init(&kmem_meta_arena_store, "vmem-meta",
694 1.80 para 0, 0, PAGE_SIZE,
695 1.66 para uvm_km_kmem_alloc, uvm_km_kmem_free, kmem_va_meta_arena,
696 1.66 para 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
697 1.88 para
698 1.101 ad pool_init(&vmem_btag_pool, sizeof(bt_t), coherency_unit, 0,
699 1.101 ad PR_PHINPAGE, "vmembt", &pool_allocator_vmem_meta, IPL_VM);
700 1.1 yamt }
701 1.1 yamt #endif /* defined(_KERNEL) */
702 1.1 yamt
703 1.61 dyoung static int
704 1.1 yamt vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
705 1.1 yamt int spanbttype)
706 1.1 yamt {
707 1.1 yamt bt_t *btspan;
708 1.1 yamt bt_t *btfree;
709 1.1 yamt
710 1.101 ad VMEM_ASSERT_LOCKED(vm);
711 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
712 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
713 1.58 yamt KASSERT(spanbttype == BT_TYPE_SPAN ||
714 1.58 yamt spanbttype == BT_TYPE_SPAN_STATIC);
715 1.1 yamt
716 1.1 yamt btspan = bt_alloc(vm, flags);
717 1.1 yamt if (btspan == NULL) {
718 1.61 dyoung return ENOMEM;
719 1.1 yamt }
720 1.1 yamt btfree = bt_alloc(vm, flags);
721 1.1 yamt if (btfree == NULL) {
722 1.1 yamt bt_free(vm, btspan);
723 1.61 dyoung return ENOMEM;
724 1.1 yamt }
725 1.1 yamt
726 1.1 yamt btspan->bt_type = spanbttype;
727 1.1 yamt btspan->bt_start = addr;
728 1.1 yamt btspan->bt_size = size;
729 1.1 yamt
730 1.1 yamt btfree->bt_type = BT_TYPE_FREE;
731 1.1 yamt btfree->bt_start = addr;
732 1.1 yamt btfree->bt_size = size;
733 1.1 yamt
734 1.1 yamt bt_insseg_tail(vm, btspan);
735 1.1 yamt bt_insseg(vm, btfree, btspan);
736 1.1 yamt bt_insfree(vm, btfree);
737 1.66 para vm->vm_size += size;
738 1.1 yamt
739 1.61 dyoung return 0;
740 1.1 yamt }
741 1.1 yamt
742 1.30 yamt static void
743 1.30 yamt vmem_destroy1(vmem_t *vm)
744 1.30 yamt {
745 1.30 yamt
746 1.30 yamt #if defined(QCACHE)
747 1.30 yamt qc_destroy(vm);
748 1.30 yamt #endif /* defined(QCACHE) */
749 1.101 ad VMEM_LOCK(vm);
750 1.30 yamt
751 1.101 ad for (int i = 0; i < vm->vm_hashsize; i++) {
752 1.101 ad bt_t *bt;
753 1.30 yamt
754 1.101 ad while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
755 1.101 ad KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
756 1.101 ad LIST_REMOVE(bt, bt_hashlist);
757 1.101 ad bt_free(vm, bt);
758 1.66 para }
759 1.66 para }
760 1.66 para
761 1.101 ad /* bt_freetrim() drops the lock. */
762 1.88 para bt_freetrim(vm, 0);
763 1.101 ad if (vm->vm_hashlist != &vm->vm_hash0) {
764 1.101 ad xfree(vm->vm_hashlist,
765 1.101 ad sizeof(struct vmem_hashlist) * vm->vm_hashsize);
766 1.101 ad }
767 1.66 para
768 1.80 para VMEM_CONDVAR_DESTROY(vm);
769 1.31 ad VMEM_LOCK_DESTROY(vm);
770 1.66 para xfree(vm, sizeof(*vm));
771 1.30 yamt }
772 1.30 yamt
773 1.1 yamt static int
774 1.1 yamt vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
775 1.1 yamt {
776 1.1 yamt vmem_addr_t addr;
777 1.61 dyoung int rc;
778 1.1 yamt
779 1.101 ad VMEM_ASSERT_LOCKED(vm);
780 1.101 ad
781 1.61 dyoung if (vm->vm_importfn == NULL) {
782 1.1 yamt return EINVAL;
783 1.1 yamt }
784 1.1 yamt
785 1.66 para if (vm->vm_flags & VM_LARGEIMPORT) {
786 1.80 para size *= 16;
787 1.66 para }
788 1.66 para
789 1.101 ad VMEM_UNLOCK(vm);
790 1.66 para if (vm->vm_flags & VM_XIMPORT) {
791 1.99 christos rc = __FPTRCAST(vmem_ximport_t *, vm->vm_importfn)(vm->vm_arg,
792 1.98 christos size, &size, flags, &addr);
793 1.66 para } else {
794 1.66 para rc = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr);
795 1.69 rmind }
796 1.101 ad VMEM_LOCK(vm);
797 1.101 ad
798 1.69 rmind if (rc) {
799 1.69 rmind return ENOMEM;
800 1.1 yamt }
801 1.1 yamt
802 1.61 dyoung if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) != 0) {
803 1.101 ad VMEM_UNLOCK(vm);
804 1.61 dyoung (*vm->vm_releasefn)(vm->vm_arg, addr, size);
805 1.101 ad VMEM_LOCK(vm);
806 1.1 yamt return ENOMEM;
807 1.1 yamt }
808 1.1 yamt
809 1.1 yamt return 0;
810 1.1 yamt }
811 1.1 yamt
812 1.110 thorpej #if defined(_KERNEL)
813 1.1 yamt static int
814 1.1 yamt vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
815 1.1 yamt {
816 1.1 yamt bt_t *bt;
817 1.1 yamt int i;
818 1.1 yamt struct vmem_hashlist *newhashlist;
819 1.1 yamt struct vmem_hashlist *oldhashlist;
820 1.1 yamt size_t oldhashsize;
821 1.1 yamt
822 1.1 yamt KASSERT(newhashsize > 0);
823 1.1 yamt
824 1.101 ad /* Round hash size up to a power of 2. */
825 1.101 ad newhashsize = 1 << (ilog2(newhashsize) + 1);
826 1.101 ad
827 1.1 yamt newhashlist =
828 1.101 ad xmalloc(sizeof(struct vmem_hashlist) * newhashsize, flags);
829 1.1 yamt if (newhashlist == NULL) {
830 1.1 yamt return ENOMEM;
831 1.1 yamt }
832 1.1 yamt for (i = 0; i < newhashsize; i++) {
833 1.1 yamt LIST_INIT(&newhashlist[i]);
834 1.1 yamt }
835 1.1 yamt
836 1.101 ad VMEM_LOCK(vm);
837 1.101 ad /* Decay back to a small hash slowly. */
838 1.101 ad if (vm->vm_maxbusytag >= 2) {
839 1.101 ad vm->vm_maxbusytag = vm->vm_maxbusytag / 2 - 1;
840 1.101 ad if (vm->vm_nbusytag > vm->vm_maxbusytag) {
841 1.101 ad vm->vm_maxbusytag = vm->vm_nbusytag;
842 1.101 ad }
843 1.101 ad } else {
844 1.101 ad vm->vm_maxbusytag = vm->vm_nbusytag;
845 1.30 yamt }
846 1.1 yamt oldhashlist = vm->vm_hashlist;
847 1.1 yamt oldhashsize = vm->vm_hashsize;
848 1.1 yamt vm->vm_hashlist = newhashlist;
849 1.1 yamt vm->vm_hashsize = newhashsize;
850 1.101 ad vm->vm_hashmask = newhashsize - 1;
851 1.1 yamt if (oldhashlist == NULL) {
852 1.1 yamt VMEM_UNLOCK(vm);
853 1.1 yamt return 0;
854 1.1 yamt }
855 1.1 yamt for (i = 0; i < oldhashsize; i++) {
856 1.1 yamt while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
857 1.1 yamt bt_rembusy(vm, bt); /* XXX */
858 1.1 yamt bt_insbusy(vm, bt);
859 1.1 yamt }
860 1.1 yamt }
861 1.1 yamt VMEM_UNLOCK(vm);
862 1.1 yamt
863 1.66 para if (oldhashlist != &vm->vm_hash0) {
864 1.66 para xfree(oldhashlist,
865 1.101 ad sizeof(struct vmem_hashlist) * oldhashsize);
866 1.66 para }
867 1.1 yamt
868 1.1 yamt return 0;
869 1.1 yamt }
870 1.110 thorpej #endif /* _KERNEL */
871 1.1 yamt
872 1.10 yamt /*
873 1.10 yamt * vmem_fit: check if a bt can satisfy the given restrictions.
874 1.59 yamt *
875 1.59 yamt * it's a caller's responsibility to ensure the region is big enough
876 1.59 yamt * before calling us.
877 1.10 yamt */
878 1.10 yamt
879 1.61 dyoung static int
880 1.76 joerg vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align,
881 1.60 dyoung vmem_size_t phase, vmem_size_t nocross,
882 1.61 dyoung vmem_addr_t minaddr, vmem_addr_t maxaddr, vmem_addr_t *addrp)
883 1.10 yamt {
884 1.10 yamt vmem_addr_t start;
885 1.10 yamt vmem_addr_t end;
886 1.10 yamt
887 1.60 dyoung KASSERT(size > 0);
888 1.59 yamt KASSERT(bt->bt_size >= size); /* caller's responsibility */
889 1.10 yamt
890 1.10 yamt /*
891 1.10 yamt * XXX assumption: vmem_addr_t and vmem_size_t are
892 1.10 yamt * unsigned integer of the same size.
893 1.10 yamt */
894 1.10 yamt
895 1.10 yamt start = bt->bt_start;
896 1.10 yamt if (start < minaddr) {
897 1.10 yamt start = minaddr;
898 1.10 yamt }
899 1.10 yamt end = BT_END(bt);
900 1.60 dyoung if (end > maxaddr) {
901 1.60 dyoung end = maxaddr;
902 1.10 yamt }
903 1.60 dyoung if (start > end) {
904 1.61 dyoung return ENOMEM;
905 1.10 yamt }
906 1.19 yamt
907 1.19 yamt start = VMEM_ALIGNUP(start - phase, align) + phase;
908 1.10 yamt if (start < bt->bt_start) {
909 1.10 yamt start += align;
910 1.10 yamt }
911 1.19 yamt if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
912 1.10 yamt KASSERT(align < nocross);
913 1.19 yamt start = VMEM_ALIGNUP(start - phase, nocross) + phase;
914 1.10 yamt }
915 1.60 dyoung if (start <= end && end - start >= size - 1) {
916 1.10 yamt KASSERT((start & (align - 1)) == phase);
917 1.19 yamt KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
918 1.10 yamt KASSERT(minaddr <= start);
919 1.60 dyoung KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr);
920 1.10 yamt KASSERT(bt->bt_start <= start);
921 1.60 dyoung KASSERT(BT_END(bt) - start >= size - 1);
922 1.61 dyoung *addrp = start;
923 1.61 dyoung return 0;
924 1.10 yamt }
925 1.61 dyoung return ENOMEM;
926 1.10 yamt }
927 1.10 yamt
928 1.80 para /* ---- vmem API */
929 1.1 yamt
930 1.1 yamt /*
931 1.102 ad * vmem_init: creates a vmem arena.
932 1.1 yamt */
933 1.1 yamt
934 1.80 para vmem_t *
935 1.80 para vmem_init(vmem_t *vm, const char *name,
936 1.80 para vmem_addr_t base, vmem_size_t size, vmem_size_t quantum,
937 1.80 para vmem_import_t *importfn, vmem_release_t *releasefn,
938 1.80 para vmem_t *arg, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
939 1.1 yamt {
940 1.1 yamt int i;
941 1.1 yamt
942 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
943 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
944 1.62 rmind KASSERT(quantum > 0);
945 1.1 yamt
946 1.1 yamt #if defined(_KERNEL)
947 1.80 para /* XXX: SMP, we get called early... */
948 1.80 para if (!vmem_bootstrapped) {
949 1.80 para vmem_bootstrap();
950 1.80 para }
951 1.66 para #endif /* defined(_KERNEL) */
952 1.80 para
953 1.80 para if (vm == NULL) {
954 1.66 para vm = xmalloc(sizeof(*vm), flags);
955 1.1 yamt }
956 1.1 yamt if (vm == NULL) {
957 1.1 yamt return NULL;
958 1.1 yamt }
959 1.1 yamt
960 1.66 para VMEM_CONDVAR_INIT(vm, "vmem");
961 1.31 ad VMEM_LOCK_INIT(vm, ipl);
962 1.66 para vm->vm_flags = flags;
963 1.66 para vm->vm_nfreetags = 0;
964 1.66 para LIST_INIT(&vm->vm_freetags);
965 1.64 yamt strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
966 1.1 yamt vm->vm_quantum_mask = quantum - 1;
967 1.62 rmind vm->vm_quantum_shift = SIZE2ORDER(quantum);
968 1.4 yamt KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
969 1.61 dyoung vm->vm_importfn = importfn;
970 1.61 dyoung vm->vm_releasefn = releasefn;
971 1.61 dyoung vm->vm_arg = arg;
972 1.1 yamt vm->vm_nbusytag = 0;
973 1.101 ad vm->vm_maxbusytag = 0;
974 1.66 para vm->vm_size = 0;
975 1.66 para vm->vm_inuse = 0;
976 1.5 yamt #if defined(QCACHE)
977 1.31 ad qc_init(vm, qcache_max, ipl);
978 1.5 yamt #endif /* defined(QCACHE) */
979 1.1 yamt
980 1.87 christos TAILQ_INIT(&vm->vm_seglist);
981 1.1 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
982 1.1 yamt LIST_INIT(&vm->vm_freelist[i]);
983 1.1 yamt }
984 1.101 ad memset(&vm->vm_hash0, 0, sizeof(vm->vm_hash0));
985 1.80 para vm->vm_hashsize = 1;
986 1.101 ad vm->vm_hashmask = vm->vm_hashsize - 1;
987 1.80 para vm->vm_hashlist = &vm->vm_hash0;
988 1.1 yamt
989 1.1 yamt if (size != 0) {
990 1.61 dyoung if (vmem_add(vm, base, size, flags) != 0) {
991 1.30 yamt vmem_destroy1(vm);
992 1.1 yamt return NULL;
993 1.1 yamt }
994 1.1 yamt }
995 1.1 yamt
996 1.30 yamt #if defined(_KERNEL)
997 1.66 para if (flags & VM_BOOTSTRAP) {
998 1.94 chs bt_refill(vm);
999 1.66 para }
1000 1.66 para
1001 1.30 yamt mutex_enter(&vmem_list_lock);
1002 1.30 yamt LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
1003 1.30 yamt mutex_exit(&vmem_list_lock);
1004 1.30 yamt #endif /* defined(_KERNEL) */
1005 1.30 yamt
1006 1.1 yamt return vm;
1007 1.1 yamt }
1008 1.1 yamt
1009 1.66 para
1010 1.66 para
1011 1.66 para /*
1012 1.66 para * vmem_create: create an arena.
1013 1.66 para *
1014 1.66 para * => must not be called from interrupt context.
1015 1.66 para */
1016 1.66 para
1017 1.66 para vmem_t *
1018 1.66 para vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
1019 1.66 para vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn,
1020 1.67 rmind vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
1021 1.66 para {
1022 1.66 para
1023 1.66 para KASSERT((flags & (VM_XIMPORT)) == 0);
1024 1.66 para
1025 1.80 para return vmem_init(NULL, name, base, size, quantum,
1026 1.66 para importfn, releasefn, source, qcache_max, flags, ipl);
1027 1.66 para }
1028 1.66 para
1029 1.66 para /*
1030 1.66 para * vmem_xcreate: create an arena takes alternative import func.
1031 1.66 para *
1032 1.66 para * => must not be called from interrupt context.
1033 1.66 para */
1034 1.66 para
1035 1.66 para vmem_t *
1036 1.66 para vmem_xcreate(const char *name, vmem_addr_t base, vmem_size_t size,
1037 1.66 para vmem_size_t quantum, vmem_ximport_t *importfn, vmem_release_t *releasefn,
1038 1.67 rmind vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
1039 1.66 para {
1040 1.66 para
1041 1.66 para KASSERT((flags & (VM_XIMPORT)) == 0);
1042 1.66 para
1043 1.80 para return vmem_init(NULL, name, base, size, quantum,
1044 1.99 christos __FPTRCAST(vmem_import_t *, importfn), releasefn, source,
1045 1.66 para qcache_max, flags | VM_XIMPORT, ipl);
1046 1.66 para }
1047 1.66 para
1048 1.1 yamt void
1049 1.1 yamt vmem_destroy(vmem_t *vm)
1050 1.1 yamt {
1051 1.1 yamt
1052 1.30 yamt #if defined(_KERNEL)
1053 1.30 yamt mutex_enter(&vmem_list_lock);
1054 1.30 yamt LIST_REMOVE(vm, vm_alllist);
1055 1.30 yamt mutex_exit(&vmem_list_lock);
1056 1.30 yamt #endif /* defined(_KERNEL) */
1057 1.1 yamt
1058 1.30 yamt vmem_destroy1(vm);
1059 1.1 yamt }
1060 1.1 yamt
1061 1.1 yamt vmem_size_t
1062 1.1 yamt vmem_roundup_size(vmem_t *vm, vmem_size_t size)
1063 1.1 yamt {
1064 1.1 yamt
1065 1.1 yamt return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
1066 1.1 yamt }
1067 1.1 yamt
1068 1.1 yamt /*
1069 1.83 yamt * vmem_alloc: allocate resource from the arena.
1070 1.1 yamt */
1071 1.1 yamt
1072 1.61 dyoung int
1073 1.61 dyoung vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags, vmem_addr_t *addrp)
1074 1.1 yamt {
1075 1.86 martin const vm_flag_t strat __diagused = flags & VM_FITMASK;
1076 1.96 chs int error;
1077 1.1 yamt
1078 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1079 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1080 1.1 yamt
1081 1.1 yamt KASSERT(size > 0);
1082 1.1 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1083 1.3 yamt if ((flags & VM_SLEEP) != 0) {
1084 1.42 yamt ASSERT_SLEEPABLE();
1085 1.3 yamt }
1086 1.1 yamt
1087 1.5 yamt #if defined(QCACHE)
1088 1.5 yamt if (size <= vm->vm_qcache_max) {
1089 1.61 dyoung void *p;
1090 1.38 yamt int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1091 1.22 yamt qcache_t *qc = vm->vm_qcache[qidx - 1];
1092 1.5 yamt
1093 1.61 dyoung p = pool_cache_get(qc->qc_cache, vmf_to_prf(flags));
1094 1.61 dyoung if (addrp != NULL)
1095 1.61 dyoung *addrp = (vmem_addr_t)p;
1096 1.96 chs error = (p == NULL) ? ENOMEM : 0;
1097 1.96 chs goto out;
1098 1.5 yamt }
1099 1.5 yamt #endif /* defined(QCACHE) */
1100 1.5 yamt
1101 1.96 chs error = vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
1102 1.61 dyoung flags, addrp);
1103 1.110 thorpej #if defined(QCACHE)
1104 1.110 thorpej out:
1105 1.110 thorpej #endif /* defined(QCACHE) */
1106 1.107 riastrad KASSERTMSG(error || addrp == NULL ||
1107 1.107 riastrad (*addrp & vm->vm_quantum_mask) == 0,
1108 1.107 riastrad "vmem %s mask=0x%jx addr=0x%jx",
1109 1.107 riastrad vm->vm_name, (uintmax_t)vm->vm_quantum_mask, (uintmax_t)*addrp);
1110 1.96 chs KASSERT(error == 0 || (flags & VM_SLEEP) == 0);
1111 1.96 chs return error;
1112 1.10 yamt }
1113 1.10 yamt
1114 1.61 dyoung int
1115 1.111 thorpej vmem_xalloc_addr(vmem_t *vm, const vmem_addr_t addr, const vmem_size_t size,
1116 1.111 thorpej vm_flag_t flags)
1117 1.111 thorpej {
1118 1.111 thorpej vmem_addr_t result;
1119 1.111 thorpej int error;
1120 1.111 thorpej
1121 1.111 thorpej KASSERT((addr & vm->vm_quantum_mask) == 0);
1122 1.111 thorpej KASSERT(size != 0);
1123 1.111 thorpej
1124 1.111 thorpej flags = (flags & ~VM_INSTANTFIT) | VM_BESTFIT;
1125 1.111 thorpej
1126 1.111 thorpej error = vmem_xalloc(vm, size, 0, 0, 0, addr, addr + size - 1,
1127 1.111 thorpej flags, &result);
1128 1.111 thorpej
1129 1.111 thorpej KASSERT(error || result == addr);
1130 1.111 thorpej KASSERT(error == 0 || (flags & VM_SLEEP) == 0);
1131 1.111 thorpej return error;
1132 1.111 thorpej }
1133 1.111 thorpej
1134 1.111 thorpej int
1135 1.60 dyoung vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
1136 1.60 dyoung const vmem_size_t phase, const vmem_size_t nocross,
1137 1.61 dyoung const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags,
1138 1.61 dyoung vmem_addr_t *addrp)
1139 1.10 yamt {
1140 1.10 yamt struct vmem_freelist *list;
1141 1.10 yamt struct vmem_freelist *first;
1142 1.10 yamt struct vmem_freelist *end;
1143 1.10 yamt bt_t *bt;
1144 1.10 yamt bt_t *btnew;
1145 1.10 yamt bt_t *btnew2;
1146 1.10 yamt const vmem_size_t size = vmem_roundup_size(vm, size0);
1147 1.10 yamt vm_flag_t strat = flags & VM_FITMASK;
1148 1.10 yamt vmem_addr_t start;
1149 1.61 dyoung int rc;
1150 1.10 yamt
1151 1.10 yamt KASSERT(size0 > 0);
1152 1.10 yamt KASSERT(size > 0);
1153 1.10 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1154 1.10 yamt if ((flags & VM_SLEEP) != 0) {
1155 1.42 yamt ASSERT_SLEEPABLE();
1156 1.10 yamt }
1157 1.10 yamt KASSERT((align & vm->vm_quantum_mask) == 0);
1158 1.10 yamt KASSERT((align & (align - 1)) == 0);
1159 1.10 yamt KASSERT((phase & vm->vm_quantum_mask) == 0);
1160 1.10 yamt KASSERT((nocross & vm->vm_quantum_mask) == 0);
1161 1.10 yamt KASSERT((nocross & (nocross - 1)) == 0);
1162 1.109 riastrad KASSERT(align == 0 || phase < align);
1163 1.109 riastrad KASSERT(phase == 0 || phase < align);
1164 1.10 yamt KASSERT(nocross == 0 || nocross >= size);
1165 1.60 dyoung KASSERT(minaddr <= maxaddr);
1166 1.19 yamt KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
1167 1.10 yamt
1168 1.10 yamt if (align == 0) {
1169 1.10 yamt align = vm->vm_quantum_mask + 1;
1170 1.10 yamt }
1171 1.59 yamt
1172 1.59 yamt /*
1173 1.59 yamt * allocate boundary tags before acquiring the vmem lock.
1174 1.59 yamt */
1175 1.101 ad VMEM_LOCK(vm);
1176 1.1 yamt btnew = bt_alloc(vm, flags);
1177 1.1 yamt if (btnew == NULL) {
1178 1.101 ad VMEM_UNLOCK(vm);
1179 1.61 dyoung return ENOMEM;
1180 1.1 yamt }
1181 1.10 yamt btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
1182 1.10 yamt if (btnew2 == NULL) {
1183 1.10 yamt bt_free(vm, btnew);
1184 1.101 ad VMEM_UNLOCK(vm);
1185 1.61 dyoung return ENOMEM;
1186 1.10 yamt }
1187 1.1 yamt
1188 1.59 yamt /*
1189 1.59 yamt * choose a free block from which we allocate.
1190 1.59 yamt */
1191 1.1 yamt retry_strat:
1192 1.1 yamt first = bt_freehead_toalloc(vm, size, strat);
1193 1.1 yamt end = &vm->vm_freelist[VMEM_MAXORDER];
1194 1.1 yamt retry:
1195 1.1 yamt bt = NULL;
1196 1.55 yamt vmem_check(vm);
1197 1.2 yamt if (strat == VM_INSTANTFIT) {
1198 1.59 yamt /*
1199 1.59 yamt * just choose the first block which satisfies our restrictions.
1200 1.59 yamt *
1201 1.59 yamt * note that we don't need to check the size of the blocks
1202 1.59 yamt * because any blocks found on these list should be larger than
1203 1.59 yamt * the given size.
1204 1.59 yamt */
1205 1.2 yamt for (list = first; list < end; list++) {
1206 1.2 yamt bt = LIST_FIRST(list);
1207 1.2 yamt if (bt != NULL) {
1208 1.61 dyoung rc = vmem_fit(bt, size, align, phase,
1209 1.61 dyoung nocross, minaddr, maxaddr, &start);
1210 1.61 dyoung if (rc == 0) {
1211 1.10 yamt goto gotit;
1212 1.10 yamt }
1213 1.59 yamt /*
1214 1.59 yamt * don't bother to follow the bt_freelist link
1215 1.59 yamt * here. the list can be very long and we are
1216 1.59 yamt * told to run fast. blocks from the later free
1217 1.59 yamt * lists are larger and have better chances to
1218 1.59 yamt * satisfy our restrictions.
1219 1.59 yamt */
1220 1.2 yamt }
1221 1.2 yamt }
1222 1.2 yamt } else { /* VM_BESTFIT */
1223 1.59 yamt /*
1224 1.59 yamt * we assume that, for space efficiency, it's better to
1225 1.59 yamt * allocate from a smaller block. thus we will start searching
1226 1.59 yamt * from the lower-order list than VM_INSTANTFIT.
1227 1.59 yamt * however, don't bother to find the smallest block in a free
1228 1.59 yamt * list because the list can be very long. we can revisit it
1229 1.59 yamt * if/when it turns out to be a problem.
1230 1.59 yamt *
1231 1.59 yamt * note that the 'first' list can contain blocks smaller than
1232 1.59 yamt * the requested size. thus we need to check bt_size.
1233 1.59 yamt */
1234 1.2 yamt for (list = first; list < end; list++) {
1235 1.2 yamt LIST_FOREACH(bt, list, bt_freelist) {
1236 1.2 yamt if (bt->bt_size >= size) {
1237 1.61 dyoung rc = vmem_fit(bt, size, align, phase,
1238 1.61 dyoung nocross, minaddr, maxaddr, &start);
1239 1.61 dyoung if (rc == 0) {
1240 1.10 yamt goto gotit;
1241 1.10 yamt }
1242 1.2 yamt }
1243 1.1 yamt }
1244 1.1 yamt }
1245 1.1 yamt }
1246 1.1 yamt #if 1
1247 1.2 yamt if (strat == VM_INSTANTFIT) {
1248 1.2 yamt strat = VM_BESTFIT;
1249 1.2 yamt goto retry_strat;
1250 1.2 yamt }
1251 1.1 yamt #endif
1252 1.69 rmind if (align != vm->vm_quantum_mask + 1 || phase != 0 || nocross != 0) {
1253 1.10 yamt
1254 1.10 yamt /*
1255 1.10 yamt * XXX should try to import a region large enough to
1256 1.10 yamt * satisfy restrictions?
1257 1.10 yamt */
1258 1.10 yamt
1259 1.20 yamt goto fail;
1260 1.10 yamt }
1261 1.60 dyoung /* XXX eeek, minaddr & maxaddr not respected */
1262 1.2 yamt if (vmem_import(vm, size, flags) == 0) {
1263 1.2 yamt goto retry;
1264 1.1 yamt }
1265 1.2 yamt /* XXX */
1266 1.66 para
1267 1.68 para if ((flags & VM_SLEEP) != 0) {
1268 1.94 chs vmem_kick_pdaemon();
1269 1.68 para VMEM_CONDVAR_WAIT(vm);
1270 1.68 para goto retry;
1271 1.68 para }
1272 1.20 yamt fail:
1273 1.20 yamt bt_free(vm, btnew);
1274 1.20 yamt bt_free(vm, btnew2);
1275 1.101 ad VMEM_UNLOCK(vm);
1276 1.61 dyoung return ENOMEM;
1277 1.2 yamt
1278 1.2 yamt gotit:
1279 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
1280 1.1 yamt KASSERT(bt->bt_size >= size);
1281 1.1 yamt bt_remfree(vm, bt);
1282 1.55 yamt vmem_check(vm);
1283 1.10 yamt if (bt->bt_start != start) {
1284 1.10 yamt btnew2->bt_type = BT_TYPE_FREE;
1285 1.10 yamt btnew2->bt_start = bt->bt_start;
1286 1.10 yamt btnew2->bt_size = start - bt->bt_start;
1287 1.10 yamt bt->bt_start = start;
1288 1.10 yamt bt->bt_size -= btnew2->bt_size;
1289 1.10 yamt bt_insfree(vm, btnew2);
1290 1.87 christos bt_insseg(vm, btnew2, TAILQ_PREV(bt, vmem_seglist, bt_seglist));
1291 1.10 yamt btnew2 = NULL;
1292 1.55 yamt vmem_check(vm);
1293 1.10 yamt }
1294 1.10 yamt KASSERT(bt->bt_start == start);
1295 1.1 yamt if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1296 1.1 yamt /* split */
1297 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
1298 1.1 yamt btnew->bt_start = bt->bt_start;
1299 1.1 yamt btnew->bt_size = size;
1300 1.1 yamt bt->bt_start = bt->bt_start + size;
1301 1.1 yamt bt->bt_size -= size;
1302 1.1 yamt bt_insfree(vm, bt);
1303 1.87 christos bt_insseg(vm, btnew, TAILQ_PREV(bt, vmem_seglist, bt_seglist));
1304 1.1 yamt bt_insbusy(vm, btnew);
1305 1.55 yamt vmem_check(vm);
1306 1.1 yamt } else {
1307 1.1 yamt bt->bt_type = BT_TYPE_BUSY;
1308 1.1 yamt bt_insbusy(vm, bt);
1309 1.55 yamt vmem_check(vm);
1310 1.1 yamt bt_free(vm, btnew);
1311 1.1 yamt btnew = bt;
1312 1.1 yamt }
1313 1.10 yamt if (btnew2 != NULL) {
1314 1.10 yamt bt_free(vm, btnew2);
1315 1.10 yamt }
1316 1.1 yamt KASSERT(btnew->bt_size >= size);
1317 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
1318 1.61 dyoung if (addrp != NULL)
1319 1.61 dyoung *addrp = btnew->bt_start;
1320 1.101 ad VMEM_UNLOCK(vm);
1321 1.107 riastrad KASSERTMSG(addrp == NULL ||
1322 1.107 riastrad (*addrp & vm->vm_quantum_mask) == 0,
1323 1.107 riastrad "vmem %s mask=0x%jx addr=0x%jx",
1324 1.107 riastrad vm->vm_name, (uintmax_t)vm->vm_quantum_mask, (uintmax_t)*addrp);
1325 1.61 dyoung return 0;
1326 1.1 yamt }
1327 1.1 yamt
1328 1.1 yamt /*
1329 1.83 yamt * vmem_free: free the resource to the arena.
1330 1.1 yamt */
1331 1.1 yamt
1332 1.1 yamt void
1333 1.1 yamt vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1334 1.1 yamt {
1335 1.1 yamt
1336 1.1 yamt KASSERT(size > 0);
1337 1.107 riastrad KASSERTMSG((addr & vm->vm_quantum_mask) == 0,
1338 1.107 riastrad "vmem %s mask=0x%jx addr=0x%jx",
1339 1.107 riastrad vm->vm_name, (uintmax_t)vm->vm_quantum_mask, (uintmax_t)addr);
1340 1.1 yamt
1341 1.5 yamt #if defined(QCACHE)
1342 1.5 yamt if (size <= vm->vm_qcache_max) {
1343 1.5 yamt int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1344 1.22 yamt qcache_t *qc = vm->vm_qcache[qidx - 1];
1345 1.5 yamt
1346 1.63 rmind pool_cache_put(qc->qc_cache, (void *)addr);
1347 1.63 rmind return;
1348 1.5 yamt }
1349 1.5 yamt #endif /* defined(QCACHE) */
1350 1.5 yamt
1351 1.10 yamt vmem_xfree(vm, addr, size);
1352 1.10 yamt }
1353 1.10 yamt
1354 1.10 yamt void
1355 1.17 yamt vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1356 1.10 yamt {
1357 1.10 yamt bt_t *bt;
1358 1.10 yamt
1359 1.10 yamt KASSERT(size > 0);
1360 1.107 riastrad KASSERTMSG((addr & vm->vm_quantum_mask) == 0,
1361 1.107 riastrad "vmem %s mask=0x%jx addr=0x%jx",
1362 1.107 riastrad vm->vm_name, (uintmax_t)vm->vm_quantum_mask, (uintmax_t)addr);
1363 1.10 yamt
1364 1.1 yamt VMEM_LOCK(vm);
1365 1.1 yamt
1366 1.1 yamt bt = bt_lookupbusy(vm, addr);
1367 1.107 riastrad KASSERTMSG(bt != NULL, "vmem %s addr 0x%jx size 0x%jx",
1368 1.107 riastrad vm->vm_name, (uintmax_t)addr, (uintmax_t)size);
1369 1.1 yamt KASSERT(bt->bt_start == addr);
1370 1.1 yamt KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1371 1.1 yamt bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1372 1.105 riastrad
1373 1.104 thorpej /* vmem_xfree_bt() drops the lock. */
1374 1.104 thorpej vmem_xfree_bt(vm, bt);
1375 1.104 thorpej }
1376 1.104 thorpej
1377 1.104 thorpej void
1378 1.104 thorpej vmem_xfreeall(vmem_t *vm)
1379 1.104 thorpej {
1380 1.104 thorpej bt_t *bt;
1381 1.104 thorpej
1382 1.110 thorpej #if defined(QCACHE)
1383 1.104 thorpej /* This can't be used if the arena has a quantum cache. */
1384 1.104 thorpej KASSERT(vm->vm_qcache_max == 0);
1385 1.110 thorpej #endif /* defined(QCACHE) */
1386 1.104 thorpej
1387 1.104 thorpej for (;;) {
1388 1.104 thorpej VMEM_LOCK(vm);
1389 1.104 thorpej TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1390 1.104 thorpej if (bt->bt_type == BT_TYPE_BUSY)
1391 1.104 thorpej break;
1392 1.104 thorpej }
1393 1.104 thorpej if (bt != NULL) {
1394 1.104 thorpej /* vmem_xfree_bt() drops the lock. */
1395 1.104 thorpej vmem_xfree_bt(vm, bt);
1396 1.104 thorpej } else {
1397 1.104 thorpej VMEM_UNLOCK(vm);
1398 1.104 thorpej return;
1399 1.104 thorpej }
1400 1.104 thorpej }
1401 1.104 thorpej }
1402 1.104 thorpej
1403 1.104 thorpej static void
1404 1.104 thorpej vmem_xfree_bt(vmem_t *vm, bt_t *bt)
1405 1.104 thorpej {
1406 1.104 thorpej bt_t *t;
1407 1.104 thorpej
1408 1.104 thorpej VMEM_ASSERT_LOCKED(vm);
1409 1.104 thorpej
1410 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
1411 1.1 yamt bt_rembusy(vm, bt);
1412 1.1 yamt bt->bt_type = BT_TYPE_FREE;
1413 1.1 yamt
1414 1.1 yamt /* coalesce */
1415 1.87 christos t = TAILQ_NEXT(bt, bt_seglist);
1416 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1417 1.60 dyoung KASSERT(BT_END(bt) < t->bt_start); /* YYY */
1418 1.1 yamt bt_remfree(vm, t);
1419 1.1 yamt bt_remseg(vm, t);
1420 1.1 yamt bt->bt_size += t->bt_size;
1421 1.101 ad bt_free(vm, t);
1422 1.1 yamt }
1423 1.87 christos t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
1424 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1425 1.60 dyoung KASSERT(BT_END(t) < bt->bt_start); /* YYY */
1426 1.1 yamt bt_remfree(vm, t);
1427 1.1 yamt bt_remseg(vm, t);
1428 1.1 yamt bt->bt_size += t->bt_size;
1429 1.1 yamt bt->bt_start = t->bt_start;
1430 1.101 ad bt_free(vm, t);
1431 1.1 yamt }
1432 1.1 yamt
1433 1.87 christos t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
1434 1.1 yamt KASSERT(t != NULL);
1435 1.1 yamt KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1436 1.61 dyoung if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1437 1.1 yamt t->bt_size == bt->bt_size) {
1438 1.1 yamt vmem_addr_t spanaddr;
1439 1.1 yamt vmem_size_t spansize;
1440 1.1 yamt
1441 1.1 yamt KASSERT(t->bt_start == bt->bt_start);
1442 1.1 yamt spanaddr = bt->bt_start;
1443 1.1 yamt spansize = bt->bt_size;
1444 1.1 yamt bt_remseg(vm, bt);
1445 1.101 ad bt_free(vm, bt);
1446 1.1 yamt bt_remseg(vm, t);
1447 1.101 ad bt_free(vm, t);
1448 1.66 para vm->vm_size -= spansize;
1449 1.68 para VMEM_CONDVAR_BROADCAST(vm);
1450 1.101 ad /* bt_freetrim() drops the lock. */
1451 1.101 ad bt_freetrim(vm, BT_MAXFREE);
1452 1.61 dyoung (*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
1453 1.1 yamt } else {
1454 1.1 yamt bt_insfree(vm, bt);
1455 1.68 para VMEM_CONDVAR_BROADCAST(vm);
1456 1.101 ad /* bt_freetrim() drops the lock. */
1457 1.101 ad bt_freetrim(vm, BT_MAXFREE);
1458 1.1 yamt }
1459 1.1 yamt }
1460 1.1 yamt
1461 1.1 yamt /*
1462 1.1 yamt * vmem_add:
1463 1.1 yamt *
1464 1.1 yamt * => caller must ensure appropriate spl,
1465 1.1 yamt * if the arena can be accessed from interrupt context.
1466 1.1 yamt */
1467 1.1 yamt
1468 1.61 dyoung int
1469 1.1 yamt vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1470 1.1 yamt {
1471 1.101 ad int rv;
1472 1.1 yamt
1473 1.101 ad VMEM_LOCK(vm);
1474 1.101 ad rv = vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1475 1.101 ad VMEM_UNLOCK(vm);
1476 1.101 ad
1477 1.101 ad return rv;
1478 1.1 yamt }
1479 1.1 yamt
1480 1.6 yamt /*
1481 1.66 para * vmem_size: information about arenas size
1482 1.6 yamt *
1483 1.66 para * => return free/allocated size in arena
1484 1.6 yamt */
1485 1.66 para vmem_size_t
1486 1.66 para vmem_size(vmem_t *vm, int typemask)
1487 1.6 yamt {
1488 1.6 yamt
1489 1.66 para switch (typemask) {
1490 1.66 para case VMEM_ALLOC:
1491 1.66 para return vm->vm_inuse;
1492 1.66 para case VMEM_FREE:
1493 1.66 para return vm->vm_size - vm->vm_inuse;
1494 1.66 para case VMEM_FREE|VMEM_ALLOC:
1495 1.66 para return vm->vm_size;
1496 1.66 para default:
1497 1.66 para panic("vmem_size");
1498 1.66 para }
1499 1.6 yamt }
1500 1.6 yamt
1501 1.30 yamt /* ---- rehash */
1502 1.30 yamt
1503 1.30 yamt #if defined(_KERNEL)
1504 1.30 yamt static struct callout vmem_rehash_ch;
1505 1.30 yamt static int vmem_rehash_interval;
1506 1.30 yamt static struct workqueue *vmem_rehash_wq;
1507 1.30 yamt static struct work vmem_rehash_wk;
1508 1.30 yamt
1509 1.30 yamt static void
1510 1.30 yamt vmem_rehash_all(struct work *wk, void *dummy)
1511 1.30 yamt {
1512 1.30 yamt vmem_t *vm;
1513 1.30 yamt
1514 1.30 yamt KASSERT(wk == &vmem_rehash_wk);
1515 1.30 yamt mutex_enter(&vmem_list_lock);
1516 1.30 yamt LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1517 1.30 yamt size_t desired;
1518 1.30 yamt size_t current;
1519 1.30 yamt
1520 1.101 ad desired = atomic_load_relaxed(&vm->vm_maxbusytag);
1521 1.101 ad current = atomic_load_relaxed(&vm->vm_hashsize);
1522 1.30 yamt
1523 1.30 yamt if (desired > VMEM_HASHSIZE_MAX) {
1524 1.30 yamt desired = VMEM_HASHSIZE_MAX;
1525 1.30 yamt } else if (desired < VMEM_HASHSIZE_MIN) {
1526 1.30 yamt desired = VMEM_HASHSIZE_MIN;
1527 1.30 yamt }
1528 1.30 yamt if (desired > current * 2 || desired * 2 < current) {
1529 1.30 yamt vmem_rehash(vm, desired, VM_NOSLEEP);
1530 1.30 yamt }
1531 1.30 yamt }
1532 1.30 yamt mutex_exit(&vmem_list_lock);
1533 1.30 yamt
1534 1.30 yamt callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1535 1.30 yamt }
1536 1.30 yamt
1537 1.30 yamt static void
1538 1.30 yamt vmem_rehash_all_kick(void *dummy)
1539 1.30 yamt {
1540 1.30 yamt
1541 1.32 rmind workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1542 1.30 yamt }
1543 1.30 yamt
1544 1.30 yamt void
1545 1.30 yamt vmem_rehash_start(void)
1546 1.30 yamt {
1547 1.30 yamt int error;
1548 1.30 yamt
1549 1.30 yamt error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1550 1.41 ad vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1551 1.30 yamt if (error) {
1552 1.30 yamt panic("%s: workqueue_create %d\n", __func__, error);
1553 1.30 yamt }
1554 1.41 ad callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1555 1.30 yamt callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1556 1.30 yamt
1557 1.30 yamt vmem_rehash_interval = hz * 10;
1558 1.30 yamt callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1559 1.30 yamt }
1560 1.30 yamt #endif /* defined(_KERNEL) */
1561 1.30 yamt
1562 1.1 yamt /* ---- debug */
1563 1.1 yamt
1564 1.55 yamt #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
1565 1.55 yamt
1566 1.82 christos static void bt_dump(const bt_t *, void (*)(const char *, ...)
1567 1.82 christos __printflike(1, 2));
1568 1.55 yamt
1569 1.55 yamt static const char *
1570 1.55 yamt bt_type_string(int type)
1571 1.55 yamt {
1572 1.55 yamt static const char * const table[] = {
1573 1.55 yamt [BT_TYPE_BUSY] = "busy",
1574 1.55 yamt [BT_TYPE_FREE] = "free",
1575 1.55 yamt [BT_TYPE_SPAN] = "span",
1576 1.55 yamt [BT_TYPE_SPAN_STATIC] = "static span",
1577 1.55 yamt };
1578 1.55 yamt
1579 1.55 yamt if (type >= __arraycount(table)) {
1580 1.55 yamt return "BOGUS";
1581 1.55 yamt }
1582 1.55 yamt return table[type];
1583 1.55 yamt }
1584 1.55 yamt
1585 1.55 yamt static void
1586 1.55 yamt bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
1587 1.55 yamt {
1588 1.55 yamt
1589 1.55 yamt (*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
1590 1.55 yamt bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1591 1.55 yamt bt->bt_type, bt_type_string(bt->bt_type));
1592 1.55 yamt }
1593 1.55 yamt
1594 1.55 yamt static void
1595 1.82 christos vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...) __printflike(1, 2))
1596 1.55 yamt {
1597 1.55 yamt const bt_t *bt;
1598 1.55 yamt int i;
1599 1.55 yamt
1600 1.55 yamt (*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1601 1.87 christos TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1602 1.55 yamt bt_dump(bt, pr);
1603 1.55 yamt }
1604 1.55 yamt
1605 1.55 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
1606 1.55 yamt const struct vmem_freelist *fl = &vm->vm_freelist[i];
1607 1.55 yamt
1608 1.55 yamt if (LIST_EMPTY(fl)) {
1609 1.55 yamt continue;
1610 1.55 yamt }
1611 1.55 yamt
1612 1.55 yamt (*pr)("freelist[%d]\n", i);
1613 1.55 yamt LIST_FOREACH(bt, fl, bt_freelist) {
1614 1.55 yamt bt_dump(bt, pr);
1615 1.55 yamt }
1616 1.55 yamt }
1617 1.55 yamt }
1618 1.55 yamt
1619 1.55 yamt #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
1620 1.55 yamt
1621 1.37 yamt #if defined(DDB)
1622 1.37 yamt static bt_t *
1623 1.37 yamt vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1624 1.37 yamt {
1625 1.39 yamt bt_t *bt;
1626 1.37 yamt
1627 1.87 christos TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1628 1.39 yamt if (BT_ISSPAN_P(bt)) {
1629 1.39 yamt continue;
1630 1.39 yamt }
1631 1.60 dyoung if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1632 1.39 yamt return bt;
1633 1.37 yamt }
1634 1.37 yamt }
1635 1.37 yamt
1636 1.37 yamt return NULL;
1637 1.37 yamt }
1638 1.37 yamt
1639 1.37 yamt void
1640 1.37 yamt vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1641 1.37 yamt {
1642 1.37 yamt vmem_t *vm;
1643 1.37 yamt
1644 1.37 yamt LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1645 1.37 yamt bt_t *bt;
1646 1.37 yamt
1647 1.37 yamt bt = vmem_whatis_lookup(vm, addr);
1648 1.37 yamt if (bt == NULL) {
1649 1.37 yamt continue;
1650 1.37 yamt }
1651 1.39 yamt (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1652 1.37 yamt (void *)addr, (void *)bt->bt_start,
1653 1.39 yamt (size_t)(addr - bt->bt_start), vm->vm_name,
1654 1.39 yamt (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1655 1.37 yamt }
1656 1.37 yamt }
1657 1.43 cegger
1658 1.55 yamt void
1659 1.55 yamt vmem_printall(const char *modif, void (*pr)(const char *, ...))
1660 1.43 cegger {
1661 1.55 yamt const vmem_t *vm;
1662 1.43 cegger
1663 1.47 cegger LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1664 1.55 yamt vmem_dump(vm, pr);
1665 1.43 cegger }
1666 1.43 cegger }
1667 1.43 cegger
1668 1.43 cegger void
1669 1.43 cegger vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
1670 1.43 cegger {
1671 1.55 yamt const vmem_t *vm = (const void *)addr;
1672 1.43 cegger
1673 1.55 yamt vmem_dump(vm, pr);
1674 1.43 cegger }
1675 1.37 yamt #endif /* defined(DDB) */
1676 1.37 yamt
1677 1.60 dyoung #if defined(_KERNEL)
1678 1.60 dyoung #define vmem_printf printf
1679 1.60 dyoung #else
1680 1.1 yamt #include <stdio.h>
1681 1.60 dyoung #include <stdarg.h>
1682 1.60 dyoung
1683 1.60 dyoung static void
1684 1.60 dyoung vmem_printf(const char *fmt, ...)
1685 1.60 dyoung {
1686 1.60 dyoung va_list ap;
1687 1.60 dyoung va_start(ap, fmt);
1688 1.60 dyoung vprintf(fmt, ap);
1689 1.60 dyoung va_end(ap);
1690 1.60 dyoung }
1691 1.60 dyoung #endif
1692 1.1 yamt
1693 1.55 yamt #if defined(VMEM_SANITY)
1694 1.1 yamt
1695 1.55 yamt static bool
1696 1.55 yamt vmem_check_sanity(vmem_t *vm)
1697 1.1 yamt {
1698 1.55 yamt const bt_t *bt, *bt2;
1699 1.1 yamt
1700 1.55 yamt KASSERT(vm != NULL);
1701 1.1 yamt
1702 1.87 christos TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1703 1.60 dyoung if (bt->bt_start > BT_END(bt)) {
1704 1.55 yamt printf("corrupted tag\n");
1705 1.60 dyoung bt_dump(bt, vmem_printf);
1706 1.55 yamt return false;
1707 1.55 yamt }
1708 1.55 yamt }
1709 1.87 christos TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1710 1.87 christos TAILQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1711 1.55 yamt if (bt == bt2) {
1712 1.55 yamt continue;
1713 1.55 yamt }
1714 1.55 yamt if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1715 1.55 yamt continue;
1716 1.55 yamt }
1717 1.60 dyoung if (bt->bt_start <= BT_END(bt2) &&
1718 1.60 dyoung bt2->bt_start <= BT_END(bt)) {
1719 1.55 yamt printf("overwrapped tags\n");
1720 1.60 dyoung bt_dump(bt, vmem_printf);
1721 1.60 dyoung bt_dump(bt2, vmem_printf);
1722 1.55 yamt return false;
1723 1.55 yamt }
1724 1.55 yamt }
1725 1.1 yamt }
1726 1.1 yamt
1727 1.55 yamt return true;
1728 1.55 yamt }
1729 1.1 yamt
1730 1.55 yamt static void
1731 1.55 yamt vmem_check(vmem_t *vm)
1732 1.55 yamt {
1733 1.1 yamt
1734 1.55 yamt if (!vmem_check_sanity(vm)) {
1735 1.55 yamt panic("insanity vmem %p", vm);
1736 1.1 yamt }
1737 1.1 yamt }
1738 1.1 yamt
1739 1.55 yamt #endif /* defined(VMEM_SANITY) */
1740 1.1 yamt
1741 1.55 yamt #if defined(UNITTEST)
1742 1.1 yamt int
1743 1.57 cegger main(void)
1744 1.1 yamt {
1745 1.61 dyoung int rc;
1746 1.1 yamt vmem_t *vm;
1747 1.1 yamt vmem_addr_t p;
1748 1.1 yamt struct reg {
1749 1.1 yamt vmem_addr_t p;
1750 1.1 yamt vmem_size_t sz;
1751 1.25 thorpej bool x;
1752 1.1 yamt } *reg = NULL;
1753 1.1 yamt int nreg = 0;
1754 1.1 yamt int nalloc = 0;
1755 1.1 yamt int nfree = 0;
1756 1.1 yamt vmem_size_t total = 0;
1757 1.1 yamt #if 1
1758 1.1 yamt vm_flag_t strat = VM_INSTANTFIT;
1759 1.1 yamt #else
1760 1.1 yamt vm_flag_t strat = VM_BESTFIT;
1761 1.1 yamt #endif
1762 1.1 yamt
1763 1.61 dyoung vm = vmem_create("test", 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP,
1764 1.61 dyoung #ifdef _KERNEL
1765 1.61 dyoung IPL_NONE
1766 1.61 dyoung #else
1767 1.61 dyoung 0
1768 1.61 dyoung #endif
1769 1.61 dyoung );
1770 1.1 yamt if (vm == NULL) {
1771 1.1 yamt printf("vmem_create\n");
1772 1.1 yamt exit(EXIT_FAILURE);
1773 1.1 yamt }
1774 1.60 dyoung vmem_dump(vm, vmem_printf);
1775 1.1 yamt
1776 1.61 dyoung rc = vmem_add(vm, 0, 50, VM_SLEEP);
1777 1.61 dyoung assert(rc == 0);
1778 1.61 dyoung rc = vmem_add(vm, 100, 200, VM_SLEEP);
1779 1.61 dyoung assert(rc == 0);
1780 1.61 dyoung rc = vmem_add(vm, 2000, 1, VM_SLEEP);
1781 1.61 dyoung assert(rc == 0);
1782 1.61 dyoung rc = vmem_add(vm, 40000, 65536, VM_SLEEP);
1783 1.61 dyoung assert(rc == 0);
1784 1.61 dyoung rc = vmem_add(vm, 10000, 10000, VM_SLEEP);
1785 1.61 dyoung assert(rc == 0);
1786 1.61 dyoung rc = vmem_add(vm, 500, 1000, VM_SLEEP);
1787 1.61 dyoung assert(rc == 0);
1788 1.61 dyoung rc = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP);
1789 1.61 dyoung assert(rc == 0);
1790 1.61 dyoung rc = vmem_xalloc(vm, 0x101, 0, 0, 0,
1791 1.61 dyoung 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1792 1.61 dyoung assert(rc != 0);
1793 1.61 dyoung rc = vmem_xalloc(vm, 50, 0, 0, 0, 0, 49, strat|VM_SLEEP, &p);
1794 1.61 dyoung assert(rc == 0 && p == 0);
1795 1.61 dyoung vmem_xfree(vm, p, 50);
1796 1.61 dyoung rc = vmem_xalloc(vm, 25, 0, 0, 0, 0, 24, strat|VM_SLEEP, &p);
1797 1.61 dyoung assert(rc == 0 && p == 0);
1798 1.61 dyoung rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1799 1.61 dyoung 0xffffff01, 0xffffffff, strat|VM_SLEEP, &p);
1800 1.61 dyoung assert(rc != 0);
1801 1.61 dyoung rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1802 1.61 dyoung 0xffffff00, 0xfffffffe, strat|VM_SLEEP, &p);
1803 1.61 dyoung assert(rc != 0);
1804 1.61 dyoung rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1805 1.61 dyoung 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1806 1.61 dyoung assert(rc == 0);
1807 1.60 dyoung vmem_dump(vm, vmem_printf);
1808 1.1 yamt for (;;) {
1809 1.1 yamt struct reg *r;
1810 1.10 yamt int t = rand() % 100;
1811 1.1 yamt
1812 1.10 yamt if (t > 45) {
1813 1.10 yamt /* alloc */
1814 1.1 yamt vmem_size_t sz = rand() % 500 + 1;
1815 1.25 thorpej bool x;
1816 1.10 yamt vmem_size_t align, phase, nocross;
1817 1.10 yamt vmem_addr_t minaddr, maxaddr;
1818 1.10 yamt
1819 1.10 yamt if (t > 70) {
1820 1.26 thorpej x = true;
1821 1.10 yamt /* XXX */
1822 1.10 yamt align = 1 << (rand() % 15);
1823 1.10 yamt phase = rand() % 65536;
1824 1.10 yamt nocross = 1 << (rand() % 15);
1825 1.10 yamt if (align <= phase) {
1826 1.10 yamt phase = 0;
1827 1.10 yamt }
1828 1.19 yamt if (VMEM_CROSS_P(phase, phase + sz - 1,
1829 1.19 yamt nocross)) {
1830 1.10 yamt nocross = 0;
1831 1.10 yamt }
1832 1.60 dyoung do {
1833 1.60 dyoung minaddr = rand() % 50000;
1834 1.60 dyoung maxaddr = rand() % 70000;
1835 1.60 dyoung } while (minaddr > maxaddr);
1836 1.10 yamt printf("=== xalloc %" PRIu64
1837 1.10 yamt " align=%" PRIu64 ", phase=%" PRIu64
1838 1.10 yamt ", nocross=%" PRIu64 ", min=%" PRIu64
1839 1.10 yamt ", max=%" PRIu64 "\n",
1840 1.10 yamt (uint64_t)sz,
1841 1.10 yamt (uint64_t)align,
1842 1.10 yamt (uint64_t)phase,
1843 1.10 yamt (uint64_t)nocross,
1844 1.10 yamt (uint64_t)minaddr,
1845 1.10 yamt (uint64_t)maxaddr);
1846 1.61 dyoung rc = vmem_xalloc(vm, sz, align, phase, nocross,
1847 1.61 dyoung minaddr, maxaddr, strat|VM_SLEEP, &p);
1848 1.10 yamt } else {
1849 1.26 thorpej x = false;
1850 1.10 yamt printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1851 1.61 dyoung rc = vmem_alloc(vm, sz, strat|VM_SLEEP, &p);
1852 1.10 yamt }
1853 1.1 yamt printf("-> %" PRIu64 "\n", (uint64_t)p);
1854 1.60 dyoung vmem_dump(vm, vmem_printf);
1855 1.61 dyoung if (rc != 0) {
1856 1.10 yamt if (x) {
1857 1.10 yamt continue;
1858 1.10 yamt }
1859 1.1 yamt break;
1860 1.1 yamt }
1861 1.1 yamt nreg++;
1862 1.1 yamt reg = realloc(reg, sizeof(*reg) * nreg);
1863 1.1 yamt r = ®[nreg - 1];
1864 1.1 yamt r->p = p;
1865 1.1 yamt r->sz = sz;
1866 1.10 yamt r->x = x;
1867 1.1 yamt total += sz;
1868 1.1 yamt nalloc++;
1869 1.1 yamt } else if (nreg != 0) {
1870 1.10 yamt /* free */
1871 1.1 yamt r = ®[rand() % nreg];
1872 1.1 yamt printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1873 1.1 yamt (uint64_t)r->p, (uint64_t)r->sz);
1874 1.10 yamt if (r->x) {
1875 1.10 yamt vmem_xfree(vm, r->p, r->sz);
1876 1.10 yamt } else {
1877 1.10 yamt vmem_free(vm, r->p, r->sz);
1878 1.10 yamt }
1879 1.1 yamt total -= r->sz;
1880 1.60 dyoung vmem_dump(vm, vmem_printf);
1881 1.1 yamt *r = reg[nreg - 1];
1882 1.1 yamt nreg--;
1883 1.1 yamt nfree++;
1884 1.1 yamt }
1885 1.1 yamt printf("total=%" PRIu64 "\n", (uint64_t)total);
1886 1.1 yamt }
1887 1.1 yamt fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1888 1.1 yamt (uint64_t)total, nalloc, nfree);
1889 1.1 yamt exit(EXIT_SUCCESS);
1890 1.1 yamt }
1891 1.55 yamt #endif /* defined(UNITTEST) */
1892