subr_vmem.c revision 1.112 1 1.112 thorpej /* $NetBSD: subr_vmem.c,v 1.112 2023/12/03 02:50:09 thorpej Exp $ */
2 1.1 yamt
3 1.1 yamt /*-
4 1.55 yamt * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
5 1.1 yamt * All rights reserved.
6 1.1 yamt *
7 1.1 yamt * Redistribution and use in source and binary forms, with or without
8 1.1 yamt * modification, are permitted provided that the following conditions
9 1.1 yamt * are met:
10 1.1 yamt * 1. Redistributions of source code must retain the above copyright
11 1.1 yamt * notice, this list of conditions and the following disclaimer.
12 1.1 yamt * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 yamt * notice, this list of conditions and the following disclaimer in the
14 1.1 yamt * documentation and/or other materials provided with the distribution.
15 1.1 yamt *
16 1.1 yamt * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 1.1 yamt * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 1.1 yamt * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 1.1 yamt * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 1.1 yamt * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 1.1 yamt * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 1.1 yamt * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 1.1 yamt * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 1.1 yamt * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 yamt * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 yamt * SUCH DAMAGE.
27 1.1 yamt */
28 1.1 yamt
29 1.1 yamt /*
30 1.1 yamt * reference:
31 1.1 yamt * - Magazines and Vmem: Extending the Slab Allocator
32 1.1 yamt * to Many CPUs and Arbitrary Resources
33 1.1 yamt * http://www.usenix.org/event/usenix01/bonwick.html
34 1.88 para *
35 1.88 para * locking & the boundary tag pool:
36 1.88 para * - A pool(9) is used for vmem boundary tags
37 1.88 para * - During a pool get call the global vmem_btag_refill_lock is taken,
38 1.88 para * to serialize access to the allocation reserve, but no other
39 1.88 para * vmem arena locks.
40 1.88 para * - During pool_put calls no vmem mutexes are locked.
41 1.88 para * - pool_drain doesn't hold the pool's mutex while releasing memory to
42 1.108 andvar * its backing therefore no interference with any vmem mutexes.
43 1.88 para * - The boundary tag pool is forced to put page headers into pool pages
44 1.88 para * (PR_PHINPAGE) and not off page to avoid pool recursion.
45 1.88 para * (due to sizeof(bt_t) it should be the case anyway)
46 1.1 yamt */
47 1.1 yamt
48 1.1 yamt #include <sys/cdefs.h>
49 1.112 thorpej __KERNEL_RCSID(0, "$NetBSD: subr_vmem.c,v 1.112 2023/12/03 02:50:09 thorpej Exp $");
50 1.1 yamt
51 1.93 pooka #if defined(_KERNEL) && defined(_KERNEL_OPT)
52 1.37 yamt #include "opt_ddb.h"
53 1.93 pooka #endif /* defined(_KERNEL) && defined(_KERNEL_OPT) */
54 1.1 yamt
55 1.1 yamt #include <sys/param.h>
56 1.1 yamt #include <sys/hash.h>
57 1.1 yamt #include <sys/queue.h>
58 1.62 rmind #include <sys/bitops.h>
59 1.1 yamt
60 1.1 yamt #if defined(_KERNEL)
61 1.1 yamt #include <sys/systm.h>
62 1.30 yamt #include <sys/kernel.h> /* hz */
63 1.30 yamt #include <sys/callout.h>
64 1.66 para #include <sys/kmem.h>
65 1.1 yamt #include <sys/pool.h>
66 1.1 yamt #include <sys/vmem.h>
67 1.80 para #include <sys/vmem_impl.h>
68 1.30 yamt #include <sys/workqueue.h>
69 1.66 para #include <sys/atomic.h>
70 1.66 para #include <uvm/uvm.h>
71 1.66 para #include <uvm/uvm_extern.h>
72 1.66 para #include <uvm/uvm_km.h>
73 1.66 para #include <uvm/uvm_page.h>
74 1.66 para #include <uvm/uvm_pdaemon.h>
75 1.1 yamt #else /* defined(_KERNEL) */
76 1.80 para #include <stdio.h>
77 1.80 para #include <errno.h>
78 1.80 para #include <assert.h>
79 1.80 para #include <stdlib.h>
80 1.80 para #include <string.h>
81 1.1 yamt #include "../sys/vmem.h"
82 1.80 para #include "../sys/vmem_impl.h"
83 1.1 yamt #endif /* defined(_KERNEL) */
84 1.1 yamt
85 1.66 para
86 1.1 yamt #if defined(_KERNEL)
87 1.66 para #include <sys/evcnt.h>
88 1.66 para #define VMEM_EVCNT_DEFINE(name) \
89 1.66 para struct evcnt vmem_evcnt_##name = EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, \
90 1.88 para "vmem", #name); \
91 1.66 para EVCNT_ATTACH_STATIC(vmem_evcnt_##name);
92 1.66 para #define VMEM_EVCNT_INCR(ev) vmem_evcnt_##ev.ev_count++
93 1.66 para #define VMEM_EVCNT_DECR(ev) vmem_evcnt_##ev.ev_count--
94 1.66 para
95 1.88 para VMEM_EVCNT_DEFINE(static_bt_count)
96 1.88 para VMEM_EVCNT_DEFINE(static_bt_inuse)
97 1.66 para
98 1.80 para #define VMEM_CONDVAR_INIT(vm, wchan) cv_init(&vm->vm_cv, wchan)
99 1.80 para #define VMEM_CONDVAR_DESTROY(vm) cv_destroy(&vm->vm_cv)
100 1.80 para #define VMEM_CONDVAR_WAIT(vm) cv_wait(&vm->vm_cv, &vm->vm_lock)
101 1.80 para #define VMEM_CONDVAR_BROADCAST(vm) cv_broadcast(&vm->vm_cv)
102 1.66 para
103 1.1 yamt #else /* defined(_KERNEL) */
104 1.1 yamt
105 1.66 para #define VMEM_EVCNT_INCR(ev) /* nothing */
106 1.66 para #define VMEM_EVCNT_DECR(ev) /* nothing */
107 1.66 para
108 1.80 para #define VMEM_CONDVAR_INIT(vm, wchan) /* nothing */
109 1.80 para #define VMEM_CONDVAR_DESTROY(vm) /* nothing */
110 1.80 para #define VMEM_CONDVAR_WAIT(vm) /* nothing */
111 1.80 para #define VMEM_CONDVAR_BROADCAST(vm) /* nothing */
112 1.80 para
113 1.79 para #define UNITTEST
114 1.79 para #define KASSERT(a) assert(a)
115 1.110 thorpej #define KASSERTMSG(a, m, ...) assert(a)
116 1.31 ad #define mutex_init(a, b, c) /* nothing */
117 1.31 ad #define mutex_destroy(a) /* nothing */
118 1.31 ad #define mutex_enter(a) /* nothing */
119 1.55 yamt #define mutex_tryenter(a) true
120 1.31 ad #define mutex_exit(a) /* nothing */
121 1.110 thorpej #define mutex_owned(a) true
122 1.55 yamt #define ASSERT_SLEEPABLE() /* nothing */
123 1.55 yamt #define panic(...) printf(__VA_ARGS__); abort()
124 1.1 yamt #endif /* defined(_KERNEL) */
125 1.1 yamt
126 1.55 yamt #if defined(VMEM_SANITY)
127 1.55 yamt static void vmem_check(vmem_t *);
128 1.55 yamt #else /* defined(VMEM_SANITY) */
129 1.55 yamt #define vmem_check(vm) /* nothing */
130 1.55 yamt #endif /* defined(VMEM_SANITY) */
131 1.1 yamt
132 1.30 yamt #define VMEM_HASHSIZE_MIN 1 /* XXX */
133 1.54 yamt #define VMEM_HASHSIZE_MAX 65536 /* XXX */
134 1.66 para #define VMEM_HASHSIZE_INIT 1
135 1.1 yamt
136 1.1 yamt #define VM_FITMASK (VM_BESTFIT | VM_INSTANTFIT)
137 1.1 yamt
138 1.80 para #if defined(_KERNEL)
139 1.80 para static bool vmem_bootstrapped = false;
140 1.80 para static kmutex_t vmem_list_lock;
141 1.80 para static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);
142 1.80 para #endif /* defined(_KERNEL) */
143 1.79 para
144 1.80 para /* ---- misc */
145 1.1 yamt
146 1.110 thorpej #define VMEM_LOCK(vm) mutex_enter(&(vm)->vm_lock)
147 1.110 thorpej #define VMEM_TRYLOCK(vm) mutex_tryenter(&(vm)->vm_lock)
148 1.110 thorpej #define VMEM_UNLOCK(vm) mutex_exit(&(vm)->vm_lock)
149 1.110 thorpej #define VMEM_LOCK_INIT(vm, ipl) mutex_init(&(vm)->vm_lock, MUTEX_DEFAULT, (ipl))
150 1.110 thorpej #define VMEM_LOCK_DESTROY(vm) mutex_destroy(&(vm)->vm_lock)
151 1.110 thorpej #define VMEM_ASSERT_LOCKED(vm) KASSERT(mutex_owned(&(vm)->vm_lock))
152 1.1 yamt
153 1.19 yamt #define VMEM_ALIGNUP(addr, align) \
154 1.19 yamt (-(-(addr) & -(align)))
155 1.62 rmind
156 1.19 yamt #define VMEM_CROSS_P(addr1, addr2, boundary) \
157 1.19 yamt ((((addr1) ^ (addr2)) & -(boundary)) != 0)
158 1.19 yamt
159 1.4 yamt #define ORDER2SIZE(order) ((vmem_size_t)1 << (order))
160 1.62 rmind #define SIZE2ORDER(size) ((int)ilog2(size))
161 1.4 yamt
162 1.110 thorpej static void
163 1.110 thorpej vmem_kick_pdaemon(void)
164 1.110 thorpej {
165 1.110 thorpej #if defined(_KERNEL)
166 1.110 thorpej uvm_kick_pdaemon();
167 1.110 thorpej #endif
168 1.110 thorpej }
169 1.110 thorpej
170 1.110 thorpej static void vmem_xfree_bt(vmem_t *, bt_t *);
171 1.110 thorpej
172 1.62 rmind #if !defined(_KERNEL)
173 1.62 rmind #define xmalloc(sz, flags) malloc(sz)
174 1.67 rmind #define xfree(p, sz) free(p)
175 1.62 rmind #define bt_alloc(vm, flags) malloc(sizeof(bt_t))
176 1.62 rmind #define bt_free(vm, bt) free(bt)
177 1.110 thorpej #define bt_freetrim(vm, l) /* nothing */
178 1.66 para #else /* defined(_KERNEL) */
179 1.1 yamt
180 1.67 rmind #define xmalloc(sz, flags) \
181 1.80 para kmem_alloc(sz, ((flags) & VM_SLEEP) ? KM_SLEEP : KM_NOSLEEP);
182 1.80 para #define xfree(p, sz) kmem_free(p, sz);
183 1.66 para
184 1.75 para /*
185 1.75 para * BT_RESERVE calculation:
186 1.106 andvar * we allocate memory for boundary tags with vmem; therefore we have
187 1.105 riastrad * to keep a reserve of bts used to allocated memory for bts.
188 1.75 para * This reserve is 4 for each arena involved in allocating vmems memory.
189 1.75 para * BT_MAXFREE: don't cache excessive counts of bts in arenas
190 1.75 para */
191 1.75 para #define STATIC_BT_COUNT 200
192 1.75 para #define BT_MINRESERVE 4
193 1.66 para #define BT_MAXFREE 64
194 1.66 para
195 1.66 para static struct vmem_btag static_bts[STATIC_BT_COUNT];
196 1.66 para static int static_bt_count = STATIC_BT_COUNT;
197 1.66 para
198 1.80 para static struct vmem kmem_va_meta_arena_store;
199 1.66 para vmem_t *kmem_va_meta_arena;
200 1.80 para static struct vmem kmem_meta_arena_store;
201 1.88 para vmem_t *kmem_meta_arena = NULL;
202 1.66 para
203 1.88 para static kmutex_t vmem_btag_refill_lock;
204 1.66 para static kmutex_t vmem_btag_lock;
205 1.66 para static LIST_HEAD(, vmem_btag) vmem_btag_freelist;
206 1.66 para static size_t vmem_btag_freelist_count = 0;
207 1.88 para static struct pool vmem_btag_pool;
208 1.112 thorpej static bool vmem_btag_pool_initialized __read_mostly;
209 1.66 para
210 1.1 yamt /* ---- boundary tag */
211 1.1 yamt
212 1.94 chs static int bt_refill(vmem_t *vm);
213 1.101 ad static int bt_refill_locked(vmem_t *vm);
214 1.66 para
215 1.88 para static void *
216 1.88 para pool_page_alloc_vmem_meta(struct pool *pp, int flags)
217 1.66 para {
218 1.88 para const vm_flag_t vflags = (flags & PR_WAITOK) ? VM_SLEEP: VM_NOSLEEP;
219 1.66 para vmem_addr_t va;
220 1.88 para int ret;
221 1.66 para
222 1.88 para ret = vmem_alloc(kmem_meta_arena, pp->pr_alloc->pa_pagesz,
223 1.88 para (vflags & ~VM_FITMASK) | VM_INSTANTFIT | VM_POPULATING, &va);
224 1.77 para
225 1.88 para return ret ? NULL : (void *)va;
226 1.88 para }
227 1.66 para
228 1.88 para static void
229 1.88 para pool_page_free_vmem_meta(struct pool *pp, void *v)
230 1.88 para {
231 1.66 para
232 1.88 para vmem_free(kmem_meta_arena, (vmem_addr_t)v, pp->pr_alloc->pa_pagesz);
233 1.88 para }
234 1.66 para
235 1.88 para /* allocator for vmem-pool metadata */
236 1.88 para struct pool_allocator pool_allocator_vmem_meta = {
237 1.88 para .pa_alloc = pool_page_alloc_vmem_meta,
238 1.88 para .pa_free = pool_page_free_vmem_meta,
239 1.88 para .pa_pagesz = 0
240 1.88 para };
241 1.66 para
242 1.66 para static int
243 1.101 ad bt_refill_locked(vmem_t *vm)
244 1.66 para {
245 1.66 para bt_t *bt;
246 1.66 para
247 1.101 ad VMEM_ASSERT_LOCKED(vm);
248 1.101 ad
249 1.88 para if (vm->vm_nfreetags > BT_MINRESERVE) {
250 1.88 para return 0;
251 1.77 para }
252 1.66 para
253 1.66 para mutex_enter(&vmem_btag_lock);
254 1.66 para while (!LIST_EMPTY(&vmem_btag_freelist) &&
255 1.75 para vm->vm_nfreetags <= BT_MINRESERVE) {
256 1.66 para bt = LIST_FIRST(&vmem_btag_freelist);
257 1.66 para LIST_REMOVE(bt, bt_freelist);
258 1.66 para LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
259 1.66 para vm->vm_nfreetags++;
260 1.66 para vmem_btag_freelist_count--;
261 1.88 para VMEM_EVCNT_INCR(static_bt_inuse);
262 1.66 para }
263 1.66 para mutex_exit(&vmem_btag_lock);
264 1.66 para
265 1.88 para while (vm->vm_nfreetags <= BT_MINRESERVE) {
266 1.88 para VMEM_UNLOCK(vm);
267 1.112 thorpej KASSERT(vmem_btag_pool_initialized);
268 1.88 para mutex_enter(&vmem_btag_refill_lock);
269 1.91 para bt = pool_get(&vmem_btag_pool, PR_NOWAIT);
270 1.88 para mutex_exit(&vmem_btag_refill_lock);
271 1.88 para VMEM_LOCK(vm);
272 1.91 para if (bt == NULL)
273 1.88 para break;
274 1.88 para LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
275 1.88 para vm->vm_nfreetags++;
276 1.88 para }
277 1.88 para
278 1.92 para if (vm->vm_nfreetags <= BT_MINRESERVE) {
279 1.66 para return ENOMEM;
280 1.66 para }
281 1.88 para
282 1.88 para if (kmem_meta_arena != NULL) {
283 1.101 ad VMEM_UNLOCK(vm);
284 1.94 chs (void)bt_refill(kmem_arena);
285 1.94 chs (void)bt_refill(kmem_va_meta_arena);
286 1.94 chs (void)bt_refill(kmem_meta_arena);
287 1.101 ad VMEM_LOCK(vm);
288 1.88 para }
289 1.66 para
290 1.66 para return 0;
291 1.66 para }
292 1.1 yamt
293 1.101 ad static int
294 1.101 ad bt_refill(vmem_t *vm)
295 1.101 ad {
296 1.101 ad int rv;
297 1.101 ad
298 1.101 ad VMEM_LOCK(vm);
299 1.101 ad rv = bt_refill_locked(vm);
300 1.101 ad VMEM_UNLOCK(vm);
301 1.101 ad return rv;
302 1.101 ad }
303 1.101 ad
304 1.88 para static bt_t *
305 1.17 yamt bt_alloc(vmem_t *vm, vm_flag_t flags)
306 1.1 yamt {
307 1.66 para bt_t *bt;
308 1.101 ad
309 1.101 ad VMEM_ASSERT_LOCKED(vm);
310 1.101 ad
311 1.88 para while (vm->vm_nfreetags <= BT_MINRESERVE && (flags & VM_POPULATING) == 0) {
312 1.101 ad if (bt_refill_locked(vm)) {
313 1.94 chs if ((flags & VM_NOSLEEP) != 0) {
314 1.94 chs return NULL;
315 1.94 chs }
316 1.94 chs
317 1.94 chs /*
318 1.94 chs * It would be nice to wait for something specific here
319 1.94 chs * but there are multiple ways that a retry could
320 1.94 chs * succeed and we can't wait for multiple things
321 1.94 chs * simultaneously. So we'll just sleep for an arbitrary
322 1.94 chs * short period of time and retry regardless.
323 1.94 chs * This should be a very rare case.
324 1.94 chs */
325 1.94 chs
326 1.94 chs vmem_kick_pdaemon();
327 1.101 ad kpause("btalloc", false, 1, &vm->vm_lock);
328 1.66 para }
329 1.66 para }
330 1.66 para bt = LIST_FIRST(&vm->vm_freetags);
331 1.66 para LIST_REMOVE(bt, bt_freelist);
332 1.66 para vm->vm_nfreetags--;
333 1.66 para
334 1.66 para return bt;
335 1.1 yamt }
336 1.1 yamt
337 1.88 para static void
338 1.17 yamt bt_free(vmem_t *vm, bt_t *bt)
339 1.1 yamt {
340 1.66 para
341 1.101 ad VMEM_ASSERT_LOCKED(vm);
342 1.101 ad
343 1.66 para LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
344 1.66 para vm->vm_nfreetags++;
345 1.88 para }
346 1.88 para
347 1.88 para static void
348 1.88 para bt_freetrim(vmem_t *vm, int freelimit)
349 1.88 para {
350 1.88 para bt_t *t;
351 1.88 para LIST_HEAD(, vmem_btag) tofree;
352 1.88 para
353 1.101 ad VMEM_ASSERT_LOCKED(vm);
354 1.101 ad
355 1.88 para LIST_INIT(&tofree);
356 1.88 para
357 1.88 para while (vm->vm_nfreetags > freelimit) {
358 1.88 para bt_t *bt = LIST_FIRST(&vm->vm_freetags);
359 1.66 para LIST_REMOVE(bt, bt_freelist);
360 1.66 para vm->vm_nfreetags--;
361 1.88 para if (bt >= static_bts
362 1.90 mlelstv && bt < &static_bts[STATIC_BT_COUNT]) {
363 1.88 para mutex_enter(&vmem_btag_lock);
364 1.88 para LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
365 1.88 para vmem_btag_freelist_count++;
366 1.88 para mutex_exit(&vmem_btag_lock);
367 1.88 para VMEM_EVCNT_DECR(static_bt_inuse);
368 1.88 para } else {
369 1.88 para LIST_INSERT_HEAD(&tofree, bt, bt_freelist);
370 1.88 para }
371 1.66 para }
372 1.88 para
373 1.66 para VMEM_UNLOCK(vm);
374 1.88 para while (!LIST_EMPTY(&tofree)) {
375 1.88 para t = LIST_FIRST(&tofree);
376 1.88 para LIST_REMOVE(t, bt_freelist);
377 1.88 para pool_put(&vmem_btag_pool, t);
378 1.88 para }
379 1.1 yamt }
380 1.67 rmind #endif /* defined(_KERNEL) */
381 1.62 rmind
382 1.1 yamt /*
383 1.67 rmind * freelist[0] ... [1, 1]
384 1.1 yamt * freelist[1] ... [2, 3]
385 1.1 yamt * freelist[2] ... [4, 7]
386 1.1 yamt * freelist[3] ... [8, 15]
387 1.1 yamt * :
388 1.1 yamt * freelist[n] ... [(1 << n), (1 << (n + 1)) - 1]
389 1.1 yamt * :
390 1.1 yamt */
391 1.1 yamt
392 1.1 yamt static struct vmem_freelist *
393 1.1 yamt bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
394 1.1 yamt {
395 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
396 1.62 rmind const int idx = SIZE2ORDER(qsize);
397 1.1 yamt
398 1.109 riastrad KASSERT(size != 0);
399 1.109 riastrad KASSERT(qsize != 0);
400 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
401 1.1 yamt KASSERT(idx >= 0);
402 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
403 1.1 yamt
404 1.1 yamt return &vm->vm_freelist[idx];
405 1.1 yamt }
406 1.1 yamt
407 1.59 yamt /*
408 1.59 yamt * bt_freehead_toalloc: return the freelist for the given size and allocation
409 1.59 yamt * strategy.
410 1.59 yamt *
411 1.59 yamt * for VM_INSTANTFIT, return the list in which any blocks are large enough
412 1.59 yamt * for the requested size. otherwise, return the list which can have blocks
413 1.59 yamt * large enough for the requested size.
414 1.59 yamt */
415 1.59 yamt
416 1.1 yamt static struct vmem_freelist *
417 1.1 yamt bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, vm_flag_t strat)
418 1.1 yamt {
419 1.1 yamt const vmem_size_t qsize = size >> vm->vm_quantum_shift;
420 1.62 rmind int idx = SIZE2ORDER(qsize);
421 1.1 yamt
422 1.109 riastrad KASSERT(size != 0);
423 1.109 riastrad KASSERT(qsize != 0);
424 1.1 yamt KASSERT((size & vm->vm_quantum_mask) == 0);
425 1.1 yamt
426 1.4 yamt if (strat == VM_INSTANTFIT && ORDER2SIZE(idx) != qsize) {
427 1.1 yamt idx++;
428 1.1 yamt /* check too large request? */
429 1.1 yamt }
430 1.1 yamt KASSERT(idx >= 0);
431 1.1 yamt KASSERT(idx < VMEM_MAXORDER);
432 1.1 yamt
433 1.1 yamt return &vm->vm_freelist[idx];
434 1.1 yamt }
435 1.1 yamt
436 1.1 yamt /* ---- boundary tag hash */
437 1.1 yamt
438 1.1 yamt static struct vmem_hashlist *
439 1.1 yamt bt_hashhead(vmem_t *vm, vmem_addr_t addr)
440 1.1 yamt {
441 1.1 yamt struct vmem_hashlist *list;
442 1.1 yamt unsigned int hash;
443 1.1 yamt
444 1.1 yamt hash = hash32_buf(&addr, sizeof(addr), HASH32_BUF_INIT);
445 1.101 ad list = &vm->vm_hashlist[hash & vm->vm_hashmask];
446 1.1 yamt
447 1.1 yamt return list;
448 1.1 yamt }
449 1.1 yamt
450 1.1 yamt static bt_t *
451 1.1 yamt bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
452 1.1 yamt {
453 1.1 yamt struct vmem_hashlist *list;
454 1.1 yamt bt_t *bt;
455 1.1 yamt
456 1.95 msaitoh list = bt_hashhead(vm, addr);
457 1.1 yamt LIST_FOREACH(bt, list, bt_hashlist) {
458 1.1 yamt if (bt->bt_start == addr) {
459 1.1 yamt break;
460 1.1 yamt }
461 1.1 yamt }
462 1.1 yamt
463 1.1 yamt return bt;
464 1.1 yamt }
465 1.1 yamt
466 1.1 yamt static void
467 1.1 yamt bt_rembusy(vmem_t *vm, bt_t *bt)
468 1.1 yamt {
469 1.1 yamt
470 1.1 yamt KASSERT(vm->vm_nbusytag > 0);
471 1.73 para vm->vm_inuse -= bt->bt_size;
472 1.1 yamt vm->vm_nbusytag--;
473 1.1 yamt LIST_REMOVE(bt, bt_hashlist);
474 1.1 yamt }
475 1.1 yamt
476 1.1 yamt static void
477 1.1 yamt bt_insbusy(vmem_t *vm, bt_t *bt)
478 1.1 yamt {
479 1.1 yamt struct vmem_hashlist *list;
480 1.1 yamt
481 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
482 1.1 yamt
483 1.1 yamt list = bt_hashhead(vm, bt->bt_start);
484 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_hashlist);
485 1.101 ad if (++vm->vm_nbusytag > vm->vm_maxbusytag) {
486 1.101 ad vm->vm_maxbusytag = vm->vm_nbusytag;
487 1.101 ad }
488 1.73 para vm->vm_inuse += bt->bt_size;
489 1.1 yamt }
490 1.1 yamt
491 1.1 yamt /* ---- boundary tag list */
492 1.1 yamt
493 1.1 yamt static void
494 1.1 yamt bt_remseg(vmem_t *vm, bt_t *bt)
495 1.1 yamt {
496 1.1 yamt
497 1.87 christos TAILQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
498 1.1 yamt }
499 1.1 yamt
500 1.1 yamt static void
501 1.1 yamt bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
502 1.1 yamt {
503 1.1 yamt
504 1.87 christos TAILQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
505 1.1 yamt }
506 1.1 yamt
507 1.1 yamt static void
508 1.1 yamt bt_insseg_tail(vmem_t *vm, bt_t *bt)
509 1.1 yamt {
510 1.1 yamt
511 1.87 christos TAILQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
512 1.1 yamt }
513 1.1 yamt
514 1.1 yamt static void
515 1.17 yamt bt_remfree(vmem_t *vm, bt_t *bt)
516 1.1 yamt {
517 1.1 yamt
518 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
519 1.1 yamt
520 1.1 yamt LIST_REMOVE(bt, bt_freelist);
521 1.1 yamt }
522 1.1 yamt
523 1.1 yamt static void
524 1.1 yamt bt_insfree(vmem_t *vm, bt_t *bt)
525 1.1 yamt {
526 1.1 yamt struct vmem_freelist *list;
527 1.1 yamt
528 1.1 yamt list = bt_freehead_tofree(vm, bt->bt_size);
529 1.1 yamt LIST_INSERT_HEAD(list, bt, bt_freelist);
530 1.1 yamt }
531 1.1 yamt
532 1.1 yamt /* ---- vmem internal functions */
533 1.1 yamt
534 1.5 yamt #if defined(QCACHE)
535 1.5 yamt static inline vm_flag_t
536 1.5 yamt prf_to_vmf(int prflags)
537 1.5 yamt {
538 1.5 yamt vm_flag_t vmflags;
539 1.5 yamt
540 1.5 yamt KASSERT((prflags & ~(PR_LIMITFAIL | PR_WAITOK | PR_NOWAIT)) == 0);
541 1.5 yamt if ((prflags & PR_WAITOK) != 0) {
542 1.5 yamt vmflags = VM_SLEEP;
543 1.5 yamt } else {
544 1.5 yamt vmflags = VM_NOSLEEP;
545 1.5 yamt }
546 1.5 yamt return vmflags;
547 1.5 yamt }
548 1.5 yamt
549 1.5 yamt static inline int
550 1.5 yamt vmf_to_prf(vm_flag_t vmflags)
551 1.5 yamt {
552 1.5 yamt int prflags;
553 1.5 yamt
554 1.7 yamt if ((vmflags & VM_SLEEP) != 0) {
555 1.5 yamt prflags = PR_WAITOK;
556 1.7 yamt } else {
557 1.5 yamt prflags = PR_NOWAIT;
558 1.5 yamt }
559 1.5 yamt return prflags;
560 1.5 yamt }
561 1.5 yamt
562 1.5 yamt static size_t
563 1.5 yamt qc_poolpage_size(size_t qcache_max)
564 1.5 yamt {
565 1.5 yamt int i;
566 1.5 yamt
567 1.5 yamt for (i = 0; ORDER2SIZE(i) <= qcache_max * 3; i++) {
568 1.5 yamt /* nothing */
569 1.5 yamt }
570 1.5 yamt return ORDER2SIZE(i);
571 1.5 yamt }
572 1.5 yamt
573 1.5 yamt static void *
574 1.5 yamt qc_poolpage_alloc(struct pool *pool, int prflags)
575 1.5 yamt {
576 1.5 yamt qcache_t *qc = QC_POOL_TO_QCACHE(pool);
577 1.5 yamt vmem_t *vm = qc->qc_vmem;
578 1.61 dyoung vmem_addr_t addr;
579 1.5 yamt
580 1.61 dyoung if (vmem_alloc(vm, pool->pr_alloc->pa_pagesz,
581 1.61 dyoung prf_to_vmf(prflags) | VM_INSTANTFIT, &addr) != 0)
582 1.61 dyoung return NULL;
583 1.61 dyoung return (void *)addr;
584 1.5 yamt }
585 1.5 yamt
586 1.5 yamt static void
587 1.5 yamt qc_poolpage_free(struct pool *pool, void *addr)
588 1.5 yamt {
589 1.5 yamt qcache_t *qc = QC_POOL_TO_QCACHE(pool);
590 1.5 yamt vmem_t *vm = qc->qc_vmem;
591 1.5 yamt
592 1.5 yamt vmem_free(vm, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
593 1.5 yamt }
594 1.5 yamt
595 1.5 yamt static void
596 1.31 ad qc_init(vmem_t *vm, size_t qcache_max, int ipl)
597 1.5 yamt {
598 1.22 yamt qcache_t *prevqc;
599 1.5 yamt struct pool_allocator *pa;
600 1.5 yamt int qcache_idx_max;
601 1.5 yamt int i;
602 1.5 yamt
603 1.5 yamt KASSERT((qcache_max & vm->vm_quantum_mask) == 0);
604 1.5 yamt if (qcache_max > (VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift)) {
605 1.5 yamt qcache_max = VMEM_QCACHE_IDX_MAX << vm->vm_quantum_shift;
606 1.5 yamt }
607 1.5 yamt vm->vm_qcache_max = qcache_max;
608 1.5 yamt pa = &vm->vm_qcache_allocator;
609 1.5 yamt memset(pa, 0, sizeof(*pa));
610 1.5 yamt pa->pa_alloc = qc_poolpage_alloc;
611 1.5 yamt pa->pa_free = qc_poolpage_free;
612 1.5 yamt pa->pa_pagesz = qc_poolpage_size(qcache_max);
613 1.5 yamt
614 1.5 yamt qcache_idx_max = qcache_max >> vm->vm_quantum_shift;
615 1.22 yamt prevqc = NULL;
616 1.22 yamt for (i = qcache_idx_max; i > 0; i--) {
617 1.22 yamt qcache_t *qc = &vm->vm_qcache_store[i - 1];
618 1.5 yamt size_t size = i << vm->vm_quantum_shift;
619 1.66 para pool_cache_t pc;
620 1.5 yamt
621 1.5 yamt qc->qc_vmem = vm;
622 1.8 martin snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
623 1.5 yamt vm->vm_name, size);
624 1.66 para
625 1.80 para pc = pool_cache_init(size,
626 1.80 para ORDER2SIZE(vm->vm_quantum_shift), 0,
627 1.80 para PR_NOALIGN | PR_NOTOUCH | PR_RECURSIVE /* XXX */,
628 1.80 para qc->qc_name, pa, ipl, NULL, NULL, NULL);
629 1.80 para
630 1.80 para KASSERT(pc);
631 1.80 para
632 1.66 para qc->qc_cache = pc;
633 1.35 ad KASSERT(qc->qc_cache != NULL); /* XXX */
634 1.22 yamt if (prevqc != NULL &&
635 1.35 ad qc->qc_cache->pc_pool.pr_itemsperpage ==
636 1.35 ad prevqc->qc_cache->pc_pool.pr_itemsperpage) {
637 1.80 para pool_cache_destroy(qc->qc_cache);
638 1.22 yamt vm->vm_qcache[i - 1] = prevqc;
639 1.27 ad continue;
640 1.22 yamt }
641 1.35 ad qc->qc_cache->pc_pool.pr_qcache = qc;
642 1.22 yamt vm->vm_qcache[i - 1] = qc;
643 1.22 yamt prevqc = qc;
644 1.5 yamt }
645 1.5 yamt }
646 1.6 yamt
647 1.23 yamt static void
648 1.23 yamt qc_destroy(vmem_t *vm)
649 1.23 yamt {
650 1.23 yamt const qcache_t *prevqc;
651 1.23 yamt int i;
652 1.23 yamt int qcache_idx_max;
653 1.23 yamt
654 1.23 yamt qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
655 1.23 yamt prevqc = NULL;
656 1.24 yamt for (i = 0; i < qcache_idx_max; i++) {
657 1.24 yamt qcache_t *qc = vm->vm_qcache[i];
658 1.23 yamt
659 1.23 yamt if (prevqc == qc) {
660 1.23 yamt continue;
661 1.23 yamt }
662 1.80 para pool_cache_destroy(qc->qc_cache);
663 1.23 yamt prevqc = qc;
664 1.23 yamt }
665 1.23 yamt }
666 1.66 para #endif
667 1.23 yamt
668 1.66 para #if defined(_KERNEL)
669 1.80 para static void
670 1.66 para vmem_bootstrap(void)
671 1.6 yamt {
672 1.6 yamt
673 1.103 ad mutex_init(&vmem_list_lock, MUTEX_DEFAULT, IPL_NONE);
674 1.66 para mutex_init(&vmem_btag_lock, MUTEX_DEFAULT, IPL_VM);
675 1.88 para mutex_init(&vmem_btag_refill_lock, MUTEX_DEFAULT, IPL_VM);
676 1.6 yamt
677 1.66 para while (static_bt_count-- > 0) {
678 1.66 para bt_t *bt = &static_bts[static_bt_count];
679 1.66 para LIST_INSERT_HEAD(&vmem_btag_freelist, bt, bt_freelist);
680 1.88 para VMEM_EVCNT_INCR(static_bt_count);
681 1.66 para vmem_btag_freelist_count++;
682 1.6 yamt }
683 1.80 para vmem_bootstrapped = TRUE;
684 1.6 yamt }
685 1.5 yamt
686 1.66 para void
687 1.80 para vmem_subsystem_init(vmem_t *vm)
688 1.1 yamt {
689 1.1 yamt
690 1.80 para kmem_va_meta_arena = vmem_init(&kmem_va_meta_arena_store, "vmem-va",
691 1.80 para 0, 0, PAGE_SIZE, vmem_alloc, vmem_free, vm,
692 1.66 para 0, VM_NOSLEEP | VM_BOOTSTRAP | VM_LARGEIMPORT,
693 1.66 para IPL_VM);
694 1.66 para
695 1.80 para kmem_meta_arena = vmem_init(&kmem_meta_arena_store, "vmem-meta",
696 1.80 para 0, 0, PAGE_SIZE,
697 1.66 para uvm_km_kmem_alloc, uvm_km_kmem_free, kmem_va_meta_arena,
698 1.66 para 0, VM_NOSLEEP | VM_BOOTSTRAP, IPL_VM);
699 1.88 para
700 1.101 ad pool_init(&vmem_btag_pool, sizeof(bt_t), coherency_unit, 0,
701 1.101 ad PR_PHINPAGE, "vmembt", &pool_allocator_vmem_meta, IPL_VM);
702 1.112 thorpej vmem_btag_pool_initialized = true;
703 1.1 yamt }
704 1.1 yamt #endif /* defined(_KERNEL) */
705 1.1 yamt
706 1.61 dyoung static int
707 1.1 yamt vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags,
708 1.1 yamt int spanbttype)
709 1.1 yamt {
710 1.1 yamt bt_t *btspan;
711 1.1 yamt bt_t *btfree;
712 1.1 yamt
713 1.101 ad VMEM_ASSERT_LOCKED(vm);
714 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
715 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
716 1.58 yamt KASSERT(spanbttype == BT_TYPE_SPAN ||
717 1.58 yamt spanbttype == BT_TYPE_SPAN_STATIC);
718 1.1 yamt
719 1.1 yamt btspan = bt_alloc(vm, flags);
720 1.1 yamt if (btspan == NULL) {
721 1.61 dyoung return ENOMEM;
722 1.1 yamt }
723 1.1 yamt btfree = bt_alloc(vm, flags);
724 1.1 yamt if (btfree == NULL) {
725 1.1 yamt bt_free(vm, btspan);
726 1.61 dyoung return ENOMEM;
727 1.1 yamt }
728 1.1 yamt
729 1.1 yamt btspan->bt_type = spanbttype;
730 1.1 yamt btspan->bt_start = addr;
731 1.1 yamt btspan->bt_size = size;
732 1.1 yamt
733 1.1 yamt btfree->bt_type = BT_TYPE_FREE;
734 1.1 yamt btfree->bt_start = addr;
735 1.1 yamt btfree->bt_size = size;
736 1.1 yamt
737 1.1 yamt bt_insseg_tail(vm, btspan);
738 1.1 yamt bt_insseg(vm, btfree, btspan);
739 1.1 yamt bt_insfree(vm, btfree);
740 1.66 para vm->vm_size += size;
741 1.1 yamt
742 1.61 dyoung return 0;
743 1.1 yamt }
744 1.1 yamt
745 1.30 yamt static void
746 1.30 yamt vmem_destroy1(vmem_t *vm)
747 1.30 yamt {
748 1.30 yamt
749 1.30 yamt #if defined(QCACHE)
750 1.30 yamt qc_destroy(vm);
751 1.30 yamt #endif /* defined(QCACHE) */
752 1.101 ad VMEM_LOCK(vm);
753 1.30 yamt
754 1.101 ad for (int i = 0; i < vm->vm_hashsize; i++) {
755 1.101 ad bt_t *bt;
756 1.30 yamt
757 1.101 ad while ((bt = LIST_FIRST(&vm->vm_hashlist[i])) != NULL) {
758 1.101 ad KASSERT(bt->bt_type == BT_TYPE_SPAN_STATIC);
759 1.101 ad LIST_REMOVE(bt, bt_hashlist);
760 1.101 ad bt_free(vm, bt);
761 1.66 para }
762 1.66 para }
763 1.66 para
764 1.101 ad /* bt_freetrim() drops the lock. */
765 1.88 para bt_freetrim(vm, 0);
766 1.101 ad if (vm->vm_hashlist != &vm->vm_hash0) {
767 1.101 ad xfree(vm->vm_hashlist,
768 1.101 ad sizeof(struct vmem_hashlist) * vm->vm_hashsize);
769 1.101 ad }
770 1.66 para
771 1.80 para VMEM_CONDVAR_DESTROY(vm);
772 1.31 ad VMEM_LOCK_DESTROY(vm);
773 1.66 para xfree(vm, sizeof(*vm));
774 1.30 yamt }
775 1.30 yamt
776 1.1 yamt static int
777 1.1 yamt vmem_import(vmem_t *vm, vmem_size_t size, vm_flag_t flags)
778 1.1 yamt {
779 1.1 yamt vmem_addr_t addr;
780 1.61 dyoung int rc;
781 1.1 yamt
782 1.101 ad VMEM_ASSERT_LOCKED(vm);
783 1.101 ad
784 1.61 dyoung if (vm->vm_importfn == NULL) {
785 1.1 yamt return EINVAL;
786 1.1 yamt }
787 1.1 yamt
788 1.66 para if (vm->vm_flags & VM_LARGEIMPORT) {
789 1.80 para size *= 16;
790 1.66 para }
791 1.66 para
792 1.101 ad VMEM_UNLOCK(vm);
793 1.66 para if (vm->vm_flags & VM_XIMPORT) {
794 1.99 christos rc = __FPTRCAST(vmem_ximport_t *, vm->vm_importfn)(vm->vm_arg,
795 1.98 christos size, &size, flags, &addr);
796 1.66 para } else {
797 1.66 para rc = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr);
798 1.69 rmind }
799 1.101 ad VMEM_LOCK(vm);
800 1.101 ad
801 1.69 rmind if (rc) {
802 1.69 rmind return ENOMEM;
803 1.1 yamt }
804 1.1 yamt
805 1.61 dyoung if (vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN) != 0) {
806 1.101 ad VMEM_UNLOCK(vm);
807 1.61 dyoung (*vm->vm_releasefn)(vm->vm_arg, addr, size);
808 1.101 ad VMEM_LOCK(vm);
809 1.1 yamt return ENOMEM;
810 1.1 yamt }
811 1.1 yamt
812 1.1 yamt return 0;
813 1.1 yamt }
814 1.1 yamt
815 1.110 thorpej #if defined(_KERNEL)
816 1.1 yamt static int
817 1.1 yamt vmem_rehash(vmem_t *vm, size_t newhashsize, vm_flag_t flags)
818 1.1 yamt {
819 1.1 yamt bt_t *bt;
820 1.1 yamt int i;
821 1.1 yamt struct vmem_hashlist *newhashlist;
822 1.1 yamt struct vmem_hashlist *oldhashlist;
823 1.1 yamt size_t oldhashsize;
824 1.1 yamt
825 1.1 yamt KASSERT(newhashsize > 0);
826 1.1 yamt
827 1.101 ad /* Round hash size up to a power of 2. */
828 1.101 ad newhashsize = 1 << (ilog2(newhashsize) + 1);
829 1.101 ad
830 1.1 yamt newhashlist =
831 1.101 ad xmalloc(sizeof(struct vmem_hashlist) * newhashsize, flags);
832 1.1 yamt if (newhashlist == NULL) {
833 1.1 yamt return ENOMEM;
834 1.1 yamt }
835 1.1 yamt for (i = 0; i < newhashsize; i++) {
836 1.1 yamt LIST_INIT(&newhashlist[i]);
837 1.1 yamt }
838 1.1 yamt
839 1.101 ad VMEM_LOCK(vm);
840 1.101 ad /* Decay back to a small hash slowly. */
841 1.101 ad if (vm->vm_maxbusytag >= 2) {
842 1.101 ad vm->vm_maxbusytag = vm->vm_maxbusytag / 2 - 1;
843 1.101 ad if (vm->vm_nbusytag > vm->vm_maxbusytag) {
844 1.101 ad vm->vm_maxbusytag = vm->vm_nbusytag;
845 1.101 ad }
846 1.101 ad } else {
847 1.101 ad vm->vm_maxbusytag = vm->vm_nbusytag;
848 1.30 yamt }
849 1.1 yamt oldhashlist = vm->vm_hashlist;
850 1.1 yamt oldhashsize = vm->vm_hashsize;
851 1.1 yamt vm->vm_hashlist = newhashlist;
852 1.1 yamt vm->vm_hashsize = newhashsize;
853 1.101 ad vm->vm_hashmask = newhashsize - 1;
854 1.1 yamt if (oldhashlist == NULL) {
855 1.1 yamt VMEM_UNLOCK(vm);
856 1.1 yamt return 0;
857 1.1 yamt }
858 1.1 yamt for (i = 0; i < oldhashsize; i++) {
859 1.1 yamt while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
860 1.1 yamt bt_rembusy(vm, bt); /* XXX */
861 1.1 yamt bt_insbusy(vm, bt);
862 1.1 yamt }
863 1.1 yamt }
864 1.1 yamt VMEM_UNLOCK(vm);
865 1.1 yamt
866 1.66 para if (oldhashlist != &vm->vm_hash0) {
867 1.66 para xfree(oldhashlist,
868 1.101 ad sizeof(struct vmem_hashlist) * oldhashsize);
869 1.66 para }
870 1.1 yamt
871 1.1 yamt return 0;
872 1.1 yamt }
873 1.110 thorpej #endif /* _KERNEL */
874 1.1 yamt
875 1.10 yamt /*
876 1.10 yamt * vmem_fit: check if a bt can satisfy the given restrictions.
877 1.59 yamt *
878 1.59 yamt * it's a caller's responsibility to ensure the region is big enough
879 1.59 yamt * before calling us.
880 1.10 yamt */
881 1.10 yamt
882 1.61 dyoung static int
883 1.76 joerg vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align,
884 1.60 dyoung vmem_size_t phase, vmem_size_t nocross,
885 1.61 dyoung vmem_addr_t minaddr, vmem_addr_t maxaddr, vmem_addr_t *addrp)
886 1.10 yamt {
887 1.10 yamt vmem_addr_t start;
888 1.10 yamt vmem_addr_t end;
889 1.10 yamt
890 1.60 dyoung KASSERT(size > 0);
891 1.59 yamt KASSERT(bt->bt_size >= size); /* caller's responsibility */
892 1.10 yamt
893 1.10 yamt /*
894 1.10 yamt * XXX assumption: vmem_addr_t and vmem_size_t are
895 1.10 yamt * unsigned integer of the same size.
896 1.10 yamt */
897 1.10 yamt
898 1.10 yamt start = bt->bt_start;
899 1.10 yamt if (start < minaddr) {
900 1.10 yamt start = minaddr;
901 1.10 yamt }
902 1.10 yamt end = BT_END(bt);
903 1.60 dyoung if (end > maxaddr) {
904 1.60 dyoung end = maxaddr;
905 1.10 yamt }
906 1.60 dyoung if (start > end) {
907 1.61 dyoung return ENOMEM;
908 1.10 yamt }
909 1.19 yamt
910 1.19 yamt start = VMEM_ALIGNUP(start - phase, align) + phase;
911 1.10 yamt if (start < bt->bt_start) {
912 1.10 yamt start += align;
913 1.10 yamt }
914 1.19 yamt if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
915 1.10 yamt KASSERT(align < nocross);
916 1.19 yamt start = VMEM_ALIGNUP(start - phase, nocross) + phase;
917 1.10 yamt }
918 1.60 dyoung if (start <= end && end - start >= size - 1) {
919 1.10 yamt KASSERT((start & (align - 1)) == phase);
920 1.19 yamt KASSERT(!VMEM_CROSS_P(start, start + size - 1, nocross));
921 1.10 yamt KASSERT(minaddr <= start);
922 1.60 dyoung KASSERT(maxaddr == 0 || start + size - 1 <= maxaddr);
923 1.10 yamt KASSERT(bt->bt_start <= start);
924 1.60 dyoung KASSERT(BT_END(bt) - start >= size - 1);
925 1.61 dyoung *addrp = start;
926 1.61 dyoung return 0;
927 1.10 yamt }
928 1.61 dyoung return ENOMEM;
929 1.10 yamt }
930 1.10 yamt
931 1.80 para /* ---- vmem API */
932 1.1 yamt
933 1.1 yamt /*
934 1.102 ad * vmem_init: creates a vmem arena.
935 1.1 yamt */
936 1.1 yamt
937 1.80 para vmem_t *
938 1.80 para vmem_init(vmem_t *vm, const char *name,
939 1.80 para vmem_addr_t base, vmem_size_t size, vmem_size_t quantum,
940 1.80 para vmem_import_t *importfn, vmem_release_t *releasefn,
941 1.80 para vmem_t *arg, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
942 1.1 yamt {
943 1.1 yamt int i;
944 1.1 yamt
945 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
946 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
947 1.62 rmind KASSERT(quantum > 0);
948 1.1 yamt
949 1.1 yamt #if defined(_KERNEL)
950 1.80 para /* XXX: SMP, we get called early... */
951 1.80 para if (!vmem_bootstrapped) {
952 1.80 para vmem_bootstrap();
953 1.80 para }
954 1.66 para #endif /* defined(_KERNEL) */
955 1.80 para
956 1.80 para if (vm == NULL) {
957 1.66 para vm = xmalloc(sizeof(*vm), flags);
958 1.1 yamt }
959 1.1 yamt if (vm == NULL) {
960 1.1 yamt return NULL;
961 1.1 yamt }
962 1.1 yamt
963 1.66 para VMEM_CONDVAR_INIT(vm, "vmem");
964 1.31 ad VMEM_LOCK_INIT(vm, ipl);
965 1.66 para vm->vm_flags = flags;
966 1.66 para vm->vm_nfreetags = 0;
967 1.66 para LIST_INIT(&vm->vm_freetags);
968 1.64 yamt strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
969 1.1 yamt vm->vm_quantum_mask = quantum - 1;
970 1.62 rmind vm->vm_quantum_shift = SIZE2ORDER(quantum);
971 1.4 yamt KASSERT(ORDER2SIZE(vm->vm_quantum_shift) == quantum);
972 1.61 dyoung vm->vm_importfn = importfn;
973 1.61 dyoung vm->vm_releasefn = releasefn;
974 1.61 dyoung vm->vm_arg = arg;
975 1.1 yamt vm->vm_nbusytag = 0;
976 1.101 ad vm->vm_maxbusytag = 0;
977 1.66 para vm->vm_size = 0;
978 1.66 para vm->vm_inuse = 0;
979 1.5 yamt #if defined(QCACHE)
980 1.31 ad qc_init(vm, qcache_max, ipl);
981 1.5 yamt #endif /* defined(QCACHE) */
982 1.1 yamt
983 1.87 christos TAILQ_INIT(&vm->vm_seglist);
984 1.1 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
985 1.1 yamt LIST_INIT(&vm->vm_freelist[i]);
986 1.1 yamt }
987 1.101 ad memset(&vm->vm_hash0, 0, sizeof(vm->vm_hash0));
988 1.80 para vm->vm_hashsize = 1;
989 1.101 ad vm->vm_hashmask = vm->vm_hashsize - 1;
990 1.80 para vm->vm_hashlist = &vm->vm_hash0;
991 1.1 yamt
992 1.1 yamt if (size != 0) {
993 1.61 dyoung if (vmem_add(vm, base, size, flags) != 0) {
994 1.30 yamt vmem_destroy1(vm);
995 1.1 yamt return NULL;
996 1.1 yamt }
997 1.1 yamt }
998 1.1 yamt
999 1.30 yamt #if defined(_KERNEL)
1000 1.66 para if (flags & VM_BOOTSTRAP) {
1001 1.94 chs bt_refill(vm);
1002 1.66 para }
1003 1.66 para
1004 1.30 yamt mutex_enter(&vmem_list_lock);
1005 1.30 yamt LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
1006 1.30 yamt mutex_exit(&vmem_list_lock);
1007 1.30 yamt #endif /* defined(_KERNEL) */
1008 1.30 yamt
1009 1.1 yamt return vm;
1010 1.1 yamt }
1011 1.1 yamt
1012 1.66 para
1013 1.66 para
1014 1.66 para /*
1015 1.66 para * vmem_create: create an arena.
1016 1.66 para *
1017 1.66 para * => must not be called from interrupt context.
1018 1.66 para */
1019 1.66 para
1020 1.66 para vmem_t *
1021 1.66 para vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
1022 1.66 para vmem_size_t quantum, vmem_import_t *importfn, vmem_release_t *releasefn,
1023 1.67 rmind vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
1024 1.66 para {
1025 1.66 para
1026 1.66 para KASSERT((flags & (VM_XIMPORT)) == 0);
1027 1.66 para
1028 1.80 para return vmem_init(NULL, name, base, size, quantum,
1029 1.66 para importfn, releasefn, source, qcache_max, flags, ipl);
1030 1.66 para }
1031 1.66 para
1032 1.66 para /*
1033 1.66 para * vmem_xcreate: create an arena takes alternative import func.
1034 1.66 para *
1035 1.66 para * => must not be called from interrupt context.
1036 1.66 para */
1037 1.66 para
1038 1.66 para vmem_t *
1039 1.66 para vmem_xcreate(const char *name, vmem_addr_t base, vmem_size_t size,
1040 1.66 para vmem_size_t quantum, vmem_ximport_t *importfn, vmem_release_t *releasefn,
1041 1.67 rmind vmem_t *source, vmem_size_t qcache_max, vm_flag_t flags, int ipl)
1042 1.66 para {
1043 1.66 para
1044 1.66 para KASSERT((flags & (VM_XIMPORT)) == 0);
1045 1.66 para
1046 1.80 para return vmem_init(NULL, name, base, size, quantum,
1047 1.99 christos __FPTRCAST(vmem_import_t *, importfn), releasefn, source,
1048 1.66 para qcache_max, flags | VM_XIMPORT, ipl);
1049 1.66 para }
1050 1.66 para
1051 1.1 yamt void
1052 1.1 yamt vmem_destroy(vmem_t *vm)
1053 1.1 yamt {
1054 1.1 yamt
1055 1.30 yamt #if defined(_KERNEL)
1056 1.30 yamt mutex_enter(&vmem_list_lock);
1057 1.30 yamt LIST_REMOVE(vm, vm_alllist);
1058 1.30 yamt mutex_exit(&vmem_list_lock);
1059 1.30 yamt #endif /* defined(_KERNEL) */
1060 1.1 yamt
1061 1.30 yamt vmem_destroy1(vm);
1062 1.1 yamt }
1063 1.1 yamt
1064 1.1 yamt vmem_size_t
1065 1.1 yamt vmem_roundup_size(vmem_t *vm, vmem_size_t size)
1066 1.1 yamt {
1067 1.1 yamt
1068 1.1 yamt return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
1069 1.1 yamt }
1070 1.1 yamt
1071 1.1 yamt /*
1072 1.83 yamt * vmem_alloc: allocate resource from the arena.
1073 1.1 yamt */
1074 1.1 yamt
1075 1.61 dyoung int
1076 1.61 dyoung vmem_alloc(vmem_t *vm, vmem_size_t size, vm_flag_t flags, vmem_addr_t *addrp)
1077 1.1 yamt {
1078 1.86 martin const vm_flag_t strat __diagused = flags & VM_FITMASK;
1079 1.96 chs int error;
1080 1.1 yamt
1081 1.1 yamt KASSERT((flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1082 1.1 yamt KASSERT((~flags & (VM_SLEEP|VM_NOSLEEP)) != 0);
1083 1.1 yamt
1084 1.1 yamt KASSERT(size > 0);
1085 1.1 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1086 1.3 yamt if ((flags & VM_SLEEP) != 0) {
1087 1.42 yamt ASSERT_SLEEPABLE();
1088 1.3 yamt }
1089 1.1 yamt
1090 1.5 yamt #if defined(QCACHE)
1091 1.5 yamt if (size <= vm->vm_qcache_max) {
1092 1.61 dyoung void *p;
1093 1.38 yamt int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1094 1.22 yamt qcache_t *qc = vm->vm_qcache[qidx - 1];
1095 1.5 yamt
1096 1.61 dyoung p = pool_cache_get(qc->qc_cache, vmf_to_prf(flags));
1097 1.61 dyoung if (addrp != NULL)
1098 1.61 dyoung *addrp = (vmem_addr_t)p;
1099 1.96 chs error = (p == NULL) ? ENOMEM : 0;
1100 1.96 chs goto out;
1101 1.5 yamt }
1102 1.5 yamt #endif /* defined(QCACHE) */
1103 1.5 yamt
1104 1.96 chs error = vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
1105 1.61 dyoung flags, addrp);
1106 1.110 thorpej #if defined(QCACHE)
1107 1.110 thorpej out:
1108 1.110 thorpej #endif /* defined(QCACHE) */
1109 1.107 riastrad KASSERTMSG(error || addrp == NULL ||
1110 1.107 riastrad (*addrp & vm->vm_quantum_mask) == 0,
1111 1.107 riastrad "vmem %s mask=0x%jx addr=0x%jx",
1112 1.107 riastrad vm->vm_name, (uintmax_t)vm->vm_quantum_mask, (uintmax_t)*addrp);
1113 1.96 chs KASSERT(error == 0 || (flags & VM_SLEEP) == 0);
1114 1.96 chs return error;
1115 1.10 yamt }
1116 1.10 yamt
1117 1.61 dyoung int
1118 1.111 thorpej vmem_xalloc_addr(vmem_t *vm, const vmem_addr_t addr, const vmem_size_t size,
1119 1.111 thorpej vm_flag_t flags)
1120 1.111 thorpej {
1121 1.111 thorpej vmem_addr_t result;
1122 1.111 thorpej int error;
1123 1.111 thorpej
1124 1.111 thorpej KASSERT((addr & vm->vm_quantum_mask) == 0);
1125 1.111 thorpej KASSERT(size != 0);
1126 1.111 thorpej
1127 1.111 thorpej flags = (flags & ~VM_INSTANTFIT) | VM_BESTFIT;
1128 1.111 thorpej
1129 1.111 thorpej error = vmem_xalloc(vm, size, 0, 0, 0, addr, addr + size - 1,
1130 1.111 thorpej flags, &result);
1131 1.111 thorpej
1132 1.111 thorpej KASSERT(error || result == addr);
1133 1.111 thorpej KASSERT(error == 0 || (flags & VM_SLEEP) == 0);
1134 1.111 thorpej return error;
1135 1.111 thorpej }
1136 1.111 thorpej
1137 1.111 thorpej int
1138 1.60 dyoung vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
1139 1.60 dyoung const vmem_size_t phase, const vmem_size_t nocross,
1140 1.61 dyoung const vmem_addr_t minaddr, const vmem_addr_t maxaddr, const vm_flag_t flags,
1141 1.61 dyoung vmem_addr_t *addrp)
1142 1.10 yamt {
1143 1.10 yamt struct vmem_freelist *list;
1144 1.10 yamt struct vmem_freelist *first;
1145 1.10 yamt struct vmem_freelist *end;
1146 1.10 yamt bt_t *bt;
1147 1.10 yamt bt_t *btnew;
1148 1.10 yamt bt_t *btnew2;
1149 1.10 yamt const vmem_size_t size = vmem_roundup_size(vm, size0);
1150 1.10 yamt vm_flag_t strat = flags & VM_FITMASK;
1151 1.10 yamt vmem_addr_t start;
1152 1.61 dyoung int rc;
1153 1.10 yamt
1154 1.10 yamt KASSERT(size0 > 0);
1155 1.10 yamt KASSERT(size > 0);
1156 1.10 yamt KASSERT(strat == VM_BESTFIT || strat == VM_INSTANTFIT);
1157 1.10 yamt if ((flags & VM_SLEEP) != 0) {
1158 1.42 yamt ASSERT_SLEEPABLE();
1159 1.10 yamt }
1160 1.10 yamt KASSERT((align & vm->vm_quantum_mask) == 0);
1161 1.10 yamt KASSERT((align & (align - 1)) == 0);
1162 1.10 yamt KASSERT((phase & vm->vm_quantum_mask) == 0);
1163 1.10 yamt KASSERT((nocross & vm->vm_quantum_mask) == 0);
1164 1.10 yamt KASSERT((nocross & (nocross - 1)) == 0);
1165 1.109 riastrad KASSERT(align == 0 || phase < align);
1166 1.109 riastrad KASSERT(phase == 0 || phase < align);
1167 1.10 yamt KASSERT(nocross == 0 || nocross >= size);
1168 1.60 dyoung KASSERT(minaddr <= maxaddr);
1169 1.19 yamt KASSERT(!VMEM_CROSS_P(phase, phase + size - 1, nocross));
1170 1.10 yamt
1171 1.10 yamt if (align == 0) {
1172 1.10 yamt align = vm->vm_quantum_mask + 1;
1173 1.10 yamt }
1174 1.59 yamt
1175 1.59 yamt /*
1176 1.59 yamt * allocate boundary tags before acquiring the vmem lock.
1177 1.59 yamt */
1178 1.101 ad VMEM_LOCK(vm);
1179 1.1 yamt btnew = bt_alloc(vm, flags);
1180 1.1 yamt if (btnew == NULL) {
1181 1.101 ad VMEM_UNLOCK(vm);
1182 1.61 dyoung return ENOMEM;
1183 1.1 yamt }
1184 1.10 yamt btnew2 = bt_alloc(vm, flags); /* XXX not necessary if no restrictions */
1185 1.10 yamt if (btnew2 == NULL) {
1186 1.10 yamt bt_free(vm, btnew);
1187 1.101 ad VMEM_UNLOCK(vm);
1188 1.61 dyoung return ENOMEM;
1189 1.10 yamt }
1190 1.1 yamt
1191 1.59 yamt /*
1192 1.59 yamt * choose a free block from which we allocate.
1193 1.59 yamt */
1194 1.1 yamt retry_strat:
1195 1.1 yamt first = bt_freehead_toalloc(vm, size, strat);
1196 1.1 yamt end = &vm->vm_freelist[VMEM_MAXORDER];
1197 1.1 yamt retry:
1198 1.1 yamt bt = NULL;
1199 1.55 yamt vmem_check(vm);
1200 1.2 yamt if (strat == VM_INSTANTFIT) {
1201 1.59 yamt /*
1202 1.59 yamt * just choose the first block which satisfies our restrictions.
1203 1.59 yamt *
1204 1.59 yamt * note that we don't need to check the size of the blocks
1205 1.59 yamt * because any blocks found on these list should be larger than
1206 1.59 yamt * the given size.
1207 1.59 yamt */
1208 1.2 yamt for (list = first; list < end; list++) {
1209 1.2 yamt bt = LIST_FIRST(list);
1210 1.2 yamt if (bt != NULL) {
1211 1.61 dyoung rc = vmem_fit(bt, size, align, phase,
1212 1.61 dyoung nocross, minaddr, maxaddr, &start);
1213 1.61 dyoung if (rc == 0) {
1214 1.10 yamt goto gotit;
1215 1.10 yamt }
1216 1.59 yamt /*
1217 1.59 yamt * don't bother to follow the bt_freelist link
1218 1.59 yamt * here. the list can be very long and we are
1219 1.59 yamt * told to run fast. blocks from the later free
1220 1.59 yamt * lists are larger and have better chances to
1221 1.59 yamt * satisfy our restrictions.
1222 1.59 yamt */
1223 1.2 yamt }
1224 1.2 yamt }
1225 1.2 yamt } else { /* VM_BESTFIT */
1226 1.59 yamt /*
1227 1.59 yamt * we assume that, for space efficiency, it's better to
1228 1.59 yamt * allocate from a smaller block. thus we will start searching
1229 1.59 yamt * from the lower-order list than VM_INSTANTFIT.
1230 1.59 yamt * however, don't bother to find the smallest block in a free
1231 1.59 yamt * list because the list can be very long. we can revisit it
1232 1.59 yamt * if/when it turns out to be a problem.
1233 1.59 yamt *
1234 1.59 yamt * note that the 'first' list can contain blocks smaller than
1235 1.59 yamt * the requested size. thus we need to check bt_size.
1236 1.59 yamt */
1237 1.2 yamt for (list = first; list < end; list++) {
1238 1.2 yamt LIST_FOREACH(bt, list, bt_freelist) {
1239 1.2 yamt if (bt->bt_size >= size) {
1240 1.61 dyoung rc = vmem_fit(bt, size, align, phase,
1241 1.61 dyoung nocross, minaddr, maxaddr, &start);
1242 1.61 dyoung if (rc == 0) {
1243 1.10 yamt goto gotit;
1244 1.10 yamt }
1245 1.2 yamt }
1246 1.1 yamt }
1247 1.1 yamt }
1248 1.1 yamt }
1249 1.1 yamt #if 1
1250 1.2 yamt if (strat == VM_INSTANTFIT) {
1251 1.2 yamt strat = VM_BESTFIT;
1252 1.2 yamt goto retry_strat;
1253 1.2 yamt }
1254 1.1 yamt #endif
1255 1.69 rmind if (align != vm->vm_quantum_mask + 1 || phase != 0 || nocross != 0) {
1256 1.10 yamt
1257 1.10 yamt /*
1258 1.10 yamt * XXX should try to import a region large enough to
1259 1.10 yamt * satisfy restrictions?
1260 1.10 yamt */
1261 1.10 yamt
1262 1.20 yamt goto fail;
1263 1.10 yamt }
1264 1.60 dyoung /* XXX eeek, minaddr & maxaddr not respected */
1265 1.2 yamt if (vmem_import(vm, size, flags) == 0) {
1266 1.2 yamt goto retry;
1267 1.1 yamt }
1268 1.2 yamt /* XXX */
1269 1.66 para
1270 1.68 para if ((flags & VM_SLEEP) != 0) {
1271 1.94 chs vmem_kick_pdaemon();
1272 1.68 para VMEM_CONDVAR_WAIT(vm);
1273 1.68 para goto retry;
1274 1.68 para }
1275 1.20 yamt fail:
1276 1.20 yamt bt_free(vm, btnew);
1277 1.20 yamt bt_free(vm, btnew2);
1278 1.101 ad VMEM_UNLOCK(vm);
1279 1.61 dyoung return ENOMEM;
1280 1.2 yamt
1281 1.2 yamt gotit:
1282 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_FREE);
1283 1.1 yamt KASSERT(bt->bt_size >= size);
1284 1.1 yamt bt_remfree(vm, bt);
1285 1.55 yamt vmem_check(vm);
1286 1.10 yamt if (bt->bt_start != start) {
1287 1.10 yamt btnew2->bt_type = BT_TYPE_FREE;
1288 1.10 yamt btnew2->bt_start = bt->bt_start;
1289 1.10 yamt btnew2->bt_size = start - bt->bt_start;
1290 1.10 yamt bt->bt_start = start;
1291 1.10 yamt bt->bt_size -= btnew2->bt_size;
1292 1.10 yamt bt_insfree(vm, btnew2);
1293 1.87 christos bt_insseg(vm, btnew2, TAILQ_PREV(bt, vmem_seglist, bt_seglist));
1294 1.10 yamt btnew2 = NULL;
1295 1.55 yamt vmem_check(vm);
1296 1.10 yamt }
1297 1.10 yamt KASSERT(bt->bt_start == start);
1298 1.1 yamt if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
1299 1.1 yamt /* split */
1300 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
1301 1.1 yamt btnew->bt_start = bt->bt_start;
1302 1.1 yamt btnew->bt_size = size;
1303 1.1 yamt bt->bt_start = bt->bt_start + size;
1304 1.1 yamt bt->bt_size -= size;
1305 1.1 yamt bt_insfree(vm, bt);
1306 1.87 christos bt_insseg(vm, btnew, TAILQ_PREV(bt, vmem_seglist, bt_seglist));
1307 1.1 yamt bt_insbusy(vm, btnew);
1308 1.55 yamt vmem_check(vm);
1309 1.1 yamt } else {
1310 1.1 yamt bt->bt_type = BT_TYPE_BUSY;
1311 1.1 yamt bt_insbusy(vm, bt);
1312 1.55 yamt vmem_check(vm);
1313 1.1 yamt bt_free(vm, btnew);
1314 1.1 yamt btnew = bt;
1315 1.1 yamt }
1316 1.10 yamt if (btnew2 != NULL) {
1317 1.10 yamt bt_free(vm, btnew2);
1318 1.10 yamt }
1319 1.1 yamt KASSERT(btnew->bt_size >= size);
1320 1.1 yamt btnew->bt_type = BT_TYPE_BUSY;
1321 1.61 dyoung if (addrp != NULL)
1322 1.61 dyoung *addrp = btnew->bt_start;
1323 1.101 ad VMEM_UNLOCK(vm);
1324 1.107 riastrad KASSERTMSG(addrp == NULL ||
1325 1.107 riastrad (*addrp & vm->vm_quantum_mask) == 0,
1326 1.107 riastrad "vmem %s mask=0x%jx addr=0x%jx",
1327 1.107 riastrad vm->vm_name, (uintmax_t)vm->vm_quantum_mask, (uintmax_t)*addrp);
1328 1.61 dyoung return 0;
1329 1.1 yamt }
1330 1.1 yamt
1331 1.1 yamt /*
1332 1.83 yamt * vmem_free: free the resource to the arena.
1333 1.1 yamt */
1334 1.1 yamt
1335 1.1 yamt void
1336 1.1 yamt vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1337 1.1 yamt {
1338 1.1 yamt
1339 1.1 yamt KASSERT(size > 0);
1340 1.107 riastrad KASSERTMSG((addr & vm->vm_quantum_mask) == 0,
1341 1.107 riastrad "vmem %s mask=0x%jx addr=0x%jx",
1342 1.107 riastrad vm->vm_name, (uintmax_t)vm->vm_quantum_mask, (uintmax_t)addr);
1343 1.1 yamt
1344 1.5 yamt #if defined(QCACHE)
1345 1.5 yamt if (size <= vm->vm_qcache_max) {
1346 1.5 yamt int qidx = (size + vm->vm_quantum_mask) >> vm->vm_quantum_shift;
1347 1.22 yamt qcache_t *qc = vm->vm_qcache[qidx - 1];
1348 1.5 yamt
1349 1.63 rmind pool_cache_put(qc->qc_cache, (void *)addr);
1350 1.63 rmind return;
1351 1.5 yamt }
1352 1.5 yamt #endif /* defined(QCACHE) */
1353 1.5 yamt
1354 1.10 yamt vmem_xfree(vm, addr, size);
1355 1.10 yamt }
1356 1.10 yamt
1357 1.10 yamt void
1358 1.17 yamt vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
1359 1.10 yamt {
1360 1.10 yamt bt_t *bt;
1361 1.10 yamt
1362 1.10 yamt KASSERT(size > 0);
1363 1.107 riastrad KASSERTMSG((addr & vm->vm_quantum_mask) == 0,
1364 1.107 riastrad "vmem %s mask=0x%jx addr=0x%jx",
1365 1.107 riastrad vm->vm_name, (uintmax_t)vm->vm_quantum_mask, (uintmax_t)addr);
1366 1.10 yamt
1367 1.1 yamt VMEM_LOCK(vm);
1368 1.1 yamt
1369 1.1 yamt bt = bt_lookupbusy(vm, addr);
1370 1.107 riastrad KASSERTMSG(bt != NULL, "vmem %s addr 0x%jx size 0x%jx",
1371 1.107 riastrad vm->vm_name, (uintmax_t)addr, (uintmax_t)size);
1372 1.1 yamt KASSERT(bt->bt_start == addr);
1373 1.1 yamt KASSERT(bt->bt_size == vmem_roundup_size(vm, size) ||
1374 1.1 yamt bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
1375 1.105 riastrad
1376 1.104 thorpej /* vmem_xfree_bt() drops the lock. */
1377 1.104 thorpej vmem_xfree_bt(vm, bt);
1378 1.104 thorpej }
1379 1.104 thorpej
1380 1.104 thorpej void
1381 1.104 thorpej vmem_xfreeall(vmem_t *vm)
1382 1.104 thorpej {
1383 1.104 thorpej bt_t *bt;
1384 1.104 thorpej
1385 1.110 thorpej #if defined(QCACHE)
1386 1.104 thorpej /* This can't be used if the arena has a quantum cache. */
1387 1.104 thorpej KASSERT(vm->vm_qcache_max == 0);
1388 1.110 thorpej #endif /* defined(QCACHE) */
1389 1.104 thorpej
1390 1.104 thorpej for (;;) {
1391 1.104 thorpej VMEM_LOCK(vm);
1392 1.104 thorpej TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1393 1.104 thorpej if (bt->bt_type == BT_TYPE_BUSY)
1394 1.104 thorpej break;
1395 1.104 thorpej }
1396 1.104 thorpej if (bt != NULL) {
1397 1.104 thorpej /* vmem_xfree_bt() drops the lock. */
1398 1.104 thorpej vmem_xfree_bt(vm, bt);
1399 1.104 thorpej } else {
1400 1.104 thorpej VMEM_UNLOCK(vm);
1401 1.104 thorpej return;
1402 1.104 thorpej }
1403 1.104 thorpej }
1404 1.104 thorpej }
1405 1.104 thorpej
1406 1.104 thorpej static void
1407 1.104 thorpej vmem_xfree_bt(vmem_t *vm, bt_t *bt)
1408 1.104 thorpej {
1409 1.104 thorpej bt_t *t;
1410 1.104 thorpej
1411 1.104 thorpej VMEM_ASSERT_LOCKED(vm);
1412 1.104 thorpej
1413 1.1 yamt KASSERT(bt->bt_type == BT_TYPE_BUSY);
1414 1.1 yamt bt_rembusy(vm, bt);
1415 1.1 yamt bt->bt_type = BT_TYPE_FREE;
1416 1.1 yamt
1417 1.1 yamt /* coalesce */
1418 1.87 christos t = TAILQ_NEXT(bt, bt_seglist);
1419 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1420 1.60 dyoung KASSERT(BT_END(bt) < t->bt_start); /* YYY */
1421 1.1 yamt bt_remfree(vm, t);
1422 1.1 yamt bt_remseg(vm, t);
1423 1.1 yamt bt->bt_size += t->bt_size;
1424 1.101 ad bt_free(vm, t);
1425 1.1 yamt }
1426 1.87 christos t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
1427 1.1 yamt if (t != NULL && t->bt_type == BT_TYPE_FREE) {
1428 1.60 dyoung KASSERT(BT_END(t) < bt->bt_start); /* YYY */
1429 1.1 yamt bt_remfree(vm, t);
1430 1.1 yamt bt_remseg(vm, t);
1431 1.1 yamt bt->bt_size += t->bt_size;
1432 1.1 yamt bt->bt_start = t->bt_start;
1433 1.101 ad bt_free(vm, t);
1434 1.1 yamt }
1435 1.1 yamt
1436 1.87 christos t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
1437 1.1 yamt KASSERT(t != NULL);
1438 1.1 yamt KASSERT(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
1439 1.61 dyoung if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
1440 1.1 yamt t->bt_size == bt->bt_size) {
1441 1.1 yamt vmem_addr_t spanaddr;
1442 1.1 yamt vmem_size_t spansize;
1443 1.1 yamt
1444 1.1 yamt KASSERT(t->bt_start == bt->bt_start);
1445 1.1 yamt spanaddr = bt->bt_start;
1446 1.1 yamt spansize = bt->bt_size;
1447 1.1 yamt bt_remseg(vm, bt);
1448 1.101 ad bt_free(vm, bt);
1449 1.1 yamt bt_remseg(vm, t);
1450 1.101 ad bt_free(vm, t);
1451 1.66 para vm->vm_size -= spansize;
1452 1.68 para VMEM_CONDVAR_BROADCAST(vm);
1453 1.101 ad /* bt_freetrim() drops the lock. */
1454 1.101 ad bt_freetrim(vm, BT_MAXFREE);
1455 1.61 dyoung (*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
1456 1.1 yamt } else {
1457 1.1 yamt bt_insfree(vm, bt);
1458 1.68 para VMEM_CONDVAR_BROADCAST(vm);
1459 1.101 ad /* bt_freetrim() drops the lock. */
1460 1.101 ad bt_freetrim(vm, BT_MAXFREE);
1461 1.1 yamt }
1462 1.1 yamt }
1463 1.1 yamt
1464 1.1 yamt /*
1465 1.1 yamt * vmem_add:
1466 1.1 yamt *
1467 1.1 yamt * => caller must ensure appropriate spl,
1468 1.1 yamt * if the arena can be accessed from interrupt context.
1469 1.1 yamt */
1470 1.1 yamt
1471 1.61 dyoung int
1472 1.1 yamt vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, vm_flag_t flags)
1473 1.1 yamt {
1474 1.101 ad int rv;
1475 1.1 yamt
1476 1.101 ad VMEM_LOCK(vm);
1477 1.101 ad rv = vmem_add1(vm, addr, size, flags, BT_TYPE_SPAN_STATIC);
1478 1.101 ad VMEM_UNLOCK(vm);
1479 1.101 ad
1480 1.101 ad return rv;
1481 1.1 yamt }
1482 1.1 yamt
1483 1.6 yamt /*
1484 1.66 para * vmem_size: information about arenas size
1485 1.6 yamt *
1486 1.66 para * => return free/allocated size in arena
1487 1.6 yamt */
1488 1.66 para vmem_size_t
1489 1.66 para vmem_size(vmem_t *vm, int typemask)
1490 1.6 yamt {
1491 1.6 yamt
1492 1.66 para switch (typemask) {
1493 1.66 para case VMEM_ALLOC:
1494 1.66 para return vm->vm_inuse;
1495 1.66 para case VMEM_FREE:
1496 1.66 para return vm->vm_size - vm->vm_inuse;
1497 1.66 para case VMEM_FREE|VMEM_ALLOC:
1498 1.66 para return vm->vm_size;
1499 1.66 para default:
1500 1.66 para panic("vmem_size");
1501 1.66 para }
1502 1.6 yamt }
1503 1.6 yamt
1504 1.30 yamt /* ---- rehash */
1505 1.30 yamt
1506 1.30 yamt #if defined(_KERNEL)
1507 1.30 yamt static struct callout vmem_rehash_ch;
1508 1.30 yamt static int vmem_rehash_interval;
1509 1.30 yamt static struct workqueue *vmem_rehash_wq;
1510 1.30 yamt static struct work vmem_rehash_wk;
1511 1.30 yamt
1512 1.30 yamt static void
1513 1.30 yamt vmem_rehash_all(struct work *wk, void *dummy)
1514 1.30 yamt {
1515 1.30 yamt vmem_t *vm;
1516 1.30 yamt
1517 1.30 yamt KASSERT(wk == &vmem_rehash_wk);
1518 1.30 yamt mutex_enter(&vmem_list_lock);
1519 1.30 yamt LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1520 1.30 yamt size_t desired;
1521 1.30 yamt size_t current;
1522 1.30 yamt
1523 1.101 ad desired = atomic_load_relaxed(&vm->vm_maxbusytag);
1524 1.101 ad current = atomic_load_relaxed(&vm->vm_hashsize);
1525 1.30 yamt
1526 1.30 yamt if (desired > VMEM_HASHSIZE_MAX) {
1527 1.30 yamt desired = VMEM_HASHSIZE_MAX;
1528 1.30 yamt } else if (desired < VMEM_HASHSIZE_MIN) {
1529 1.30 yamt desired = VMEM_HASHSIZE_MIN;
1530 1.30 yamt }
1531 1.30 yamt if (desired > current * 2 || desired * 2 < current) {
1532 1.30 yamt vmem_rehash(vm, desired, VM_NOSLEEP);
1533 1.30 yamt }
1534 1.30 yamt }
1535 1.30 yamt mutex_exit(&vmem_list_lock);
1536 1.30 yamt
1537 1.30 yamt callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1538 1.30 yamt }
1539 1.30 yamt
1540 1.30 yamt static void
1541 1.30 yamt vmem_rehash_all_kick(void *dummy)
1542 1.30 yamt {
1543 1.30 yamt
1544 1.32 rmind workqueue_enqueue(vmem_rehash_wq, &vmem_rehash_wk, NULL);
1545 1.30 yamt }
1546 1.30 yamt
1547 1.30 yamt void
1548 1.30 yamt vmem_rehash_start(void)
1549 1.30 yamt {
1550 1.30 yamt int error;
1551 1.30 yamt
1552 1.30 yamt error = workqueue_create(&vmem_rehash_wq, "vmem_rehash",
1553 1.41 ad vmem_rehash_all, NULL, PRI_VM, IPL_SOFTCLOCK, WQ_MPSAFE);
1554 1.30 yamt if (error) {
1555 1.30 yamt panic("%s: workqueue_create %d\n", __func__, error);
1556 1.30 yamt }
1557 1.41 ad callout_init(&vmem_rehash_ch, CALLOUT_MPSAFE);
1558 1.30 yamt callout_setfunc(&vmem_rehash_ch, vmem_rehash_all_kick, NULL);
1559 1.30 yamt
1560 1.30 yamt vmem_rehash_interval = hz * 10;
1561 1.30 yamt callout_schedule(&vmem_rehash_ch, vmem_rehash_interval);
1562 1.30 yamt }
1563 1.30 yamt #endif /* defined(_KERNEL) */
1564 1.30 yamt
1565 1.1 yamt /* ---- debug */
1566 1.1 yamt
1567 1.55 yamt #if defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY)
1568 1.55 yamt
1569 1.82 christos static void bt_dump(const bt_t *, void (*)(const char *, ...)
1570 1.82 christos __printflike(1, 2));
1571 1.55 yamt
1572 1.55 yamt static const char *
1573 1.55 yamt bt_type_string(int type)
1574 1.55 yamt {
1575 1.55 yamt static const char * const table[] = {
1576 1.55 yamt [BT_TYPE_BUSY] = "busy",
1577 1.55 yamt [BT_TYPE_FREE] = "free",
1578 1.55 yamt [BT_TYPE_SPAN] = "span",
1579 1.55 yamt [BT_TYPE_SPAN_STATIC] = "static span",
1580 1.55 yamt };
1581 1.55 yamt
1582 1.55 yamt if (type >= __arraycount(table)) {
1583 1.55 yamt return "BOGUS";
1584 1.55 yamt }
1585 1.55 yamt return table[type];
1586 1.55 yamt }
1587 1.55 yamt
1588 1.55 yamt static void
1589 1.55 yamt bt_dump(const bt_t *bt, void (*pr)(const char *, ...))
1590 1.55 yamt {
1591 1.55 yamt
1592 1.55 yamt (*pr)("\t%p: %" PRIu64 ", %" PRIu64 ", %d(%s)\n",
1593 1.55 yamt bt, (uint64_t)bt->bt_start, (uint64_t)bt->bt_size,
1594 1.55 yamt bt->bt_type, bt_type_string(bt->bt_type));
1595 1.55 yamt }
1596 1.55 yamt
1597 1.55 yamt static void
1598 1.82 christos vmem_dump(const vmem_t *vm , void (*pr)(const char *, ...) __printflike(1, 2))
1599 1.55 yamt {
1600 1.55 yamt const bt_t *bt;
1601 1.55 yamt int i;
1602 1.55 yamt
1603 1.55 yamt (*pr)("vmem %p '%s'\n", vm, vm->vm_name);
1604 1.87 christos TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1605 1.55 yamt bt_dump(bt, pr);
1606 1.55 yamt }
1607 1.55 yamt
1608 1.55 yamt for (i = 0; i < VMEM_MAXORDER; i++) {
1609 1.55 yamt const struct vmem_freelist *fl = &vm->vm_freelist[i];
1610 1.55 yamt
1611 1.55 yamt if (LIST_EMPTY(fl)) {
1612 1.55 yamt continue;
1613 1.55 yamt }
1614 1.55 yamt
1615 1.55 yamt (*pr)("freelist[%d]\n", i);
1616 1.55 yamt LIST_FOREACH(bt, fl, bt_freelist) {
1617 1.55 yamt bt_dump(bt, pr);
1618 1.55 yamt }
1619 1.55 yamt }
1620 1.55 yamt }
1621 1.55 yamt
1622 1.55 yamt #endif /* defined(DDB) || defined(UNITTEST) || defined(VMEM_SANITY) */
1623 1.55 yamt
1624 1.37 yamt #if defined(DDB)
1625 1.37 yamt static bt_t *
1626 1.37 yamt vmem_whatis_lookup(vmem_t *vm, uintptr_t addr)
1627 1.37 yamt {
1628 1.39 yamt bt_t *bt;
1629 1.37 yamt
1630 1.87 christos TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1631 1.39 yamt if (BT_ISSPAN_P(bt)) {
1632 1.39 yamt continue;
1633 1.39 yamt }
1634 1.60 dyoung if (bt->bt_start <= addr && addr <= BT_END(bt)) {
1635 1.39 yamt return bt;
1636 1.37 yamt }
1637 1.37 yamt }
1638 1.37 yamt
1639 1.37 yamt return NULL;
1640 1.37 yamt }
1641 1.37 yamt
1642 1.37 yamt void
1643 1.37 yamt vmem_whatis(uintptr_t addr, void (*pr)(const char *, ...))
1644 1.37 yamt {
1645 1.37 yamt vmem_t *vm;
1646 1.37 yamt
1647 1.37 yamt LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1648 1.37 yamt bt_t *bt;
1649 1.37 yamt
1650 1.37 yamt bt = vmem_whatis_lookup(vm, addr);
1651 1.37 yamt if (bt == NULL) {
1652 1.37 yamt continue;
1653 1.37 yamt }
1654 1.39 yamt (*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
1655 1.37 yamt (void *)addr, (void *)bt->bt_start,
1656 1.39 yamt (size_t)(addr - bt->bt_start), vm->vm_name,
1657 1.39 yamt (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
1658 1.37 yamt }
1659 1.37 yamt }
1660 1.43 cegger
1661 1.55 yamt void
1662 1.55 yamt vmem_printall(const char *modif, void (*pr)(const char *, ...))
1663 1.43 cegger {
1664 1.55 yamt const vmem_t *vm;
1665 1.43 cegger
1666 1.47 cegger LIST_FOREACH(vm, &vmem_list, vm_alllist) {
1667 1.55 yamt vmem_dump(vm, pr);
1668 1.43 cegger }
1669 1.43 cegger }
1670 1.43 cegger
1671 1.43 cegger void
1672 1.43 cegger vmem_print(uintptr_t addr, const char *modif, void (*pr)(const char *, ...))
1673 1.43 cegger {
1674 1.55 yamt const vmem_t *vm = (const void *)addr;
1675 1.43 cegger
1676 1.55 yamt vmem_dump(vm, pr);
1677 1.43 cegger }
1678 1.37 yamt #endif /* defined(DDB) */
1679 1.37 yamt
1680 1.60 dyoung #if defined(_KERNEL)
1681 1.60 dyoung #define vmem_printf printf
1682 1.60 dyoung #else
1683 1.1 yamt #include <stdio.h>
1684 1.60 dyoung #include <stdarg.h>
1685 1.60 dyoung
1686 1.60 dyoung static void
1687 1.60 dyoung vmem_printf(const char *fmt, ...)
1688 1.60 dyoung {
1689 1.60 dyoung va_list ap;
1690 1.60 dyoung va_start(ap, fmt);
1691 1.60 dyoung vprintf(fmt, ap);
1692 1.60 dyoung va_end(ap);
1693 1.60 dyoung }
1694 1.60 dyoung #endif
1695 1.1 yamt
1696 1.55 yamt #if defined(VMEM_SANITY)
1697 1.1 yamt
1698 1.55 yamt static bool
1699 1.55 yamt vmem_check_sanity(vmem_t *vm)
1700 1.1 yamt {
1701 1.55 yamt const bt_t *bt, *bt2;
1702 1.1 yamt
1703 1.55 yamt KASSERT(vm != NULL);
1704 1.1 yamt
1705 1.87 christos TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1706 1.60 dyoung if (bt->bt_start > BT_END(bt)) {
1707 1.55 yamt printf("corrupted tag\n");
1708 1.60 dyoung bt_dump(bt, vmem_printf);
1709 1.55 yamt return false;
1710 1.55 yamt }
1711 1.55 yamt }
1712 1.87 christos TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
1713 1.87 christos TAILQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
1714 1.55 yamt if (bt == bt2) {
1715 1.55 yamt continue;
1716 1.55 yamt }
1717 1.55 yamt if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
1718 1.55 yamt continue;
1719 1.55 yamt }
1720 1.60 dyoung if (bt->bt_start <= BT_END(bt2) &&
1721 1.60 dyoung bt2->bt_start <= BT_END(bt)) {
1722 1.55 yamt printf("overwrapped tags\n");
1723 1.60 dyoung bt_dump(bt, vmem_printf);
1724 1.60 dyoung bt_dump(bt2, vmem_printf);
1725 1.55 yamt return false;
1726 1.55 yamt }
1727 1.55 yamt }
1728 1.1 yamt }
1729 1.1 yamt
1730 1.55 yamt return true;
1731 1.55 yamt }
1732 1.1 yamt
1733 1.55 yamt static void
1734 1.55 yamt vmem_check(vmem_t *vm)
1735 1.55 yamt {
1736 1.1 yamt
1737 1.55 yamt if (!vmem_check_sanity(vm)) {
1738 1.55 yamt panic("insanity vmem %p", vm);
1739 1.1 yamt }
1740 1.1 yamt }
1741 1.1 yamt
1742 1.55 yamt #endif /* defined(VMEM_SANITY) */
1743 1.1 yamt
1744 1.55 yamt #if defined(UNITTEST)
1745 1.1 yamt int
1746 1.57 cegger main(void)
1747 1.1 yamt {
1748 1.61 dyoung int rc;
1749 1.1 yamt vmem_t *vm;
1750 1.1 yamt vmem_addr_t p;
1751 1.1 yamt struct reg {
1752 1.1 yamt vmem_addr_t p;
1753 1.1 yamt vmem_size_t sz;
1754 1.25 thorpej bool x;
1755 1.1 yamt } *reg = NULL;
1756 1.1 yamt int nreg = 0;
1757 1.1 yamt int nalloc = 0;
1758 1.1 yamt int nfree = 0;
1759 1.1 yamt vmem_size_t total = 0;
1760 1.1 yamt #if 1
1761 1.1 yamt vm_flag_t strat = VM_INSTANTFIT;
1762 1.1 yamt #else
1763 1.1 yamt vm_flag_t strat = VM_BESTFIT;
1764 1.1 yamt #endif
1765 1.1 yamt
1766 1.61 dyoung vm = vmem_create("test", 0, 0, 1, NULL, NULL, NULL, 0, VM_SLEEP,
1767 1.61 dyoung #ifdef _KERNEL
1768 1.61 dyoung IPL_NONE
1769 1.61 dyoung #else
1770 1.61 dyoung 0
1771 1.61 dyoung #endif
1772 1.61 dyoung );
1773 1.1 yamt if (vm == NULL) {
1774 1.1 yamt printf("vmem_create\n");
1775 1.1 yamt exit(EXIT_FAILURE);
1776 1.1 yamt }
1777 1.60 dyoung vmem_dump(vm, vmem_printf);
1778 1.1 yamt
1779 1.61 dyoung rc = vmem_add(vm, 0, 50, VM_SLEEP);
1780 1.61 dyoung assert(rc == 0);
1781 1.61 dyoung rc = vmem_add(vm, 100, 200, VM_SLEEP);
1782 1.61 dyoung assert(rc == 0);
1783 1.61 dyoung rc = vmem_add(vm, 2000, 1, VM_SLEEP);
1784 1.61 dyoung assert(rc == 0);
1785 1.61 dyoung rc = vmem_add(vm, 40000, 65536, VM_SLEEP);
1786 1.61 dyoung assert(rc == 0);
1787 1.61 dyoung rc = vmem_add(vm, 10000, 10000, VM_SLEEP);
1788 1.61 dyoung assert(rc == 0);
1789 1.61 dyoung rc = vmem_add(vm, 500, 1000, VM_SLEEP);
1790 1.61 dyoung assert(rc == 0);
1791 1.61 dyoung rc = vmem_add(vm, 0xffffff00, 0x100, VM_SLEEP);
1792 1.61 dyoung assert(rc == 0);
1793 1.61 dyoung rc = vmem_xalloc(vm, 0x101, 0, 0, 0,
1794 1.61 dyoung 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1795 1.61 dyoung assert(rc != 0);
1796 1.61 dyoung rc = vmem_xalloc(vm, 50, 0, 0, 0, 0, 49, strat|VM_SLEEP, &p);
1797 1.61 dyoung assert(rc == 0 && p == 0);
1798 1.61 dyoung vmem_xfree(vm, p, 50);
1799 1.61 dyoung rc = vmem_xalloc(vm, 25, 0, 0, 0, 0, 24, strat|VM_SLEEP, &p);
1800 1.61 dyoung assert(rc == 0 && p == 0);
1801 1.61 dyoung rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1802 1.61 dyoung 0xffffff01, 0xffffffff, strat|VM_SLEEP, &p);
1803 1.61 dyoung assert(rc != 0);
1804 1.61 dyoung rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1805 1.61 dyoung 0xffffff00, 0xfffffffe, strat|VM_SLEEP, &p);
1806 1.61 dyoung assert(rc != 0);
1807 1.61 dyoung rc = vmem_xalloc(vm, 0x100, 0, 0, 0,
1808 1.61 dyoung 0xffffff00, 0xffffffff, strat|VM_SLEEP, &p);
1809 1.61 dyoung assert(rc == 0);
1810 1.60 dyoung vmem_dump(vm, vmem_printf);
1811 1.1 yamt for (;;) {
1812 1.1 yamt struct reg *r;
1813 1.10 yamt int t = rand() % 100;
1814 1.1 yamt
1815 1.10 yamt if (t > 45) {
1816 1.10 yamt /* alloc */
1817 1.1 yamt vmem_size_t sz = rand() % 500 + 1;
1818 1.25 thorpej bool x;
1819 1.10 yamt vmem_size_t align, phase, nocross;
1820 1.10 yamt vmem_addr_t minaddr, maxaddr;
1821 1.10 yamt
1822 1.10 yamt if (t > 70) {
1823 1.26 thorpej x = true;
1824 1.10 yamt /* XXX */
1825 1.10 yamt align = 1 << (rand() % 15);
1826 1.10 yamt phase = rand() % 65536;
1827 1.10 yamt nocross = 1 << (rand() % 15);
1828 1.10 yamt if (align <= phase) {
1829 1.10 yamt phase = 0;
1830 1.10 yamt }
1831 1.19 yamt if (VMEM_CROSS_P(phase, phase + sz - 1,
1832 1.19 yamt nocross)) {
1833 1.10 yamt nocross = 0;
1834 1.10 yamt }
1835 1.60 dyoung do {
1836 1.60 dyoung minaddr = rand() % 50000;
1837 1.60 dyoung maxaddr = rand() % 70000;
1838 1.60 dyoung } while (minaddr > maxaddr);
1839 1.10 yamt printf("=== xalloc %" PRIu64
1840 1.10 yamt " align=%" PRIu64 ", phase=%" PRIu64
1841 1.10 yamt ", nocross=%" PRIu64 ", min=%" PRIu64
1842 1.10 yamt ", max=%" PRIu64 "\n",
1843 1.10 yamt (uint64_t)sz,
1844 1.10 yamt (uint64_t)align,
1845 1.10 yamt (uint64_t)phase,
1846 1.10 yamt (uint64_t)nocross,
1847 1.10 yamt (uint64_t)minaddr,
1848 1.10 yamt (uint64_t)maxaddr);
1849 1.61 dyoung rc = vmem_xalloc(vm, sz, align, phase, nocross,
1850 1.61 dyoung minaddr, maxaddr, strat|VM_SLEEP, &p);
1851 1.10 yamt } else {
1852 1.26 thorpej x = false;
1853 1.10 yamt printf("=== alloc %" PRIu64 "\n", (uint64_t)sz);
1854 1.61 dyoung rc = vmem_alloc(vm, sz, strat|VM_SLEEP, &p);
1855 1.10 yamt }
1856 1.1 yamt printf("-> %" PRIu64 "\n", (uint64_t)p);
1857 1.60 dyoung vmem_dump(vm, vmem_printf);
1858 1.61 dyoung if (rc != 0) {
1859 1.10 yamt if (x) {
1860 1.10 yamt continue;
1861 1.10 yamt }
1862 1.1 yamt break;
1863 1.1 yamt }
1864 1.1 yamt nreg++;
1865 1.1 yamt reg = realloc(reg, sizeof(*reg) * nreg);
1866 1.1 yamt r = ®[nreg - 1];
1867 1.1 yamt r->p = p;
1868 1.1 yamt r->sz = sz;
1869 1.10 yamt r->x = x;
1870 1.1 yamt total += sz;
1871 1.1 yamt nalloc++;
1872 1.1 yamt } else if (nreg != 0) {
1873 1.10 yamt /* free */
1874 1.1 yamt r = ®[rand() % nreg];
1875 1.1 yamt printf("=== free %" PRIu64 ", %" PRIu64 "\n",
1876 1.1 yamt (uint64_t)r->p, (uint64_t)r->sz);
1877 1.10 yamt if (r->x) {
1878 1.10 yamt vmem_xfree(vm, r->p, r->sz);
1879 1.10 yamt } else {
1880 1.10 yamt vmem_free(vm, r->p, r->sz);
1881 1.10 yamt }
1882 1.1 yamt total -= r->sz;
1883 1.60 dyoung vmem_dump(vm, vmem_printf);
1884 1.1 yamt *r = reg[nreg - 1];
1885 1.1 yamt nreg--;
1886 1.1 yamt nfree++;
1887 1.1 yamt }
1888 1.1 yamt printf("total=%" PRIu64 "\n", (uint64_t)total);
1889 1.1 yamt }
1890 1.1 yamt fprintf(stderr, "total=%" PRIu64 ", nalloc=%d, nfree=%d\n",
1891 1.1 yamt (uint64_t)total, nalloc, nfree);
1892 1.1 yamt exit(EXIT_SUCCESS);
1893 1.1 yamt }
1894 1.55 yamt #endif /* defined(UNITTEST) */
1895